

Intel[®] 860 Chipset: 82860 Memory Controller Hub (MCH)

Datasheet

May 2001

Document Number: 290713-001

Information in this document is provided in connection with Intel[®] products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® 82860 Memory Controller Hub may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

 l^2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the l^2C bus/protocol and was developed by Intel. Implementations of the l^2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright[©] 2001, Intel Corporation

intel.

Contents

1	Introd	uction	13
	1.1	Terminology	13
	1.2	Reference Documents	
	1.3	Intel® 860 Chipset System Architecture	
	1.4	Intel® 82860 MCH Overview	
		1.4.1 Processor Interface	
		1.4.2 Memory Interface	
		1.4.3 AGP Interface	
		1.4.4 Hub Interface_A	
		1.4.5 Hub Interface_B and Hub Interface_C	
		1.4.6 MCH Clocking	
		1.4.7 System Interrupts	
	0:		
2	_	l Description	
	2.1	Host Interface Signals	
	2.2	Rambus* Channel A	
	2.3	Rambus* Channel B	
	2.4	Hub Interface_A Signals	
	2.5	Hub Interface_B	
	2.6	Hub Interface_C	32
	2.7	AGP Interface Signals	33
		2.7.1 AGP Addressing Signals	
		2.7.2 AGP Flow Control Signals	
		2.7.3 AGP Status Signals	
		2.7.4 AGP Strobes	
	2.0	2.7.5 AGP/PCI Signals-Semantics	
	2.8	Clocks, Reset, and Miscellaneous	
	2.9	Voltage References, PLL Power	
	2.10	Strap Signals	
	2.11	Pin States during Reset	41
3	Regis	ter Description	45
	3.1	Register Terminology	45
	3.2	PCI Configuration Space Access	46
	3.3	I/O Mapped Registers	49
		3.3.1 CONF_ADDR—Configuration Address Register	
		3.3.2 CONF_DATA—Configuration Data Register	
	3.4	Host-Hub Interface_A Bridge Device Registers (Device 0)	51
		3.4.1 VID—Vendor Identification Register (Device 0)	53
		3.4.2 DID—Device Identification Register (Device 0)	53
		3.4.3 PCICMD—PCI Command Register (Device 0)	
		3.4.4 PCISTS—PCI Status Register (Device 0)	
		3.4.5 RID—Revision Identification Register (Device 0)	56

3.4.6	SUBC—Sub-Class Code Register (Device 0)	
3.4.7	BCC—Base Class Code Register (Device 0)	
3.4.8	MLT—Master Latency Timer Register (Device 0)	
3.4.9	HDR—Header Type Register (Device 0)	57
3.4.10	APBASE—Aperture Base Configuration Register (Device 0)	
3.4.11	SVID—Subsystem Vendor ID Register (Device 0)	58
3.4.12	SID—Subsystem ID Register (Device 0)	59
3.4.13	CAPPTR—Capabilities Pointer Register (Device 0)	
3.4.14	GAR[0:15]—RDRAM* Device Group Architecture Register (Device 0)	
3.4.15	MCHCFG—MCH Configuration Register (Device 0)	
3.4.16	FDHC—Fixed DRAM Hole Control Register (Device 0)	
3.4.17	PAM[0:6]—Programmable Attribute Map Registers (Device 0)	
3.4.18	GBA[0:15]—RDRAM* Device Group Boundary Address Register	
	(Device 0)	67
3.4.19	RDPS—RDRAM* Device Pool Sizing Register (Device 0)	68
3.4.20	DRD—RDRAM* Device Register Data Register (Device 0)	
3.4.21	RICM—RDRAM* Device Initialization Control Management Register	
	(Device 0)	
3.4.22	SMRAM—System Management RAM Control Register (Device 0)	
3.4.23	ESMRAMC—Extended System Management RAM Control Register	
	(Device 0)	72
3.4.24	ACAPID—AGP Capability Identifier Register (Device 0)	
3.4.25	AGPSTAT—AGP Status Register (Device 0)	
3.4.26	AGPCMD—AGP Command Register (Device 0)	
3.4.27	AGPCTRL – AGP Control Register	
3.4.28	APSIZE—Aperture Size (Device 0)	
3.4.29	ATTBASE—Aperture Translation Table Base Register (Device 0)	
3.4.30	AMTT—AGP Interface Multi-Transaction Timer Register (Device 0)	
3.4.31	LPTT—Low Priority Transaction Timer Register (Device 0)	
3.4.32	RDTR—RDRAM* Device Timing Register (Device 0)	
3.4.33	TOM—Top of Low Memory Register (Device 0)	
3.4.34	ERRSTS—Error Status Register (Device 0)	
3.4.35	ERRCMD—Error Command Register (Device 0)	
3.4.36	SMICMD—SMI Command Register (Device 0)	85
3.4.37	SCICMD—SCI Command Register (Device 0)	
3.4.38	DRAMRC—RDRAM* Device Refresh Control Register (Device 0)	86
3.4.39	SKPD—Scratchpad Data (Device 0)	88
3.4.40	DERRCTL_STS—DRAM Error Control/Status Register (Device 0)	
3.4.41	EAP—Error Address Pointer Register (Device 0)	
3.4.42	MISC_CNTL—Miscellaneous Control Register (Device 0)	89
AGP Brid	lge Registers (Device 1)	
3.5.1	VID1—Vendor Identification Register (Device 1)	
3.5.2	DID1—Device Identification Register (Device 1)	
3.5.3	PCICMD1—PCI-PCI Command Register (Device 1)	
3.5.4	PCISTS1—PCI-PCI Status Register (Device 1)	
3.5.5	RID1—Revision Identification Register (Device 1)	
3.5.6	SUBC1—Sub-Class Code Register (Device 1)	
3.5.7	BCC1—Base Class Code Register (Device 1)	
3.5.8	MLT1—Master Latency Timer Register (Device 1)	
3.5.9	HDR1—Header Type Register (Device 1)	
3.5.10	PBUSN1—Primary Bus Number Register (Device 1)	95
3.5.10	SBUSN1—Secondary Bus Number Register (Device 1)	
3.5.11	SUBUSN1—Secondary Bus Number Register (Device 1)	
3.5.12	SMLT1—Secondary Master Latency Timer Register (Device 1)	
J.J. 10	Sivie : Socolidary ividotol Editority Hillor Neglotol (Device 17	\sim ι

3.5

intel

	3.5.14	IOBASE1—I/O Base Address Register (Device 1)	98
	3.5.15	IOLIMIT1—I/O Limit Address Register (Device 1)	98
	3.5.16	SSTS1—Secondary PCI-PCI Status Register (Device 1)	
	3.5.17	MBASE1—Memory Base Address Register (Device 1)	
	3.5.18	MLIMIT1—Memory Limit Address Register (Device 1)	101
	3.5.19	PMBASE1—Prefetchable Memory Base Address Register (Device 1)	102
	3.5.20	PMLIMIT1—Prefetchable Memory Limit Address Register (Device	1)103
	3.5.21	BCTRL1—PCI-PCI Bridge Control Register (Device 1)	
	3.5.22	ERRCMD1—Error Command Register (Device 1)	
3.6		erface_B Bridge Registers (Device 2)	
	3.6.1	VID2—Vendor Identification Register (Device 2)	
	3.6.2	DID2—Device Identification Register (Device 2)	
	3.6.3	PCICMD2—PCI-PCI Command Register (Device 2)	
	3.6.4	PCISTS2—PCI-PCI Status Register (Device 2)	
	3.6.5	RID2—Revision Identification Register (Device 2)	
	3.6.6	SUBC2—Sub-Class Code Register (Device 2)	
	3.6.7	BCC2—Base Class Code Register (Device 2)	110
	3.6.8	MLT2—Master Latency Timer Register (Device 2)	
	3.6.9	HDR2—Header Type Register (Device 2)	
	3.6.10	PBUSN2—Primary Bus Number Register (Device 2)	
	3.6.11	SBUSN2—Secondary Bus Number Register (Device 2)	
	3.6.12	SUBUSN2—Subordinate Bus Number Register (Device 2)	
	3.6.13	SMLT2—Secondary Master Latency Timer Register (Device 2)	
	3.6.14	IOBASE2—I/O Base Address Register (Device 2)	
	3.6.15	IOLIMIT2—I/O Limit Address Register (Device 2)	
	3.6.16	SSTS2—Secondary PCI-PCI Status Register (Device 2)	
	3.6.17	MBASE2—Memory Base Address Register (Device 2)	
	3.6.18	MLIMIT2—Memory Limit Address Register (Device 2)	
	3.6.19	PMBASE2—Prefetchable Memory Base Address Register	1 10
	0.00	(Device 2)	117
	3.6.20	PMLIMIT2—Prefetchable Memory Limit Address Register (Device	2)118
	3.6.21	BCTRL2—PCI-PCI Bridge Control Register (Device 2)	
	3.6.22	ERRCMD2—Error Command Register (Device 2)	121
3.7	Hub Inte	erface_C Bridge Registers (Device 3)	
	3.7.1	VID3—Vendor Identification Register (Device 3)	
	3.7.2	DID3—Device Identification Register (Device 3)	
	3.7.3	PCICMD3—PCI-PCI Command Register (Device 3)	
	3.7.4	PCISTS3—PCI-PCI Status Register (Device 3)	
	3.7.5	RID3—Revision Identification Register (Device 3)	
	3.7.6	SUBC3—Sub-Class Code Register (Device 3)	
	3.7.7	BCC3—Base Class Code Register (Device 3)	
	3.7.8	MLT3—Master Latency Timer Register (Device 3)	
	3.7.9	HDR3—Header Type Register (Device 3)	
	3.7.10	PBUSN3—Primary Bus Number Register (Device 3)	127
	3.7.11	SBUSN3—Secondary Bus Number Register (Device 3)	
	3.7.12	SUBUSN3—Subordinate Bus Number Register (Device 3)	
	3.7.12	SMLT3—Secondary Master Latency Timer Register (Device 3)	
	3.7.13	IOBASE3—I/O Base Address Register (Device 3)	
	3.7.14	IOLIMIT3—I/O Limit Address Register (Device 3)	
	3.7.16	SSTS3—Secondary PCI-PCI Status Register (Device 3)	
	3.7.10	MBASE3—Memory Base Address Register (Device 3)	
	3.7.17	MLIMIT3—Memory Limit Address Register (Device 3)	
		- 1911 1911 1.7 - 1915 1.11.11 4.11.11 4.11.11 6.33 N.CUJA(EL UJEVILE 31	1.37

		3.7.19 PMBASE3—Prefetchable Memory Base Address Register	400
		(Device 3)	133
		3.7.20 PMLIMIT3—Prefetchable Memory Limit Address Register (De 3.7.21 BCTRL3—PCI-PCI Bridge Control Register (Device 3)	
		3.7.21 BCTRL3—PCI-PCI Bridge Control Register (Device 3)	
4	Syste	m Address Map	139
	4.1	Memory Address Ranges	139
		4.1.1 VGA and MDA Memory Space	
		4.1.2 PAM Memory Spaces	
		4.1.3 ISA Hole Memory Space	
		4.1.4 TSEG SMM Memory Space	
		4.1.5 I/O APIC Memory Space	
		4.1.6 System Bus Interrupt Memory Space	
		4.1.7 High SMM Memory Space	
		4.1.8 AGP Aperture Space (Device 0 BAR)	
		4.1.10 Hub Interface_B Memory and Prefetchable Memory	
		4.1.11 Hub Interface_C Memory and Prefetchable Memory4.1.11	
		4.1.12 Hub Interface A Subtractive Decode	
	4.2	AGP Memory Address Ranges	
		4.2.1 AGP DRAM Graphics Aperture	
	4.3	System Management Mode (SMM) Memory Range	
		4.3.1 SMM Space Definition	
		4.3.2 SMM Space Restrictions	
	4.4	I/O Address Space	
	4.5	MCH Decode Rules and Cross-Bridge Address Mapping	
	4.0	4.5.1 Hub Interface_A Decode Rules	
		4.5.2 Hub Interface_B Decode Rules	
		4.5.3 Hub Interface_C Decode Rules	
		4.5.4 AGP Interface Decode Rules	
5	Memo	ory Interface	151
Ü	5.1	Direct RDRAM* Device Organization and Configuration	
	5.1	5.1.1 Rules for Populating Direct RDRAM* Devices	
		5.1.2 Direct RDRAM* Device CMOS Signals	
		5.1.3 Direct RDRAM* Device Core Refresh	158
	5.2	Direct RDRAM* Device Command Encoding	
	0.2	5.2.1 Row Packet (ROWA/ROWR)	
		5.2.2 Column Packet (COLC/COLX)	160
		5.2.3 Data Packet	
	5.3	Direct RDRAM* Device Register Programming	
	5.4	Direct RDRAM* Device Operating States	
	5.5	Direct RDRAM* Device Operating Pools	
	5.6	Direct RDRAM* Device Power Management	
		<u> </u>	
	5.7	Data Integrity	
	5.8	Direct RDRAM* Device Array Thermal Management	166
6	Electr	rical Characteristics	167
	6.1	Absolute Maximum Ratings	167
	6.2	Thermal Characteristics	168

