

MICROCIRCUIT DATA SHEET

MNLM158A-X-RH REV 1B1

Original Creation Date: 01/14/99 Last Update Date: 04/08/02 Last Major Revision Date: 05/18/01

LOW POWER, DUAL OPERATIONAL AMPLIFIER: ALSO AVAILABLE GUARANTEED TO 50K RAD (Si) TESTED TO MIL-STD-883, METHOD 1019.5

General Description

The LM158A consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158A can be directly operated off of the standard +5V DC power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional \pm 15V DC power supplies.

NS Part Numbers

LM158AH-QMLV LM158AH/883 LM158AHLQMLV

LM158AJ-QMLV LM158AJ/883 LM158AJLQMLV

LM158AWG-QMLV LM158AWG/883 LM158AWGLQMLV

Industry Part Number

LM158

Prime Die

LM158

Controlling Document

SEE FEATURES SECTION

Processing	
------------	--

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp	Description	Temp	(°C)
1 2 3 4 5 6 7 8A 8B 9 10 11	Static tests at Static tests at Dynamic tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Switching tests at Switching tests at	+25 +125 -55 +25 +125 -55 +25 +125 -55 +25 +125 -55	

Features

- Internally frequency compensated for unity gain
- Large dc voltage gain 100dB
- Wide bandwidth (unity gain temperature compensated) 1MHz
- Wide power supply range:
 - Single supply 3V to 32V or dual supplies $\pm 1.5V$ to $\pm 16V$
- Very low supply current drain (500uA) essentiely independent of supply voltage
- Low input offset voltage 2mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0V to V+ 1.5V

- CONTROLLING DOCUMENTS:

LM158AH-QMLV	5962-8771002VGA
LM158AH/883	5962-8771002GA
LM158AHLQMLV	5962L8771002VGA
LM158AJ-QMLV	5962-8771002VPA
LM158AJ/883	5962-8771002PA
LM158AJLQMLV	5962L8771002VPA
LM158AWG-QMLV	5962-8771002VXA
LM158AWG/883	5962-8771002QXA
LM158AWGLQMLV	5962L8771002VXA

(Absolute	Maximum Ratings)
Supply Voltage, V+		32Vdc
Differential Input	Voltage	32Vdc
Input Voltage		-0.3Vdc to +32Vdc
Power Dissipation (Note 2)		830 mW
Output Short-Circu (Note 3)	it to GND	850 IIIW
(One Amplifier V+ < 15Vdc and		Continuous
Maximum Junction T	emperature	150 C
Input Current (Vin (Note 4)	< -0.3Vdc)	50mA
Operating Temperat	-55 C ≤ Ta ≤ +125 C	
Storage Temperatur	e Range	-65 C ≤ Ta ≤ +150 C
Lead Temperature (Soldering, 10 METAL CAN CERDIP CERAMIC SOIC	seconds)	300 C 260 C 260 C
CERDIP CERAMIC SOIC	(Still Air) (500LF/Min Air Flow) (Still Air) (500LF/Min Air Flow)	155 C/W 80 C/W 132 C/W 81 C/W 195 C/W 131 C/W
ThetaJC METAL CAN CERDIP CERAMIC SOIC		42 C/W 23 C/W 33 C/W
Package Weight (Typcial) METAL CAN CERDIP CERAMIC SOIC		1000mg 1100mg 220mg
ESD Tolerance (Note 5)		250V

- Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax - TA)/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.
- Note 3: Short circuits from the output to V+, can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V+. At values of supply voltage in excess of +15Vdc, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
- Note 4: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward baised and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater that -0.3Vdc (at 25C).
- Note 5: Human body model, 1.5 K ohms in series with 100 pF.

Electrical Characteristics

DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: All voltages referenced to device ground.

