FEATURES:

- 2.5 VdD
- 6 pairs of programmable skew outputs
- Low skew: 100ps all outputs at same interface level, 250ps all outputs at different interface levels
- Selectable positive or negative edge synchronization
- Tolerant of spread spectrum input clock
- Synchronous output enable
- Selectable inputs
- Input frequency: 4.17MHz to 250 MHz
- Output frequency: 12.5 MHz to 250 MHz
- Internal non-volatile EEPROM
- JTAG or ${ }^{2}$ C bus serial interface for programming
- Hot insertable and over-voltage tolerant inputs
- Feedback divide selection with multiply ratios of (1-6, 8, 10, 12)
- Selectable HSTL, eHSTL, 1.8V/2.5V LVTTL, or LVEPECL input interface
- Selectable HSTL, eHSTL, or $1.8 \mathrm{~V} / 2.5 \mathrm{~V}$ LVTTL output interface for each output bank
- Selectable differential or single-ended inputs and six differential outputs
- PLL bypass for DC testing
- External differential feedback, internal loop filter
- Low Jitter: <75ps cycle-to-cycle, all outputs at same interface level: <100ps cycle-to-cycle all outputs at different interface levels
- Power-down mode
- Lock indicator
- Available in VFQFPN package

DESCRIPTION:

The IDT5T9891 is a 2.5 V PLL differential clock driver intended for high performance computing and data-communications applications. A key feature of the programmable skew is the ability of outputs to lead or lag the REF input signal. The IDT5T9891 has six differential programmable skew outputs in six banks, including a dedicated differential feedback throughthe use of JTAG or $I^{2} \mathrm{C}$ programming. The redundant input capability allows for a smooth change over to a secondary clock source when the primary clock source is absent.

The clock driver can be configured through the use of JTAG//22C programming. An internal EEPROM will allow the user to save and restore the configuration of the device.

The feedback bank allows divide-by-functionality from 1 to 12 through the use of JTAG or $I^{2} \mathrm{C}$ programming. This provides the user with frequency multiplication 1 to 12 withoutusing divided outputs for feedback. Each output bank also allows for a divide-by functionality of 2 or 4.

The IDT5T9891 features a user-selectable, single-ended or differential input to six differential outputs. The differential clock driver also acts as a translator from a differential HSTL, eHSTL, 1.8V/2.5V LVTTL, LVEPECL, or single-ended 1.8V/2.5V LVTTL inputto HSTL, eHSTL, or 1.8V/2.5VLVTTL outputs. Each outputbank can be individually configured to be either HSTL, eHSTL, 2.5VLVTTL, or 1.8V LVTTL, including the feedback bank. Also, each clockinputcan be individually configured to accept $2.5 \mathrm{VLVTTL}, 1.8 \mathrm{VLVTTL}$, ordifferential signals. Theoutputscanbesynchronouslyenabled/disabled. The differential outputs can be synchronously enabled/disabled.

Furthermore, all the outputs can be synchronized with the positive edge of the REF clock input or the negative edge of REF.

FUNCTIONAL BLOCK DIAGRAM

VFQFPN
TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VDDQN, VDD	Power Supply Voltage (2)	-0.5 to +3.6	V
VI	Input Voltage	-0.5 to +3.6	V
Vo	Output Voltage	-0.5 to VDDQ +0.5	V
VREF	Reference Voltage ${ }^{(3)}$	-0.5 to +3.6	V
TJ	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-65 to +165	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDDQN and VDD internally operate independently. No power sequencing requirements need to be met.
3. Not to exceed 3.6V.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\right)$

Parameter	Description	Min.	Typ.	Max.	Unit
CIN	InputCapacitance	2.5	3	3.5	pF
Cout	OutputCapacitance	-	6.3	7	pF

NOTE:

1. Capacitance applies to all inputs except $\mathrm{JTAG} / /^{2} \mathrm{C}$ signals, SEL, ADDR0, and ADDR1.

RECOMMENDEDOPERATING RANGE

Symbol	Description	Min.	Typ.	Max.	Unit
TA^{C}	AmbientOperatingTemperature	-40	+25	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{VDD}^{(1)}$	Internal Power Supply Voltage	2.3	2.5	2.7	V
VDDQ $^{(1)}$	HSTL Output Power Supply Voltage	1.4	1.5	1.6	V
	Extended HSTL and 1.8V LVTTLOutput Power Supply Voltage	1.65	1.8	1.95	V
	2.5VLVTTL Output Power Supply Voltage		VDD		V
$\mathrm{V} T$	TerminationVoltage		$\mathrm{VDDQN} / 2$		V

NOTE:

1. All power supplies should operate in tandem. If VDD or VDDQN is at maximum, then VDDQN or VDD (respectively) should be at maximum, and vice-versa.

PIN DESCRIPTION

Symbol	I/0	Type	Description
REF[1:0]	I	Adjustable ${ }^{(1)}$	Clock input. REF[1:0] is the "true" side of the differential clock input. If operating in single-ended mode, REF[1:0] is the clock input.
$\overline{\operatorname{REF}}[1: 0] /$ Vref[1:0]	1	Adjustable ${ }^{(1)}$	Complementary clock input. $\overline{\mathrm{REF}}[1: 0] / V_{\mathrm{REF}[1: 0]}$ is the "complementary" side of $\mathrm{REF}[1: 0]$ ifthe input is in differential mode. Ifoperating in single-ended mode, $\overline{\operatorname{REF}[1: 0] / V R E F[1: 0] ~ i s ~ l e f f ~ f l o a t i n g . ~ F o r s i n g l e-e n d e d ~ o p e r a t i o n ~ i n d i f f e r e n t i a l ~ m o d e, ~} \overline{\operatorname{REF}}[1: 0] / \operatorname{REF}[1: 0]$ should be set to the desired toggle voltage for REF[1:0]: $\begin{array}{ll} \text { 2.5VLVTTL } & \text { Vref }=1250 \mathrm{mV}(\text { SSTL2 compatible }) \\ \text { 1.8VLVTTL, eHSTL } & \text { VREF }=900 \mathrm{mV} \\ \text { HSTL } & \text { VREF }=750 \mathrm{mV} \\ \text { LVEPECL } & \text { VREF }=1082 \mathrm{mV} \end{array}$
FB	1	Adjustable ${ }^{(1)}$	Clockinput. FBisthe "true"side ofthe differential feedbackclockinput. Ifoperating insingle-endedmode, FB is the feedback clockinput.
$\overline{\mathrm{FB}} / \mathrm{VREF}^{2}$	1	Adjustable ${ }^{(1)}$	Complementary feedback clockinput. $\overline{F B} / N_{\text {REF } 2}$ is the "complementary"side of FB ifthe inputis in differential mode. Ifoperating in singleendedmode, $\overline{\mathrm{FB}} / V_{\text {REF2 }}$ islefflloating. Forsingle-ended operationindifferential mode, $\overline{F B} / V_{\text {REF } 2 \text { should be settothe desired toggle voltage }}$ for FB:

NOTE:

1. Inputs are capable of translating the following interface standards. User can select between:

Single-ended 2.5V LVTTL levels
Single-ended 1.8V LVTTL levels
or
Differential $2.5 \mathrm{~V} / 1.8 \mathrm{~V}$ LVTTL levels
Differential HSTL and eHSTL levels
Differential LVEPECL levels

PIN DESCRIPTION, CONTINUED

Symbol	110	Type	Description
REF_SEL	1	LVTTL ${ }^{(1)}$	
nsoe	1	LVITL ${ }^{(1)}$	Synchronous outputenable/disable. Each outputs's enable/disable state can be controlled eitherwith the $\overline{\text { SOE }}$ pin or through JTAG or $I^{2} \mathrm{C}$ programming, corresponding bits $52-56$. When the $\overline{\mathrm{sOE}}$ is HIGH or the corresponding Bit ($52-56$) is 1 , the output will be synchronously disabled. Whenthe $\overline{\text { sOE }}$ is LOW and the corresponding Bit (52-56) is 0 , the output will be enabled. (See JTAG/2 ${ }^{2} \mathrm{C}$ Serial Configurationtable.)
QFB	0	Adjustable ${ }^{(2)}$	Feedback clockoutput
$\overline{\mathrm{Q} F \bar{B}}$	0	Adjustable ${ }^{(2)}$	Complementaryfeedbackclockoutput
nQ	0	Adjustable ${ }^{(2)}$	Clockoutputs
$\overline{\mathrm{Q}}$	0	Adjustable ${ }^{(2)}$	Complementary clock outputs
PLL_EN	1	LVTTL ${ }^{(1)}$	PLL enable/disable control. The PLL's enable/disable state can be controlled either with the $\overline{\text { PLL_EN }}$ pin or through JTAG or $/{ }^{2} \mathrm{C}$ programming, corresponding Bit57. When PLL_EN is HIGH or the corresponding Bit57 is 1, the PLL is disabled and REF[1:0] goes to all outputs. When PLL EN is LOW and the corresponding Bit 57 is 0 , the PLL will be active.
$\overline{\text { PD }}$	I	LVTTL ${ }^{(1)}$	Power down control. When $\overline{\mathrm{PD}}$ is LOW, the inputs are disabled and internal switching is stopped. The OMODE pin in conjunction with the corresponding Bit 59 selects whether the outputs are gated LOW/HIGH or tri-stated. When OMODE is HIGH or Bit 59 is 1 , Bit 58 determines the level at which the outputs stop. When Bit 58 is $0 / 1$, the nQ and QFB are stopped in a HIGH/LOW state, while the $\bar{Q} \bar{Q}$ and $\overline{Q F B}$ are stopped in LOW/HIGH state. When OMODE is LOW and Bit 59 is 0 , the outputs are tri-stated. Set $\overline{P D}$ HIGH for normal operation. (See JTAG/2² C Serial Configurationtable.)
LOCK	0	LVITL	PLL lock indication signal. HIGH indicates lock. LOW indicates that the PLL is not locked and outputs may not be synchronized to the inputs. The outputwill be 2.5 V LVTTL.
OMODE	I	LVTTL ${ }^{(1)}$	Output disable control. Used in conjunction with $\overline{n s O E}$ and $\overline{\mathrm{PD}}$. The outputs' disable state can be controlled either withthe OMODE pin or through JTAG or ${ }^{2}$ C programming, corresponding Bit59. When OMODE is HIGH or the corresponding Bit59 is 1, the outputs' disable state will be gated and Bit 58 will determine the level atwhichthe outputs stop. When Bit 58 is $0 / 1$, the nQ and QFB are stopped in a HIGH/LOW state, while the $\overline{n Q}$ and $\overline{Q F B}$ are stopped in LOW/HIGH state. When OMODE is LOW and its corresponding bit 59 is 0 , the outputs disable state will be the tri-state. (See JTAG $/ I^{2} \mathrm{C}$ Serial Configurationstables.)
$\overline{\text { TRSTISEL }}$	I/I	$\begin{gathered} \hline \text { LVTTU } \\ \text { LVTTL }^{(4,5)} \\ \text { 3-Level }(3,4,5) \\ \hline \end{gathered}$	TRST- Active LOW input to asynchronously reset the JTAG boundary-scan circuit. SEL-Selectprogramming interface controlforthedual-function pins. When HIGH, the dual-function pins are setfor JTAG programming. WhenLOW, the dual-functionpins are setfor ${ }^{2}$ C programming and the JTAG interface is asynchronously placedinthe TestLogic Reset state.
TDO/ADDR1	0/I	LVTTU 3-Level ${ }^{(3,4,5)}$	TDO-Serial dataoutputpin for instructions as well as testand programming data. Datais shifted in on the falling edge of TCLK. The pin is tri-stated ifdatais notbeing shifted out of the device. ADDR1-Usedto define a unique $I^{2} \mathrm{C}$ address for this device. Only for ${ }^{2} \mathrm{C}$ programming. (See JTAG $/ 1^{2} \mathrm{C}$ Serial Interface Description.)
TMS/ADDRO	I/I	LVITU LVTTL4, ${ }^{4,5)}$	TMS-Inputpinthatprovides the control signal to determine the transitions ofthe JTAG TAP controller state machine. Transitions within the state machine occur atthe rising edge of TCLK. Therefore, TMS mustbe setup before the rising edge of TCLK. TMS is evaluated on the rising edge of TCLK. ADDRO-Usedtodefine a unique $I^{2} \mathrm{C}$ address forthis device. Only for $I^{2} \mathrm{C}$ programming. (See JTAG//2 ${ }^{2}$ C Serial Interface Description.)
TCLK/SCLK	I/I	$\begin{gathered} \text { LVTTU } \\ \text { LVTTL }^{(4,5)} \end{gathered}$	TCLK - The clock input to the JTAG BST circuitry. SCLK - Serial clock for $1^{2} \mathrm{C}$ programming
TDI/SDA	I/I	LVITU	TDI-Serial inputpin for instructions as well as test and programming data. Data is shitted in on the rising edge of TCLK. SDA - Serial data (see JTAG $/{ }^{2} \mathrm{C}$ Serial Description table)
VIDON		PWR	Power supply for each pair of outputs. When using 2.5V LVTTL, 1.8V LVTTL, HSTL, or eHSTL outputs, VDDQN should be set to its corresponding outputs (see FrontBlock Diagram). When using 2.5V LVTTL outputs, VDDQNshould be connected to VDD.
VDD		PWR	Power supply for phase locked loop, lock output, inputs, and other internal circuitry
GND		PWR	Ground

NOTES:

1. Pins listed as LVTTL inputs can be configured to accept 1.8 V or 2.5 V signals through the use of the $I^{2} \mathrm{C} / \mathrm{JTAG}$ programming, bit 61 . (See JTAG $/ I^{2} \mathrm{C}$ Serial Description.)
2. Outputs are user selectable to drive $2.5 \mathrm{~V}, 1.8 \mathrm{~V}$ LVTTL, eHSTL, or HSTL interface levels when used with the appropriate Vddqn voltage.
3. 3-level inputs are static inputs and must be tied to VDD or GND or left floating. These inputs are not hot-insertable or over voltage tolerant.
4. The JTAG (TDO, TMS, TCLK, and TDI) and I²C (ADDR1, ADDR0, SCLK, and SDA) signals share the same pins (dual-function pins) for which the TRST/SEL pin will select between the two programming interfaces.
5. JTAG and $I^{2} \mathrm{C}$ pins accept 2.5 V signals. The JTAG input pins (TMS, TCLK, TDI, $\overline{\mathrm{TRST}}$) will also accept 1.8 V signals.