	6.3	Power Chara	cterist	tics	168
	6.4			l Groupings	
	6.5				
7	Ballou	t and Package	Inforn	nation	177
		7.1.1 Bal	lout In	formation	177
	7.2			Package Information	
	7.3			race Length Compensation	
		7.3.1 MC	H RS	L Trace Length Compensation	193
		7.3	1.1	MCH RSL Normalized Trace Length Data	194
				stem Bus Signal Normalized Trace Length Data	
				Bit Hub Interface Normalized Trace Length	
		7.3	3.1	MCH 16-Bit Hub Interface B Normalized Trace	
				Length Data	197
		7.3	3.2	MCH 16-Bit Hub Interface_C Normalized Trace	
				Length Data	198
8	Testa	bility			199
	8.1	XOR Test Mo	de In	itialization	200
	8.2				
	U	, Onanio			

Figures

Figure 1. Intel® 860 Chipset System Block Diagram	17
Figure 2. MCH Signal Diagram	26
Figure 3. PAM Register Attribute Bits	65
Figure 4. System Address Map	.139
Figure 5. Detailed DOS Compatible Area Address Map	.140
Figure 6. Detailed Extended Memory Range Address Map	.141
Figure 7. Single Channel-Pair Mode	.152
Figure 8. Multiple Channel-Pair Mode	.153
Figure 9. Direct RDRAM* Devices Sideband CMOS Signal Configuration on Rambus*	
Channel A	.156
Figure 10. MCH Ballout with AGP and Hub Interface Ball Names	
(Top View — Left Side)	.178
Figure 11. MCH Ballout with AGP and Hub Interface Ball Names	
(Top View — Right Side)	.179
Figure 12. MCH Ballout Topside View (looking through the top of the package)	.180
Figure 13. MCH Package Dimensions	.191
Figure 14. XOR-Tree Chain (High Level View)	.199

Tables

Table 1. Maximum Memory Supported	
Table 2. Supported Direct RDRAM* Devices	21
Table 3. MCH Processor System Bus-to-RAC Ratio	23
Table 4. MCH Processor-to-AGP/Hub Interface Ratio	24
Table 5. Pin States during Reset	42
Table 6. MCH Configuration Space (Device 0)	
Table 7. PAM Registers	65
Table 8. Valid tRCD and tCAC combinations for 300 MHz and 400 MHz	79
Table 9. MCH Configuration Space (Device 1)	
Table 10. MCH Configuration Space (Device 2)	
Table 11. MCH Configuration Space (Device 3)	
Table 12. SMM Space Address Ranges	147
Table 13. Direct RDRAM* Device Grouping	
Table 14. Sideband CMOS Signal Description	156
Table 15. CMD Signal Value Decode	157
Table 16. ROWA Packet for Activating (sensing) a Row (i.e., AV = 1)	159
Table 17. ROWR Packet for Other Operations (i.e., AV = 0)	
Table 18. Row Packet Encodings	160
Table 19. COLC Packet	161
Table 20. COLC Packet Field Encodings	
Table 21. COLM Packet and COLX Packet Field Encodings	
Table 22. Data Packet	
Table 23. DRAM Operating States	
Table 24. Direct RDRAM* Device Power Management States	
Table 25. Absolute Maximum Ratings	
Table 26. Intel® 860 Chipset Package Thermal Resistance	168
Table 27. DC Characteristics Functional Operating Range (VCC1_8 = 1.8V ±5%;	
Tdie = 110 °C)	
Table 28. Signal Groups	169
Table 29. DC Characteristics at VCC1_8 = 1.8V ±5%	
Table 30. MCH Alphabetical Ballout List	
Table 31. Example Nominalization Table	
Table 32. MCH ΔL_{Pkg} Data for Rambus* Channel A and Rambus Channel B	194
Table 33. MCH System Bus Signal Normalized Trace Length Data per Group	
Table 34. MCH System Bus Signal Normalized Trace Length Data per Group	
Table 35. MCH 16-bit Hub Interface_B Signal Normalized Trace Length Data	197
Table 36. MCH 16-Bit Hub Interface_C Signal Normalized Trace Length Data	
Table 37. XOR Chain 1	
Table 38. XOR Chain 2	
Table 39. XOR Chain 3	
Table 40. XOR Chain 4	
Table 41. XOR Chain 5	
Table 42. XOR Chain 6	
Table 43. XOR Chain 7	
Table 44. XOR Chain 8	211

Revision History

Revision Number	Description	Revision Date
-001	Initial Release.	May 2001

Intel® 82860 MCH Features

- Supports Intel[®] XeonTM processors
 - 100 MHz system bus
 - -200 MHz address bus
 - -400 MHz data bus
 - -System bus interrupt delivery
 - —AGTL+ bus driver technology with integrated AGTL termination resistors
- Direct RDRAM* Device Support
 - Two Rambus* Channels operating in lockstep at 300 MHz and 400 MHz
 - Maximum memory bandwidth of 3.2 GB/s
 - 128-/144-Mb (1-KB page size) and 256-/288-Mb (2-KB page size) Direct RDRAM device densities
 - Supports a maximum memory address decode space of 16 GB
 - -Maximum memory
 - -1 GB using 128-/144-Mb Direct RDRAM devices
 - -2 GB using 256-/288-Mb Direct RDRAM devices
 - -4 GB using two Intel® 82803AA MRH-Rs
 - —Up to 8 simultaneous open pages
 - Direct RDRAM device subsystem thermal management
 - —ECC operation (single-bit error correction and multiple-bit error detection)
- Hub Interface A to ICH2
 - —266 MB/s point-to-point hub interface to ICH2 with parity
 - Interrupt related messages
 - —Power management events as messages
 - —SMI, SCI, and SERR error indication messages
 - Supports normal and enhanced termination modes
- Hub Interface_B and Hub Interface_C
 - 533 MB/s point-to-point 16-bit hub interfaces with parity
 - 66 MHz base clock running 4x (533MB/s) data transfers
 - 36-bit addressing on inbound transactions only (maximum 16-GB memory decode space)

- Accelerated Graphics Port (AGP) Interface
 - Supports a single AGP device (either via a connector or on the motherboard)
 - Supports AGP 2.0 including 4x AGP data transfers and 2x/4x fast write protocol
 - —1.5 V AGP signaling levels
 - 32 deep AGP request queue
 - —AGP address translation mechanism with integrated fully associative 20 entry TLB
 - Delayed transaction support for AGP-to-DRAM FRAME# semantic reads
- System Interrupts
 - Supports only system bus interrupt delivery mechanism
 - Supports interrupts signaled as upstream Memory Writes from hub interface_A-C
 - Supports peer MSI between hub interface_A–C
 - Provides redirection for IPI and upstream interrupts to the system bus
- Power Management
 - —SMRAM space remapping to A0000h
 - Supports extended SMRAM space above 256 MB, additional TSEG from Top of Low Memory
 - —SMRAM accesses from AGP or hub interfaces are not allowed
 - --- PC99/2001 suspend to DRAM support
 - ACPI Rev 1.0 compliant power management
 - APM Rev 1.2 compliant power management
- Package
 - -42.5 x 42.5 mm 1012OLGA
- I/O Device Support
 - —ICH2
 - —Intel® P64H (16-bit hub interface-tooptional 64-bit/66 MHz PCI Bus Hub)

This page is intentionally left blank.

1 Introduction

The Intel® 860 chipset is a high-bandwidth chipset designed for workstation platforms based on the Intel® Xeon™ processor. The chipset contains two main components and additional optional components that provide expansion capability. The Intel® 82860 Memory Controller Hub (MCH) provides the chipset's system bus interface, memory controller, AGP interface, hub interface for I/O, and two hub interface ports for PCI bus expansion. This document describes the Intel 82860 Memory Controller Hub (MCH). Section 1.3, Intel® 860 Chipset System Architecture, provides an overview of each of the components of the Intel 860 chipset.

1.1 Terminology

Term	Description
AGP	Accelerated Graphics Port. The MCH contains an AGP that supports AGP 2.0 compliant components only with 1.5 V signaling level. PIPE# and SBA addressing cycles and their associated data phases are generally referred to as AGP transactions. FRAME# cycles over the AGP bus are generally referred to as AGP/PCI transactions.
Core	The internal base logic in the MCH.
DBI	Dynamic Bus Inversion
DP	Dual-Processor
Full Reset	A Full MCH Reset is defined in this document when RSTIN# is asserted.
GART	Graphics Aperture Re-map Table. Table in memory containing the page re-map information used during AGP aperture address translations.
GTLB	Graphics Translation Look-aside Buffer. A cache used to store frequently used GART entries.
Host	This term is used synonymously with processor.
Hub Interface_A	The proprietary hub interface that ties the MCH to the ICH2. In this document hub interface cycles originating from or destined for the primary PCI interface on the ICH2 is generally referred to as Hub Interface_A cycles.
Hub Interface_B and Hub Interface_C	The proprietary hub interface that ties the MCH to the Intel P64H. Cycles originating from or destined for any target on one of these hub interfaces are described as Hub Interface_B and Hub Interface_C cycles respectively.
ICH2	Intel® 82801BA I/O Controller Hub (ICH2). The I/O Controller Hub component that contains the primary PCI interface, LPC interface, USB, ATA-100, AC'97, and other I/O functions. It communicates with the MCH over a proprietary interface called Hub Interface_A.
IPI	Inter Processor Interrupt
MCH	The Memory Controller Hub component that contains the processor interface, DRAM controller, and AGP interface. It communicates with the I/O controller hub (ICH2) and other I/O controller hubs over proprietary interfaces called the hub interface.

Term	Description
Intel [®] MRH-R	The Memory Repeater Hub (for Direct RDRAM* devices) component that allows the system to expand the number of available Rambus* Channels. Each Intel MRH-R connects one primary Rambus Channel to two subordinate Rambus Channels.
MSI	Message Signaled Interrupts. MSI allows a device to request interrupt service via a standard Memory Write transaction instead of through a hardware signal.
Normal vs Enhanced Mode	The normal routing distance for a hub interface is a few inches. Enhanced mode allows the user the flexibility to have the hub interface farther apart.
Intel [®] P64H	The Bus Controller Hub component that has a 16-bit hub interface on its primary side and a configurable 64-bit, 66 MHz PCI interface on the secondary side. It connects to any one of the Intel 82860 MCH's 16-bit hub interfaces.
PCI_A	The physical PCI bus that is driven directly by the ICH2 component. It supports 5 V, 32-bit, 33 MHz PCI 2.2 compliant components. Communication between PCI_A and the MCH occurs over Hub Interface_A.
	Note: Even though it is referred to as PCI_A it is not PCI Bus #0 from a configuration standpoint.
RAC	Rambus* ASIC Cell. The RAC is a library macrocell used in ASIC controller designs to interface the core logic of a CMOS ASIC device to the Rambus Channel. It is the embedded cell designed by Rambus that interfaces with the Direct RDRAM* devices using RSL signaling. The RAC communicates with the RMC.
RMC	Rambus* Memory Controller. The RMC is a block of digital logic residing on a Rambus-based controller IC to drive and manage the memory transactions of a Rambus memory system. This is the logic that directly interfaces to the RAC.
RSL	Rambus Signaling Level. RSL is a multi-drop, bidirectional bus connection signaling technology. Operating up to a GHz transfer rate, RSL uses low swing signaling, a common reference voltage and precise clocking to transfer two bits per clock cycle.
Rambus* Channel	The Rambus Channel consists of a two-byte wide data path capable of transferring data and address information at rates of 800MHz and beyond. The Rambus Channel has defined mechanical and electrical interfaces and consists of a memory controller, RDRAM devices, DRCG and all interconnect components.
System Bus	Processor-to-MCH interface. The system bus runs at 400 MHz from a 100 MHz quad-pumped clock. It includes source synchronous transfers for address and data, and system bus interrupt delivery.
	+

1.2 Reference Documents

Document	Document Number
Intel [®] Xeon [™] Processor and Intel [®] 860 Chipset Platform Design Guide	298252
Intel® 82801BA I/O Controller Hub (ICH2) and Intel® 82801BAM I/O Controller Hub (ICH2-M) Datasheet	290687
Intel® 860 Chipset Thermal Considerations Application Note (AP-721)	292269
Intel® 82806AA PCI 64 Hub (P64H) Datasheet	298025
Intel® 82803AA Memory Repeater Hub for RDRAM (MRH-R) Datasheet	298022
Intel® 82802AB/AC Firmware Hub (FWH) Datasheet	290658
Intel [®] Xeon™ Processor Datasheet	

Note: See the *Intel*[®] *Xeon*TM *Processor and Intel*[®] *860 Chipset Platform Design Guide* for an expanded set of related documents.

1.3 Intel[®] 860 Chipset System Architecture

The Intel 860 chipset is optimized for the Intel Xeon processor. The Intel 860 chipset allows flexibility for dual-processor configurations with a 100 MHz system bus (400 MHz data bus). The Intel 860 chipset consists of two main components: Intel 82860 Memory Controller Hub (MCH), and Intel[®] 82801BA I/O Controller Hub (ICH2).

