EIIINEAAEA

Storage

Technology

EMULEX SCSI PROCESSOR

2400138

ESP Chi

- Reselection sequence, from arbitration through message
- Bus-initiated selection through received command
- Bus-initiated reselection through received message
- Command complete sequences
- Terminate and disconnect sequences
- Interrupts microprocessor only when service is required
 - Disconnect or bus reset
 - Selection/reselection sequence complete
 - Target mode command complete or ATN detected
 - Initiator mode command complete or phase change and REQ detected
- Supports clock rates of up to 25 MHz
- Interfaces to eight-bit microprocessor data bus with no support logic
- Low power requirements

FEATURES

- Supports ANSI X3T9.2 SCSI standard
- Utilizes buffer controller interface for I/O and fast DMA
- Provides on-chip single-ended receivers and 48 mA drivers for SCSI bus
- Contains control logic for differential transceivers
- Generates and checks parity on SCSI bus (checking can be disabled)
- Functions as initiator or target
- Supports asynchronous SCSI bus data transfers up to 6M bytes per second depending on cable characteristics
- Supports synchronous SCSI bus data transfers up to 5M bytes per second
 - Programmable synchronous transfer period
 - Programmable synchronous transfer offsets up to 15
- Provides sixteen-byte data FIFO between the DMA and SCSI channels
- Utilizes pipelined command structure
- Implements common SCSI sequences without microprocessor intervention
 - Selection sequence, from arbitration through command

DESCRIPTION

The Emulex SCSI Processor (ESP) chip is a VLSI device which implements the detailed protocol of the SCSI bus standard. The ESP performs such functions as bus arbitration, selection of a target, or reselection of an initiator. It handles message, command, status, and data transfers between the SCSI bus and its internal FIFO or a buffer memory.

Figure 1 shows the internal architecture of the ESP. The ESP is essentially a sophisticated sequencer. The sequencers are a collection of high- and low-level state machines that perform the various functions required by the SCSI bus and the DMA channel. The high-level state machines manage the disconnect, target, and initiator modes of operation. The low-level state machines perform the actual interface operations.

The main data paths are the buffer controller input and output data buses (BI and BO), and the SCSI input and output data buses (SDI and SDO). All are eight-bit buses. In differential mode, the SDI bus becomes bidirectional and the SDO bus controls the direction of the external differential transceivers.

Storage

Technology

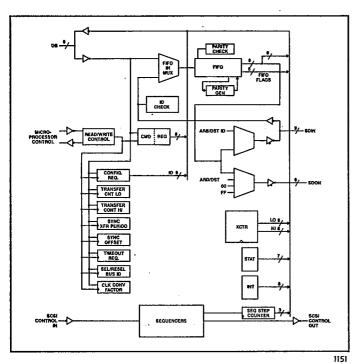


Figure 1. ESP Block Diagram

The ESP replaces existing SCSI interface circuitry, which typically consists of discrete devices, external drivers, and a low performance SCSI interface chip. The ESP contains a fast DMA interface, a sixteen-byte FIFO, and fast asynchronous and synchronous data interface to the SCSI bus, including drivers.

The ESP has been optimized for interaction with the controller microprocessor. Common SCSI bus sequences that would typically require significant amounts of processing and interaction have been reduced to single commands. These include:

Sequence	Description
Selection	Arbitration, target selection, transmission of an optional one-byte message followed by a multiple-byte command
Reselection	Arbitration, initiator reselection, and transmission of a one-byte message

(continued)

(continued)

Sequence	Description
Bus-Initiated Selection	Selection detection, receipt of a one-byte message, command length decode and receipt of a command (if the message was IDENTIFY)
Bus-Initiated Reselection	Reselection detection and receipt of a one-byte message
Target Command Complete	Transmission of a status byte and a one-byte message
Target Terminate	Transmission of a status byte and a one-byte message followed by disconnection from the SCSI bus
Target Disconnection	Transmission of two one-byte messages followed by disconnection from the SCSI bus
Initiator Command Complete	Receipt of a status byte and a one-byte message

To further reduce overhead, the ESP contains a double-ranked Command Register and Transfer Counter which provides a transfer-command pipeline. With Emulex's Buffer Controller 2, which supports buffer setup overlap, the time lost in interbuffer overhead can be reduced to zero.

Using the ESP reduces firmware, part count, board area, and cost while enhancing system performance.