J TAG/I²C SERIAL DESCRIPTION

Bit	Description
95:62	Reserved Bits. Set bits 95:62 to '0'.
61	Input interface selection for control pins (REF_SEL, $\overline{\mathrm{PD}}, \overline{\mathrm{PLL}} \mathrm{EN}, \mathrm{OMODE}, \overline{\mathrm{nSOE}}$). When bit 61 is ' 1 ', the control pins are 2.5 V LVTTL. When bit 61 is ' 0 ', the control pins are 1.8VLVTTL.
60	VCO frequency range. When ' 0 ', range is $50 \mathrm{MHz}-125 \mathrm{MHz}$. When ' 1 ', range is $100 \mathrm{MHz}-250 \mathrm{MHz}$.
59	Output's disable state. See corresponding external pin OMODE for Pin Description table.
58	Positive/Negative edge control. When '0'/'1', the outputs are synchronized with the negative/positive edge of the reference clock.
57	PLL enable/disable. See corresponding external pin $\overline{\text { PLL_EN }}$ in Pin Description table.(1)
56	Outputdisable/enable for 1Q[1:0] outputs. See corresponding external pin $\overline{150 E}$ in Pin Description table.
55	Output disable/enable for 2Q[1:0] outputs. See corresponding external pin $\overline{2 S O E}$ in Pin Descriptiontable.
54	Output disable/enable for 3Q[1:0] outputs. See corresponding external pin $\overline{3 S O E}$ in Pin Description table.
53	Output disable/enable for 4Q[1:0] outputs. See corresponding external pin $\overline{4 S O E}$ in Pin Description table.
52	Output disable/enable for 5Q[1:0] outputs. See corresponding external pin $\overline{5 S O E}$ in Pin Description table.
51	FB Divide-by-N selection
50	FB Divide-by-N selection
49	FB Divide-by-N selection
48	FB Divide-by-N selection
47	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 1
46	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 1
45	Output drive strength selection for 2.5 V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 2
44	Output drive strength selection for 2.5 V LVTTL, 1.8VLVTTL, or HSTL/eHSTL on bank 2
43	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 3
42	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 3
41	Output drive strength selection for 2.5 V LVTTL, 1.8VLVTTL, or HSTL/eHSTL on bank 4
40	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 4
39	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 5
38	Output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on bank 5
37	FB output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on FB bank
36	FB output drive strength selection for 2.5V LVTTL, 1.8V LVTTL, or HSTL/eHSTL on FB bank
35	REFO Inputinterface selection for 2.5VLVTTL, 1.8VLVTTL, or Differential
34	REFO Inputinterface selection for 2.5V LVTTL, 1.8V LVTTL, or Differential
33	REF1 inputinterface selection for 2.5VLVTTL, 1.8VLVTTL, or Differential
32	REF1 inputinterface selection for 2.5VLVTTL, 1.8VLVTTL, or Differential
31	FB input interface selection for 2.5V LVTTL, 1.8V LVTTL, or Differential
30	FB inputinterface selection for 2.5VLVTTL, 1.8V LVTTL, or Differential
29	Skew or frequency selection for bank 1
28	Skew or frequency selection for bank 1
27	Skew or frequency selection for bank 1
26	Skew or frequency selection for bank 1
25	Skew or frequency selection for bank 1
24	Skew or frequency selection for bank 2
23	Skew or frequency selection for bank 2
22	Skew or frequency selection for bank 2

NOTE:

1. Only for EEPROM operation; bit 57 must be set to 0 to enable the PLL for proper EEPROM operation. The EEPROM access times are based on the VCO frequency of the PLL (refer to the EEPROM Operation section).

J TAG/I²C SERIAL DESCRIPTION, CONT.

Bit	
21	Skew or frequency selection for bank 2
20	Skew or frequency selection for bank 2
19	Skew or frequency selection for bank 3
18	Skew or frequency selection for bank 3
17	Skew or frequency selection for bank 3
16	Skew or frequency selection for bank 3
15	Skew or frequency selection for bank 3
14	Skew or frequency selection for bank 4
13	Skew or frequency selection for bank 4
12	Skew or frequency selection for bank 4
11	Skew or frequency selection for bank 4
10	Skew or frequency selection for bank 4
9	Skew or frequency selection for bank 5
8	Skew or frequency selection for bank 5
7	Skew or frequency selection for bank 5
6	Skew or frequency selection for bank 5
5	Skew or frequency selection for bank 5
4	Skew or frequency selection for FB bank
3	Skew or frequency selection for FB bank
2	Skew or frequency selection for FB bank
1	Skew or frequency selection for FB bank
0	Skew or frequency selection for FB bank

J TAG/I²C SERIAL CONFIGURATIONS: OUTPUTENABLE/DISABLE

Bit 59 (OMODE)	Bit $56-52(\overline{\mathrm{nsOE}})$	Output
$X(\mathrm{X})$	0 and (L)	Normal Operation
0 and (L)	1 or (H)	Tri-Sate
1 or (H)	1 or (H)	Gated ${ }^{(1)}$

NOTE

1. OMODE and its corresponding Bit 59 selects whether the outputs are gated LOW/ HIGH or tri-stated. When OMODE is HIGH or the corresponding Bit 59 is 1 , the outputs' disable state will be gated. Bit 58 determines the level at which the outputs stop. When Bit 58 is $0 / 1$, the nQ and QFB are stopped in a HIGH/LOW state, while the $\bar{n} \bar{Q}$ and $\overline{Q F B}$ are stopped in a LOW/HIGH state. When OMODE is LOW and its corresponding Bit 59 is 0 , the outputs' disable state will be the tri-state.

J TAG/I²C SERIAL CONFIGURATIONS: POWERDOWN

$\overline{\mathrm{P}} \mathrm{D}$	Bit 59 (OMODE)	Output
H	$\mathrm{X}(\mathrm{X})$	Normal Operation
L	0 and (L)	Tri-Sate
L	1 or (H)	Gated ${ }^{(1)}$

NOTE:

1. OMODE and its corresponding Bit 59 selects whether the outputs are gated LOW/ HIGH or tri-stated. When OMODE is HIGH or the corresponding Bit 59 is 1 , the outputs' disable state will be gated. Bit 58 determines the level at which the outputs stop. When Bit 58 is $0 / 1$, the $n Q$ and QFB are stopped in a HIGH/LOW state, while the $\overline{n Q}$ and $\overline{Q F B}$ are stopped in a LOW/HIGH state. When OMODE is LOW and its corresponding Bit 59 is 0 , the outputs' disable state will be the tri-state.

J TAG/I²C SERIAL CONFIGURATIONS: OUTPUT DRIVE STRENGTH SELECTION ${ }^{(1)}$

Bit 37, 39, 41, $43,45,47$	Bit 36, 38, 40, $42,44,46$	Interface
0	0	2.5 VLVTTL
0	1	1.8 VLVTTL
1	0	HSTL/eHSTL

NOTE:

1. All other states that are undefined in the table will be reserved.

JTAG/I²C SERIAL CONFIGURATIONS: SKEW OR FREQUENCY SELECT ${ }^{(1)}$

$\begin{gathered} \hline \text { Bit 4, 9, 14, } \\ 19,24,29 \end{gathered}$	$\begin{gathered} \hline \text { Bit } 3,8,13, \\ 18,23,28 \end{gathered}$	$\begin{gathered} \hline \text { Bit } 2,7,12, \\ 17,22,27 \end{gathered}$	$\begin{gathered} \hline \text { Bit 1, 6, 11, } \\ 16,21,26 \end{gathered}$	$\begin{gathered} \hline \text { Bit } 0,5,10, \\ 15,20,25 \end{gathered}$	Output Skew
0	0	0	0	1	+7tu
0	0	0	1	0	+6tu
0	0	0	1	1	+5tu
0	0	1	0	0	+4tu
0	0	1	0	1	+3tu
0	0	1	1	0	+2tu
0	0	1	1	1	+1tu
0	0	0	0	0	Zero Skew
0	1	0	0	1	-1tu
0	1	0	1	0	-2tu
0	1	0	1	1	-3tu
0	1	1	0	0	-4tu
0	1	1	0	1	-5tu
0	1	1	1	0	-6tu
0	1	1	1	1	-7tu
1	0	0	0	0	Inverted
1	0	0	0	1	Divide-by-2
1	0	0	1	0	Divide-by-4

NOTE:

1. All other states that are undefined in the table will result in zero skew.

JTAG/I²C SERIAL CONFIGURATIONS: FB DIVIDE-BY-N ${ }^{(1)}$

Bit51	Bit50	Bit 49	Bit48	Divide-by-N	Permitted Output Divide-by-N connected to FB and FB/VREF2 (2)
0	0	0	0	1	$1,2,4$
0	0	0	1	2	1,2
0	0	1	0	3	1
0	0	1	1	4	1,2
0	1	0	0	5	1,2
0	1	0	1	6	1,2
0	1	1	0	8	1
0	1	1	1	10	1
1	0	0	0	12	1

NOTES:

1. All other states that are undefined in the table will be reserved.
2. Permissible output division ratios connected to $F B$ and $\overline{F B} / V R E F 2$. The frequencies of the REF[1:0] and $\overline{R E F}[1: 0] / V R E F[1: 0]$ inputs will be Fvco/N when the parts are configured for frequency multiplication by using an undivided output for $F B$ and $\overline{F B} / V R E F 2$ and setting $N(N=1-6,8,10,12)$.

JTAG/I²C SERIAL CONFIGURATIONS: VCO FREQUENCY SELECT

Bit60	Min.	Max.
0	50 Mhz	125 MHz
1	100 MHz	250 Mhz

PROGRAMMABLESKEW

Output skew with respect to the $\operatorname{REF}[1: 0]$ and $\overline{\operatorname{REF}}[1: 0] / V R E F[1: 0]$ input is adjustable to compensate for PCB trace delays, backplane propagation delays or to accommodate requirements for special timing relationships between clocked components. Skew is selectable as a multiple of a time unit (tu) which ranges from 250ps to 1.25 ns (see Programmable Skew Range and Resolution Table). There are 18 skew/divide configurations available for each output pair. These configurations are chosen through JTAG/I2C programming.

