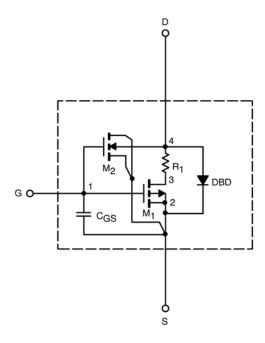


SPICE Device Model Si1403DL Vishay Siliconix

P-Channel 2.5-V (G-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to $125^{\circ}\mathrm{C}$ temperature ranges under the pulsed 0 to $-5\mathrm{V}$ gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

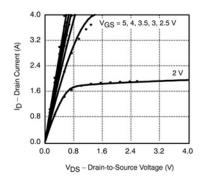
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

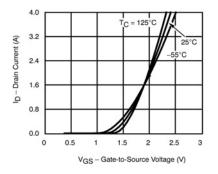
Document Number: 71477 www.vishay.com 24-Apr-04 1

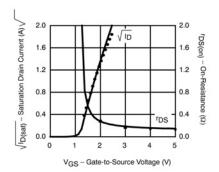
SPICE Device Model Si1403DL

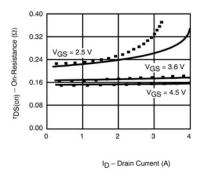
Vishay Siliconix

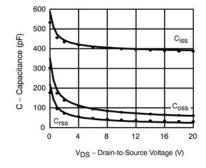
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	1	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	19	Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -1.5 \text{ A}$	0.152	Ω
		$V_{GS} = -3.6 \text{ V}, I_D = -1.4 \text{ A}$	0.169	
		$V_{GS} = -2.5 \text{ V}, I_D = -0.8 \text{ A}$	0.221	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -10 \text{ V}, I_{D} = -1.5 \text{ A}$	3.9	S
Diode Forward Voltage ^a	V_{SD}	$I_S = -0.8 \text{ A}, V_{GS} = 0 \text{ V}$	-0.79	V
Dynamic ^b				
Total Gate Charge ^b	Q_g	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -1.5 \text{ A}$	3.3	nC
Gate-Source Charge ^b	Q_{gs}		0.9	
Gate-Drain Charge ^b	Q_{gd}		0.9	
Turn-On Delay Time ^b	t _{d(on)}	$V_{DD} = -10 \text{ V}, \text{ R}_L = 10 \Omega$ $I_D \cong -1 \text{ A}, \text{ V}_{GEN} = -4.5 \text{ V}, \text{ R}_G = 6 \Omega$ $I_F = -0.8 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	14	ns
Rise Time ^b	t _r		19	
Turn-Off Delay Time ^b	$t_{d(off)}$		25	
Fall Time ^b	t _f		27	
Source-Drain Reverse Recovery Time	t _{rr}		20	

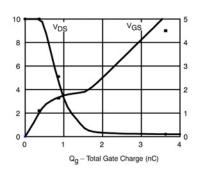

www.vishay.com Document Number: 71477


Notes a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si1403DL Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 71477 www.vishay.com 24-Apr-04