International IOR Rectifier

ADVANCED ANALOG HYBRID-HIGH RELIABILITY DC/DC CONVERTERS

Description

The AHE Series of DC/DC converters feature high power density and an extended temperature range for use in military and industrial applications. Designed to MIL-STD-704D input requirements, these devices have nominal 28 VDC inputs with +12 V and +15 V dual outputs to satisfy a wide range of requirements. The circuit design incorporates a pulse width modulated pushpull topology operating in the feed-forward mode at a nominal switching frequency of 250 KHz . Input to output isolation is achieved through the use of transformers in the forward and feedback circuits.

The advanced feedback design provides fast loop response for superior line and load transient characteristics and offers greater reliability and radiation tolerance than devices incorporating optical feedback circuits.

Manufactured in a facility fully qualified to MIL-PRF38534, these converters are available in four screening grades to satisfy a wide range of requirements. The CH grade is fully compliant to the requirements of MIL-PRF-38534 for class H. The HB grade is processed and screened to the class H requirement, but may not be necessarily meet all of the other MIL-PRF-38534 requirements, e.g., element evaluation and Periodic Inspection (P.I.) are not required. Both grades are tested to meet the complete group " A " test specification over the full military temperature range without output power deration. Two grades with more limited screening are also available for use in less demanding applications. Variations in electrical, mechanical and screening can be accommodated. Contact Advanced Analog for special requirements.

AHE28XXD SERIES 28V Input, Dual Output

Features

- 17 to 40 VDC Input Range
- 28 VDC Nominal Input
- $\pm 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ Outputs Available
- Indefinite Short Circuit and Overload Protection
- 12.9 W/in ${ }^{3}$ Power Density
- 15 Watts Output Power
- Fast Loop Response for Superior Transient Characteristics
- Operating Temperature Range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Available
- Popular Industry Standard Pin-Out
- Resistance Seam Welded Case for Superior Long Term Hermeticity
- Efficiencies up to 82%
- Shutdown from External Signal
- Military Screening
- 314,000 hour MTBF at $85^{\circ} \mathrm{C}$ (AUC)

AHE28XXD Series

International
IOR Rectifier

Specifications

AHE2812D

ABSOLUTE MAXIMUM RATINGS	-0.5 V to 50 V
Input Voltage	
Soldering Temperature	$300^{\circ} \mathrm{C}$ for 10 seconds
Case Temperature	Operating $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Storage $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$