PROGRAMMABLE SKEW RANGE AND RESOLUTION TABLE

	Bit $60=0$	Bit $60=1$	Comments
Timing Unit Calculation (tu)	1/(16 x FNOM)	1/(16 x FNom)	
VCO Frequency Range(Fnom) ${ }^{(1,2)}$	50 to 125MHz	100 to 250MHz	
Skew AdjustmentRange ${ }^{(3)}$ MaxAdjustment:	$\pm 8.75 \mathrm{~ns}$	$\pm 4.375 \mathrm{~ns}$	ns
	$\pm 157.5^{\circ}$	$\pm 157.5^{\circ}$	Phase Degrees
	$\pm 43.75 \%$	$\pm 43.75 \%$	\% of Cycle Time
Example 1, $\mathrm{FNom}=50 \mathrm{MHz}$	$\mathrm{tu}=1.25 \mathrm{~ns}$	-	
Example 2, FNOM $=75 \mathrm{MHz}$	$\mathrm{tu}=0.833 \mathrm{~ns}$	-	
Example 3, FNom $=100 \mathrm{MHz}$	$\mathrm{tu}=0.625 \mathrm{~ns}$	$t u=0.625 \mathrm{~ns}$	
Example 4, FNom $=150 \mathrm{MHz}$	-	$\mathrm{tu}=0.417 \mathrm{~ns}$	
Example 5, FNom $=200 \mathrm{MHz}$	-	$\mathrm{tu}=0.313 \mathrm{~ns}$	
Example 6, FNom $=250 \mathrm{MHz}$	-	$\mathrm{tu}=0.25 \mathrm{~ns}$	

NOTES:

1. The device may be operated outside recommended frequency ranges without damage, but functional operation is not guaranteed.
2. The VCO frequency always appears at $n Q$ and $\overline{\mathrm{nQ}}$ outputs when they are operated in their undivided modes. The frequency appearing at the $\operatorname{REF}[1: 0]$ and $\overline{\operatorname{REF}}[1: 0] / V R E F[1: 0]$ and $F B$ and $\overline{F B} / V R E F 2$ inputs will be FNom when the QFB and $\overline{Q F B}$ are undivided and $F B$ divide-by-1. The frequency of the REF[1:0] and $\overline{\operatorname{REF}}[1: 0] / \operatorname{VEF}[1: 0]$ and FB and $\overline{\mathrm{FB} / V R E F 2}$ inputs will be Fnom /2 or Fnom $/ 4$ when the part is configured for frequency multiplication by using a divided QFB and $\overline{\text { QFB }}$ and setting FB divide-by-1. Using the FB divide-by-N configuration inputs allows a different method for frequency multiplication (see JTAG/I2C Serial Configurations: FB Divide-by-N).
3. Skew adjustment range assumes that a zero skew output is used for feedback. If a skewed QFB and $\overline{Q F B}$ output is used for feedback, then adjustment range will be greater. For example if a 4tu skewed output is used for feedback, all other outputs will be skewed -4tu in addition to whatever skew value is programmed for those outputs. 'Max adjustment' range applies to all output pairs where ± 7 tu skew adjustment is possible and at the lowest Fnom value.

EXTERNAL DIFFERENTIALFEEDBACK

By providing a dedicated external differential feedback, the IDT5T9891 gives users flexibility with regard to divide selection. The FB and $\overline{\mathrm{F}} /$ VREF2 signals are compared with the input REF[1:0] and $\overline{\operatorname{REF}}[1: 0] / \operatorname{REF}[1: 0]$ signals at the phase detector in order to drive the VCO. Phase differences cause the VCO of the PLL to adjust upwards or downwards accordingly.

An internal loop filter moderates the response of the VCO to the phase detector. The loop filter transfer function has been chosen to provide minimal jitter (or frequency variation) while still providing accurate responses to input frequency changes.

MASTER RESET FUNCTIONALITY

The IDT5T9891 performs a reset of the internal output divide circuitry when all five output banks are disabled by toggling the $\overline{\mathrm{nSOE}}$ pins HIGH. When one or more banks of outputs are enabled by toggling the $\overline{\mathrm{nSOE}}$ LOW (if the corresponding $\overline{\mathrm{nSOE}}$ programming bits are also set LOW), the divide circuitry starts again from a known state. In the case that the FB output is selected for divide-by-2 or divide-by-4, the FB output will stop toggling while all five $\overline{\mathrm{nSOE}}$ pins and bits are LOW, and loss of lock will occur.

INPUT/OUTPUT SELECTION ${ }^{(1)}$

Input	Output ${ }^{(2)}$
2.5V LVTTL SE	2.5VLVTTL,
1.8V LVTTL SE	1.8VLVTTL,
2.5V LVTTL DSE	HSTL,
1.8V LVTTL DSE	eHSTL
LVEPECL DSE	
eHSTL DSE	
HSTL DSE	
2.5V LVTTL DIF	
1.8V LVTTL DIF	
LVEPECL DIF	
eHSTL DIF	
HSTL DIF	

NOTES:

1. The INPUT/OUTPUT SELECTION Table describes the total possible combinations of input and output interfaces. Single-Ended (SE) inputs in a single-ended mode require the $\overline{\operatorname{REF}[1: 0]} / N_{\text {REF[1:0] }}$ and $\overline{\mathrm{FB}} / V_{\text {REF2 }}$ pins to be left floating. Differential Single-Ended (DSE) is for single-ended operation in differential mode, requiring Vref[1:0] and VreF2. Differential (DIF) inputs are used only in differential mode.
2. For each output bank.

I^{2} C SERIAL INTERFACE CONTROL

The $I^{2} C$ interface permits the configuration of the IDT5T9891. The IDT5T9891 is aread/write slave device meeting Philips I^{2} Cbus specifications. The $I^{2} \mathrm{C}$ bus is controlled by a master device that generates the serial clock SCLK, controls bus access, and generatesthe START and STOP conditions while the device works as a slave. Both master and slave can operate as a transmitter and receiver but the master device determines which mode is activated.

BUS CONDITIONS

Data transfer on the bus can only be initiated when the bus is not busy. During data transfer, the data line (SDA) must remain stable whenever the clock line (SCLK) is high. Changes in the dataline while the clock line is high will be interpreted by the device as a START or STOP condition. The following bus conditions are defined by the $I^{2} \mathrm{C}$ bus protocol and are illustrated in figure 1.

NOT BUSY

Both the data(SDA) and clock(SCLK) lines remainhigh to indicate the bus is not busy.

STARTDATA TRANSFER

Ahighto low transition of the SDA line while the SCLKinputishighindicates aSTARTcondition. All commands tothedevicemustbe preceded byaSTART condition.

STOP DATA TRANSFER

Alow to high transition of the SDA line while SCLK is held high indicates a STOP condition. All commands to the device must be followed by a STOP condition.

DATA VALID

The state of the SDA line represents valid data if the SDA line is stable for the duration ofthe high period oftheSCLKline afteraSTART condition occurs. The data on the SDA line must be changed only during the low period of the SCLKsignal. There is oneclockpulseperdatabit. Each datatransferisinitiated by a START condition and terminated with a STOP condition.

ACKNOWLEDGE

When addressed, the receiving device is required to generate an Acknowledge after each byte is received. The master device must generate anextraclock pulse to coincidewiththe Acknowledge bit. The acknowledging device must pull the SDA line low during the high period of the master acknowledge clock pulse. Setup and hold times mustbe taken into account.

$I^{2} \mathrm{C}$ BUS OPERATION

The IDT5T9891 ${ }^{12} \mathrm{C}$ interface supports Standard-Mode (100 kHz) and Fast-Mode (400 kHz) data transfer rates. Data is transferred in bytes in sequential order from the lowest to highest byte. After generating a START condition, the bus master broadcastsa7-bitslave address followed by aread/ write bit.

$1^{2} \mathrm{C}$ ADDRESS

A7	A6	A5	A4	A3	A2	A1
1	1	0	1	X	X	X

Address A0 is the read/write bit and is set to ' 0 ' for writes and ' 1 ' for reads. The ADDR0 and ADDR1 tri-level pins allow the last three bits of the 7-bit address to be defined by the user.

ADDR1	ADDR0	A3	A2	A1
LOW	LOW	0	0	0
LOW	MID	0	0	1
LOW	HIGH	0	1	0
MID	LOW	0	1	1
MID	MID	1	0	0
MID	HIGH	1	0	1
HIGH	LOW	1	1	0
HIGH	MID	1	1	1
HIGH	HIGH	1	1	0

WRITE OPERATION

(see $l^{2} C$ Interface Definition for ProgWrite)

To initiate a write operation (ProgWrite), the read/write bitissetto '0’. During the write operation, the firsttwo bytes transferred mustbe the Device Address followed by the Command Code. The internal programming registers of the device ignore these firsttwo bytes. The subsequentbytes arethe DataBytes, whichtotal twelve. All twelve Data Bytes mustbe written into the device during the write operation in order for the internal programming registers to be updated. If a STOP condition is generated before the $12^{\text {th }}$ Data Byte, the internal programming registers will remain unchanged to prevent an invalid PLL configuration. AnAcknowledge by the device between each byte must occur before the next byte is sent. After the transfer of the $12^{\text {th }}$ Data Byte, an Acknowledge signal will be sent to the bus master after which it will generate a STOP condition. Once the STOP condition has occurred, the internal programming registers of the device will be updated.

READ OPERATION

(see $I^{2} C$ Interface Definition for ProgRead)

To initiate a read operation (ProgRead), the read/write bitis setto '1'. During the read operation, there will be btotal offourteen databytes returned following an Acknowledge of the device address. The first two data bytes are the ID Byte and a Reserved Byte, in that order. The subsequentbytes are the same twelve Data Bytes that were written during the write operation. The read back can be terminated at any time by issuing a STOP condition.

$1^{2} \mathrm{C}$ ID BYTE

ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
0	0	0	0	0	1	1	1

EEPROM OPERATION

(see $I^{2} C$ Interface Definition for the EEPROM instructions)

The IDT5T9891 canalsostore its configuration in internal EEPROM. The contents of the device's internal programming registers canbe saved tothe EEPROM by issuing a save instruction (ProgSave) and can be loaded back to the internal programming registers by issuing a restore instruction (ProgRestore). To initiate a save or restore, only two bytes are transferred. The Device Address is issued with the read/write bit set to '0' followed by the appropriate Command Code. The save or restore instruction executes after the STOP condition is received, during which time the IDT5T9891 will not generate Acknowledge bits. The device is ready to accept a new programming instruction once it Acknowledges its 7-bit address. The time it takes for the save and restore instructions to complete depends on the PLL oscillator frequency, Fvco. The restore time, Trestore, and the save time, Tsave, can be calculated as follows:
$\begin{array}{lr}\text { Trestore }=1.23 \times 10^{6} / \mathrm{Fvco} & (\mathrm{mS}) \\ \text { Tsave }=3.09 \times 10^{6} / \mathrm{Fvco}+52 & (\mathrm{mS})\end{array}$
In order for the save and restore instructions to function properly, the IDT5T9891 must not be in power-down mode ($\overline{\mathrm{PD}}$ mustbe HIGH), and the PLL must be enabled ($\overline{\text { PLL_EN }}$ must be LOW and Bit $57=0$).

On power-up of the IDT5T9891, an automatic restore is performed to load the EEPROM contents into the internal programming registers. The auto-restore will not function properly if the device is in power-down mode ($\overline{\mathrm{PD}}$ must be HIGH). The device's auto-restore feature will function regardless of the state of the $\overline{\text { PLL_EN }}$ pin or Bit 57 . The IDT5T9891 will be ready to accept a programming instruction once it acknowledges its 7 -bit $1^{2} \mathrm{C}$ address. The time it takes for the device to complete the auto-restore is approximately 3 ms .

PROGRAMMING NOTES

Once the IDT5T9891 has been programmed either with a ProgWrite or ProgRestore instruction, the device will attemptto achieve phase lock using the new PLL configuration. If there is a valid REF and FB inputclock connected to the device and it does not achieve lock, the user should issue a ProgRead instruction to confirm that the PLL configuration data is valid.

On power-up and before the automatic ProgRestore instructionhas completed, the internal programming registers will contain the value of '0' for all bits 95:0. The PLL will remain at the minimum frequency and will not achieve phase lock until after the automatic restore is completed. If the outputs are enabled by the $\overline{\mathrm{nSOE}}$ pins, the outputs will toggle at the minimum frequency. If the outputs are disabled by the $\overline{\mathrm{nSOE}}$ pins and the OMODE pin is set HIGH , the nQ and QFB are stopped HIGH, while $\overline{\mathrm{nQ}}$ and $\overline{\mathrm{QFB}}$ are stopped LOW.