Architectural expansion is provided with the memory expansion card and PCI 64-bit Hub. The Intel 82803AA Memory Repeater Hub (Intel MRH-R) provides memory expansion capabilities for Rambus* Channels. The Intel® 82806AA PCI 64 Hub (Intel P64H) provides PCI bridging functions between the hub interface_B-C and PCI Bus. The Intel 860 chipset components are interconnected via an interface called "hub interface" providing efficient communication between the chipset components.

Additional hardware platform features, supported by Intel 860 chipset, include AGP 4X, Direct RDRAM* devices, Ultra DMA/100/66/33, Low Pin Count interface (LPC), integrated LAN Controller, and Universal Serial Bus (USB). The Intel 860 chipset architecture removes the requirement for the ISA expansion bus that was traditionally integrated into the I/O subsystem of PCIsets/AGPsets. This eliminates many conflicts experienced when installing legacy ISA hardware and drivers.

The Intel 860 chipset is also ACPI compliant and supports Full-On, Stop Grant, Suspend to Disk, and Soft-Off power management states. Through the use of an appropriate LAN device, the Intel 860 chipset also supports wake-on-LAN* for remote administration and troubleshooting.

Processor Processor MEC (Main Memory) RDRAM* Devices Rambus* RDRAM Channel A Intel® 82860 MRH-R Devices 4x AGP AGP PRO Graphics Memory Controller Hub Controller (MCH) RDRAM Intel Rambus Channel B Devices Hub Interface_B Intel® PCI 64/66 RDRAM Hub Interface A Devices Hub Interface_C PCI 64/66 Intel P64H 4 IDE Drives UltraATA/100 PCI Slots 4 USB Ports; 2 HC) PCI Bus AC'97 Codec(s) AC'97 2.2 I/O Controller Hub PCI (optional) Intel® 82801BA Agent (ICH2) Keyboard, LPC I/F Super Mouse, FD, PP, SP, IR LAN Connect **GPIO** FWH Flash BIOS Shaded units are Intel® 860 Chipset components. sys_blk_860

Figure 1. Intel® 860 Chipset System Block Diagram

82801BA I/O Controller Hub (ICH2)

The ICH is a highly integrated multifunctional I/O Controller Hub that provides the interface to the PCI Bus and integrates many of the functions needed in today's PC platforms. The MCH and ICH communicate over a dedicated hub interface. Intel 82801BA (ICH2) Functions and capabilities include:

- PCI Rev 2.2 compliant with support for 33 MHz PCI operations
- Supports up to 6 Request/Grant pairs (PCI Slots)
- Power management logic support
- Enhanced DMA controller, interrupt controller, and timer functions
- Integrated IDE controller; Ultra ATA/100/66/33
- USB host interface; 2 host controllers and supports 4 USB ports
- Integrated LAN controller

- System Management Bus (SMBus) compatible with most I²C devices; ICH2 has both bus master and slave capability
- Intel[®] *Audio Codec '97 Component Specification v2.2*-compliant (AC'97) link for audio and telephony codecs; up to 6 channels (ICH2)
- Low Pin Count (LPC) interface
- FWH Interface (FWH Flash BIOS support)
- Alert on LAN* (AOL and AOL2)

Intel® 82803AA Memory Repeater Hub (Intel® MRH-R)

The Intel MRH-R supports multiple Rambus Channels from an "expansion channel." Expansion channel is the interconnect between the MCH and the Intel MRH-R. Each Intel MRH-R can support up to two "stick" channels. The Intel MRH-R acts as a pass-through logic with fixed delay for read and write accesses from expansion channels to Rambus Channels. The Intel MRH-R features include:

- Maximum of 1 GB memory per channel
- Refresh and Precharge on a channel upon request from memory controller
- Core logic gating to minimize power consumption
- Clock generation for Direct Rambus* Clock Generator (DRCG)
- Integrated SMBus controller to read/write data from/to SPD EEPROM on the RIMMs

Intel® 82806AA PCI 64 Hub (Intel® P64H)

The PCI-64 Hub (Intel P64H)) is a peripheral chip that performs PCI bridging functions between the hub interface and the PCI Bus and is used as an integral part of the Intel 860 chipset. The Intel P64H has a 16-bit primary hub interface to the MCH and a secondary 64-bit PCI Bus interface. The 64-bit interfaces inter-operate transparently with either 64-bit or 32-bit devices. The Intel P64H is fully compliant with the *PCI Local Bus Specification*, *Revision 2.2*. The Intel P64H functions include:

- Integrated PCI low skew clock driver
- I/O APIC

1.4 Intel[®] 82860 MCH Overview

The Intel 82860 Memory Controller Hub (MCH) provides the processor interface, DRAM interface, AGP interface, and hub interfaces in an Intel 860 chipset-based platform. The MCH uses a 1012 OLGA package and its capabilities include:

- Supports single or dual Intel[®] XeonTM processor configurations at 100 MHz (400 MHz data bus)
- Parity protection on the system data, address/request, and response bus signals
- AGTL+ host bus with integrated termination supporting 32-bit host addressing
- Supports IOO depth of 8
- Dual Rambus Channels support 300 and 400 MHz Direct RDRAM device operation

- 4-GB Direct RDRAM device support
- 1.5 Volt AGP interface with 4x SBA/Data Transfer and 2x/4x Fast Write capability
- AGP SERR# signal
- 8-bit, 66 MHz 4x Hub Interface_A to ICH2
- Two 16-bit, 66 MHz 4x hub interfaces
- Advanced power management logic
- Distributed arbitration for highly concurrent operation

1.4.1 Processor Interface

The Intel 82860 MCH supports the Intel Xeon processor system bus interface. The primary enhancements over the P6 bus protocol are:

- Source synchronous double-pumped address
- Source synchronous quad-pumped data
- System bus interrupt delivery

The MCH supports a 64-byte cache line size. Up to two processors can be used at a system bus frequency of 100 MHz (400 MHz data bus). The MCH supports a 1:1 Host-to-Direct RDRAM device frequency ratio (400 MHz data bus to 400 MHz Direct RDRAM device). The MCH integrates AGTL+ termination resistors on all of the AGTL+ signals. System bus Dynamic Bus Inversion (DBI) is supported. The MCH provides 36-bit host addressing, allowing the processor to access the entire 16 GB of the MCH's memory address space. The MCH has an 8-deep In-Order Queue permitting up to eight outstanding pipelined address requests on the host bus.

Host-initiated I/O cycles are positively decoded to AGP, Hub Interface_B, Hub Interface_C, or MCH configuration space. Host-initiated I/O cycles are subtractively decoded to Hub Interface_A. Host-initiated memory cycles are positively decoded to AGP, Hub Interface_B, Hub Interface_C, or main memory and are again subtractively decoded to Hub Interface_A if under 4 GB. AGP semantic memory accesses initiated from AGP to main memory are not snooped on the host bus. Main memory accesses initiated from AGP using PCI semantics and from any hub interface to main memory are snooped on the system bus. Memory accesses whose addresses lie within the AGP aperture are translated using the AGP address translation table, regardless of the originating interface.

The Intel 82860 MCH generates and checks parity for data, address/request, and response signals on the processor bus. The type of error protection and the responses of the MCH are described in the following table.

Signal Name	Protection	Error Response
DEP[3:0]#	Parity	Host Data Parity: The Intel 82860 MCH can be configured to generate an SERR message when it detects a host data parity error.
AP[1:0]#	Parity	Address Parity: The Intel 82860 MCH can be configured to generate an SERR message when it detects a host address/request parity error. Since the MCH does not implement the system bus error phase, the erroneous transaction will proceed to completion.
RSP#	Parity	Response Parity: The Intel 82860 MCH does not detect errors on the response signals, since they are always MCH-driven. Correct response parity is driven in all phases.

1.4.2 Memory Interface

The MCH directly supports two channels of Direct RDRAM device memory operating in lock-step using RSL technology. The MCH Rambus Channels run at 300 MHz and 400 MHz and supports 128/144 and 256/288Mb technology Direct RDRAM devices. The page size for 128/144 Mb Direct RDRAM devices is 1 KB; for 256/288Mb devices, the page size is 2 KB. Up to eight pages can be open simultaneously. A maximum of 64 Direct RDRAM devices are supported on the paired channels without external logic. Each expander adds two stick channels to the main channel, which yields a total of eight Rambus Channels. Table 1 shows the maximum Direct RDRAM device array size and the minimum increment size for the various Direct RDRAM device densities supported.

Warning: Memory Repeater Hubs run at 400 MHz only.

Table 1. Maximum Memory Supported

Direct RDRAM* Device Technology	Directly Supported Maximum	Supported via Expanders¹ (max 1 per channel) Maximum
128/144 Mbit	1 GB	2 GB
256/288 Mbit	2 GB	4 GB

The MCH provides optional ECC error checking for Direct RDRAM device data integrity. During Direct RDRAM device writes, ECC is generated on a QWord (64-bit) basis. During Direct RDRAM device reads and the read of the data that underlies partial writes, the MCH supports detection of single-bit and multiple-bit errors, and will correct single-bit errors when correction is enabled.

Table 2. Supported Direct RDRAM* Devices

Device Tech	Device Quantity	No. of Banks	Page Size
128 Mbit	4,8,16	16d	1 KB
128/144 Mbit	4,8,16	2x16d	1 KB
288 Mbit	4,8,16	16d	2 KB
256/288 Mbit	2,4,8,16	2x16d	2 KB

Direct RDRAM* Device Thermal Management

The relatively high power dissipation needs of Direct RDRAM device devices necessitate a MCH mechanism capable of putting a number of memory devices into a power-saving mode. Direct RDRAM devices may be in one of three power-management states: Active, Standby, or Nap. The Intel 82860 MCH implements Direct RDRAM device nap mode.

In "pool" mode, two queues are used inside the MCH: the "A" pool contains references to device pairs that are currently in the active mode while the "B" pool contains references to device pairs that are in the standby mode. All devices that are found in neither pool are napping or in standby. The "A" pool may hold between 1 and 8 device pairs, while the "B" pool may be configured to contain between 1 and 16 device pairs. This allows the power consumption to be tuned.

The Intel 82860 MCH also implements a mode in which all devices are turned on and it is assumed that proper system design will provide adequate cooling. This means that all devices that are Not in pool "A" or "B" are in standby mode. Two failsafe mechanisms are supported that protect the Direct RDRAM devices from thermal overload. One mechanism relies on external thermal sensors to assert the OVERT# pin. The other mechanism polls the thermal indicator bits in the Direct RDRAM devices themselves. When either mechanism is activated, the MCH immediately exits the "all devices on" mode and reverts to whatever pool mode has been programmed by system software.

In summary the MCH Direct RDRAM device thermal management includes:

- Pool mode keeps Direct RDRAM device power dissipation within pre-configured bounds
- From 1–8 device pairs in active pool
- From 0–16 device pairs in standby pool
- Remainder of device pairs in nap or standby pool
- SW may change pool size dynamically
- Overtemp condition detected based on external signal or polling thermal sensor bits in Direct RDRAM devices

1.4.3 AGP Interface

A single AGP component or connector (not both) is supported by the Intel 82860 MCH's AGP interface.

The AGP interface supports AGP 2.0 including 1x/2x/4x AGP signaling and 2x/4x Fast Writes. AGP semantic cycles to DRAM are not snooped on the host bus. PCI semantic cycles to DRAM are snooped on the host bus. The MCH supports PIPE# or SBA[7:0] AGP address mechanisms, but not both simultaneously. Either the PIPE# or the SBA[7:0] mechanism must be selected during system initialization. AGP semantic (PIPE# or SBA initiated) accesses to memory are not snooped.

PCI semantic (FRAME# initiated) accesses to memory are snooped. There is delayed transaction support for AGP-to-main memory FRAME# semantic reads that cannot be serviced immediately.

Both upstream and downstream addressing is limited to 32 bits for AGP and AGP/PCI transactions. The MCH contains a 32-deep AGP requests queue. High priority accesses are supported. All accesses from the AGP interface that fall within the Graphics Aperture address range pass through an address translation mechanism with a fully associative 20 entry TLB. Accesses between AGP and Hub Interface_A are limited to memory writes originating from Hub Interface_A destined for the AGP bus.

The AGP interface is clocked from a dedicated 66 MHz clock (66IN). The AGP-to-host/core interface is asynchronous.

Note: The AGP buffers operate only in 1.5 V mode. They are not 3.3 V safe.

1.4.4 Hub Interface_A

The 8-bit Hub Interface_A connects the MCH to the ICH2. Virtually all communication between the MCH and the ICH2 occurs over Hub Interface_A. Hub Interface_A runs at 66 MHz; this provides a 266MB/s point-to-point hub interface to ICH2 with parity. In addition to the normal traffic types (e.g., Hub Interface_A -to- AGP memory writes, Hub Interface_A-to-DRAM, and processor-to-Hub Interface_A) the following communication also occurs over Hub Interface_A:

- Interrupt related messages
- Power management events as messages
- SMI, SCI, and SERR error indication messages

It is assumed that Hub Interface A is always connected to an ICH2.