SYSTEM ORGANIZATION

Figure 2 shows a block diagram of a typical SCSI disk controller. The ESP chip provides the controller with a complete SCSI interface. The other major chips in the circuit include the Emulex Merged Architecture Controller (MAC) and a microprocessor.

The MAC chip controls data movement in and out of the buffer memory. It supports up to four DMA channels with a total throughput rate up to 4M bytes per second and provides format control for a wide spectrum of 14-, 8-, 51/4- and 31/2-inch disk drives.

The 8031 microprocessor coordinates the interaction of the VLSI devices on the board. It also implements high level SCSI protocol, such as the message system, SCSI pointers, and command set.

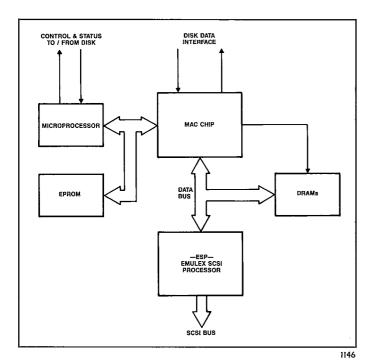


Figure 2. Typical SCSI Controller.

PACKAGING

The ESP chip is available in a 68-pin PLCC for surface or socket mounting. The Emulex part number is 2400138.

REGISTERS

The ESP has 15 registers which are used to configure, command, monitor, and pass data to the chip. These registers are shown in Figure 3 and are more fully described in the paragraphs that follow.

Transfer Count Register

This 16-bit write-only register specifies the number of bytes to be transferred during a DMA operation. Zero specifies the maximum count (65536).

FIFO Register

The FIFO is a 16-byte deep, first-in-first-out buffer between the SCSI bus and buffer memory. The controller microprocessor can access the FIFO using this register. "Writes" load to the top of the FIFO; "Reads" unload from the bottom.

Command Register

This eight-bit read/write register is used to give commands to the ESP. The register is double ranked, enabling the microprocessor to stack commands to the ESP.

The ESP's command set is listed in the following table.

Bits			
654	3210	Command	Interrupt
000 000 000	0000 0001 0010 0011	NOP Flush FIFO Reset chip Reset SCSI bus	No No No No
100 100 100 100	0000 0001 0010 0011	Reconnect sequence Select without ATN sequence Select with ATN sequence Select with ATN and stop sequence	Yes Yes Yes Yes
100	0100 0101	Enable selection/reselection Disable selection/reselection	No Yes
010 010 010 010 010	0000 0001 0010 0011 0100 0101	Send message Send status Send data Disconnect sequence Terminate sequence Target command complete sequence	Yes Yes Yes Yes Yes Yes
010 010 010 010 010	0111 1000 1001 1010 1011	Disconnect Receive message sequence Receive command Receive data Receive command sequence	No Yes Yes Yes Yes
001 001	0000 0001	Transfer information Initiator command complete sequence	Yes Yes
001	0010	Accept message	Yes
001	1000	Transfer pad	Yes
001	1010	Set ATN	No

¹ External connection of the RSTO pin to the RSTI pin causes an interrupt if the SCSI reset interrupt is not disabled in the Configuration Register.

Storage

Technology

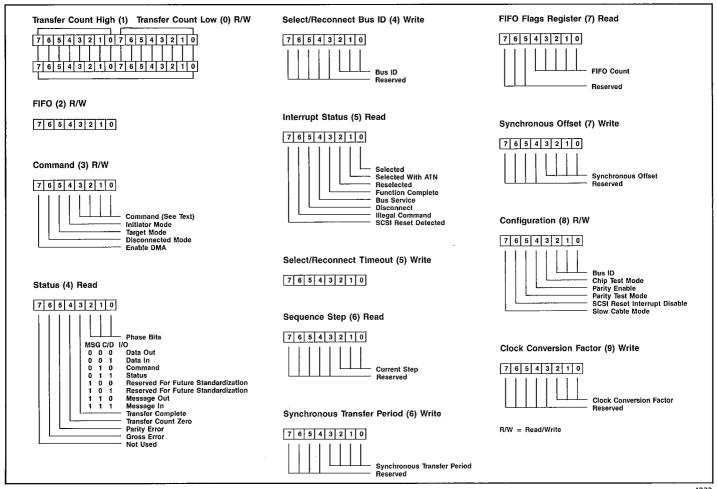


Figure 3. ESP Registers

Status Register

This eight-bit read-only register contains fields to indicate the status of the chip and to qualify the reason for an interrupt.