Figure 1: $I^{2} C$ Timing Data

I^{2} C INTERFACE DEFINITION

Device Address W Command Code

ProgSave	S	7'b1101xxx	0	A	8'bxxxxxx01	A	P

Device Address W Command Code
ProgRestore

S	7'b1101xxx	0	A	8'bxxxxxx10	A	P

${ }^{12} \mathrm{C}$ BUS DC CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
VIH	Input HIGH Level		0.7 * VDD			V
VIL	InputLOWLevel				0.3 * VDD	V
Vhys	Hysteresis of Inputs		0.05 * VDD			V
IIN	InputLeakage Current				± 1.0	$\mu \mathrm{A}$
VoL	OutputLOWVoltage	IoL $=3 \mathrm{~mA}$			0.4	V

$I^{2} \mathrm{C}$ BUS AC CHARACTERISTICS FOR STANDARD MODE

Symbol	Parameter	Min	Typ	Max	Unit
Fsclk	Serial Clock Frequency (SCLK)	0		100	KHz
tBuF	Bus free time between STOP and START	4.7			$\mu \mathrm{S}$
tsu:Start	Setup Time, START	4.7			$\mu \mathrm{s}$
thi:Start	Hold Time, START	4			$\mu \mathrm{s}$
tsu:DATA	Setup Time, data input(SDA)	250			ns
thd:DATA	Hold Time, data input(SDA)(1)	0			$\mu \mathrm{s}$
tovo	Output data valid from clock			3.45	$\mu \mathrm{s}$
Св	Capacitive Load for Each Bus Line			400	pF
tR	Rise Time, data and clock (SDA, SCLK)			1000	ns
t	Fall Time, data and clock (SDA, SCLK)			300	ns
tHIGH	HIGH Time, clock (SCLK)	4			$\mu \mathrm{S}$
tow	LOW Time, clock (SCLK)	4.7			$\mu \mathrm{s}$
tsu:Stop	Setup Time, STOP	4			$\mu \mathrm{s}$

NOTE:

1. A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCLK signal) to bridge the undefined region of the falling edge of SCLK.

1^{2} C BUS AC CHARACTERISTICS FOR FAST MODE

Symbol	Parameter	Min	Typ	Max	Unit
Fsclk	Serial Clock Frequency (SCLK)	0		400	KHz
tBuF	Bus free time between STOP and START	1.3			$\mu \mathrm{s}$
tsu:Start	Setup Time, START	0.6			$\mu \mathrm{s}$
thd:Start	Hold Time, START	0.6			$\mu \mathrm{s}$
tsu:DAtA	Setup Time, data input(SDA)	100			ns
thd:DATA	Hold Time, data input(SDA)(1)	0			$\mu \mathrm{s}$
tovo	Output data valid from clock			0.9	$\mu \mathrm{s}$
Св	Capacitive Load for Each Bus Line			400	pF
tR	Rise Time, data and clock (SDA, SCLK)	$20+0.1$ * $\mathrm{C}_{\text {в }}$		300	ns
F	Fall Time, data and clock (SDA, SCLK)	$20+0.1$ * Св		300	ns
tHIGH	HIGH Time, clock (SCLK)	0.6			$\mu \mathrm{s}$
tow	LOW Time, clock (SCLK)	1.3			$\mu \mathrm{s}$
tsu:Stop	Setup Time, STOP	0.6			$\mu \mathrm{s}$

NOTE:

1. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the ViHmin of the SCLK signal) to bridge the undefined region of the falling edge of SCLK.

J TAG INTERFACE

Five additional pins (TDI, TDO, TMS, TCLK and TRST) are provided to supportthe JTAG boundary scaninterface. The IDT5T9891 incorporates the necessary tap controller and modified pad cellstoimplementthe JTAG facility.

Note that IDT provides appropriate Boundary Scan Description Language program files for these devices.

The Standard JTAG interface consists of four basic elements:

- Test Access Port (TAP)
- TAP controller
- Instruction Register (IR)
- Data Register Port (DR)

The following sections provide a brief description of each element. For a complete description refer to the IEEE Standard TestAccess PortSpecification (IEEE Std. 1149.1-1990).

Boundary Scan Architecture

TEST ACCESS PORT (TAP)

The Tap interface is a general-purpose port that provides access to the internal of the processor. Itconsists offour input ports(TCLK, TMS, TDI, TRST) and one output port (TDO).

THE TAPCONTROLLER

The Tap controller is a synchronous finite state machine that responds to TMS and TCLK signals to generate clock and control signals to the Instruction and Data Registers for capture and update of data.

TAP Controller State Diagram
NOTES:

1. Five consecutive TCLK cycles with TMS $=1$ will reset the TAP.
2. TAP controller must be reset before normal PLL operations can begin.

Refertothe IEEEStandard TestAccessPortSpecification (IEEEStd.1149.1) for the full state diagram
All state transitions within the TAP controller occur at the rising edge of theTCLK pulse. The TMS signal level(0 or 1) determines the state progression thatoccurs on each TCLK rising edge. The TAP controller takes precedence over the PLL and must be reset after power up of the device. See TRST description for more details on TAP controller reset.
Test-Logic-Reset All testlogic is disabled in this controller state enabling the normal operation of the IC. The TAP controller state machine is designed in such a way that, no matter what the initial state ofthe controller is, the Test-Logic-Reset state can be entered by holding TMS athigh and pulsing TCLK five times. This is the reason why the Test Reset (TRST) pin is optional.

Run-Test-Idle In this controller state, the testlogic in the IC is active only if certain instructions are present. For example, if an instruction activates the selftest, thenitwill be executed when the controller enters this state. The test logic in the IC is idles otherwise.

Select-DR-Scan This is a controller state where the decision to enter the Data Path or the Select-IR-Scan state is made.

Select-IR-Scan This is a controller state where the decision to enter the Instruction Path is made. The Controller can return to the Test-Logic-Reset state otherwise.

Capture-IR In this controller state, the shiftregister bank in the Instruction Register parallel loads a pattern of fixed values on the rising edge of TCLK. The last two significant bits are always required to be " 01 ".
Shift-IR In this controller state, the instruction register gets connected between TDI and TDO, and the captured pattern gets shifted on each rising edge of TCLK. The instruction available on the TDI pin is also shifted in to the instruction register.

Exit1-IRThis is a controller statewhere adecision to entereither the PauseIR state or Update-IR state is made.

Pause-IR This state is provided in order to allow the shifting of instruction register to be temporarily halted.

Exit2-DR This is a controller state where adecisionto entereither the ShiftIR state or Update-IR state is made.

Update-IR In this controller state, the instruction in the instruction register is latched in to the latch bank of the Instruction Register on every falling edge of TCLK. This instructionalso becomesthe currentinstruction onceitis latched.
Capture-DR Inthis controller state, the data is parallelloaded into the data registers selected by the current instruction on the rising edge of TCLK.
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These controller states are similar to the Shift-IR, Exit1-IR, Pause-IR, Exit2-IR and Update-IR states in the Instruction path.

THE INSTRUCTION REGISTER

The Instruction register allows an instruction to be shifted in serially into the processor at the rising edge of TCLK.

The Instruction is used to select the test to be performed, or the test data register to be accessed, or both. The instruction shifted into the register is latched atthe completion of the shifting process when the TAP controller is at Update-IR state.

The instruction register must contain 4 bit instruction register-based cells which can hold instruction data. These mandatory cells are located nearest the
serial outputs they are the leastsignificant bits.

TESTDATAREGISTER

The Test Data register contains three test data registers: the Bypass, the Boundary Scan register and Device ID register.

These registers are connected in parallel between a common serial input and a common serial data output.

The following sections provide a brief description of each element. For a completedescription, refertothe IEEE Standard TestAccessPortSpecification (IEEE Std. 1149.1-1990).

TEST BYPASS REGISTER

The register is used to allow test data to flow through the device from TDI to TDO. It contains a single stage shift register for a minimum length in serial
path. When the bypass register is selected by an instruction, the shift register stage is set to a logic zero on the rising edge of TCLK when the TAP controller is in the Capture-DR state.
The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction.

THE BOUNDARY-SCAN REGISTER

The Boundary Scan Register allows serial data TDI be loaded in to or read out of the processor input/output ports. The Boundary ScanRegister is a part of the IEEE 1149.1-1990 Standard JTAG Implementation.

THE DEVICE IDENTIFICATION REGISTER

The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the processor to be determined through the TAP in response to the IDCODE instruction.
IDT JEDEC ID number is $0 \times B 3$. This translates to 0×33 when the parity is dropped in the 11-bit Manufacturer ID field.
For the IDT5T9891, the Part Number field is 0X3A9.

J TAG DEVICE IDENTIFICATION REGISTER

| 28 | | 27 | 1211 | |
| :--- | :--- | :--- | ---: | ---: |$\quad 10$ (LSB)

J TAG INSTRUCTION REGISTER

The Instruction register allows instruction to be serially input into the device when the TAP controller is in the Shift-IR state. The instruction is decoded to perform the following:

- Selecttestdata registers that may operate while the instruction is current. The other test data registers should not interfere with chip operation and the selected data register.
- Define the serial test data register path that is used to shift data between TDI and TDO during data register scanning.

The Instruction Register is a 4-bit field (i.e.IR3, IR2, IR1, IR0) to decode sixteen different possible instructions. Instructions are decoded as follows.

J TAG INSTRUCTION REGISTER DECODING

IR(3)	IR(2)	IR(1)	IR(0)	Instruction	Function
0	0	0	0	EXTEST	Selectboundary scan register
0	0	0	1	SAMPLE/PRELOAD	Selectboundary scan register
0	0	1	0	IDCODE	Selectchipidentificationdataregister
0	0	1	1		Reserved
0	1	0	0	PROGWRITE	Writingtothe volatile programming registers
0	1	0	1	PROGREAD	Reading from the volatile programming registers
0	1	1	0	PROGSAVE	Saving the contents ofthe volatile programming registers to the EEPROM
0	1	1	1	PROGRESTORE	Loading the EEPROM contents intothe volatile programming registers
1	0	0	0	CLAMP	JTAG
1	0	0	1	HIGHZ	JTAG
1	0	1	X	BYPASS	Select bypass register
1	1	X	X	BYPASS	Select bypass register

The following sections provide a brief description of each instruction. For a completedescription refertothe IEEEStandard TestAccessPortSpecification (IEEE Std. 1149.1-1990).

EXTEST

The required EXTEST instruction places the IC into an external boundarytest mode and selects the boundary-scan register to be connected between TDI and TDO. During this instruction, the boundary-scan register is accessed to drive test data off-chip through the boundary outputs, and recieve test data off-chip through the boundary inputs. As such, the EXTEST instruction is the workhorse of IEEE. Std 1149.1, providing for probe-less testing of solder-joint opens/shorts and of logic cluster function.

SAMPLE/PRELOAD

The required SAMPLE/PRELOAD instruction allows the IC to remain in a normal functional mode and selectsthe boundary-scan register to be connected between TDI and TDO. During this instruction, the boundary-scan register can be accessed via a datascan operation, to take a sample of the functional data entering and leaving the IC.

IDCODE

Theoptional IDCODE instructionallowsthe ICto remaininitsfunctional mode and selectsthe optional device identification register to be connected between TDI and TDO. The device identification register is a 32 -bit shift register containing information regarding the IC manufacturer, device type, and version code. Accessing the device identification register does not interfere with the operation of the IC. Also, access to the device identification register should be immediately available, viaa TAP data-scan operation, after powerup of the IC or after the TAP has been reset using the optional TRST pin or by otherwise moving to the Test-Logic-Resetstate.

PROGWRITE

The PROGWRITE instruction is for writing the IDT5T9891 configuration datatothe device's volatile programming registers. This instruction selectsthe programming register pathfor shifting datafrom TDI to TDO during dataregister scanning. The programming register path has 112 registers (14 bytes) between TDI and TDO. The 12 configuration data bytes are scanned in through TDI first, starting with Bit0. After scanning in the last configuration bit, Bit95, sixteen additional bits mustbe scanned in to place the configuration data in the proper location. The lastsixteen registers in the programming path are reserved, read-only registers.

PROGREAD

ThePROGREAD instruction is for reading outthe IDT5T9891 configuration datafrom the device's volatile programming registers. This instruction selects the programming register path for shifting data from TDI to TDO during data register scanning. The programming register path has 112 registers between TDI and TDO, and the first bit scanned out through TDO will be Bit 0 of the configurationdata.

PROGSAVE and PROGRESTORE (EEPROM OPERATION)

The PROGSAVE instruction is for copying the IDT5T9891 configuration data from the device's volatile programming registers to the EEPROM. This instruction selectsthe BYPASS register path for shifting data fromTDI to TDO during data register scanning.

ThePROGRESTORE instructionis for loading the IDT5T9891 configuration data from the EEPROM to the device's volatile programming registers. This instruction selects the BYPASS register path for shifting data from TDI to TDO during data register scanning.