1.4.5 Hub Interface_B and Hub Interface_C

The MCH supports two full time 16-bit hub interfaces. The two dedicated 16-bit hub interfaces (Interface_B, Interface_C) run at 66 MHz and provide 266 MB/s (533MB/s) bandwidth with parity. Peer-to-peer accesses between any 16-bit hub interface (B–C) are limited to memory writes.

The 16-bit hub interfaces may or may not be connected to a device. The MCH detects the presence of a device by sampling the HLx[11] input signals. If a hub interface device is not present, its configuration register space is hidden from configuration software. If Hub Interface_C is used, then Hub Interface_B **must** be populated with an Intel 82806AA (P64H) component.

Interface_B and Interface_C traffic types include:

- Memory writes between any 16-bit hub interfaces
- Hub Interface_B and Hub Interface_C to AGP memory writes
- Hub Interface_B and Hub Interface_C to DRAM
- Processor-to- Hub Interface_B and Hub Interface_C
- Messaging
- MSI Interrupt messages
- SERR error indication

1.4.6 MCH Clocking

The MCH has the following clock input pins:

- Differential BCLK0/BCLK1 for the host interface
- 66 MHz clock input for the AGP and Hub Interface_A
- Differential CTM/CTM# and CFM/CFM# for each of the two RACs.

Clock Synthesizer chip(s) are responsible for generating the system host clocks, AGP and hub interface clocks, PCI clocks, and Direct RDRAM device clocks. The MCH provides two pairs of feedback signals to the Direct Rambus* Clock Generator (DRCG) chips to keep the Host and Direct RDRAM device clocks aligned. The Host speed is 100 MHz (300/400 MHz data bus). The speed for Direct RDRAM device is 300 MHz or 400 MHz. The MCH does not require any relationship between the HCLKIN host clock and the 66 MHz clock generated for AGP and hub interfaces; they are asynchronous to each other. The AGP and Hub Interfaces (A–C) run at a constant 66 MHz base frequency. The Hub Interfaces run at 4x; AGP transfers can be 1x/2x/4x. Table 3 and Table 4 indicate the frequency ratios between the various interfaces.

Table 3. MCH Processor System Bus-to-RAC Ratio

Direct RDRAM* Device Speed (MHz)	RAC I/F Frequency (MHz)	Processor System Bus Frequency Intel® Xeon™ Processor 100 MHz (400 MHz data bus)
300	100	3:4
400	100	1:1

Table 4. MCH Processor-to-AGP/Hub Interface Ratio

AGP/Hub Interface Unit Frequency (MHz)	Processor System Bus Frequency Intel® Xeon™ Processor 100 MHz (400 MHz data bus)
AGP: 66 MHz	Asynchronous
Hub Interface_A: 66 MHz	Asynchronous
Hub Interface_B-C: 66 MHz	Asynchronous

1.4.7 System Interrupts

The MCH supports both Intel[®] 8259 and Intel Xeon processor system bus interrupt delivery mechanisms. The serial APIC interrupt mechanism is not supported. The Intel 8259 support consists of flushing inbound Hub Interface_A write buffers when an Interrupt Acknowledge cycle is forwarded from the system bus to Hub Interface_A.

Support for the Intel Xeon processor system bus interrupt delivery is new to the Intel 82860 MCH. IOxAPIC and PCI MSI interrupts are generated as memory writes. The MCH decodes upstream memory writes to the range 0FEE0_0000h_0FEEF_FFFFh from any of the Hub Interface_A-C interfaces as messaged based interrupts. The MCH forwards these memory writes, along with the associated write data, to the system bus as an Interrupt Message transaction. Note that since this address does not decode as part of main memory, the write cycle and the write data do not get forwarded to Direct RDRAM device via the write buffer. The MCH provides the response and TRDY# for all Interrupt Message cycles including the ones originating from the MCH. The MCH supports interrupt re-direction for inter-processor interrupts (IPIs) as well as upstream interrupt memory writes.

For message based interrupts system write buffer coherency is maintained by relying on strict ordering of memory writes. The MCH ensures that all memory writes received from a given interface prior to an interrupt message memory write are delivered to the system bus for snooping in the same order that they occur on the given interface.

1.4.8 Powerdown Flow

Since the MCH is powered down during STR, the MCH cannot maintain any state information when exiting STR. This means that the entire initialization process when exiting STR must be performed by the BIOS via accesses to the RICM register.

Entry into STR (ACPI S3) is initiated by the Operating System (OS) based on detecting a lack of system activity. The OS unloads all system device drivers as part of the process of entering STR. The OS then writes to the PM1_CNT I/O register in the ICH2 to actually trigger the transition into STR. The ICH2 responds by eventually generating the Go C3 message to the MCH via Hub Interface_A.

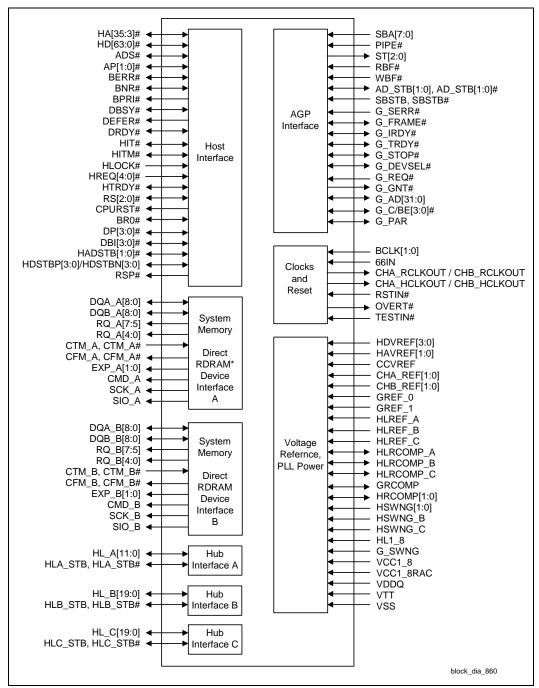
2 Signal Description

This section provides a detailed description of MCH signals. The signals are arranged in functional groups according to their associated interface (See Figure 2). The states of all of the signals during reset are provided in Section 2.11, "Pin States during Reset".

The "#" symbol at the end of a signal name indicates that the active, or asserted state occurs when the signal is at a low voltage level. When "#" is not present after the signal name the signal is asserted when at the high voltage level.

The following notations are used to describe the signal type:

I	Input pin
O	Output pin
I/O	Bi-directional Input/Output pin
s/t/s	Sustained Tri-State. This pin is driven to its Inactive state prior to tri-stating.
as/t/s	Active Sustained Tri-State. This applies to some of the hub interface signals. This pin is weakly driven to its last driven value.


The signal description also includes the type of buffer used for the particular signal:

Ū	1 0
AGTL+	Open Drain AGTL+ interface signal. Refer to the AGTL+ I/O Specification for
	complete details. The MCH integrates AGTL+ termination resistors.
AGP	AGP interface signals. These signals are compatible with AGP 2.0 1.5v Signaling
	Environment DC and AC Specifications. The buffers are not 3.3 V tolerant.
CMOS	CMOS buffers.
RSL	Rambus Signaling Level interface signal. Refer to the latest <i>Direct RDRAM*</i> Component Specification published by Rambus for complete details.
	Component Specification published by Kambus for Complete details.

Note: Processor address and data bus signals are logically inverted signals (i.e., the actual values are inverted from what appears on the system bus). All system bus control signals follow normal convention; that is, a 0 indicates an active level (low voltage) if the signal is followed by # symbol and a 1 indicates an active level (high voltage) if the signal has no # suffix.

Figure 2. MCH Signal Diagram

2.1 Host Interface Signals

Signal Name	Туре	Description		
ADS#	I/O AGTL+	Address Strobe: The system bus owner asserts ADS# to indicate the first of two cycles of a request phase.		
AP[1:0]#	I/O AGTL+	Address Parity: The AP[1:0]# lines are driven by the request initiator and provide parity protection for the Request Phase signals. AP[1:0]# are common clock signals and are driven one common clock after the Request Phase.		
		First Add. Sub-phase	Second Add. Sub-phase	
		AP0# HA[35:24]#	HA[23:3]#, HREQ[4:0]#	
		AP1# HA[23:3]#, HREQ[4:0]#	HA[35:24]#	
		Address parity is correct if there is an esignals (low voltage) in the set consisting parity signal. Note that the MCH only coassumes HA[43:36]# to be electrically and generating address parity.	ng of the covered signals plus the onnects to HA[35:3]#. The MCH	
		The MCH may be configured to send a Hub Interface_A when it detects an error		
BERR#	I/O AGTL+	Bus Error: This signal is not functional. The BERR# pin on the MCH does contain internal pull-ups; thus, it should be connected to the processor BERR# signal to provide system bus termination.		
BNR#	I/O AGTL+	Block Next Request: Used to block the current request bus owner from issuing a new request. This signal is used to dynamically control the system bus pipeline depth.		
BPRI#	O AGTL+	Bus Priority Request: The MCH is the only Priority Agent on the system bus. It asserts this signal to obtain the ownership of the address bus. This signal has priority over symmetric bus requests and will cause the current symmetric owner to stop issuing new transactions unless the HLOCK# signal was asserted.		
BR0#	I/O AGTL+	Bus Request 0#: The MCH pulls the processor bus' BR0# signal low during CPURST#. The processor samples this signal on the active-to-inactive transition of CPURST#. The minimum setup time for this signal is 4 HCLKs. The minimum hold time is 2 clocks and the maximum hold time is 20 HCLKs. BR0# should be tristated after the hold time requirement has been satisfied.		
CPURST#	O AGTL+	CPU Reset: The CPURST# pin is an output from the MCH. The MCH asserts CPURST# while RSTIN# (PCIRST# from ICH2) is asserted and for approximately 1 ms after RSTIN# is deasserted. The CPURST# allows the processors to begin execution in a known state.		
			sor frequency select strap set-up and This requires strict synchronization sertion and ICH2 driving the straps.	
DBSY#	I/O AGTL+	Data Bus Busy: Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.		
DEFER#	O AGTL+	Defer: Signals that the MCH will terminate the transaction currently being snooped with either a deferred response or with a retry response.		

Signal Name	Туре	Description				
DP[3:0]#	I/O AGTL+ 4x	Host Data Parity: The DP[3:0]# signals provide parity protection for HD[63:0]#. The DP[3:0]# signals are common clock signals and are driven one common clock after the data phases they cover. DP[3:0]# are driven by the same agent driving HD[63:0]#.				
			1 st Data Phase	2 nd Data Phase	3 rd Data Phase	4 th Data Phase
		HD[15:0]#, DBI0#	DP3#	DP2#	DP1#	DP0#
		HD[31:16]#, DBI1#	DP0#	DP3#	DP2#	DP1#
		HD[47:32]#, DBI2#	DP1#	DP0#	DP3#	DP2#
		HD[63:48]#, DBI3#	DP2#	DP1#	DP0#	DP3#
		Data parity is correct (low voltage) in the se signal.				
DBI[3:0]#	I/O AGTL+ 4x	Dynamic Bus Inversion: These signals are driven along with the HD[63:0]# signals. They indicate if the associated signals are inverted. DBI[3:0]# are asserted such that the number of data bits driven electrically low (low voltage) within the corresponding 16-bit group never exceeds 8.				
		DBI3# = HD[63:48]#				
		DBI2# = HD[47:32]#				
		DBI1# = HD[31:16]#				
		DBI0# = HD[15:0]#				
DRDY#	I/O AGTL+	Data Ready: Asserte	d for each c	ycle that da	ta is transfe	rred.
HA[35:3]#	I/O AGTL+ 2x	Host Address Bus: HA[35:3]# connect to the processor address bus. During processor cycles, the HA[35:3]# are inputs. The MCH drives HA[35:3]# during snoop cycles on behalf of hub interface and AGP/Secondary PCI initiators. HA[35:3]# are transferred at 2x rate. Note that the address is inverted on the system bus.				
		After reset, the value including the MCH, or determines the maxin HA7# is sampled low high, the IOQ depth con the bus is set to 12 by asserting BNR#, s	n the rising on the IOQ de the IOQ de the IOQ de the the bus is 2, the MCH	edge of CPI epth mode s epth on the l the maxim limits the nu	JRST#. Its I upported or ous is one. I um of 12. W umber of que	atched value the system bus. If If HA7# is sampled I hen the IOQ depth eued transactions
HADSTB[1:0]#	I/O AGTL+	Host Address Strob used to transfer HA[3				
	2x	HADSTB0# = AP0#,	HA[16:3]#, I	HREQ[4:0]#		
		HADSTB1# = AP1#,	HA[35:17]#			
HD[63:0]#	I/O AGTL+ 4x	Host Data: These signanced mode HD[6 signals are inverted or	63:0]# are tr	ansferred a		