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Icc	Power Supply Current	V+ = 5V, Rl = 100K, Vo = 1.4V				1.2	mA	1, 2, 3
		V+ = 30V, Rl = 100K, Vo = 1.4V				3	mA	1
						4	mA	2, 3
Voh	Output Voltage High	V+ = 30V, Rl = 2K Ohms			26		V	1, 2, 3
		V+ = 30V, Rl = 10K Ohms			27		V	1, 2, 3
Vol	Output Voltage Low	V+ = 30V, Rl = 10K Ohms				40	mV	1
	LOW					100	mV	2, 3
		V+ = 30V, Isink = 1uA				40	mV	1
						100	mV	2, 3
		V+ = 5V, Rl = 10K Ohms				40	mV	1
						100	mV	2, 3
Isink	Output Sink Current	V+ = 15V, Vout = 200mV, +Vin = 0V, -Vin = +65mV			12		uA	1
		V+ = 15V, Vout = 2V, +Vin = 0V, -Vin = +65mV			10		mA	1
		VIII = 105mV			5		mA	2, 3
Isource	Output Source Current	V+ = 15V, Vout = 2V, +Vin = 0V, -Vin = -65mV				-20	mA	1
						-10	mA	2, 3
Ios	Short Circuit Current	V+ = 5V, Vout = 0V			-60		mA	1
Vio	Input Offset Voltage	V + = 30V, $Vcm = 0V$, $Rs = 50$ Ohms, Vo = 1.4V			-2	2	mV	1
					-4	4	mV	2, 3
		V+ = 30V, Vcm = 28V, Rs = 50 Ohms, Vo = 1.4V			-4	4	mV	2, 3
		V+ = 5V, $Vcm = 0V$, $Rs = 50$ Ohms, Vo = 1.4V			-2	2	mV	1
					-4	4	mV	2, 3
		V+ = 30V, Vcm = 28.5V, Rs = 50 Ohms,Vo = 1.4V			-2	2	mV	1
CMRR	Common Mode Rejection Ratio	V+ = 30V, Vin = 0V to 28.5V, Rs = 50 Ohms			70		dB	1
Iib+	Input BIas Current	V+ = 5V, Vcm = 0V			-50	-1	nA	1
					-100	-1	nA	2, 3

Electrical Characteristics

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: All voltages referenced to device ground.

SYMBOL	PARAMETER	CONDITIONS		PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Iib-	Input BIas Current	V+ = 5V, $Vcm = 0V$			-50	-1	nA	1
					-100	-1	nA	2, 3
Iio	Input Offset Current	V+ = 5V, $Vcm = 0V$			-10	10	nA	1
					-30	30	nA	2, 3
PSRR	Power Supply Rejection Ratio	V+ = 5V to 30V, Vcm = 0V			65		dB	1
Vcm	Common Mode Voltage Range	V+ = 30V	1			28.5	V	1
	voreage name		1			28.0	V	2, 3
Vdiff	Differential Input Voltage		2			32	V	1, 2, 3
Avs	Large Signal Gain	V+ = 15V, Rl = 2K Ohms, Vo = 1V to 11V			50		V/mV	4
					25		V/mV	5,б