Bits 2 through 0 indicate the state of the SCSI MSG, C/D, and I/O signals, respectively. These bits define the information phase being asserted by the target (see Figure 3).

Select/Reconnect Bus ID Register

This three-bit write-only register specifies the destination bus ID for a select or reconnect command.

Interrupt Status Register

This eight-bit read-only register is used in conjunction

with the Status Register and Sequence Counter to determine the cause of an interrupt.

Select/Reconnect Timeout Register

This eight-bit write-only register specifies the number of time units to wait for a response during selection or reselection. The value of a time unit is based on the clock applied to the ESP (CK). At 24 MHz this value is 1.7 msec, which allows an absolute timeout period of from 1.7 msec to 435 msec (1 to 255 units).

Sequence Step

This eight-bit read-only register indicates the current substep within a command sequence when an interrupt occurs.

Synchronous Transfer Period Register

This eight-bit write-only register specifies the minimum time between leading edges of successive REQ or ACK pulses during synchronous transfers. At present, only 4 bits are actively used and the remaining four are reserved.

05E D

FIFO Flags Register

This is a read-only register. The least significant five bits encode the 16 "FIFO full" flags to indicate the number of bytes remaining in the FIFO. The remaining bits are reserved.

Synchronous Offset Register

This four-bit write-only register specifies the maximum REQIACK offset allowed during synchronous transfers. An offset of zero specifies asynchronous operation.

Configuration Register

This eight-bit read/write register is used to specify different operating options for the ESP, including the ESP's SCSI bus address, parity configuration, and cable speed configuration. Slow cable mode provides longer data setup times on the SCSI bus to compensate for high capacitance on the SCSI cable.

Clock Conversion Factor Register

The microprocessor loads this three-bit write-only register with a clock conversion factor. This factor is required to run the ESP at various clock speeds while maintaining consistent SCSI interface timing. The factor used is one-half the number of clock cycles (CK) required to generate a 400 nsec period clock. For example, at 24 MHz the clock conversion factor is five.

PROCESSOR OVERHEAD

The following table shows the processor overhead required for the target to change phases during a command. Times are estimated based on using an ESP and an 8031 microprocessor running at 12 MHz.

	Change Time (usec)
Selection to ID message ID message to command * Command to Disconnect message Disconnect message to bus free Reselect to ID message * ID message to data transfer * Data transfer to status Status to Complete message Complete message to bus free	\(\rangle 2\) \(\lambda 2\) \(\lambda 1\) \(\lambda 2\) \(\lambda 2\) \(\lambda 2\) \(\lambda 2\) \(\lambda 2\) \(\lambda 2\) \(\lambda 1\)
Total phase change overhead	⟨480
Interbuffer time for data transfers	0

^{*} Associated with the 8031 microprocessor functions.

PIN DESCRIPTION

The ESP pins are described below. The pin type is indicated by "I" for input, "O" for output, and "I/O" for bidirectional. Figure 4 shows the ESP's pinouts.

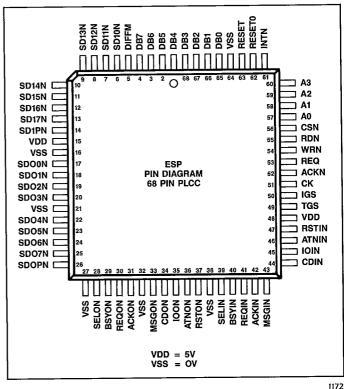


Figure 4. ESP Pinouts

Storage

Technology

_				
Pir	Symbo		_l	Function
			er Controlle	r Interface
55 54 55 55 54 55 52 61	DB6 DB5 DB4 DB3 DB2 DB1 DB0 A3 A2		TTLP/TTL3 TTLP/TTL3 TTLP/TTL3 TTLP/TTL3 TTLP/TTL3	Data Bus Register Address Register Address Register Address Register Address Register Address Register Address Chip Select Read Strobe Write Strobe DMA Request DMA Acknowledge Microprocessor Interrupt
			SCSI Bus Int	
25 24 23 22 20 19 18 17 26 13 12 11 10 9 8 7 6 14 28 29 36 31 30 33 34 46 42 41 43 44 45 47	SDO7N SDO6N SDO5N SDO3N SDO3N SDO2N SDO1N SDO9N SDI7N SDI6N SDI5N SDI2N SDI2N SDI2N SDI2N SDIDN SDIPN SELON BSYON ATNON ACKON REQON MSGON CDON IOON RSTON SELIN BSYIN ATNIN ACKIN REQIN MSGIN CDIN SOIN SELIN BSYIN ATNIN SELIN REQON RSTON SELIN BSYIN ATNIN SELIN REGIN ATNIN SELIN REGI	000000000000000000000000000000000000000	OD48 OD48 OD48 OD48 OD48 OD48 OD48 OD48	SCSI Data Bus Out SCSI Data Bus In SCSI Parity In SCSI Select Out SCSI Request Out SCSI Acknowledge Out SCSI Input/Output Out SCSI Input/Output Out SCSI Reset Out SCSI Select In SCSI Select In SCSI Acknowledge In SCSI Acknowledge In SCSI Request In SCSI Message In SCSI Control Data In SCSI Input/Output In SCSI Input/Output In SCSI Reset In