Signal Name	Туре	Description	
HDSTBP[3:0]# HDSTBN[3:0]#	I/O AGTL+	Differential Host Data Strobes: These are the differential source synchronous strobes used to transfer HD[63:0]# and DBI[3:0]# at the 4x transfer rate.	
	4x	HDSTBP3#, HDSTBN3# = HD[63:48]#, DBI3#	
		HDSTBP2#, HDSTBN2# = HD[47:32]#, DBI2#	
		HDSTBP1#, HDSTBN1# = HD[31:16]#, DBI1#	
		HDSTBP0#, HDSTBN0# = HD[15:0]#, DBI0#	
HIT#	I/O AGTL+	Hit: This signal indicates that a caching agent holds an unmodified version of the requested line. It is, also, driven in conjunction with HITM# by the target to extend the snoop window.	
HITM#	I/O AGTL+	Hit Modified: HITM# indicates that a caching agent holds a modified version of the requested line and that this agent assumes responsibility for providing the line. HITM# is, also, driven in conjunction with HIT# to extend the snoop window.	
HLOCK#	I AGTL+	Host Lock: All system bus cycles sampled with the assertion of HLOCK# and ADS#, until the negation of HLOCK#, must be atomic (i.e., no hub interface or AGP snoopable access to DRAM are allowed when HLOCK# is asserted by the processor).	
HREQ[4:0]#	I/O AGTL+ 2x	Host Request Command: These signals define the attributes of the request. In enhanced mode HREQ[4:0]# are transferred at 2x rate. HREQ[4:0]# are asserted by the requesting agent during both halves of Request Phase. In the first half the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second half the signals carry additional information to define the complete transaction type.	
HTRDY#	O AGTL+	Host Target Ready: HTRDY# indicates that the target of the processor transaction is able to enter the data transfer phase.	
RS[2:0]#	O AGTL+	Response Status: RS[2:0]# indicate the type of response according to the following the table: 000 = Idle state 001 = Retry response 010 = Deferred response 011 = Reserved (not driven by MCH) 100 = Hard Failure (not driven by MCH) 101 = No data response 110 = Implicit writeback 111 = Normal data response	
RSP#	O AGTL+	Response Parity: RSP# provides parity protection for the RS[2:0]# signals. It is always driven by the MCH and must be valid on all clocks. Response Parity is correct if there are an even number of low signals (low voltage) in the set consisting of the RS[2:0]# signals and the RSP# signal itself. The MCH may be configured to send an SERR message to the ICH2 over Hub Interface_A when it detects an error on the RSP# signal.	

2.2 Rambus* Channel A

Signal Name	Туре	Description
DQA_A[8:0]	I/O RSL	Direct RDRAM* Device Data (A): Data signals used for read and write operations on Rambus* Channel A.
DQB_A[8:0]	I/O RSL	Direct RDRAM Device Data (A): Data signals used for read and write operations on Rambus Channel A.
RQ_A[7:5]	O RSL	Row Access Control (A): Three request package pins containing control and address information for row accesses.
		Note: RQ_A[7:5] are sometimes referred to as the "ROW_A[2:0]" signals.
RQ_A[4:0]	O RSL	Column Access Control (A): Five request package pins containing control and address information for column accesses.
		Note: RQ_A[4:0] are sometimes referred to as the "COL_A[4:0]" signals.
CTM_A	l RSL	Clock To Master (A): CTM_A is one of the two differential transmit clock signals used for Direct RDRAM device operations on Rambus Channel A. It is an input to the MCH and is generated from an external clock synthesizer.
CTM_A#	l RSL	Clock To Master Compliment (A): CTM_A# is one of the two differential transmit clock signals used for Direct RDRAM device operations on Rambus Channel A. It is an input to the MCH and is generated from an external clock synthesizer.
CFM_A	O RSL	Clock From Master (A): CFM_A is one of the two differential receive clock signals used for Direct RDRAM device operations on Rambus Channel A. It is an output from the MCH.
CFM_A#	O RSL	Clock From Master Compliment(A): CFM_A# is one of the two differential receive clock signals used for Direct RDRAM device operations on Rambus Channel A. It is an output from the MCH.
EXP_A[1:0]	O RSL	Expansion (A): These signals are used to communicate to an external Direct RDRAM device repeater on Rambus Channel A. The repeater increases the maximum memory size supported by the MCH.
CMD_A	O CMOS	Command (A): Command output to the Direct RDRAM device devices used for power mode control, configuring the SIO daisy chain, and framing SIO operations.
SCK_A	O CMOS	Serial Clock (A): This signal provides clocking for register accesses and selects Rambus Channel A devices for power management.
SIO_A	I/O CMOS	Serial Input/Output (A): This signal is a bi-directional serial data signal used for device initialization, register operations, power mode control, and device reset.

2.3 Rambus* Channel B

Signal Name	Туре	Description	
DQA_B[8:0]	I/O RSL	Direct RDRAM* Device Data (B): Data signals used for read and write operations on Rambus* Channel B.	
DQB_B[8:0]	I/O RSL	Direct RDRAM Device Data (B): Data signals used for read and write operations on Rambus Channel B.	
RQ_B[7:5]	O RSL	Row Access Control (B): Three request package pins containing control and address information for row accesses.	
	1.02	Note: RQ_B[7:5] are sometimes referred to as the "ROW_B[2:0]" signals.	
RQ_B[4:0]	O RSL	Column Access Control (B): Five request package pins containing control and address information for column accesses.	
		Note: RQ_B[4:0] are sometimes referred to as the "COL_B[4:0]" signals.	
CTM_B	l RSL	Clock To Master (B): CTM_B is one of the two differential transmit clock signals used for Direct RDRAM device operations on Rambus Channel B. It is an input to the MCH and is generated from an external clock synthesizer.	
CTM_B#	l RSL	Clock To Master Compliment (B): CTM_B# is one of the two differential transmit clock signals used for Direct RDRAM device operations on Rambus Channel B. It is an input to the MCH and is generated from an external clock synthesizer.	
CFM_B	O RSL	Clock From Master (B): CFM_B is one of the two differential receive clock signals used for Direct RDRAM device operations on Rambus Channel. It is an output from the MCH.	
CFM_B#	O RSL	Clock From Master Compliment (B): CFM_B# is one of the two differential receive clock signals used for Direct RDRAM device operations on Rambus Channel B. It is an output from the MCH.	
EXP_B[1:0]	O RSL	Expansion (B): These signals are used to communicate to an external Direct RDRAM device repeater on Rambus Channel B. The repeater increases the maximum memory size supported by the MCH.	
CMD_B	O CMOS	Command (B): CMD_B is a command output to the Direct RDRAM device devices used for power mode control, configuring the SIO daisy chain, and framing SIO operations.	
SCK_B	O CMOS	Serial Clock (B): This signal provides clocking for register accesses and selects Rambus Channel B devices for power management.	
SIO_B	I/O CMOS	Serial Input/Output (B): SIO_B is a bi-directional serial data signal used for device initialization, register operations, power mode control, and device reset.	

2.4 Hub Interface_A Signals

Signal Name	Туре	Description
HL_A[11:0]	I/O CMOS	Hub Interface_A Signals: Signals used for the hub interface.
HLA_STB	I/O CMOS	Hub Interface_A Strobe: One of two differential strobe signals used to transmit or receive packet data over Hub Interface_A.
HLA_STB#	I/O CMOS	Hub Interface_A Strobe Compliment: One of two differential strobe signals used to transmit or receive packet data over Hub Interface_A.

2.5 Hub Interface_B

Signal Name	Туре	Description
HL_B[19:0]	I/O CMOS	Hub Interface_B Signals: Signals used for the hub interface.
HLB_STB[1:0]	I/O CMOS	Hub Interface_B Strobe: One of two differential strobe signals used to transmit or receive packet data over Hub Interface_B.
HLB_STB[1:0]#	I/O CMOS	Hub Interface_B Strobe Compliment: One of two differential strobe signals used to transmit or receive packet data over Hub Interface_B.

2.6 Hub Interface_C

Signal Name	Туре	Description
HL_C[19:0]	I/O CMOS	Hub Interface_C Signals: Signals used for the hub interface.
HLC_STB[1:0]	I/O CMOS	Hub Interface_C Strobe: One of two differential strobe signals used to transmit or receive packet data over Hub Interface_C.
HLC_STB[1:0]#	I/O CMOS	Hub Interface_C Strobe Compliment: One of two differential strobe signals used to transmit or receive packet data over Hub Interface_C.

AGP Interface Signals 2.7

2.7.1 **AGP Addressing Signals**

Signal Name	Туре	Description
PIPE#	I	Pipeline:
	AGP	During PIPE# Operation: This signal is asserted by the AGP master to indicate a full width address is to be enqueued on by the target using the AD bus. One address is placed in the AGP request queue on each rising clock edge while PIPE# is asserted. When PIPE# is deasserted, no new requests are queued across the AD bus.
		During SBA Operation: Not used.
		During FRAME# Operation: Not used.
		Note: Initial AGP designs may not use PIPE# (i.e., PCI only 66 MHz). Therefore, an 8 K Ω pull-up resistor connected to this pin is required on the motherboard.
SBA[7:0]	I	Side-band Addressing:
	AGP	During PIPE# Operation: Not used.
		During SBA Operation: These signals are used by the AGP master (graphics component) to place addresses in the AGP request queue. The SBA bus and AD bus operate independently (i.e., transaction can proceed on the SBA bus and the AD bus simultaneously).
		During FRAME# Operation: Not used.
		Note: These signals implement internal pull-ups with a nominal value of $8~k\Omega$. When AGP is not enabled, these pull-ups are disabled.

NOTE: The above table contains two mechanisms to queue requests by the AGP master. Note that the master can only use one mechanism. The master may not switch methods without a full reset of the system. When PIPE# is used to queue addresses, the master is not allowed to queue addresses using the SBA bus. For example, during configuration time, if the master indicates that it can use either mechanism, the configuration software will indicate which mechanism the master will use. Once this choice has been made, the master will continue to use the mechanism selected until the master is reset (and reprogrammed) to use the other mode. This change of modes is not a dynamic mechanism; rather, it is a static decision when the device is first being configured after reset.

2.7.2 AGP Flow Control Signals

Signal Name	Туре	Description
RBF#	I AGP	Read Buffer Full: During PIPE# and SBA Operation: Read buffer full indicates if the master is ready to accept previously requested low priority read data. When RBF# is asserted, the MCH is not allowed to initiate the return low priority read data. That is, the MCH can finish returning the data for the request currently
		being serviced; however, it cannot begin returning data for the next request. RBF# is only sampled at the beginning of a cycle. If the AGP master is always ready to accept return read data, then it is not required to implement this signal.
		During FRAME# Operation: Not used.
WBF#	I AGP	Write-Buffer Full: During PIPE# and SBA Operation: Write buffer full indicates if the master is ready to accept Fast Write data from the MCH. When WBF# is asserted, the MCH is not allowed to drive Fast Write data to the AGP master. WBF# is only sampled at the beginning of a cycle. If the AGP master is always ready to accept fast write data, then it is not required to implement this signal. During FRAME# Operation: Not used.

2.7.3 AGP Status Signals

Signal Name	Type	Description
ST[2:0]	0	Status Bus:
	AGP	During PIPE# and SBA Operation: Provides information from the arbiter to an AGP Master on what it may do. ST[2:0] only have meaning to the master when its G_GNT# is asserted. When G_GNT# is deasserted, these signals have no meaning and must be ignored. Refer to the <i>AGP Interface Specification Revision 2.0</i> for further explanation of the ST[2:0] values and their meanings.
		During FRAME# Operation: These signals are not used during FRAME#-based operation, except that a '111' indicates that the master may begin a FRAME# transaction.

2.7.4 AGP Strobes

Signal Name	Туре	Description
AD_STB0	I/O	AD Bus Strobe-0:
	(s/t/s)	During 1X Operation: Not used.
	AGP	During 2X Operation: During 2X operation, this signal provides timing for the G_AD[15:0] and G_C/BE[1:0]# signals. The agent that is providing the data will drive this signal.
		During 4X Operation: During 4X operation, this is one-half of a differential strobe pair that provides timing information for the G_AD[15:0] and G_C/BE[1:0]# signals.
AD_STB0#	I/O	AD Bus Strobe-0 Compliment:
	(s/t/s)	During 1X Operation: Not used.
	AGP	During 2X Operation: Not used.
		During 4X Operation: During 4X operation, this is one-half of a differential strobe pair that provides timing information for the G_AD[15:0] and G_C/BE[1:0]# signals. The agent that is providing the data will drive this signal.
AD_STB1	I/O	AD Bus Strobe-1:
	(s/t/s)	During 1X Operation: Not used.
	AGP	During 2X Operation: During 2X operation, this signal provides timing for the G_AD[16:31] and G_C/BE[2:3]# signals. The agent that is providing the data will drive this signal.
		During 4X Operation: During 4X operation, this is one-half of a differential strobe pair that provides timing information for the G_AD[16:31] and G_C/BE[2:3]# signals. The agent that is providing the data will drive this signal.
AD_STB1#	I/O	AD Bus Strobe-1 Compliment
	(s/t/s)	During 1X Operation: Not used.
	AGP	During 2X Operation: Not used.
		During 4X Operation: During 4X operation, this is one-half of a differential strobe pair that provides timing information for the G_AD[16:31] and G_C/BE[2:3]# signals. The agent that is providing the data will drive this signal.
SB_STB	1	SBA Bus Strobe:
	AGP	During 1X Operation: Not used.
		During 2X Operation: During 2X operation, this signal provides timing for the SBA bus signals. The agent that is driving the SBA bus will drive this signal.
		During 4X Operation: During 4X operation, this is one-half of a differential strobe pair that provides timing information for the SBA bus signals. The agent that is driving the SBA bus will drive this signal.