Table I. Electrical Performance Characteristics

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq+125^{\circ} \mathrm{C}$ $\mathrm{Vin}=28 \mathrm{Vdc} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=0$ Unless otherwise specified	Group A Subgroups	Device Types	Limits		Unit
					Min	Max	
Output voltage	$\mathrm{V}_{\text {out }}$	$\mathrm{I}_{\text {OUT }}=0$	1	All	± 11.88	± 12.12	V
			2,3		± 11.76	± 12.24	
Output current ${ }^{9,11}$	$\mathrm{I}_{\text {OUT }}$	$\mathrm{V}_{\text {IN }}=17,28$, and 40 V dc	1,2,3	All	0.0	± 625	mA
Output ripple voltage ${ }^{8,9}$	$\mathrm{V}_{\text {RiP }}$	$\begin{aligned} & V_{\mathbb{W}}=17,28, \text { and } 40 \mathrm{~V} \text { dc, } \\ & \text { B.W. }=\mathrm{DC} \text { to } 2 \mathrm{MHz} \end{aligned}$	1,2,3	All		60	mVp-p
Output power ${ }^{4,9,11}$	$\mathrm{P}_{\text {out }}$	$\mathrm{V}_{\text {IV }}=17,28$, and 40 V dc	1,2,3	All	15		W
Line ${ }^{9}$ Regulation ${ }^{10}$	$\mathrm{VR}_{\text {INE }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=17,28, \text { and } 40 \mathrm{~V} \mathrm{dc}, \\ & \mathrm{I}_{\text {out }}=0, \pm 313, \text { and } \pm 625 \mathrm{~mA} \end{aligned}$	1	All		30	mV
			2,3			60	
$\begin{aligned} & \hline \text { Load } \\ & \text { Regulation }{ }^{9} \end{aligned}$	$\mathrm{VR}_{\text {LoAd }}$	$\begin{aligned} & \mathrm{V}_{\text {N }}=17,28, \text { and } 40 \mathrm{~V} \mathrm{dc}, \\ & \mathrm{I}_{\text {out }}=0, \pm 313, \text { and } \pm 625 \mathrm{~mA} \end{aligned}$	1,2,3	All		120	mV
Input current	I_{N}	$\mathrm{I}_{\text {out }}=0$, inhibit (pin 2) tied to input return (pin 10)	1,2,3	All		18	mA
		$\begin{aligned} & l_{\text {our }}=0, \\ & \text { inhibit }(\text { pin } 2)=\text { open } \end{aligned}$				40	
Input ripple current ${ }^{8}$	$\mathrm{I}_{\text {RIP }}$	$\begin{aligned} & I_{\text {out }}= \pm 625 \mathrm{~mA} \\ & \text { B.W. }=\text { DC to } 2 \mathrm{MHz} \end{aligned}$	1,2,3	All		50	mAp-p
Efficiency	$\mathrm{E}_{\text {fF }}$	$\begin{aligned} & \mathrm{I}_{\text {out }}= \pm 625 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{c}}=+25^{\circ} \mathrm{C} \end{aligned}$	1	All	80		\%
Isolation	ISO	Input to output or any pin to case (except pin 8) at 500 V dc $\mathrm{Tc}=+25^{\circ} \mathrm{C}$	1	All	100		M Ω
Capacitive load ${ }^{\text {6,12 }}$	$\mathrm{C}_{\llcorner }$	No effect on dc performance, $\mathrm{Tc}=+25^{\circ} \mathrm{C}$	4	All		200	$\mu \mathrm{F}$
Power dissipation load fault	P_{D}	Overload, $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}^{3}$	1	All		6	W
		Short circuit, $\mathrm{T}_{\mathrm{c}}=+25^{\circ} \mathrm{C}$	1			6	
Switching frequency ${ }^{9}$	$\mathrm{F}_{\text {s }}$	$\mathrm{I}_{\text {OUT }}= \pm 625 \mathrm{~mA}$	4,5,6	01	225	275	kHz
				02	225	245	
				03	250	275	
Output response to step transient load changes	$\mathrm{VO}_{\text {tıoad }}$	50\% load to/from100\%load	4	All	-300	+300	mVpk
			5,6		-450	+450	
		No load to/from 50\% load	4	All	-500	+500	
			5,6		-750	+750	

For Notes to Specifications, refer to page 3

Table I. Electrical Performance Characteristics - continued
AHE2812D

Test	Symbol	Conditions $-55^{\circ} \leq \mathrm{Tc} \leq+125^{\circ} \mathrm{C}$ $\operatorname{Vin}=28 \mathrm{Vdc} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=0$ unless otherwise specified	Group A Subgroups	Device Types	Limits		Unit
Recovery time step transient load changes ${ }^{1,7}$	$\mathrm{TT}_{\text {LOAD }}$	50\% load to/from 100\% load	4	All		70	
			5,6			100	
		No load to 50\% load	4,5,6	All		1500	
		50\% load to no load	4,5,6	All		5	ms
Output response transient step line changes ${ }^{5,12}$	$\mathrm{VO}_{\text {tLINE }}$	Input step 17 to 40V dc	4,5,6	All		1200	mVpk
		Input step 40 to 17V dc	4,5,6	All		-1500	
Recovery time transient step line changes ${ }^{1,5,12}$	$\mathrm{TT}_{\text {LINE }}$	Input step 17 to 40V dc	4,5,6	All		4	ms
		Input step 40 to 17V dc	4,5,6	All		4	
Turn on overshoot ${ }^{9}$	$\mathrm{VTon}_{\text {os }}$	$\mathrm{I}_{\text {OUt }} 0$ and $\pm 625 \mathrm{~mA}$	4,5,6	All		600	mVpk
Turn on delay ${ }^{2,9}$	Ton ${ }_{\text {b }}$	$\mathrm{l}_{\text {OUt }}=0$ and $\pm 625 \mathrm{~mA}$	4,5,6	All		10	ms
Load fault recovery ${ }^{12}$	$\mathrm{Tr}_{\text {LF }}$		4,5,6	All		10	ms