(continued)

(continued)

	Miscellaneous Pins						
50 49 5 63 62	IGS TGS DIFFM RESET RESETO	000	TTL3 TTL3 TTL TTL OD4	Initiator Group Select Target Group Select Differential Mode Enable ESP Reset Reset Output			
51 15 48 16 21 27 32 38 64	CK VDD VSS VSS VSS VSS VSS VSS VSS VSS		ΠL	Clock +5Vdc +5Vdc Ground Ground Ground Ground Ground Ground			

INTERFACES

The ESP has two separate interfaces: the buffer data bus and the SCSI bus.

Buffer Data Bus

The buffer data interface is used for DMA (in conjunction with a buffer controller) and to allow microprocessor access to ESP registers.

The interface consists of an eight-bit data bus (DB7-DB0), four address lines (A3-A0), a read strobe (RDN), a write strobe (WRN), DMA request (REQ), DMA acknowledge (ACKN), and microprocessor interrupt (INTN) signals.

To access an ESP register, the microprocessor presents an address on A0-A3, drives CSN true, and strobes the data in or out of the register using WRN or RDN.

For DMA operations, the buffer controller manages access timing and generates all buffer memory addresses. When a DMA operation is enabled, the ESP drives REQ true, the buffer controller acknowledges with ACKN and strobes the data into or out of the ESP with WRN or RDN.

SCSI Interface

The SCSI interface can be configured for operation in either differential mode or single-ended mode using the differential mode enable (DIFFM) pin. When DIFFM is grounded, the ESP operates in single-ended mode; when it is held high, the ESP operates in differential mode.

Single-Ended Mode

In single-ended mode, all SCSI bus signals have separate input and output pins. That is, the ESP drives data out on SDO7-0N and receives data on SDI7-0N.

Differential Mode

In differential mode, the SDI7N-ON pins carry bidirectional data and the SDO7N-0N pins configure the direction of the external transceivers.

During arbitration, the ESP drives the SDO7-0N lines with the appropriate ID bit set, which sets the desired differential transceiver's direction to out. The other transceivers are configured for input, allowing the ESP to determine whether it has won arbitration. During selection and information transfers, the SDO7-0N lines are driven, either all high or all low, to configure the transceivers for output or input, respectively.

The other SCSI bus signals have separate input and output pins. The direction of the transceivers for ATN, ACK, REQ, MSG, CID, and I/O is selected by the IGS and TGS outputs, which indicate whether the chip is operating in the initiator or the target role. The BSY, SEL, and RST signals are OR-tied on the SCSI bus.

Absolute Maximum Ratings (Referenced to VSS)							
Symbol	Parameter	Limits	Unit				
V _{DD}	DC Supply Voltage	0.5 to +7.0	\ \				
V _I	Input Voltage	V _{SS} -0.7 to V _{DD} +0.3	V				
I _I	DC Input Current	±10	mA				
T _{STG}	Storage Temperature Range (Plastic)	-40 to +125	۰c				
Rec	Recommended Operating Conditions						
Symbol	Parameter	Range	Unit				
V _{DD}	DC Supply Voltage	4.75 to 5.25	V				
TA	Operating Ambient Temperature Range	0 to +70	۰c				
СК	Rate, Asynchronous Rate, Synchronous	10 to 24 12 to 24	MHz MHz				
IDD	Static (all inputs at V _{SS} , all outputs floating, all bidirects configured as inputs)	10	mA				
lDD	Dynamic	70	mΑ				