Signal Name	Туре	Description
SB_STB#	I	SBA Bus Strobe Compliment:
	AGP	During 1X Operation: Not used.
		During 2X Operation: Not used.
		During 4X Operation: During 4X operation, this is one-half of a differential strobe pair that provides timing information for the SBA bus signals. The agent that is driving the SBA bus will drive this signal.

2.7.5 AGP/PCI Signals-Semantics

For transactions on the AGP interface carried using AGP FRAME# protocol these signals operate similar to their semantics in the PCI 2.1 specification. The role of all AGP FRAME# signals is described below.

Signal Name	Туре	Description
G_FRAME#	I/O	FRAME:
	s/t/s AGP	During PIPE# and SBA Operation: Not used.
		During Fast Write Operation: G_FRAME# is used to frame transactions as an output from the MCH during Fast Writes.
		During FRAME# Operation: G_FRAME# is an output when the MCH acts as an initiator on the AGP Interface. G_FRAME# is asserted by the MCH to indicate the beginning and duration of an access. G_FRAME# is an input when the MCH acts as a FRAME#-based AGP target. As a FRAME#-based AGP target, the MCH latches the G_C/BE[3:0]# and the G_AD[31:0] signals on the first clock edge on which it samples G_FRAME# active.
G_IRDY#	I/O s/t/s AGP	Initiator Ready:
		During PIPE# and SBA Operation: Not used while enqueueing requests via AGP SBA and PIPE#, but used during the data phase of PIPE# and SBA transactions.
		During FRAME# Operation: G_IRDY# is an output when MCH acts as a FRAME#-based AGP initiator and an input when the MCH acts as a FRAME#-based AGP target. The assertion of G_IRDY# indicates the current FRAME#-based AGP bus initiator's ability to complete the current data phase of the transaction.
		During Fast Write Operation: G_IRDY# indicates the AGP compliant master is ready to provide all write data for the current transaction. Once G_IRDY# is asserted for a write operation, the master is not allowed to insert wait states. The master is never allowed to insert a wait-state during the initial data transfer (32 bytes) of a write transaction. However, it may insert wait states after each 32-byte block is transferred.

Signal Name	Туре	Description	
G_TRDY#	I/O	Target Ready:	
	s/t/s AGP	During PIPE# and SBA Operation: Not used while enqueueing requests via AGP SBA and PIPE#, but used during the data phase of PIPE# and SBA transactions.	
		During FRAME# Operation: G_TRDY# is an input when the MCH acts as an AGP initiator and an output when the MCH acts as a FRAME#-based AGP target. The assertion of G_TRDY# indicates the target's ability to complete the current data phase of the transaction.	
		During Fast Write Operation: G_TRDY# indicates the AGP compliant target is ready to receive write data for the entire transaction (when the transfer size is less than or equal to 32 bytes) or is ready to transfer the initial or subsequent block (32 bytes) of data when the transfer size is greater than 32 bytes. The target is allowed to insert wait states after each block (32 bytes) is transferred on write transactions.	
		Note: For AGP Fast Writes, If an AGP master (acting as a PCI target) asserts G_TRDY# before the first throttling point, the system will hang.	
G_STOP#	I/O	Stop:	
	s/t/s AGP	During PIPE# and SBA Operation: Not used.	
		During FRAME# Operation: G_STOP# is an input when the MCH acts as a FRAME#-based AGP initiator and an output when the MCH acts as a FRAME#-based AGP target. G_STOP# is used for disconnect, retry, and abort sequences on the AGP interface.	
G_DEVSEL#	I/O	Device Select:	
	s/t/s AGP	During PIPE# and SBA Operation: Not used.	
AGI		During FRAME# Operation: G_DEVSEL#, when asserted, indicates that a FRAME#-based AGP target device has decoded its address as the target of the current access. The MCH asserts G_DEVSEL# based on the DRAM address range being accessed by a PCI initiator. As an input it indicates whether any device on the bus has been selected.	
		During Fast Write Operation: G_DEVSEL# is used when the transaction cannot complete during the block data transfer.	
G_REQ#	1	Request:	
	AGP	During SBA Operation: Not used.	
		During PIPE# and FRAME# Operation: G_REQ#, when asserted, indicates that a FRAME# or PIPE# based AGP master is requesting use of the AGP interface. This signal is an input into the MCH.	
G_GNT#	0	Grant:	
AGP		During SBA, PIPE# and FRAME# Operation: G_GNT# along with the information on the ST[2:0] signals (status bus) indicates how the AGP interface will be used next. Refer to the AGP Interface Specification revision 2.0 for further explanation of the ST[2:0] values and their meanings.	
		This signal requires an external pull-up of 8.2 k Ω .	

Signal Name	Туре	Description	
G_AD[31:0]	I/O	Address/Data Bus:	
	AGP	During PIPE# and FRAME# Operation: G_AD[31:0] are used to transfer both address and data information on the AGP interface.	
		During SBA Operation: G_AD[31:0] are used to transfer data on the AGP interface.	
G_C/BE[3:0]#	I/O	Command/Byte Enable:	
	AGP	During FRAME# Operation: During the address phase of a transaction, G_C/BE[3:0]# define the Bus command. During the data phase, G_C/BE[3:0]# are used as byte enables. The byte enables determine which byte lanes carry meaningful data. The commands issued on the G_C/BE[3:0]# signals during FRAME# based AGP are the same C/BE[3:0]# command described in the PCI 2.1 specification.	
		During PIPE# Operation: When an address is enqueued using PIPE#, the G_C/BE[3:0]# signals carry command information. Refer to the <i>AGP 2.0 Interface Specification, Revision 2.0</i> for the definition of these commands. The command encoding used during PIPE# based AGP is Different than the command encoding used during FRAME# based AGP cycles (or standard PCI cycles on a PCI bus).	
		During SBA Operation: Not used.	
G_PAR	I/O AGP	Parity: During FRAME# Operation: This signal is driven by the MCH when it acts as a FRAME#-based AGP initiator during address and data phases for a write cycle, and during the address phase for a read cycle. G_PAR is driven by the MCH when it acts as a FRAME# based AGP target during each data phase of a FRAME# based AGP memory read cycle. Even parity is generated across G_AD[31:0] and G_C/BE[3:0]#. During SBA and PIPE# Operation: This signal is not used during SBA and PIPE# operation.	
G_SERR#	I AGP	SERR#: The G_SERR# signal is used by a PCI device to signal an error on a PCI device attached to AGP/PCI. The MCH may be configured to send a SERR message to the ICH2 upon the assertion of G_SERR#.	

NOTE: PCIRST# from the ICH2 is connected to RSTIN# and is used to reset AGP interface logic within the MCH. The AGP agent will also use PCIRST# provided by the ICH2 as an input to reset its internal logic. The LOCK# signal is **not supported** on the AGP interface (even for PCI operations). PERR# signal is **not supported** on the AGP interface.

2.8 Clocks, Reset, and Miscellaneous

Signal Name	Туре	Description	
BCLK[1:0]	I CMOS	Differential Host Clock In: These pins receive a differential host clock from the external clock synthesizer. This clock is used by all of the MCH logic that is in the host clock domain.	
66IN	I CMOS	66 MHz Clock In: This pin receives a 66 MHz clock from the clock synthesizer. The AGP and Hub Interface_A–C clock domains use this clock.	
		Note: This clock input is 3.3 V tolerant.	
CHA_RCLKOUT/ CHB_RCLKOUT	O CMOS	Direct RDRAM* Device Clock Out: This pin provides divided down versions of the Direct RDRAM device clock as feedback to the Direct RDRAM device clock synthesizers for phase alignment.	
		Note: This pin will only be driven to 1.8 V.	
CHA_HCLK0UT/ CHB_HCLKOUT	O CMOS	Host Clock Out: This pin provides divided down versions of the host clock as feedback to the Direct RDRAM device clock synthesizers for phase alignment.	
		Note: This pin will only be driven to 1.8 V.	
RSTIN#	I CMOS	Reset In: When asserted this signal will asynchronously reset the MCH logic. This signal is connected to the PCIRST# output of the ICH2. All AGP output and bi-directional signals will also tri-state compliant to PCI Revision 2.0 and 2.1 specifications.	
		This input should have a Schmidt trigger to avoid spurious resets.	
		Note: This input needs to be 3.3 V tolerant.	
TESTIN#	I CMOS	Test Input: TESTIN# is used for manufacturing and board level test purposes. This signal is internally pulled up to VDDQ.	
OVERT#	I CMOS	Overtemperature Condition: This signal, when asserted, indicates that the Direct RDRAM devices have exceeded the system designer's target maximum temperature. The MCH's response to this signal is to shift the Direct RDRAM device controller into the throttling/pool mode placed into the DPS register. Software should program this register with a value that is more conservative than the current value in order to make the OVERT# pin useful. It is internally pulled up to VDDQ.	

2.9 Voltage References, PLL Power

Signal Name	Туре	Description	
HDVREF[3:0]		Host Data Reference Voltage. Reference voltage input for the 4x Data Signals of the Host AGTL+ interface. Connect to 2/3 VTT with 2% tolerance.	
HAVREF[1:0]		Host Address Reference Voltage. Reference voltage input for the 2x address signals of the host AGTL+ interface. Connect to 2/3 VTT with 2% tolerance.	
CCVREF		Host Common Clock Reference Voltage. Reference voltage input for the common clock signals of the host AGTL+ interface. Connect to 2/3 VTT with 2% tolerance.	
CHA_REF[1:0]		Rambus* Channel A Reference: Reference voltage input for the Rambus Channel A RSL interface.	
CHB_REF[1:0]		Rambus Channel B Reference: Reference voltage input for the Rambus Channel B RSL interface.	
GREF_0		AGP: Reference voltage input for the AGP interface.	
GREF_1		AGP: Reference voltage input for the AGP interface.	
HLREF_A		Hub Interface_A Reference: Reference voltage input for the Hub Interface_A.	
		Normal Mode: Connect to 1/2 VCC1_8 with 2% tolerance	
		Enhanced Mode: Connect to 2/3 VCC1_8 with 2% tolerance	
HLREF_B		Hub Interface_B Reference: Reference voltage input for the Hub Interface_B. Connect to 2/3 VCC1_8 with 2% tolerance.	
HLREF_C		Hub Interface_C Reference: Reference voltage input for the Hub Interface_C. Connect to 2/3 VCC1_8 with 2% tolerance.	
HLRCOMP_A	I/O CMOS	Compensation for Hub Interface_A: This signal is used to calibrate the Hub Interface_A I/O buffers.	
		Normal Mode: Connect to 39 Ω 1% or 40 Ω 2% Pull-down	
		Enhanced Mode: Connect to 30 Ω 1% Pull-down	
HLRCOMP_B	I/O CMOS	Compensation for Hub Interface_B: This signal is used to calibrate the Hub Interface_B I/O buffers. Refer to the Intel [®] Xeon™ Processor and Intel [®] 860 Chipset Platform Design Guide for proper connections.	
HLRCOMP_C	I/O CMOS	Compensation for Hub Interface_C: This signal is used to calibrate the Hub Interface_C I/O buffers. Refer to the Intel [®] Xeon [™] Processor and Intel [®] 860 Chipset Platform Design Guide for proper connections.	
GRCOMP	I/O CMOS	Compensation for AGP: This signal is used to calibrate AGP buffers. Connect to a 39 Ω with a 1% tolerance or a 40 Ω with a 2% tolerance Pull-down.	
HRCOMP[1:0]	I/O CMOS	Compensation for Host: This signal is used to calibrate the host AGTL+ I/O buffers. Connect to 20.75 Ω with a 1% tolerance pull-down.	
HSWNG[1:0]	I CMOS	Host Compensation Reference Voltage: Reference voltage input for the compensation logic. Connect to 1/3 VTT with a 2% tolerance.	

Signal Name	Туре	Description	
HLSWNG_B	I CMOS	Hub Interface_B Compensation Reference Voltage: Reference voltage input for the compensation logic. Connect to 1/3 VCC1_8 with a 2% tolerance.	
HLSWNG_C	I CMOS	Hub Interface_C Compensation Reference Voltage: Reference voltage input for the compensation logic. Connect to 1/3 VCC1_8 with a 2% tolerance.	
HL1_8	I CMOS	Connect to VCC1_8	
G_SWNG	I CMOS	AGP Compensation Reference Voltage: Reference voltage input for the compensation logic. Hooked to GREF_0.	
VCC1_8		Power: The 1.8 V Power input pins	
VCC1_8RAC		Power: The 1.8 V RAC Power pins	
VDDQ		Power: The power supply input for the AGP I/O supply (1.5 V)	
VTT		Power: The AGTL+ bus termination voltage inputs	
VSS		Ground	

2.10 Strap Signals

This table indicates the strap options invoked by various MCH signal pins.