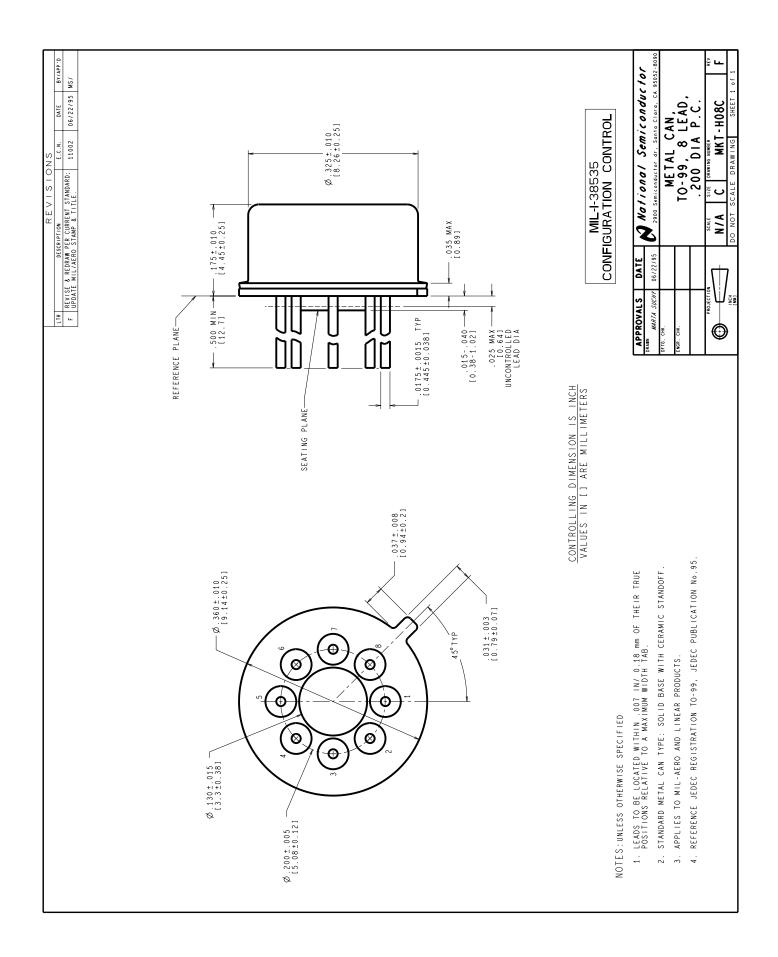
DC PARAMETERS: DRIFT VALUES

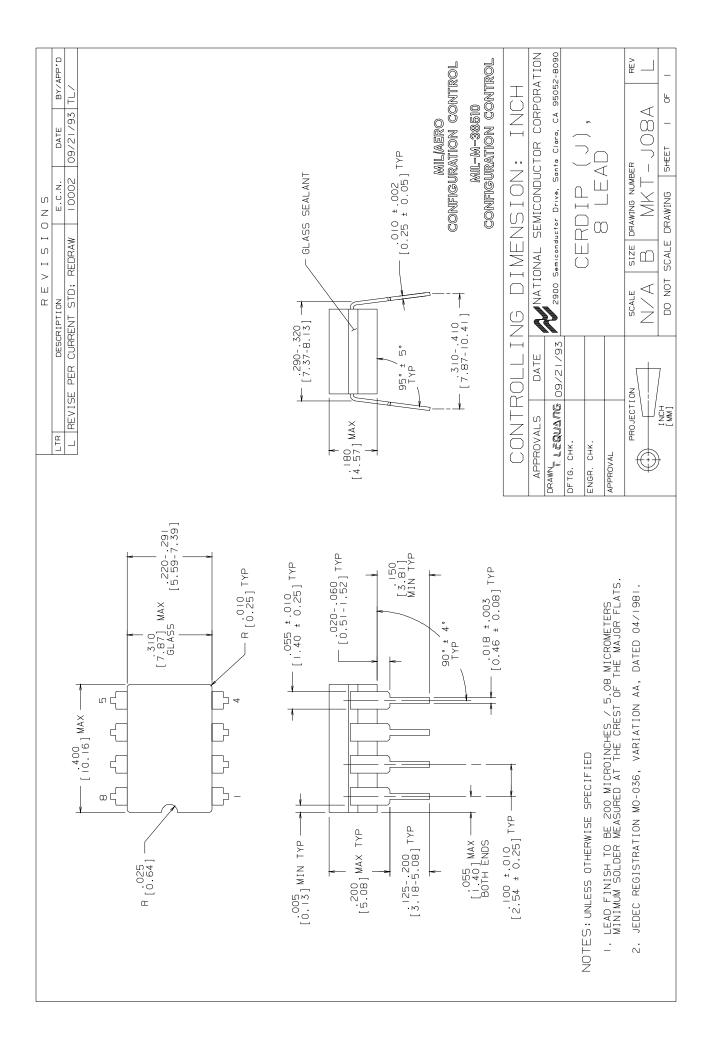
(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: All voltages referenced to device ground. "Delta calculations performed on Jan "S" and "QMLV" devices
 at Group B, Subgroup 5 only."