ESD/SCR Requirements						
Symbol	Parameter	Limits	Unit			
ESP	Electrostatic Discharge (100 pF via 1500 ohms)	1500	V			
IMAX	Current into or out of any pin (25°C, V _{DD} -V _{SS} =5 V)	50	mA			

DC Electrical Characteristics

Specified at $V_{DD} = 5V \pm 5\%$						
over the temperature of 0 to +70°C						
Symbol	Parameter	Min	Max	Unit	Condition	
	TTL: TT	L Inp	ut			
VIH VIL VIH	Input High Voltage Input Low Voltage Input High Current Input Low Current	2.0 0 0	0.8 20 -100	∨ ∨ μ^ μ^	V _{IN} = V _{DD} V _{IN} = 0 V	
	TTLP: TTL Inpu	it W	ith P	ullup		
FĪ수도	Input High Voltage Input Low Voltage Input High Current Input Low Current	2.0 0 0	0.8 20 - 4 00	> > < <	V _{IN} = V _{DD} V _{IN} = 0 V	
	TTL3: TTL 3.2	2 mA	Out	put		
VOH VOL	Output High Voltage Output Low Voltage	2.4	0.4	V V	$I_{OH} = -80 \mu A$ $I_{OL} = 3.2 \text{mA}$	
	OD3: 3.2 mA Op	en D	raln	Outp	ut	
V _{OL} I _{ZL}	Output Low Voltage High Z Leakage	-20	0.4 20	ν _μ Α	$I_{OL} = 3.2 \text{ mA}$ $V_{O} = 0V \text{ or}$ V_{DD}	
	ST: Schmidt	Trigge	er Inp	out	•	
V _{T+} V _{T-} VHYS I _{IN}	Input High Threshold Input Low Threshold Hysteresis Input Leakage	2.1 0.2 -10	0.7 10	> > > μ ^Α	V _{IN} = 0V or VDD	
	OD48: 48 mA Op	en D	rain	Outp	ut	
V _{OL} I _{ZL}	Output Low Voltage High Z Leakage	-30	0.4 30	V μA	$I_{OL} = 48 \text{ mA}$ $V_{O} = 0V \text{ or}$ V_{DD}	
TTL4: 4 mA Output						
VOH VOL	Output High Voltage Output Low Voltage	2.4	0.4	> >	I _{OH} = -4 mA I _{OL} = 4 mA	

AC Timing

The following figures and the table of values that accompanies them are illustrative of the ESP chip's AC timing characteristics. For definitive values, see the ESP Applications Manual or Specification.