Pin	Strap Name	Description
BUSPARK	System Bus Bus Parking	This signal is reflected on HA15# to configure the processor(s) in system bus parking enabled mode. This signal has an internal pull-up to VDDQ. Bus parking should be enabled for single processor systems and disabled for dual processor systems.
HLA_ENH#	Hub Interface_A Enhanced Mode Enable	This signal is used as the HL_A normal/enhanced mode operation strap. This signal has an internal pull-up to VDDQ.

2.11 Pin States during Reset

Table 5 indicates the MCH signal pin states during reset assertion.

Z	Tri-state Outputs
ISO	Isolate Inputs in Inactive State
S	Strap sampled on RSTIN# rising edge
H	Driven High
L	Driven Low
D	Drive Outputs to Functional Logic Level
I	Input Active
U	Undefined – Indeterminate

Table 5. Pin States during Reset

Signal Name	State During RSTIN# Assertion		
Host Interface			
CPURST#	L		
HA[35:8,6:3]#	Z/I		
HA7#	Z/I/S		
HADSTB[1:0]#	Z/I		
HD[63:0]#	Z/I		
HDSTBP[3:0]#	Z/I		
HDSTBN[3:0]#	Z/I		
DBI[3:0]#	Z/I		
ADS#	Z/I		
BNR#	Z/I		
BPRI#	Z/I		
DBSY#	Z/I		
DEFER#	Z/I		
DRDY#	Z/I		
HIT#	Z/I		
HITM#	Z/I		
HLOCK#	Z/I		
HREQ[4:0]#	Z/I		
HTRDY#	Z/I		
RS[2:0]#	Z/I		
BR0#	Z/I		
AP[1:0]#	Z/I		
RSP#	Z/I		
DP[3:0]#	Z/I		
HDVREF[3:0]	I		
HAVREF[1:0]	I		
CCVREF	I		
HRCOMP[1:0]	Z		
HSWNG[1:0]	I		
Rambus* Ch	nannel A		
DQA_A[8:0]	Z		
DQB_A[8:0]	Z		
RQ_A[7:0]	Z		
CTM_A	I		

Signal Name	State During RSTIN# Assertion		
CTM_A#	I		
CFM_A	Z		
CFM_A#	Z		
EXP_A[1:0]	Z		
SCK_A	L		
CMD_A	Z		
SIO_A	Z		
CHA_REF[1:0]	I		
Rambus Ch	annel B		
CHB_DQA[8:0]	Z		
CHB_DQB[8:0]	Z		
CHB_RQ[7:0]	Z		
CHB_CTM	I		
CHB_CTM#	I		
CHB_CFM	Z		
CHB_CFM#	Z		
EXP_B[1:0]	Z		
CHB_SCK	L		
CHB_CMD	Z		
CHB_SIO	Z		
CHB_REF[1:0]	I		
AGP	T		
PIPE#	I		
SBA[7:0]	ISO		
RBF#	I		
WBF#	I		
G_REQ#	I		
ST[2:0]	L		
G_GNT#	Н		
AD_STB[1:0]	Z		
AD_STB[1:0]#	Z		
SB_STB	I		
SB_STB#	I		
G_AD[31:0]	L/I		
G_C/BE[3:0]#	L/I		

Signal Name	State During RSTIN# Assertion		
G_FRAME#	Z/I		
G_IRDY#	Z/I		
G_TRDY#	Z/I		
G_STOP#	Z/I		
G_DEVSEL#	Z/I		
G_PAR	L/I		
G_SERR#	I		
Hub Interface_A (Normal Mode)			
HL_A11	L/I		
HL_A10	L/I		
HL_A9	L/I		
HL_A8	L		
HL_A[7:4]	L/I		
HL_A[3:0]	Z		
HLA_STB	L/I		
HLA_STB#	Н		
HLRCOMP_A	Z		
HLREF_A	I		
Hub Interfa (Enhanced	ace_A Mode)		
HL_A11	Z/I		
HL_A10	Z/I		
HL_A9	L/I		
HL_A8	Н		
HL_A[7:4]	Z/I		
HL_A[3:0]	Z/I		
HLA_STB	Z/I		
HLA_STB#	Z/I		
HLRCOMP_A	Z		
HLREF_A	I		

Signal Name	State During RSTIN# Assertion
Hub Interfa (Enhanced	
HL_B19	Z/I
HL_B18	Z/I
HL_B17	L/I
HL_B16	Н
HL_B[15:0]	Z/I
HLB_STB[1:0]	Z/I
HLB_STB[1:0]#	Z/I
HLRCOMP_B	Z
HLREF_B	1

Signal Name	State During RSTIN# Assertion	
Hub Interface_C (Enhanced Mode)		
HL_C19	Z/I	
HL_C18	Z/I	
HL_C17	L/I	
HL_C16	Н	
HL_C[15:0]	Z/I	
HLC_STB[1:0]	Z/I	
HLC_STB[1:0]#	Z/I	
HLRCOMP_C	Z	
HLREF_C	I	

Signal Name	State During RSTIN# Assertion
Clocks and	Misc.
BCLK[1:0]	I
66IN	I
CHA_HCLKOUT	D
CHB_HCLKOUT	D
CHA_RCLKOUT	D
CHB_RCLKOUT	D
RSTIN#	I
TESTIN#	I

This page is intentionally left blank.

3 Register Description

The MCH contains two sets of software accessible registers, accessed via the Host I/O address space:

- Control registers I/O mapped into the host I/O space, which control access to PCI and AGP configuration space (see section titled I/O Mapped Registers)
- Internal configuration registers residing within the MCH are partitioned into two logical
 device register sets ("logical" since they reside within a single physical device). The first
 register set is dedicated to Host-Hub Interface Bridge functionality (controls PCI_A such as
 DRAM configuration, other chip-set operating parameters and optional features). The second
 register block is dedicated to Host-AGP Bridge functions (controls AGP interface
 configurations and operating parameters).

The MCH supports PCI configuration space accesses using the mechanism denoted as Configuration Mechanism #1 in the PCI specification.

The MCH internal registers (I/O Mapped, and Configuration registers) are accessible by the host. The registers can be accessed as Byte, Word (16-bit), or DWord (32-bit) quantities, with the exception of CONF_ADDR, which can only be accessed as a DWord. All multi-byte numeric fields use "little-endian" ordering (i.e., lower addresses contain the least significant parts of the field).

3.1 Register Terminology

Term	Description	
RO	Read Only. If a register is read only, writes to this register have no effect.	
R/W	Read/Write. A register with this attribute can be read and written.	
R/W/L	Read/Write/Lock. A register with this attribute can be read, written, and locked.	
R/WC	Read/Write Clear. A register bit with this attribute can be read and written. However, a write of a 1 clears (sets to 0) the corresponding bit and a write of a 0 has no effect.	
R/WO	Read/Write Once. A register bit with this attribute can be written to only once after power up. After the first write, the bit becomes read only.	
L	Lock. A register bit with this attribute becomes read only after a lock-bit is set.	
Reserved Bits	Some of the MCH registers described in this section contain reserved bits. These bits are labeled "Reserved". Software must deal correctly with fields that are reserved. On reads, software must use appropriate masks to extract the defined bits and not rely on reserved bits being any particular value. On writes, software must ensure that the values of reserved bit positions are preserved. That is, the values of reserved bit positions must first be read, merged with the new values for other bit positions and then written back. Note that software does not need to perform read, merge, write operation for the Configuration Address (CONF_ADDR) register.	

Term	Description
Reserved Registers	In addition to reserved bits within a register, the MCH contains address locations in the configuration space that are marked "Reserved". When a "Reserved" register location is read, a random value is returned. ("Reserved" registers can be 8-, 16-, or 32-bit in size). Registers that are marked as "Reserved" must not be modified by system software. Writes to "Reserved" registers may cause system failure.
Default Value upon a Reset	Upon a Full Reset, the MCH sets all of its internal configuration registers to predetermined default states. Some register values at reset are determined by external strapping options. The default state represents the minimum functionality feature set required to successfully bring up the system. Hence, it does not represent the optimal system configuration. It is the responsibility of the system initialization software (usually BIOS) to properly determine the DRAM configurations, operating parameters and optional system features that are applicable, and to program the MCH registers accordingly.

3.2 PCI Configuration Space Access

Hub Interface_A physically connects the MCH and ICH2. From a configuration standpoint, Hub Interface_A is logically PCI bus #0. As a result, all devices internal to the MCH and ICH2 appear to be on PCI bus #0. The system's primary PCI expansion bus is physically attached to the ICH2 and, from a configuration perspective, appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge and therefore has a programmable PCI Bus number. **Note that the primary PCI bus is referred to as PCI_A in this document and is not PCI bus #0 from a configuration standpoint.** The AGP and 16-bit hub interface ports appear to system software to be real PCI busses behind PCI-to-PCI bridges resident as devices on PCI bus #0.

The MCH contains up to four PCI devices within a single physical component. The configuration registers for the six devices are mapped as devices residing on PCI bus #0.

- Device 0: Host-Hub Interface_A Bridge/DRAM Controller. Logically this appears as a PCI device residing on PCI bus #0. Physically Device 0 contains the standard PCI registers, DRAM registers, the Graphics Aperture controller, and other MCH specific registers.
- Device 1: Host-AGP Bridge. Logically this appears as a "virtual" PCI-to-PCI bridge residing on PCI bus #0. Physically Device 1 contains the standard PCI-to-PCI bridge registers and the standard AGP configuration registers (including the AGP I/O and memory address mapping).
- Device 2: Host-Hub Interface_B Bridge. Logically this bridge appears to be a PCI-to-PCI bridge device residing on PCI bus #0. Physically, Device 2 contains the standard PCI-to-PCI registers.
- Device 3: Host-Hub Interface_C Bridge. Logically this bridge appears to be a PCI-to-PCI bridge device residing on PCI bus #0. Physically, Device 3 contains the standard PCI-to-PCI registers.

The following table shows the Device # assignment for the various internal MCH devices:

MCH Function	Bus #0, Device #	Function #
DRAM Controller/8-bit Hub Interface_A Controller	Device 0	Function #0
Host-to-AGP Bridge (virtual P2P)	Device 1	Function #0
Host-to-16-bit Hub Interface_B Bridge (P2P)	Device 2	Function #0
Host-to-16-bit Hub Interface_C Bridge (P2P)	Device 3	Function #0

The MCH automatically detects if devices are connected to Hub Interface_B or Hub Interface_C by sampling the HL[11] signal on the rising edge of RSTIN#. When a hub interface is unpopulated, the associated configuration register space is hidden, returning all 1s for all registers just as if the cycle terminated with a Master Abort on PCI. If Hub Interface_C is used, then Hub Interface_B **must** be populated with an Intel P64H.

Note: Physical PCI bus #0 does not exist. The Hub Interface_A and the internal devices in the MCH and ICH2 logically constitute PCI Bus #0 to configuration software.

Standard PCI Bus Configuration Mechanism

The PCI Bus defines a slot based "configuration space" that allows each device to contain up to eight functions with each function containing up to 256, 8-bit configuration registers. The PCI specification defines two bus cycles to access the PCI configuration space: Configuration Read and Configuration Write. Memory and I/O spaces are supported directly by the processor. Configuration space is supported by a mapping mechanism implemented within the MCH. The PCI specification defines two mechanisms to access configuration space, Mechanism #1 and Mechanism #2. The MCH supports only Mechanism #1.

The configuration access mechanism makes use of the CONF_ADDR register and CONF_DATA register. To reference a configuration register a DWord I/O write cycle is used to place a value into CONF_ADDR that specifies the PCI bus, the device on that bus, the function within the device, and a specific configuration register of the device function being accessed. CONF_ADDR[31] must be 1 to enable a configuration cycle. CONF_DATA then becomes a window into the four bytes of configuration space specified by the contents of CONF_ADDR. Any read or write to CONF_DATA will result in the MCH translating the CONF_ADDR into the appropriate configuration cycle.

The MCH is responsible for translating and routing the processor's I/O accesses to the CONF_ADDR and CONF_DATA registers to internal MCH configuration registers, Hub Interface_A-C or AGP.

Routing Configuration Accesses

The MCH supports up to four bus interfaces: Hub Interface_A-C, and AGP. PCI configuration cycles are selectively routed to one of these interfaces. The MCH is responsible for routing PCI configuration cycles to the proper interface. PCI configuration cycles to ICH2 internal devices and Primary PCI (including downstream devices) are routed to the ICH2 via Hub Interface_A. PCI configuration cycles to one of the 16-bit hub interfaces are routed to Hub Interface_B-C. AGP configuration cycles are routed to AGP. The AGP interface is treated as a separate PCI bus from

the configuration point of view. Routing of configuration accesses to Hub Interface_B-C and AGP is controlled via the standard PCI-PCI bridge mechanism using information contained within the Primary Bus Number, the Secondary Bus Number, and the Subordinate Bus Number registers of the corresponding PCI-PCI bridge device.