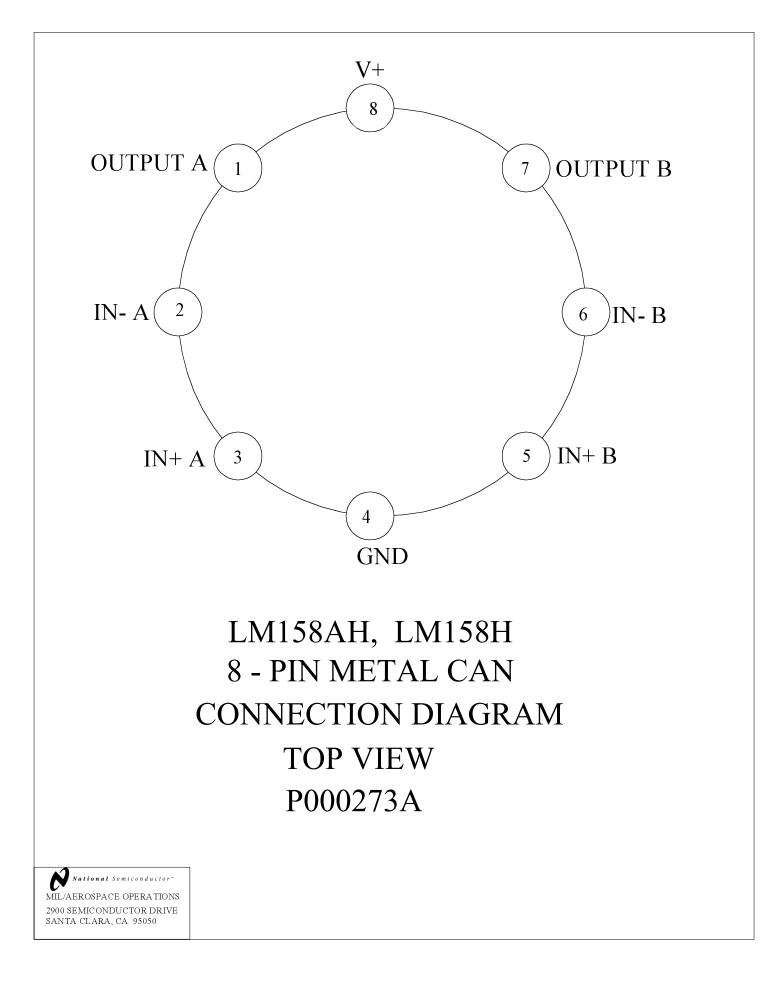
Vio	Input Offset Voltage	V+ = 30V, Vcm = 0V, Rs = 50 Ohms, Vo = 1.4V		-0.5	0.5	mV	1
		V+ = 30V, Vcm = 28V, Rs = 50 Ohms, Vo = 1.4V		-0.5	0.5	mV	1
		V+ = 5V, Vcm = 0V, Rs = 50 Ohms, Vo = 1.4V		-0.5	0.5	mV	1
Iib+	Input Bias Current	V+ = 5V, Vcm = 0V		-10	10	nA	1
Iib-	Input Bias Current	V+ = 5V, Vcm = 0V		-10	10	nA	1