Storage

Technology

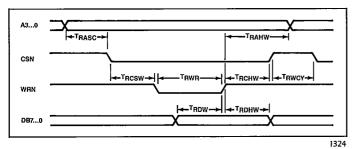


Figure 5. Register Write Operation

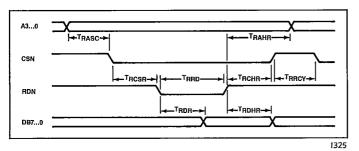


Figure 6. Register Read Operation

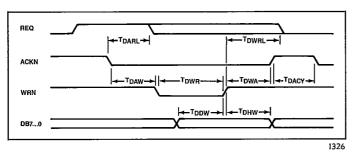


Figure 7. DMA Write Operation

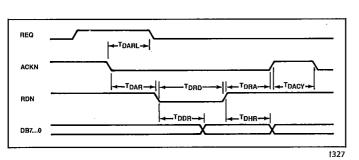


Figure 8. DMA Read Operation

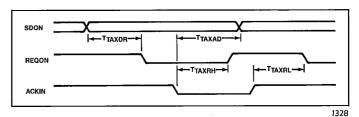


Figure 9. Target Asynchronous Transmit

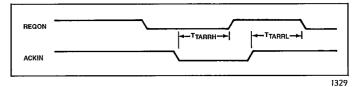


Figure 10. Target Asynchronous Receive

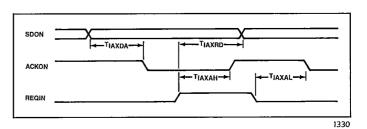


Figure 11. Initiator Asynchronous Transmit

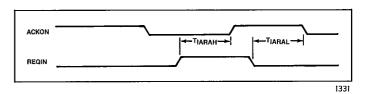


Figure 12. Initiator Asynchronous Receive

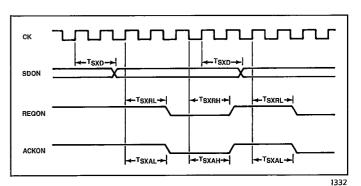


Figure 13. Synchronous Transmit

Symbol	Parameter	Min	May	Units
-			IVICIA	
TDACY	ACKN High to ACKN Low	12		Nsec
TDAR	ACKN Low to RDN Low	0		Nsec
TDARL	ACKN Low to REQ Low	0	65	Nsec
TDAW/	ACKN Low to WRN Low	0		Nsec
TDDR	RDN to Data	l	50	Nsec
TDDW	Data to WRN High	20		Nsec
TDHR	Data Hold Time	0	50	Nsec
TDHW	Data Hold Time	10		Nsec
TDRA	RDN High to ACKN High	0		Nsec
TDRD	RDN Pulse Width	40		Nsec
TDWA	WRN High to ACKN High	12		Nsec
TDWR	WRN Pulse Width	40		Nsec
TDWRL	WRN High to REQ Low		44	Nsec
TIARAH	REQIN High to ACKON High		37	Nsec
TIARAL	REQIN Low to ACKON Low		57	Nsec
TIAXAH			55	Nsec
TIAXAL	REQIN Low to ACKON Low		33	Nsec
TIAXDA		55		Nsec
TIAXRD	REQIN High to Data		75	Nsec
TRAHR	Address Hold Time	0		Nsec
TRAHW	Address Hold Time	0		Nsec
TRASC	Address Setup to CSN	12		Nsec
TRCHR	RDN High to CSN High	12		Nsec
TRCHW	WRN High to CSN High	12		Nsec
T _{RCSR}	CSN Setup to RDN	12		Nsec
TRCSW	CSN Setup to WRN	12		Nsec
TROHR	Data Hold Time	0	50	Nsec
TRDHW		10		Nsec
TRDR	RDN to Data		50	Nsec
TROW	Data to WRN High	20		Nsec
TRRCY	CSN High to CSN Low	30		Nsec
TRRD	RDN Pulse Width	40		Nsec
T _{RWCY}	CSN High to CSN Low	60		Nsec
T _R W _R	WRN Pulse Width	40		Nsec
TSXAH	ACKON High from CK Low	27	50	Nsec
TSXAL	ACKON Low from CK High	13	39	Nsec
TSXD	Data from CK High	30	60	Nsec
TSXRH	REQON High from CK Low	27	50	Nsec
TSXRL	REQON Low from CK High	13	39	Nsec
TTARRH	ACKIN Low to REQON High	40		Nsec
TTARRL	ACKIN High to REQON Low	47		Nsec
TTAXAD	ACKIN Low to Data		59	Nsec
TTAXDR		55	l	Nsec
TTAXRH			40	Nsec
TTAXRL	ACKIN High to REQON Low		44	Nsec

ESP Reference Sheet

#	ESP Read Re	gisters	#	ESI	Write Registers
0 1 2 3 4 5 6 7 8	Transfer counter lo Transfer counter hi FIFO Command Status Interrupt Sequence step FIFO flags Configuration			Trai FIF Coi S/R S/R Syr Syr Coi	nsfer count lo nsfer count hi O mmand bus ID timeout nc period nc offset nfiguration
	COMMAND	REGISTER	(RV	/3) (B	t 7 = DMA)
Mis	c Cmds	Initiator	Cm	ds	Target Cmds
01 F 02 F 03 F 03 F 40 F 41 S 42 S 43 S 44 F	NOP Flush FIFO Reset chip Reset SCSI Connected Cmds Reconnect Sel w/o ATN Sel w/ATN Sel w/ATN/stop Enable S/R Disable S/R	11 Cmd o 12 Accep	nsfer pad		20 Send msg 21 Send status 22 Send data 23 Disconnect seq 24 Terminate seq 25 Cmd comp seq 27 Disconnect 28 Rcv msg seq 29 Rcv cmd 2A Rcv data 2B Rcv cmd seq
STA	TUS (RO4)	INTERRUPT (RO5)		RO5)	CONFIG (RW8)
4 X 5 P 6 G 7 SEC 0 Se 1 Se	<i>I</i> D	O Selecte 1 Selecte 2 Reselec 3 Func c 4 Bus ser 5 Discon 6 Illegal 7 SCSI re	d wated omportice omections	lete	O Bus ID O 1 Bus ID 1 2 Bus ID 2 3 (O) 4 Parity enable 5 Parity test mode 6 SCSI rst int dis 7 Slow cable