During the execution of a PROGSAVE or PROGRESTORE instruction, the IDT5T9891 will not accept a new programming instruction (read, write, save, or restore). All non-programming JTAG instructions willfunction properly, but the user should wait until the save or restore is complete before issuing a new programming instruction. The time ittakes for the save and restore instructions to complete depends onthe PLL oscillator frequency, Fvco. The restore time, Trestore, and the save time, Tsave, can be calculated as follows:

> Trestore $=1.23 \times 10^{6} / \mathrm{Fvco}$
> Tsave $=3.09 \times 10^{6} / \mathrm{Fvco}+52$

If a new programming instruction is issued before the save or restore completes, the new instruction is ignored, and the BYPASS register path remains ineffectfor shifting datafrom TDI to TDO during dataregister scanning.

In order for the ProgSave and ProgRestore instructions tofunction properly, the IDT5T9890 must not be in power-down mode ($\overline{\mathrm{PD}}$ must be HIGH), and the PLL must be enabled ($\overline{P L L _E N}=$ LOW and Bit $57=0$).

On power-up of the IDT5T9891, an automatic restore is performed to load the EEPROM contents into the internal programming registers. The autorestore will not function properly ifthe device is in power-down mode ($\overline{P D}$ must beHIGH). The device's auto-restorefeature willfunction regardless ofthestate of the $\overline{P L L} _E N$ pin or Bit 57 . The time it takes for the device to complete the auto-restore is approximately 3 ms .

CLAMP

The optional CLAMP instructionloads the contents from the boundary-scan register onto the outputs of the IC, and selects the one-bit bypass register to be connected between TDI and TDO. During this instruction, data can be shifted through the bypass register from TDI to TDO without affecting the condition of the IC outputs.

HIGH-IMPEDANCE

The optional High-Impedance instruction sets all outputs (includingtwo-state aswell asthree-state types) of an IC to a disabled (high-impedance) state and selects the one-bit bypass register to be connected between TDI and TDO. During this instruction, data canbe shifted throughthe bypass registerfrom TDI to TDO without affecting the condition of the IC outputs.

BYPASS

The required BYPASS instruction allows the IC to remain in a normal functional mode and selects the one-bit bypass register to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the IC from TDI to TDO without affecting the operation of the IC.

PROGRAMMING NOTES

Once the IDT5T9891 has been programmed eitherwith a ProgWrite or ProgRestore instruction, the device will attemptto achieve phase lockusing the new PLL configuration. Ifthere is a valif REF and FB inputclock connected to the device, and it does not achieve lock, the user should issue a ProgRead instruction to confirm that the PLL configuration data is valid.

On power-up and beforethe automatic ProgRestore instruction has completed, the internal programming registers will containthe value of '0' for all bits 95:0. The PLL will remain at the minimum frequency and will not achieve phase lock until after the automatic restore is completed. If the outputs are enabled by the $\overline{\mathrm{nSOE}}$ pins, the outputs will toggle at the minimum frequency. If the outputs are disabled by the $\overline{\mathrm{nSOE}}$ pins, and the OMODE pin is set high, the nQ[1:0] and QFB are stopped HIGH, while $\overline{Q F B}$ is stopped LOW.

Standard JTAG Timing

NOTE:

t1 = ttclkLow
t2 $=$ tтcL_KHIGH
t3 $=$ ttclekeall
t4 = ttclkrise
$\mathrm{t} 5=\mathrm{trst}$ (reset pulse width)
t6 $=$ tRSR (reset recovery)

J TAG

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min.	Max.	Units
tтCLK	JTAG Clock Input Period	100	-	nS
ttclkhigh	JTAG Clock HIGH	40	-	ns
ttclklow	JTAG Clock Low	40	-	ns
ttclikRISE	JTAG Clock Rise Time	-	$5^{(1)}$	ns
ttclikall	JTAG Clock Fall Time	-	$5^{(1)}$	ns
trst	JTAG Reset	50	-	ns
trsR	JTAG Reset Recovery	50	-	ns

NOTE:

1. Guaranteed by design.

SYSTEMINTERFACE PARAMETERS

Symbol	Parameter	Min.	Max.	Units
too	DataOutput ${ }^{(1)}$	-	20	ns
tDon	Data Output Hold ${ }^{(1)}$	0	-	ns
tos	Data Input, trise = 3ns	10	-	ns
tDH	Data Input, tfall = 3ns	10	-	ns

NOTE:

1. 50 pF loading on external output signals.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter		est Conditions	Min.	Max	Unit
Vінн	Input HIGH Voltage Level ${ }^{(1)}$	3-Level Input		VDD -0.4	-	V
Vimm	Input MID Voltage Level ${ }^{(1)}$	3-Level Input		VDD/2-0.2	VDD/2 +0.2	V
VILL	InputLOW Voltage Level ${ }^{(1)}$	3-Level Inputs Only		-	0.4	V
13	3-Level Input DC Current (ADDRO, ADDR1)	VIN $=$ V ${ }_{\text {dD }}$	HIGH Level	-	200	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} / 2$	MID Level	-50	+50	
		VIN = GND	LOW Level	-200	-	
IpU	InputPull-Up Current	$V_{\text {dD }}=$ Max., $\mathrm{VIN}^{\text {I }}$ = GND		-100	-	$\mu \mathrm{A}$

NOTE:

1. These inputs are normally wired to $\mathrm{VDD}, \mathrm{GND}$, or left floating. Internal termination resistors bias unconnected inputs to $\mathrm{VDD} / 2$. If these inputs are switched dynamically after powerup, the function and timing of the outputs may be glitched, and the PLL may require additional tlock time before all datasheet limits are achieved.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR HSTL ${ }^{(1)}$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(7)}$	Max	Unit
Input Characteristics						
ІІн	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} \quad \mathrm{~V}_{1}=\mathrm{VDDQN}^{\prime} / \mathrm{GND}$	-	-	± 5	$\mu \mathrm{A}$
ILL	InputLOW Current	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} \quad \mathrm{~V}_{1}=\mathrm{GND} / \mathrm{VDDQN}$	-	-	± 5	
VIK	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{lin}=-18 \mathrm{~mA}$	-	-0.7	-1.2	V
Vin	DC Input Voltage		-0.3		+3.6	V
VDIF	DCDifferential Voltage ${ }^{(2,8)}$		0.2		-	V
Vсм	DC Common Mode Input Voltage ${ }^{(3,8)}$		680	750	900	mV
VIH	DC Input HIGH ${ }^{(4,5,8)}$		Vref +100		-	mV
VIL	DC Input LOW ${ }^{(4,6,8)}$		-		Vref -100	mV
Vref	Single-Ended Reference Voltage ${ }^{(4,8)}$		-	750	-	mV

OutputCharacteristics

Voн	Output HIGH Voltage	Іон $=-8 \mathrm{~mA}$	VDDQN - 0.4		-	V
		Іон $=-100 \mu \mathrm{~A}$	VDDQ - 0.1		-	
Vol	OutputLOWVoltage	$\mathrm{loL}=8 \mathrm{~mA}$	-		0.4	V
		$\mathrm{loL}=100 \mu \mathrm{~A}$	-		0.1	
Vox	$n \mathrm{C} / \overline{\mathrm{n}}$ and FB/ $\overline{\mathrm{FB}}$ Output Crossing Point		Vodon/2-150	VddQn/2	VddQn/2 + 150	mV

NOTES:

1. See RECOMMENDED OPERATING RANGE table.
2. VDIF specifies the minimum input differential voltage ($V_{T R}-V_{C P}$) required for switching where $V_{T R}$ is the "true" input level and $V_{C P}$ is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
3. V cm specifies the maximum allowable range of $\left(V_{T R}+V_{C P}\right) / 2$. Differential mode only.
4. For single-ended operation, in differential mode, $\overline{\operatorname{REF}}[1: 0] / V_{\operatorname{REF}}[1: 0]$ is tied to the DC voltage $V_{R E F[1: 0]}$.
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
7. Typical values are at $\mathrm{VDD}=2.5 \mathrm{~V}, \mathrm{~V} D \mathrm{DQN}=1.5 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8 V or 2.5 V LVTTL operation independent of the device output. (See Input/Output Selection table.)

POWER SUPPLY CHARACTERISTICS FOR HSTL OUTPUTS ${ }^{(1)}$

Symbol	Parameter	Test Conditions ${ }^{(2)}$	Typ.	Max	Unit
IdDQ	Quiescent VdD Power Supply Current ${ }^{(3)}$	VDDQN $=$ Max., REF $=$ LOW, $\overline{\text { PD }}=$ HIGH, $\overline{n S O E}=$ LOW, $\overline{\text { PLL_EN }}=$ HIGH, Outputs enabled, All outputs unloaded	112	150	mA
IDDQQ	Quiescent Vdodn Power Supply Current ${ }^{(3)}$	VDDQN $=$ Max., REF $=$ LOW, $\overline{\text { PD }}=$ HIGH, $\overline{\text { nSOE }}=$ LOW, $\overline{\text { PLL_EN }}=$ HIGH, Outputs enabled, All outputs unloaded	2	75	$\mu \mathrm{A}$
IDDPD	Power Down Current	VDD $=$ Max., $\overline{\mathrm{PD}}=$ LOW, $\overline{\mathrm{nSOE}}=$ LOW, $\overline{\mathrm{PLL}}$ _EN $=$ HIGH	0.3	3	mA
IDDD	Dynamic Vdd Power Supply Currentper Output	Vdd = Max., VddQn $=$ Max., $\mathrm{Cl}=0 \mathrm{pF}$	22	30	$\mu \mathrm{A} / \mathrm{MHz}$
IDDDQ	Dynamic Vdden Power Supply Currentper Output	Vdd = Max., VddQn = Max., Cl = 0pF	19	30	$\mu \mathrm{A} / \mathrm{MHz}$
Ітот	Total Power Vdd Supply Current ${ }^{(4,5)}$	VDDQN $=1.5 \mathrm{~V}, \mathrm{FvCo}=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	280	400	mA
		VDDQN $=1.5 \mathrm{~V}$, Fvco $=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	320	450	
ITOTQ	Total Power VddQn Supply Current ${ }^{(4,5)}$	VDDQN $=1.5 \mathrm{~V}, \mathrm{Fvco}=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	130	200	mA
		VdDQn $=1.5 \mathrm{~V}, \mathrm{Fvco}=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	220	330	

NOTES:

1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
2. The termination resistors are excluded from these measurements.
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.
4. Bit $60=1$.
5. All outputs are at the same interface level.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR HSTL

Symbol	Parameter	Value	Units
$\mathrm{V}_{\mathrm{DIF}}$	InputSignal Swing ${ }^{(1)}$	1	V
$\mathrm{Vx}_{\mathrm{xH}}$	Differential InputSignal Crossing Point ${ }^{(2)}$	750	mV
$\mathrm{V}_{\text {HI }}$	InputTiming MeasurementReferenceLevel ${ }^{(3)}$	Crossing Point	V
tr, tF	${\text { InputSignal Edge } \text { Rate }^{(4)}}^{1}$	1	$\mathrm{~V} / \mathrm{ns}$

NOTES

1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vdif (AC) specification under actual use conditions.
2. A 750 mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the $V x$ specification under actual use conditions.
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
4. The input signal edge rate of $1 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR eHSTL ${ }^{(1)}$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(7)}$	Max	Unit
Input Characteristics						
ІІ	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} \quad \mathrm{~V}_{1}=\mathrm{VDDQN}^{\prime} / \mathrm{GND}$	-	-	± 5	$\mu \mathrm{A}$
ILL	InputLOWCurrent	VDD $=2.7 \mathrm{~V} \quad \mathrm{~V}_{1}=\mathrm{GND} / \mathrm{VDDQN}$	-	-	± 5	
VIK	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{l} \mathrm{IN}=-18 \mathrm{~mA}$	-	-0.7	-1.2	V
Vin	DCInput Voltage		-0.3		+3.6	V
VDIF	DCDifferential Voltage ${ }^{(2,8)}$		0.2		-	V
Vcm	DC Common Mode Input Voltage ${ }^{(3,8)}$		800	900	1000	mV
VIH	DC Input HIGH ${ }^{(4,5,8)}$		Vref + 100		-	mV
VIL	DC Input LOW ${ }^{(4,6,8)}$		-		Vref -100	mV
VREF	Single-Ended Reference Voltage ${ }^{(4,8)}$		-	900	-	mV

Output Characteristics

Voн	Output HIGHVoltage	Іон $=-8 \mathrm{~mA}$	VDDQ - 0.4		-	V
		Іон $=-100 \mu \mathrm{~A}$	VDDQN - 0.1		-	V
Vol	OutputLOWVoltage	$\mathrm{loL}=8 \mathrm{~mA}$	-		0.4	V
		$\mathrm{loL}=100 \mu \mathrm{~A}$	-		0.1	V
Vox	$n \mathrm{Q} / \overline{\mathrm{n}}$ and FB/FB Output Crossing Point		VDDQN/2-150	VDDQN/2	VDDQN/2 + 150	mV

NOTES:

1. See RECOMMENDED OPERATING RANGE table.
2. VDIF specifies the minimum input differential voltage ($V_{T R}-V_{C P}$) required for switching where $V_{T R}$ is the "true" input level and Vcp is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
3. Vcm specifies the maximum allowable range of $\left(\mathrm{V}_{\mathrm{TR}}+\mathrm{V}_{\mathrm{CP}}\right) / 2$. Differential mode only.
4. For single-ended operation, in a differential mode, $\overline{\operatorname{REF}}_{[1: 0]} / V_{R E F[1: 0]}$ is tied to the DC voltage $\mathrm{V}_{\mathrm{REF}}[1: 0]$.
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
7. Typical values are at $\mathrm{VDD}=2.5 \mathrm{~V}, \mathrm{~V} D \mathrm{DQN}=1.8 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8 V or 2.5 V LVTTL operation independent of the device output. (See Input/Output Selection table.)