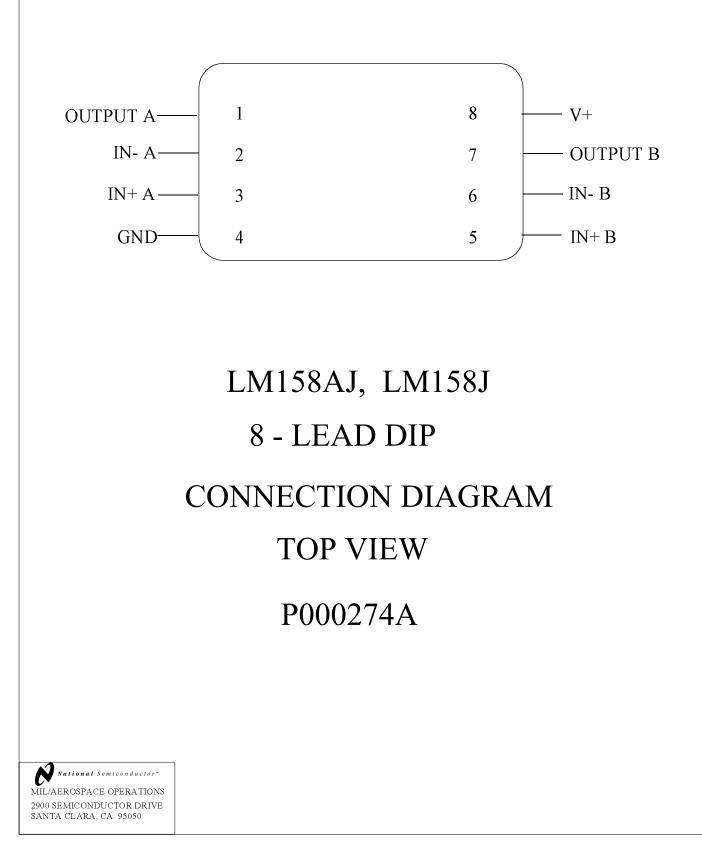
DC/AC PARAMETERS: POST RADIATION LIMITS +25 C

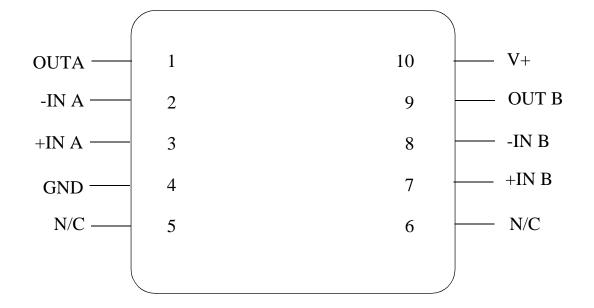
(The following conditions apply to all the following parameters, unless otherwise specified.) DC: All voltages referenced to device ground.