Notes to Specifications

1 Recovery time is measured from the initiation of the transient to where $\mathrm{V}_{\text {OUT }}$ has returned to within $\pm .1$ percent of $\mathrm{V}_{\text {out }}$ at 50 percent load.
2 Turn on delay time measurement is for either a step application of power at the input or the removal of a ground signal from the inhibit pin (pin 2) while power is applied to the input.
3 An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
4 Total power at both outputs. For operation at 16 V dc input, derate output power by 33 percent.
5 Input step transition time between 2 and 10 microseconds.
6 Capacitive load may be any value from 0 to the maximum limit without compromising dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
7 Load step transition time between 2 and 10 microseconds.
8 Bandwidth guaranteed by design. Tested for 20 KHz to 2 MHz .
9 Tested at each output.
10 When operating with unbalanced loads, at least 25 percent of the load must be on the positive output to maintain regulation.
11 Parameter guaranteed by line and load regulation tests.
12 Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified in Table I.

Specifications

AHE2815D
ABSOLUTE MAXIMUM RATINGS
Input Voltage
Soldering Temperature
Case Temperature
-0.5 V to 50 V
$300^{\circ} \mathrm{C}$ for 10 seconds
Operating $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$

Table II. Electrical Performance Characteristics

Refer Notes to Specifications, refer to page 5

Table II. Electrical Performance Characteristics - continued
AHE2815D

Test	Symbol	Conditions$-55^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq+125^{\circ} \mathrm{C}$Vin $=28 \mathrm{Vdc} \pm 5 \%, \mathrm{C}_{\mathrm{L}}=0$unless otherwise specified	Group A Subgroups	Device Types	Limits		Unit
Recovery time step transient load changes	$\mathrm{TT}_{\text {LOAD }}$	50\% load to/from 100\% load	4	All		70	$\mu \mathrm{s}$
			5,6			100	
		No load to 50\% load	4,5,6	All		1500	
		50% load to no load	4,5,6	All		5	ms
Output response transient step line changes ${ }^{5,12}$	$\mathrm{VO}_{\text {TLINE }}$	Input step 17 to 40V dc	$4,5,6$ 4,56	All		1500	mV pk
		Input step 40 to 17 V dc	4,5,6	All		-1500	
Recovery time transient step line changes ${ }^{1,5,12}$	$\mathrm{TT}_{\text {LINE }}$	Input step 17 to 40V dc	4,5,6	All		4	ms
		Input step 40 to 17 V dc	4,5,6	All		4	
Turn on overshoot ${ }^{9}$	$\mathrm{VTon}_{\text {os }}$	$\mathrm{l}_{\text {out }}=0$ and $\pm 500 \mathrm{~mA}$	4,5,6	All		600	mV pk
Turn on delay ${ }^{2,9}$	Ton ${ }_{\text {D }}$	$\mathrm{I}_{\text {out }}=0$ and $\pm 500 \mathrm{~mA}$	4,5,6	All		10	ms
Load fault recovery ${ }^{12}$	$\mathrm{Tr}_{\text {LF }}$		4,5,6	All		10	ms

Notes to Specifications

1 Recovery time is measured from the initiation of the transient to where $\mathrm{V}_{\text {OUT }}$ has returned to within $\pm .1$ percent of $\mathrm{V}_{\text {OUT }}$ at 50 percent load.
2 Turn on delay time measurement is for either a step application of power at the input or the removal of a ground signal from the inhibit pin (pin 2) while power is applied to the input.
3 An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
4 Total power at both outputs. For operation at 16 Vdc input, derate output power by 33 percent.
5 Input step transition time between 2 and 10 microseconds.
6 Capacitive load may be any value from 0 to the maximum limit without compromising dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
7 Load step transition time between 2 and 10 microseconds.
8 Bandwidth guaranteed by design. Tested for 20 KHz to 2 MHz .
9 Tested at each output.
10 When operating with unbalanced loads, at least 25 percent of the load must be on the positive output to maintain regulation.
11 Parameter guaranteed by line and load regulation tests.
12 Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified in Table II.

AHE28XXD Series

AHE28XXD Block Diagram

Application Information

Inhibit Function

Connecting the inhibit input (Pin 2) to input common (Pin 10) will cause the converter to shut down. It is recommended that the inhibit pin be driven by an open collector device capable of sinking at least $400 \mu \mathrm{~A}$ of current. The open circuit voltage of the inhibit input is $11.5 \pm 1 \mathrm{VDC}$.