POWER SUPPLY CHARACTERISTICS FOR eHSTL OUTPUTS ${ }^{(1)}$

Symbol	Parameter	Test Conditions ${ }^{(2)}$	Typ.	Max	Unit
IDDQ	Quiescent Vdo Power Supply Current ${ }^{(3)}$	VDDQN $=$ Max., REF $=$ LOW, $\overline{\text { PD }}=$ HIGH, $\overline{\text { nSOE }}=$ LOW, $\overline{\mathrm{PLL} E N}=\mathrm{HIGH}$, Outputs enabled, All outputs unloaded	112	150	mA
IDDQQ	Quiescent Vddon Power Supply Current ${ }^{(3)}$	VDDQN $=$ Max., REF $=$ LOW, $\overline{\text { PD }}=$ HIGH, $\overline{\text { nSOE }}=$ LOW, $\overline{\text { PLL_EN }}=\mathrm{HIGH}$, Outputs enabled, All outputs unloaded	2	75	$\mu \mathrm{A}$
IDDPD	Power Down Current	$V_{\text {DD }}=$ Max., $\overline{\mathrm{PD}}=$ LOW, $\overline{\mathrm{nSOE}}=$ LOW, $\overline{\mathrm{PLL}}$ EN $=$ HIGH	0.3	3	mA
IDDD	Dynamic Vdd Power Supply Currentper Output	Vdd $=$ Max., VddQ $=$ Max., $\mathrm{CL}=0 \mathrm{OFF}$	22	30	$\mu \mathrm{A} / \mathrm{MHz}$
IDDDQ	Dynamic Vdoqn Power Supply Currentper Output	Vdd $=$ Max., Vddon $=$ Max., $\mathrm{CL}=0 \mathrm{PF}$	22	30	$\mu \mathrm{A} / \mathrm{MHz}$
Ітот	Total Power Vdd Supply Current ${ }^{(4,5)}$	VDDQN $=1.8 \mathrm{~V}, \mathrm{Fvco}=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	280	400	mA
		$V_{\text {DDQ }}=1.8 \mathrm{~V}, \mathrm{FvCo}=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	330	450	
ITOTQ	Total Power VodQn Supply Current ${ }^{(4,5)}$	VDDQN $=1.8 \mathrm{~V}, \mathrm{Fvco}=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	160	250	mA
		VddQn $=1.8 \mathrm{~V}, \mathrm{Fvco}=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	270	400	

NOTES:

1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
2. The termination resistors are excluded from these measurements.
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.
4. Bit $60=1$.
5. All outputs are at the same interface level.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR eHSTL

Symbol	Parameter	Value	Units
$V_{\text {DIF }}$	InputSignal Swing ${ }^{(1)}$	1	V
$\mathrm{~V}_{\mathrm{x}}$	Differential InputSignal Crossing Point ${ }^{(2)}$	900	mV
$\mathrm{V}_{\text {THI }}$	InputTiming MeasurementReferenceLevel ${ }^{(3)}$	Crossing Point	V
tr, tF	InputSignal Edge Rate ${ }^{(4)}$	1	$\mathrm{~V} / \mathrm{ns}$

NOTES:

1. The 1 V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Volf (AC) specification under actual use conditions.
2. A 900 mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
4. The input signal edge rate of $1 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR LVEPECL ${ }^{(1)}$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(2)}$	Max	Unit
Input Characteristics						
Ін	Input HIGH Current	VDD $=2.7 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\text {doQN }} / \mathrm{GND}$	-	-	± 5	$\mu \mathrm{A}$
IIL	InputLOW Current	$\mathrm{VDD}=2.7 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{I}}=$ GND/VDDQN	-	-	± 5	
VIK	Clamp Diode Voltage	$\mathrm{VDD}=2.3 \mathrm{~V}, \mathrm{lin}=-18 \mathrm{~mA}$	-	-0.7	-1.2	V
VIN	DC Input Voltage		-0.3	-	3.6	V
Vcm	DC Common Mode Input Voltage ${ }^{(3,5)}$		915	1082	1248	mV
VREF	Single-Ended Reference Voltage ${ }^{(4,5)}$		-	1082	-	mV
VIH	DC Input HIGH		1275	-	1620	mV
VIL	DC Input LOW		555	-	875	mV

NOTES:

1. See RECOMMENDED OPERATING RANGE table.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. $V_{C M}$ specifies the maximum allowable range of $\left(V_{T R}+V_{C P}\right) / 2$. Differential mode only.
4. For single-ended operation while in differential mode, $\overline{\operatorname{REF}}[1: 0] / V_{R E F}[1: 0]$ is tied to the DC voltage $\operatorname{V}_{\operatorname{REF}}[1: 0]$.
5. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8 V or 2.5 V LVTTL operation independent of the device output. (See Input/Output Selection table.)

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVEPECL

Symbol	Parameter	Value	Units
$V_{\text {DIF }}$	InputSignal Swing ${ }^{(1)}$	732	mV
V_{x}	Differential InputSignal Crossing Point ${ }^{(2)}$	1082	mV
$\mathrm{V}_{\text {THI }}$	InputTiming MeasurementReferenceLevel ${ }^{(3)}$	Crossing Point	V
tr, tF	InputSignal Edge Rate $^{(4)}$	1	$\mathrm{~V} / \mathrm{ns}$

NOTES:

1. The 732 mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VIIF (AC) specification under actual use conditions.
2. A 1082 mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the $\mathrm{V} \times$ specification under actual use conditions.
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
4. The input signal edge rate of $1 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR 2.5V LVTTL ${ }^{(1)}$

Symbol	Parameter		ions	Min.	Typ. ${ }^{(8)}$	Max	Unit
Input Characteristics							
ІІ	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {dDQ }} / \mathrm{GND}$	-	-	± 5	$\mu \mathrm{A}$
ILL	InputLOW Current	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{GND} / \mathrm{VDDQN}$	-	-	± 5	
VIK	Clamp Diode Voltage	$\mathrm{V} \mathrm{DD}=2.3 \mathrm{~V}, \mathrm{lin}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
Vin	DC Input Voltage			-0.3		+3.6	V

Single-Ended Inputs ${ }^{(2)}$

V_{IH}	DC Input HIGH		1.7		-	V
VIL	DC Input LOW		-		0.7	V

Differential Inputs

Volf	DC Differential Voltage ${ }^{(3,9)}$		0.2		-	V
Vcm	DC Common Mode Input Voltage ${ }^{(4,9)}$		1150	1250	1350	mV
VIH	DC Input HIGH ${ }^{(5,6,9)}$		Vref +100		-	mV
VIL	DC Input LOW ${ }^{(5,7,9)}$		-		Vref - 100	mV
VReF	Single-Ended ReferenceVoltage ${ }^{(5,9)}$		-	1250	-	mV

OutputCharacteristics

Voн	Output HIGH Voltage	$\mathrm{IOH}=-12 \mathrm{~mA}$	VDDQN - 0.4	-	V
		Іон $=-100 \mu \mathrm{~A}$	VDDQ - 0.1	-	V
Vol	OutputLOWVoltage	$\mathrm{loL}=12 \mathrm{~mA}$	-	0.4	V
		loL $=100 \mu \mathrm{~A}$	-	0.1	V

NOTES:

1. See RECOMMENDED OPERATING RANGE table.
2. For 2.5 V LVTTL single-ended operation, Bits $35 / 34,33 / 32,31 / 30=0 / 1$ or $1 / 0$, and $\overline{\operatorname{REF}[1: 0] / V R E[1: 0]}$ is left floating. If Bits $47-36=0, \overline{F B} / V_{R E F 2}$ should be left floating.
3. VDIF Specifies the minimum input differential voltage (VTR - VCP) required for switching where $V_{T R}$ is the "true" input level and $V_{C P}$ is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
4. $V_{C M}$ specifies the maximum allowable range of $\left(V_{T R}+V_{C P}\right) / 2$. Differential mode only.
5. For single-ended operation, in differential mode, $\overline{\operatorname{REF}[1: 0] / V R E[1: 0]}$ is tied to the $D C$ voltage $V_{R E F[1: 0] .}$
6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
8. Typical values are at $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDON}}=\mathrm{VDD},+25^{\circ} \mathrm{C}$ ambient.
9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8 V or 2.5 V LVTTL operation independent of the device output. (See Input/Output Selection table.)

POWER SUPPLY CHARACTERISTICS FOR 2.5V LVTTL OUTPUTS ${ }^{(1)}$

Symbol	Parameter	Test Conditions ${ }^{(2)}$	Typ.	Max	Unit
IDDQ	Quiescent VdD Power Supply Current ${ }^{(3)}$	VDDQN $=$ Max., REF $=$ LOW, $\overline{\text { PD }}=$ HIGH, $\overline{\text { nSOE }}=$ LOW, $\overline{\text { PLL_EN }}=$ HIGH, Outputs enabled, All outputs unloaded	112	150	mA
IDDQQ	Quiescent Vdodn Power Supply Current ${ }^{(3)}$	VDDQN $=$ Max., REF $=$ LOW, $\overline{\text { PD }}=$ HIGH, $\overline{\text { nSOE }}=$ LOW, $\overline{\text { PLL_EN }}=$ HIGH, Outputs enabled, All outputs unloaded	15	75	$\mu \mathrm{A}$
IDDPD	Power Down Current	VDD $=$ Max., $\overline{\mathrm{PD}}=\mathrm{LOW}, \overline{\mathrm{nSOE}}=$ LOW, $\overline{\mathrm{PLL}}$ EN $=$ HIGH	0.3	3	mA
IDDD	Dynamic Vod Power Supply CurrentperOutput	Vdd = Max., VddQn = Max., CL = OpF	21	30	$\mu \mathrm{A} / \mathrm{MHz}$
IDDDQ	Dynamic Vdoqn Power Supply Currentper Output	Vdd $=$ Max., VddQN $=$ Max., $\mathrm{CL}=0 \mathrm{pF}$	33	40	$\mu \mathrm{A} / \mathrm{MHz}$
Iтот	Total Power Vdd Supply Current ${ }^{(4,5)}$	VDDQN $=2.5 \mathrm{~V}$., Fvco $=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	280	400	mA
		VDDQN $=2.5 \mathrm{~V}$., Fvco $=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	320	450	
ITотQ	Total Power VddQN Supply Current ${ }^{(4,5)}$	Vddon $=2.5 \mathrm{~V}$., Fvco $=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	210	320	mA
		VDDQN $=2.5 \mathrm{~V}$., Fvco $=250 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	345	530	

NOTES:

1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
2. The termination resistors are excluded from these measurements.
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.
4. Bit $60=1$.
5. All outputs are at the same interface level.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 2.5V LVTTL

Symbol	Parameter	Value	Units
VDIF	Input Signal Swing ${ }^{(1)}$	Vdo	V
Vx	Differential InputSignal Crossing Point ${ }^{(2)}$	VDD/2	V
VTHI	Input Timing Measurement Reference Level ${ }^{(3)}$	Crossing Point	V
tr, tF	InputSignal Edge Rate ${ }^{(4)}$	2.5	V/ns

NOTES:

1. A nominal 2.5 V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Volf (AC) specification under actual use conditions.
2. A nominal 1.25 V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the $V x$ specification under actual use conditions.
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
4. The input signal edge rate of $2.5 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 2.5V LVTTL

Symbol	Parameter	Value	Units
V_{IH}	Input HIGH Voltage	VDD	V
V_{IL}	InputLOWVoltage	0	V
$\mathrm{~V}_{\text {THI }}$	Input Timing MeasurementReferenceLevel ${ }^{(1)}$	$\mathrm{VDD}^{2} / 2$	V
$\mathrm{tr}, \mathrm{tF}^{\mathrm{tr}}$	InputSignal EdgeRate ${ }^{(2)}$	2	$\mathrm{~V} / \mathrm{ns}$