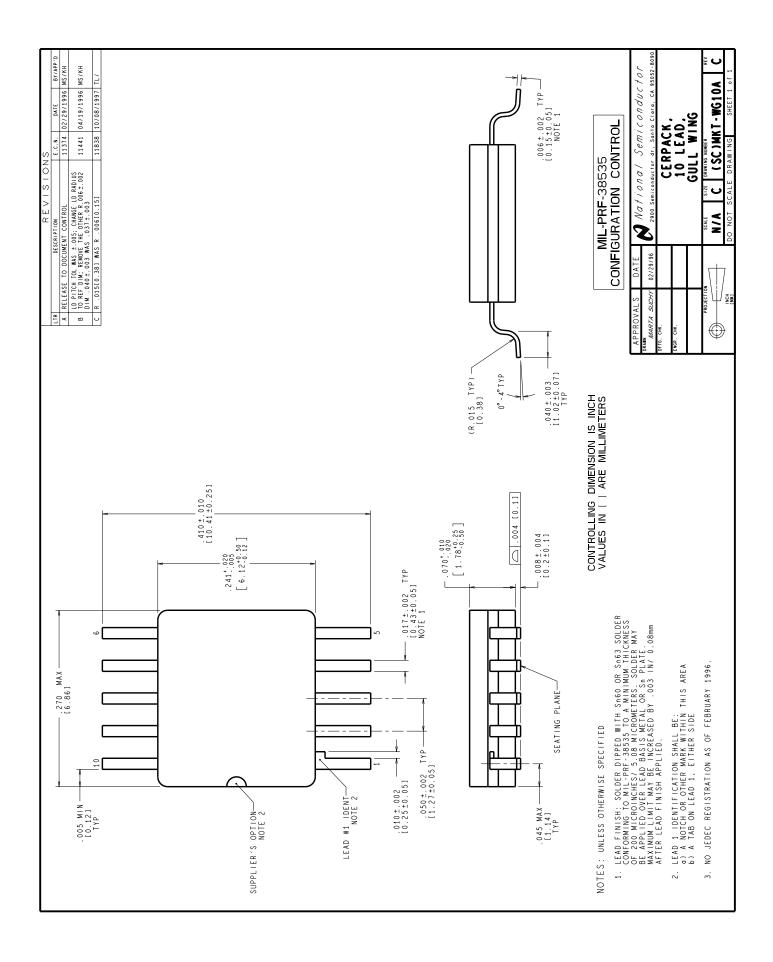

Vio	Input Offset Voltage	V+ = 30V, Vcm = 0V, Rs = 50 Ohms, Vo = 1.4V	3	-4	4	mV	1
		V + = 30V, $Vcm = 28V$, $Rs = 50$ Ohms, $Vo = 1.4V$	3	-4	4	mV	1
		V+ = 5V, Vcm = 0V, Rs = 50 Ohms, Vo = $1.4V$	3	-4	4	mV	1
<u>+</u> Iib	Input Bias Current	V+ = 5V, Vcm = 0V	3	-60	-1	nA	1


- Note 1: Parameter tested go-no-go only. Note 2: Guaranteed parameter not tested. Note 3: Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the Post Radiation Limits Table. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in MIL-STD-883, Method 1019.5.


GRAPHICS#	DESCRIPTION
06354HRB2	CERAMIC SOIC (WG), 10 LEAD (B/I CKT)
08571HRC2	METAL CAN (H), TO-99, 8LD, .200 DIA P.C. (B/I CKT)
09294HR01	CERDIP (J), 8 LEAD (B/I CKT)
H08CRF	METAL CAN (H), TO-99, 8LD, .200 DIA P.C. (P/P DWG)
J08ARL	CERDIP (J), 8 LEAD (P/P DWG)
P000273A	METAL CAN (H), TO-99, 8 LD, .200 DIA P.C. (PINOUT)
P000274A	CERDIP (J), 8 LEAD (PINOUT)
P000461A	CERAMIC SOIC (WG), 10 LEAD (PINOUT)
WG10ARC	CERAMIC SOIC (WG), 10 LEAD (P/P DWG)


Graphics and Diagrams


See attached graphics following this page.



LM158AWG, LM158WG 10 - LEAD CERAMIC SOIC CONNECTION DIAGRAM TOP VIEW P000461A

2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0A0	M0003236	03/10/00	Rose Malone	Initial MDS Release: MNLM158A-X-RH, Rev. 0A0 - Added Rad Hard Devices and Limits. Replaces MNLM158A-X, Rev 3A0.
0B1	M0003533	03/23/00	Rose Malone	Update MDS: MNLM158A-X-RH, Rev. 0A0 to MNLM158A-X-RH, Rev. 0B1. Added reference to WG pkg - onto Main Table Absolute Section and drawings to graphics section.
0C1	M0003643	05/15/00	Rose Malone	Update MDS - MNLM158A-X-RH, Rev. 0B1 to MNLM158A-X-RH Rev. 0C1. Corrected typo Package Weight for CERAMIC SOIC from 200mg to 220mg, in Absolute Maximum Section
0D1	M0003679	05/24/01	Rose Malone	Update MDS: MNLM158A-X-RH, Rev. 0C1 to MNLM158A-X-RH, Rev. 0D1. Corrected typo's on Main Table, Features Section and Absolute Section.
1A1	M0003806	04/08/02	Rose Malone	UPDATE MDS: MNLM158A-X-RH, Rev. 0D1 to MNLM158A-X-RH, Rev. 1A1. Updated Electrical Section, Conditions for Isink FROM (V+ = 15V, Vout = 200mV, Vin = 65mV): TO (V+ = 15V, Vout = 200mV, +Vin = 0V, -Vin = +65mV) Isource FROM: (V+ = 15V, Vin = 65mV, Vout = 2V) TO (V+ = 15V, Vout = 2V, +Vin = 0V, -Vin = -65mV)
1B1	M0003984	04/08/02	Rose Malone	Update MDS: MNLM158A-X-RH, Rev. 1A1 to MNLM158A-X-RH, Rev. 1B1. Deleted reference to LM158AHLQML, LM158AJLQML, LM158AWGLQML from Main Table and Feature Section product un-available.