EMI Filter

An optional EMI filter (AFC461) will reduce the input ripple current to levels below the limits imposed by MIL-STD-461 CEO3.

Device Synchronization

Whenever multiple DC/DC converters are utilized in a single system, significant low frequency noise may be generated due to slight difference in the switching frequencies of the converters (beat frequency noise). Because of the low frequency nature of this noise (typically less than 10 KHz), it is difficult to filter out and may interfere with proper operation of sensitive systems (communications, radar or telemetry).

Advanced Analog offers an option that provides synchronization of multiple AHE/ATW converters, thus eliminating this type of noise.
To take advantage of this capability, the system designer must assign one of the converters as the master. Then, by definition, the remaining converters become slaves and will operate at the masters' switching frequency.
The user should be aware that the synchronization system is fail-safe; that is, the slaves will continue operating should the master frequency be interrupted for any reason. The layout must be such that the synchronization output (pin 9) of the master device is connected to the synchronization input (pin 9) of each slave device. It is advisable to keep this run short to minimize the possibility of radiating the 250 KHz switching frequency.
The appropriate parts must be ordered to utilize this feature. After selecting the converters required for the system, a 'MSTR' suffix is added for the master converter part number and a 'SLV' suffix is added for slave part number.

Typical Synchronization Connection

Pin Designation (AHE2812D \& AHE2815D)

Pin No.	Designation
1	Positive Input
2	Inhibit Input
3	Positive Output
4	Output Common
5	Nagative Output
6	N/C
7	N/C
8	Case Ground
9	N/C or Sync.
10	Input Common

Part Numbering

AHE28XXD Series

International
IOR Rectifier
Available Screening Levels and Process Variations for AHE28XXD Series

Requirement	MIL-STD-883 Method	No Suffix	ES Suffix	HB Suffix	CH Suffix
Temperature Range		-20 to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Element Evaluation					MIL-PRF- 38534
Internal Visual	2017	$*$	Yes	Yes	Yes
Temperature Cycle	1010		Cond B	Cond C	Cond C
Constant Acceleration	2001		500 g	Cond A	Cond A
Burn-in	1015	48 hrs @ $85^{\circ} \mathrm{C}$	48 hrs @ $125^{\circ} \mathrm{C}$	$160 \mathrm{hrs} \mathrm{@} 125^{\circ} \mathrm{C}$	$160 \mathrm{hrs} \mathrm{@} 125^{\circ} \mathrm{C}$
Final Electrical (Group A)	MIL-PRF- 38534	$25^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$-55,+25,+125^{\circ} \mathrm{C}$	$-55,+25,+125^{\circ} \mathrm{C}$
 Gross	1014	Cond C	Cond A, C	Cond A, C	Cond A, C
External Visual	2009	$*$	Yes	Yes	Yes

* Per Commercial Standards

Available Standard Military Drawing (SMD) Cross Reference

Standard Military drawing PIN	Vendor CAGE Code	Vendor Similar PIN
$5962-9204001 \mathrm{HXX}$	52467	AHE2812D/CH
$5962-9204001 \mathrm{HZX}$	52467	AHE2812DF/CH
$5962-9204002 \mathrm{HXX}$	52467	AHE2812D/CH-SLV
$5962-9204002 \mathrm{HZX}$	52467	AHE2812DF/CH-SLV
$5962-9204003 \mathrm{HXX}$	52467	AHE2812D/CH-MSTR
$5962-9204003 \mathrm{HZX}$	52467	AHE2812DF/CH-MSTR

Standard Military drawing PIN	Vendor CAGE Code	Vendor Similar PIN
$5962-9157501 \mathrm{HXX}$	52467	AHE2815D/CH
$5962-9157501 \mathrm{HZX}$	52467	AHE2815DF/CH
$5962-9157502 \mathrm{HXX}$	52467	AHE2815D/CH-SLV
$5962-9157502 \mathrm{HZX}$	52467	AHE2815DF/CH-SLV
$5962-9157503 \mathrm{HXX}$	52467	AHE2815D/CH-MSTR
$5962-9157503 \mathrm{HZX}$	52467	AHE2815DF/CH-MSTR

International IgR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 3223331 ADVANCED ANALOG: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 10/02