NOTES

1. A nominal 1.25 V timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.
2. The input signal edge rate of $2 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 10% to 90% range of the input waveform.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR 1.8V LVTTL ${ }^{(1)}$

Symbol	Parameter	Tes	ions	Min.	Typ. ${ }^{(8)}$	Max	Unit
Input Characteristics							
Ін	Input HIGH Current	$\mathrm{V} D \mathrm{D}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {dDQN }} / \mathrm{GND}$	-	-	± 5	$\mu \mathrm{A}$
IIL	InputLOWCurrent	$\mathrm{VDD}=2.7 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{GND} / \mathrm{VDDQN}$	-	-	± 5	
VIK	Clamp Diode Voltage	$V_{D D}=2.3 \mathrm{~V}, \mathrm{IN}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
VIN	DC InputVoltage			-0.3		VDDQN +0.3	V

Single-Ended Inputs ${ }^{(2)}$

V_{IH}	DC Input HIGH		$1.073^{(10)}$		-	V
V_{IL}	DC Input LOW		-		$0.683^{(11)}$	V

Differential Inputs

Vdif	DCDifferential Voltage ${ }^{(3,9)}$		0.2		-	V
Vcm	DC Common Mode Input Voltage ${ }^{(4,9)}$		825	900	975	mV
V_{1}	DC Input HIGH ${ }^{(5,6,9)}$		Vref + 100		-	mV
VIL	DC Input LOW ${ }^{(5,7,9)}$		-		VREF - 100	mV
Vref	Single-Ended Reference Voltage ${ }^{(5,9)}$		-	900	-	mV

OutputCharacteristics

Vон	Output HIGH Voltage	$\mathrm{IOH}=-6 \mathrm{~mA}$	VDDQN - 0.4	-	V
		Іон $=-100 \mu \mathrm{~A}$	VDDQN - 0.1	-	V
Vol	OutputLOW Voltage	10L $=6 \mathrm{~mA}$	-	0.4	V
		$\mathrm{loL}=100 \mu \mathrm{~A}$	-	0.1	V

NOTES:

1. See RECOMMENDED OPERATING RANGE table.
2. For 1.8 V LVTTL single-ended operation, Bits $35-30=0$ and $\overline{\operatorname{REF}}\left[1: 0 / V_{\text {REF }} 1: 0\right]$ is left floating. If Bits $47 / 46,45 / 44,43 / 42,41 / 40,39 / 38,37 / 36=0 / 1, \overline{\mathrm{FB}} / V_{\text {REF2 }}$ should be left floating.
3. VDIF specifies the minimum input differential voltage ($V_{T R}-V_{C P}$) required for switching where $V_{T R}$ is the "true" input level and V Cp is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
4. Vcm specifies the maximum allowable range of ($\mathrm{V}_{\mathrm{TR}}+\mathrm{V}_{\mathrm{CP}}$) /2. Differential mode only.
 is constrained within +600 mV and $\mathrm{Vodl}-600 \mathrm{mV}$, where V dol is the nominal 1.8 V power supply of the device driving the $\mathrm{REF}[1: 0]$ input. To guarantee switching in voltage range specified in the JEDEC 1.8 V LVTTL interface specification, VREF[1:0] must be maintained at 900 mV with appropriate tolerances.
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
7. Typical values are at $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDON}}=1.8 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8 V or 2.5 V LVTTL operation independent of the device output. (See Input/Output Selection table.)
9. This value is the worst case minimum V_{H} over the specification range of the 1.8 V power supply. The 1.8 V LVTTL specification is $\mathrm{V}_{\mathrm{H}}=0.65$ * VDD where Vod is $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$. However, the LVTTL translator is supplied by a 2.5 V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated worst case value ($\mathrm{V}_{\mathbb{H}}=0.65 *[1.8-0.15 \mathrm{~V}]$) rather than reference against a nominal 1.8 V supply.
10. This value is the worst case maximum VIL over the specification range of the 1.8 V power supply. The 1.8 V LVTTL specification is $\mathrm{VIL}=0.35$ * VDD where VDD is $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$. However, the LVTTL translator is supplied by a 2.5 V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated worst case value ($\mathrm{VIL}=0.35 *[1.8+0.15 \mathrm{~V}]$) rather than reference against a nominal 1.8 V supply.

POWER SUPPLY CHARACTERISTICS FOR 1.8V LVTTL OUTPUTS ${ }^{(1)}$

Symbol	Parameter	Test Conditions ${ }^{(2)}$	Typ.	Max	Unit
IDDQ	Quiescent Vdo Power Supply Current ${ }^{(3)}$	VDDQN $=$ Max., REF $=$ LOW, $\overline{\text { PD }}=$ HIGH, $\overline{\text { nSOE }}=$ LOW, $\overline{\text { PLL_EN }}=\mathrm{HIGH}$, Outputs enabled, All outputs unloaded	112	150	mA
IDDQQ	Quiescent Vodon Power Supply Current ${ }^{(3)}$	VDDQN $=$ Max., REF $=$ LOW, $\overline{\text { PD }}=$ HIGH, $\overline{\text { nSOE }}=$ LOW, $\overline{\text { PLL_EN }}=$ HIGH, Outputs enabled, All outputs unloaded	2	75	$\mu \mathrm{A}$
IDDPD	Power Down Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\overline{\mathrm{PD}}=\mathrm{LOW}, \overline{\mathrm{nSOE}}=$ LOW, $\overline{\mathrm{PLL}}$ EN $=$ HIGH	0.3	3	mA
IDDD	Dynamic Vdd Power Supply Currentper Output	Vdd $=$ Max., VddQ $=$ Max., $\mathrm{CL}_{\text {L }}=0 \mathrm{pF}$	19	30	$\mu \mathrm{A} / \mathrm{MHz}$
IDDDQ	Dynamic Vddon Power Supply Currentper Output	Vdd $=$ Max., VddQn $=$ Max., $\mathrm{CL}=0 \mathrm{pF}$	22	30	$\mu \mathrm{A} / \mathrm{MHz}$
Ітот	Total Power Vdo Supply Current ${ }^{(4,5)}$	VDdQn $=1.8 \mathrm{~V}$., Fvco $=100 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pF}$	275	400	mA
		VDDQN $=1.8 \mathrm{~V}$., Fvco $=250 \mathrm{MHz}$, CL $=15 \mathrm{pF}$	310	450	
ITOTQ	Total Power VddQn Supply Current ${ }^{(4,5)}$	VddQn $=1.8 \mathrm{~V}$., Fvco $=100 \mathrm{MHz}$, CL $=15 \mathrm{pF}$	135	200	mA
		VddQ $=1.8 \mathrm{~V}$., Fvco $=250 \mathrm{MHz}$, CL $=15 \mathrm{pF}$	200	300	

NOTES:

1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.
2. The termination resistors are excluded from these measurements.
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.
4. Bit $60=1$.
5. All outputs are at the same interface level.

DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 1.8V LVTTL

Symbol	Parameter	Value	Units
VDIF	Input Signal Swing ${ }^{(1)}$	VDDI	V
Vx	Differential InputSignal Crossing Point ${ }^{(2)}$	Vodi/2	mV
$\mathrm{V}_{\text {тн }}$	Input Timing MeasurementReference Level ${ }^{(3)}$	Crossing Point	V
tr, tF	InputSignal Edge Rate ${ }^{(4)}$	1.8	V/ns

NOTES:

1. Vdol is the nominal 1.8 V supply ($1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$) of the part or source driving the input. A nominal 1.8 V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.
2. A nominal 900 mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
4. The input signal edge rate of $1.8 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 1.8V LVTTL

Symbol	Parameter	Value	Units
V_{IH}	Input HIGH Voltage ${ }^{(1)}$	$\mathrm{V}_{\text {DII }}$	V
V_{IL}	InputLOWVoltage	0	V
$\mathrm{~V}_{\text {THI }}$	InputTiming MeasurementReferenceLevel ${ }^{(2)}$	$\mathrm{VDDI} / 2$	mV
tr, tF	InputSignal EdgeRate $^{(3)}$	2	$\mathrm{~V} / \mathrm{ns}$

NOTES:

1. Vdol is the nominal 1.8 V supply $(1.8 \mathrm{~V} \pm 0.15 \mathrm{~V})$ of the part or source driving the input.
2. A nominal 900 mV timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.
3. The input signal edge rate of $2 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 10% to 90% range of the input waveform.

AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

All outputs at the same interface level

Symbol	Parameter		Min.	Typ.	Max	Unit
FNom	VCO Frequency Range		Serial Configura	tions: VCO	Frequency Ran	ge table
tepw	Reference Clock Pulse Width HIGH or LOW		1	-	-	ns
trpw	Feedback Input Pulse Width HIGH or LOW		1	-	-	ns
tu	Programmable Skew Time Unit		see Control Summary Table			
tsk(0)	OutputSkew (Rise-Rise, Fall-Fall, Nominal) ${ }^{(1,2)}$		-	-	100	ps
tsk1(ω)	Multiple Frequency Skew (Rise-Rise, Fall-Fall, Nominal-Divided, Divided-Divided) ${ }^{(1,2,3)}$		-	-	100	ps
tsk2(ω)	Multiple Frequency Skew (Rise-Fall, Nominal-Divided, Divided-Divided) ${ }^{(1,2,3)}$		-	-	300	ps
tskı(Nv)	Inverting Skew (Nominal-Inverted) ${ }^{(1,2)}$		-	-	300	ps
tsk2(NN)	Inverting Skew (Rise-Rise, Fall-Fall, Rise-Fall, Inverted-Divided) ${ }^{(1,2,3)}$		-	-	300	ps
tsk(PR)	Process Skew ${ }^{(1,2,4)}$		-	-	300	ps
t(ϕ)	REF Input to FB Static Phase Offset ${ }^{(5)}$		-100	-	100	ps
todev	Output Duty Cycle Variation from 50\%(11,12)	1.8VLVTTL	-375	-	375	ps
		2.5VLVTTL	-275	-	275	
torise	OutputRise Time ${ }^{(6)}$	HSTL / eHSTL / 1.8V LVTTL	-	-	1.2	ns
		2.5VLVTTL	-	-	1	
tofall	OutputFall Time ${ }^{(6)}$	HSTL / eHSTL / 1.8V LVTTL	-	-	1.2	ns
		2.5VLVTTL	-	-	1	
t.	Power-up PLL Lock Time ${ }^{(7)}$		-	-	4	ms
tL (ω)	PLLLock Time After Input Frequency Change ${ }^{(7)}$		-	-	1	ms
tL(PD)	PLL Lock Time After Asserting $\overline{\mathrm{PD}}$ Pin ${ }^{(7)}$		-	-	1	ms
tı(REFSEL1)	PLL Lock Time After Change in REF_SEL ${ }^{(7,9)}$		-	-	100	$\mu \mathrm{S}$
t(REFSEL2)	PLL Lock Time After Change in REF_SEL (REF1 and REFo are different frequency) ${ }^{(7)}$		-	-	1	ms
tili(cc)	Cycle-to-Cycle Output Jitter(peak-to-peak) ${ }^{(2,8)}$		-	50	75	ps
tIT(PER)	Period Jitter(peak-to-peak) ${ }^{(2,8)}$		-	-	75	ps
tITI(HP)	HalfPeriod Jitter (peak-to-peak) ${ }^{(2,8,10)}$		-	-	125	ps
tur(Duty)	Duty Cycle Jitter (peak-to-peak) ${ }^{(2,8)}$		-	-	100	ps
Vox	HSTL andeHSTL Differential True and Complementary Output Crossing Voltage Level		VDDQN/2-150	VDDQn/2	VDDQN/2 + 150	mV

NOTES:

1. Skew is the time between the earliest and latest output transition among all outputs for which the same tu delay has been selected, when all outputs are loaded with the specified load.
2. For differential LVTTL outputs, the measurement is made at Voden/2, where the true outputs are only compared with other true outputs and the complementary outputs are only compared to other complementary outputs. For differential HSTL/eHSTL outputs, the measurement is made at the crossing point (Vox) of the true and complementary signals.
3. There are three classes of outputs: nominal (multiple of tu delay), inverted, and divided (divide-by-2 or divide-by-4 mode).
4. tsk(PR) is the output to corresponding output skew between any two devices operating under the same conditions (VDD and VDDQN, ambient temperature, air flow, etc.).
5. $\mathrm{t}(\phi)$ is measured with REF and FB the same type of input, the same rise and fall times. For $1.8 \mathrm{~V} / 2.5 \mathrm{~V}$ LVTTL input and output, the measurement is taken from VTHI on REF to $V_{T H}$ on $F B$. For HSTL / eHSTL input and output, the measurement is taken from the crosspoint of REF// $\overline{R E F}$ to the crosspoint of $F B / \overline{F B}$. All outputs are set to Otu, FB input divider is set to divide-by-one, and Bit $60=1$.
6. Output rise and fall times are measured between 20% to 80% of the actual output voltage swing.
7. $\mathrm{tL}, \mathrm{tL}(\omega)$, $\mathrm{t}($ REFSELL $)$, $\mathrm{tL}($ REFSELL2), and $\mathrm{tL}(P D)$ are the times that are required before the synchronization is achieved. These specifications are valid only after VDD/VDDQN is stable and within the normal operating limits. These parameters are measured from the application of a new signal at REF or $F B$, or after $\overline{P D}$ is (re)asserted until $t(\phi)$ is within specified limits.
8. The jitter parameters are measured with all outputs selected for Otu, FB input divider is set to divide-by-one, and Bit $60=1$.
9. Both REF inputs must be the same frequency, but up to $\pm 180^{\circ}$ out of phase.
10. For HSTL/eHSTL outputs only.
11. For LVTTL outputs only.
12. toocv is measured with all outputs selected for zero delay.

AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Alloutputs atthe differentinterface levels

Symbol	Parameter		Min.	Typ.	Max	Unit
Fnom	VCO Frequency Range		Serial Configura	tions: VCO	Frequency Ran	ge table
trpw			1	-	-	ns
tipw	Feedback Input Pulse Width HIGH or LOW		1	-	-	ns
tu	Programmable Skew Time Unit		see Control Summary Table			
tsk(0)	OutputSkew (Rise-Rise, Fall-Fall, Nominal) ${ }^{(1,2)}$		-	-	250	ps
tsk1(ω)	Multiple Frequency Skew (Rise-Rise, Fall-Fall, Nominal-Divided, Divided-Divided) ${ }^{(1,2,3)}$		-	-	500	ps
tsk2(ω)	Multiple Frequency Skew (Rise-Fall, Nominal-Divided, Divided-Divided) ${ }^{(1,2,2)}$		-	-	500	ps
tskı(Nv)	Inverting Skew (Nominal-Inverted) ${ }^{(1,2)}$		-	-	500	ps
tsk2(NN)	Inverting Skew (Rise-Rise, Fall-Fall, Rise-Fall, Inverted-Divided) ${ }^{(1,2,3)}$		-	-	500	ps
tsk(PR)	Process Skew ${ }^{(1,2,4)}$		-	-	400	ps
t ${ }_{\text {(})}$	REF Input to FB Static Phase Offset ${ }^{(5)}$		-200	-	200	ps
todev	Output Duty Cycle Variation from 50\%(11,12)	1.8VLVTTL	-475	-	475	ps
		2.5 VLVTTL	-375	-	375	
torise	OutputRise Time ${ }^{(6)}$	HSTL / eHSTL / 1.8V LVTTL	-	-	1.2	ns
		2.5VLVTTL	-	-	1	
tofall	OutputFall Time ${ }^{(6)}$	HSTL / eHSTL / 1.8V LVTTL	-	-	1.2	ns
		2.5VLVTTL	-	-	1	
t	Power-up PLL Lock Time ${ }^{(7)}$		-	-	4	ms
tL(ω)	PLL Lock Time After Input Frequency Change ${ }^{(7)}$		-	-	1	ms
ti(PD)	PLL Lock Time After Asserting $\overline{\text { PD }}$ Pin ${ }^{(7)}$		-	-	1	ms
tL(REFSEL1)	PLL Lock Time After Change in REF_SEL ${ }^{(7,9)}$		-	-	100	$\mu \mathrm{S}$
tL(REFSEL2)	PLL Lock Time After Change in REF_SEL (REF1 and REF0 are different frequency) ${ }^{(7)}$		-	-	1	ms
tuticc)	Cycle-to-Cycle OutputJitter (peak-to-peak) ${ }^{(2,8)}$		-	-	100	ps
tIT(PER)	Period Jitter (peak-to-peak) ${ }^{(2,8)}$		-	-	150	ps
tut(HP)	Half Period Jitter (peak-to-peak) ${ }^{(2,8,10)}$		-	-	200	ps
tut(Duty)	Duty Cycle Jitter (peak-to-peak) ${ }^{(2,8)}$		-	-	150	ps
Vox	HSTL andeHSTL Differential True and Complementary Output Crossing Voltage Level		Vodon/2-150	VddQn/2	Vodon/2 + 150	mV

NOTES:

1. Skew is the time between the earliest and latest output transition among all outputs for which the same tu delay has been selected, when all outputs are loaded with the specified load.
2. For differential LVTTL outputs, the measurement is made at $\operatorname{VDDQN} / 2$, where the true outputs are only compared with other true outputs and the complementary outputs are only compared to other complementary outputs. For differential HSTL/eHSTL outputs, the measurement is made at the crossing point (Vox) of the true and complementary signals.
3. There are three classes of outputs: nominal (multiple of tu delay), inverted, and divided (divide-by-2 or divide-by-4 mode).
4. $\operatorname{tsk}(\mathrm{Pr})$ is the output to corresponding output skew between any two devices operating under the same conditions (VDD and VDDQN, ambient temperature, air flow, etc.).
5. $t(\phi)$ is measured with REF and FB the same type of input, the same rise and fall times. For $1.8 \mathrm{~V} / 2.5 \mathrm{~V}$ LVTTL input and output, the measurement is taken from V TH on REF to $V_{T H}$ on FB. For HSTL / eHSTL input and output, the measurement is taken from the crosspoint of REF/ $\overline{R E F}$ to the crosspoint of $F B / \overline{F B}$. All outputs are set to Otu, FB input divider is set to divide-by-one, and Bit $60=1$.
6. Output rise and fall times are measured between 20% to 80% of the actual output voltage swing.
7. $t L, t L(\omega), t L(R E F S E L 1), t L(R E F S E L 2)$, and $t L(P D)$ are the times that are required before the synchronization is achieved. These specifications are valid only after Vdd/VdDQN is stable and within the normal operating limits. These parameters are measured from the application of a new signal at REF or FB , or after $\overline{\mathrm{PD}}$ is (re)asserted until (ϕ) is within specified limits.
8. The jitter parameters are measured with all outputs selected for Otu, FB input divider is set to divide-by-one, and Bit $60=1$.
9. Both REF inputs must be the same frequency, but up to $\pm 180^{\circ}$ out of phase.
10. For HSTL/eHSTL outputs only.
11. For LVTTL outputs only.
12. todcv is measured with all outputs selected for zero delay.

AC DIFFERENTIALINPUT SPECIFICATIONS ${ }^{(1)}$

Symbol	Parameter	Min.	Typ.	Max	Unit
tw	Reference/Feedback Input Clock Pulse Width HIGH or LOW (HSTL/eHSTL outputs) ${ }^{(2)}$	1	-	-	ns
	Reference/Feedback Input Clock Pulse Width HIGH or LOW (2.5V /1.8V LVTTL outputs) ${ }^{(2)}$	1	-	-	

HSTL/eHSTL/1.8V LVTTL/2.5V LVTTL

VDIF	ACDifferential Voltage $^{(3)}$	400	-	-	mV
$\mathrm{VIH}^{(3)}$	AC Input $\mathrm{HIGH}^{(4,5)}$	$\mathrm{Vx}+200$	-	-	mV
$\mathrm{VIL}^{(4,6)}$	AC Input LOW				

LVEPECL

V	ACDifferential Voltage $^{(3)}$	400	-	-	mV
V_{IH}	AC Input $\mathrm{HIGH}^{(4)}$	1275	-	-	mV
V_{IL}	AC Input LOW	(4)	-	-	875

NOTES:

1. For differential input mode, Bits $35-30=1$.
2. Both differential input signals should not be driven to the same level simultaneously. The input will not change state until the inputs have crossed and the voltage range defined by Volf has been met or exceeded.
3. Differential mode only. VDIF specifies the minimum input voltage ($V_{T R}-V_{C P}$) required for switching where $V_{T R}$ is the "true" input level and $V_{c p}$ is the "complement" input level. The AC differential voltage must be achieved to guarantee switching to a new state.
4. For single-ended operation, $\overline{\operatorname{REF}}[1: 0] / V_{R E F[1: 0]}$ is tied to the $D C$ voltage $V_{R E F[1: 0] . ~ R e f e r ~ t o ~ e a c h ~ i n p u t ~ i n t e r f a c e ' s ~}^{D C}$ specification for the correct $V_{R E F[1: 0] ~ r a n g e . ~}^{\text {r }}$.
5. Voltage required to switch to a logic HIGH, single-ended operation only.
6. Voltage required to switch to a logic LOW, single-ended operation only.

AC TIMING DIAGRAM ${ }^{(1)}$

NOTE:

1. The AC TIMING DIAGRAM applies to Bit $58=1$. For Bit $58=0$, the negative edge of FB aligns with the negative edge of $R E F[1: 0]$, divided outputs change on the negative edge of $\operatorname{REF}[1: 0]$, and the positive edges of the divide-by-2 and divide-by-4 signals align.

JITTER AND OFFSET TIMING WAVEFORMS

$$
t_{(\varnothing)}=\frac{\sum_{\mathrm{t}}^{\mathrm{n}=\mathrm{N}} \mathrm{t}_{(\varnothing) \mathrm{n}}}{\mathrm{~N}}
$$

(N is a large number of samples)
Static Phase Offset
NOTE:

1. Diagram for Bit $58=1$ and HSTL $/$ eHSTL input and output.
$\overline{\mathrm{nQ}}, \overline{\mathrm{QFB}}$
nQ, Qfb

$$
\mathrm{tJIT}(\mathrm{DUTY})=|\mathrm{tw}(\mathrm{MAX})-\mathrm{tw}(\mathrm{MIN})|
$$

Period jitter

tjit(hper) $=$ thalf period $n-\frac{1}{2^{*} f_{o}}$
Half-Period jitter

TEST CIRCUITS AND CONDITIONS

Test Circuit for Differential Input(1)

DIFFERENTIALINPUTTEST CONDITIONS

Symbol	$\mathrm{V} D \mathrm{D}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	Unit
R1	100	Ω
R2	100	Ω
VDDI	Vcm*2	V
VTHI	HSTL: Crossing of REF[1:0] and $\overline{\operatorname{REF}}_{[1: 0]}$ eHSTL: Crossing of REF[1:0] and $\overline{\operatorname{REF}}[1: 0]$ LVEPECL: Crossing of REF[1:0] and $\overline{\operatorname{REF}}_{[1: 0]}$ 1.8V LVTTL: Vdol/2 2.5V LVTTL: VDD/2	V

NOTE:

1. This input configuration is used for all input interfaces. For single-ended testing, the $\overline{\operatorname{REF}}[1: 0]$ must be left floating. For testing single-ended in differential input mode, the $\overline{\mathrm{V}_{\mathrm{IN}}}$ should be floating.

Test Circuit for Differential Outputs
DIFFERENTIAL OUTPUT TEST
CONDITIONS

Symbol	VDD $=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ VDDQN $=$ Interface Specified	Unit
CL	15	pF
R 1	100	Ω
R 2	100	Ω
Vox	HSTL: Crossing of nQ and $\overline{\mathrm{nQ}}$ eHSTL: Crossing of nQ and $\overline{\mathrm{nQ}}$	V
Vтно	1.8 V LVTTL: VDDQN/2 2.5 V LVTTL: VDDQN/2	V
SW1	1.8V/2.5V LVTTL	Open
	HSTL/eHSTL	Closed

Test Circuit for Differential Feedback
DIFFERENTIALFEEDBACK TEST CONDITIONS

Symbol	VdD $=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ VDDQN $=$ Interface Specified	Unit
CL	15	pF
R 1	100	Ω
R 2	100	Ω
Vox	HSTL: Crossing of QFB and $\overline{\mathrm{QFB}}$ eHSTL: Crossing of QFB and $\overline{\text { QFB }}$	V
Vтно	1.8 V LVTTL: VDDQN/2 2.5 V LVTTL: VDDQN/2	V
SW1	$1.8 \mathrm{~V} / 2.5 \mathrm{~V}$ LVTTL	Open
	HSTL/eHSTL	Closed

ORDERINGINFORMATION

IDT

I $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Industrial)
NL Thermally Enhanced Plastic Very Fine Pitch Quad Flat No Lead Package
5T9891
EEPROM Programmable 2.5V Programmable Skew PLL Differential Clock Driver