Logical PCI BUS #0 Configuration Mechanism

The MCH checks the Bus Number (bits 23:16) and the Device Number fields of the CONF_ADDR register. If the Bus Number field of CONF_ADDR is 0, the configuration cycle is targeting a PCI Bus #0 device.

- The Host-Hub Interface_A Bridge entity within the MCH is hardwired as Device 0 on PCI Bus #0.
- The Host-AGP Bridge entity within the MCH is hardwired as Device 1 on PCI Bus #0.
- The Host-Hub Interface_B bridge entity within the MCH is hardwired as Device 2 on PCI Bus #0.
- The Host-Hub Interface_C bridge entity within the MCH is hardwired as Device 3 on PCI Bus #0.

Configuration cycles to any of the MCH's internal devices are confined to the MCH and not sent over Hub Interface_A. Accesses to disabled MCH internal devices, or devices #7 to #31 will be forwarded over Hub Interface_A as Type 0 configuration cycles.

Primary PCI and Downstream Configuration Mechanism

If the Bus Number in the CONF_ADDR is non-zero, and is less than the values programmed into any of the internal MCH device's Secondary Bus Number registers or greater than the values programmed into the Subordinate Bus Number registers, the MCH will generate a Type 1 Hub Interface_A Configuration Cycle. The ICH2 compares the non-zero Bus Number with the Secondary Bus Number and Subordinate Bus Number registers of its P2P bridges to determine if the configuration cycle is meant for Primary PCI or a downstream PCI bus.

AGP Bus Configuration Mechanism

From the chipset configuration perspective, AGP is seen as PCI bus interfaces residing on a Secondary Bus side of the "virtual" PCI-PCI bridges referred to as the MCH Host-AGP bridge. On the Primary bus side, the "virtual" PCI-PCI bridge is attached to PCI Bus #0. Therefore, the Primary Bus Number register is hardwired to 0. The "virtual" PCI-PCI bridge entity converts Type #1 PCI Bus Configuration cycles on PCI Bus #0 into Type 0 or Type 1 configuration cycles on the AGP interface. Type 1 configuration cycles on PCI Bus #0 that have a bus number that matches the Secondary Bus Number of one of the MCH's "virtual" P2P bridges will be translated into Type 0 configuration cycles on the AGP interface.

If the Bus Number is non-zero, greater than the value programmed into the Secondary Bus Number register, and less than or equal to the value programmed into the Subordinate Bus Number register, the MCH will generate a Type 1 PCI configuration cycle on AGP.

3.3 I/O Mapped Registers

The MCH contains a set of registers that reside in the Host I/O address space – the Configuration Address (CONF_ADDR) register and the Configuration Data (CONF_DATA) register. The Configuration Address register enables/disables the configuration space and determines what portion of configuration space is visible through the Configuration Data window.

3.3.1 CONF_ADDR—Configuration Address Register

I/O Address: 0CF8h Accessed as a DWord

Default Value: 00000000h
Access: Read/Write
Size: 32 bits

CONF_ADDR is a 32-bit register that can be accessed only as a DWord. A Byte or Word reference will "pass through" the Configuration Address register and Hub Interface_A onto the PCI bus as an I/O cycle. The CONF_ADDR register contains the Bus Number, Device Number, Function Number, and Register Number for which a subsequent configuration access is intended.

Bit	Descriptions
31	Configuration Enable (CFGE).
	1 = Enable
	0 = Disable
30:24	Reserved. These bits are read only and have a value of 0.
23:16	Bus Number. When the Bus Number is programmed to 00h the target of the Configuration Cycle is a hub interface agent (MCH, ICH2, etc.).
	The Configuration Cycle is forwarded to Hub Interface_A if the Bus Number is programmed to 00h and the MCH is not the target (the device number is \geq 4).
	If the Bus Number is non-zero and matches the value programmed into the Secondary Bus Number register of Device 1, a Type 0 PCI configuration cycle will be generated on AGP.
	If the Bus Number is non-zero, greater than the value in the Secondary Bus Number register of Device 1 and less than or equal to the value programmed into the Subordinate Bus Number register of Device 1 a Type 1 PCI configuration cycle will be generated on AGP.
	If the Bus Number is non-zero and matches the value programmed into the Secondary Bus Number register of Device 2–3 a Type 0 PCI configuration cycle will be generated on the corresponding Hub Interface_B–C.
	If the Bus Number is non-zero, and less than or equal to the value programmed into the Subordinate Bus Number register of Device 2–3 a Type 1 PCI configuration cycle will be generated on the corresponding Hub Interface_B
	If the Bus Number is non-zero, and does not fall within the ranges enumerated by Device 1–3's Secondary Bus Number or Subordinate Bus Number register, then a Hub Interface_A Type 1 Configuration Cycle is generated.

Bit	Descriptions
15:11	Device Number. This field selects one agent on the PCI bus selected by the Bus Number. When the Bus Number field is "00" the MCH decodes the Device Number field. The MCH is always Device Number 0 for the Host-Hub Interface_A bridge entity, Device Number 1 for the Host-AGP entity, and Device Number 2–3 for the Host-Hub Interface_B-C entities respectively. Therefore, when the Bus Number = 0 and the Device Number = 0–3, the internal MCH devices are selected.
	If the Bus Number is non-zero and matches the value programmed into the Secondary Bus Number register, a Type 0 PCI configuration cycle will be generated on AGP. The MCH decodes the Device Number field [15:11] and asserts the appropriate GAD signal as an IDSEL. For PCI-to-PCI Bridge translation, one of the 16 IDSELs is generated. When bit 15 = 0, bits [14:11] are decoded to assert a signal AD[31:16] IDSEL. GAD16 is asserted to access Device 0, GAD17 for Device 1, and so forth up to Device 15 for which will assert AD31. All device numbers higher than 15 cause a type 0 configuration access with no IDSEL asserted, which will result in a Master Abort reported in the MCH's "virtual" PCI-PCI bridge registers.
	For Bus Numbers resulting in Hub Interface_A–C configuration cycles, the MCH propagates the device number field as A[15:11]. For bus numbers resulting in AGP/PCI_B type 1 configuration cycles, the device number is propagated as GAD[15:11].
10:8	Function Number. This field is mapped to GAD[10:8] during AGP configuration cycles and A[10:8] during Hub Interface_A—C configuration cycles. This allows the configuration registers of a particular function in a multi-function device to be accessed. The MCH ignores configuration cycles to its internal devices if the function number is not equal to 0.
7:2	Register Number . This field selects one register within a particular bus, device, and function as specified by the other fields in the Configuration Address register. This field is mapped to GAD[7:2] during AGP configuration cycles and A[7:2] during Hub Interface_A-C configuration cycles.
1:0	Reserved

3.3.2 CONF_DATA—Configuration Data Register

I/O Address:0CFChDefault Value:00000000hAccess:Read/WriteSize:32 bits

CONF_DATA is a 32-bit Read/Write window into configuration space. The portion of configuration space that is referenced by CONF_DATA is determined by the contents of CONF_ADDR.

Bit	Descriptions
31:0	Configuration Data Window (CDW). If bit 31 of CONF_ADDR is 1, any I/O access to the CONF_DATA register will be mapped to configuration space using the contents of CONF_ADDR.

3.4 Host-Hub Interface_A Bridge Device Registers (Device 0)

Table 6 shows the address map and describes the access attributes for the Device 0 configuration space. An "s" in the Default Value field means that a strap determines the power-up default value for that bit.

Table 6. MCH Configuration Space (Device 0)

Address Offset	Register Symbol	Register Name	Default Value	Access
00–01h	VID	Vendor Identification	8086h	RO
02–03h	DID	Device Identification	2531h	RO
04–05h	PCICMD	PCI Command Register	0006h	RO, R/W
06–07h	PCISTS	PCI Status Register	0090h	RO, R/WC
08h	RID	Revision Identification	04h	RO
0Ah	SUBC	Sub-Class Code	00h	RO
0Bh	BCC	Base Class Code	06h	RO
0Dh	MLT	Master Latency Timer	00h	RO
0Eh	HDR	Header Type	00h	RO
10–13h	APBASE	Aperture Base Configuration	00000008h	RO, R/W
2C-2Dh	SVID	Subsystem Vendor Identification	0000h	R/WO
2E-2Fh	SID	Subsystem Identification	0000h	R/WO
34h	CAPPTR	Capabilities Pointer	A0h	RO
40–4Fh	GAR[0:15]	RDRAM* Device Group Architecture Register [0:15]	80h	RO, R/W
50–51h	MCHCFG	MCH Configuration	00000000 0000s00b	RO, R/W
52–57h	_	Reserved	_	_
58h	FDHC	Fixed DRAM Hole Control	00h	RO, R/W
59–5Fh	PAM[0:6]	Programmable Attribute Map [0:6]	00h	RO, R/W
60–61h	GBA0	RDRAM Device Group Boundary Address 0	0001h	RO, R/W
62–63h	GBA1	RDRAM Device Group Boundary Address 1	0001h	RO, R/W
64–65h	GBA2	RDRAM Device Group Boundary Address 2	0001h	RO, R/W
66–67h	GBA3	RDRAM Device Group Boundary Address 3	0001h	RO, R/W
68–69h	GBA4	RDRAM Device Group Boundary Address 4	0001h	RO, R/W
6A-6Bh	GBA5	RDRAM Device Group Boundary Address 5	0001h	RO, R/W
6C-6Dh	GBA6	RDRAM Device Group Boundary Address 6	0001h	RO, R/W
6E–6Fh	GBA7	RDRAM Device Group Boundary Address 7	0001h	RO, R/W

Address Offset	Register Symbol	Register Name	Default Value	Access
70–71h	GBA8	RDRAM Device Group Boundary Address 8	0001h	RO, R/W
72–73h	GBA9	RDRAM Device Group Boundary Address 9	0001h	RO, R/W
74–75h	GBA10	RDRAM Device Group Boundary Address A	0001h	RO, R/W
76–77h	GBA11	RDRAM Device Group Boundary Address B	0001h	RO, R/W
78–79h	GBA12	RDRAM Device Group Boundary Address C	0001h	RO, R/W
7A–7Bh	GBA13	RDRAM Device Group Boundary Address D	0001h	RO, R/W
7C-7Dh	GBA14	RDRAM Device Group Boundary Address E	0001h	RO, R/W
7E-7Fh	GBA15	RDRAM Device Group Boundary Address F	0001h	RO, R/W
80–87h	_	Reserved	_	_
88h	RDPS	RDRAM Device Pool Sizing Register	10h	RO, WO, L
90–93h	DRD	RDRAM Device Register Data	00000000h	R/W
94–97h	RICM	RDRAM Device Initialization Control Management	00000000h	RO, R/W
98–9Bh	_	Reserved	_	_
9Dh	SMRAM	System Management RAM Control	02h	RO, R/W, L
9Eh	ESMRAMC	Extended System Management RAM Control	38h	RO, R/W, R/WC, L
9Fh	_	Reserved	_	_
A0–A3h	ACAPID	AGP Capability Identifier	00200002h	RO
A4–A7h	AGPSTAT	AGP Status Register	1F000217h	RO
A8–ABh	AGPCMD	AGP Command Register	00000000h	RO, R/W
B0-B3h	AGPCTRL	AGP Control Register	00000000h	RO, R/W
B4h	APSIZE	Aperture Size	00h	RO, R/W
B8-BBh	ATTBASE	Aperture Translation Table	00000000h	RO, R/W
BCh	AMTT	AGP MTT Control Register	00h	RO, R/W
BDh	LPTT	AGP Low Priority Transaction Timer Register	00h	RO, R/W
BEh	RDT	RDRAM Device Timing	00h	R/W
BF-C3h	_	Reserved	_	_
C4-C5h	ТОМ	Top of Low Memory Register	0000h	R/W
C6–C7h	_	Reserved	_	
C8–C9h	ERRSTS	Error Status Register	0000h	R/WC
CA-CBh	ERRCMD	Error Command Register	0000h	R/W
CC-CDh	SMICMD	SMI Command Register	0000h	RO, R/W
CE-CFh	SCICMD	SCI Command Register	0000h	RO, R/W
D0-DBh	_	Reserved	_	_
DC-DDh	DRAMRC	RDRAM Device Refresh Control	0000h	RO, R/W

Address Offset	Register Symbol	Register Name	Default Value	Access
DE-DFh	SKPD	Scratchpad Data	0000h	R/W
E2-E3	DERRCTL	DRAM Error Control Register	0000h	RO
E4-E7h	EAP	DRAM Error Data Register	00000000h	RO
E8-F3h	_	Reserved	_	_
F4–F7h	MISC_CNTL	Miscellaneous Control Register	0000F874h	R/W
F8-FFh	_	Reserved	_	_

3.4.1 VID—Vendor Identification Register (Device 0)

Address Offset: 00–01h
Default Value: 8086h
Attribute: Read Only
Size: 16 bits

The VID register contains the vendor identification number. This 16-bit register, combined with the Device Identification register, uniquely identifies any PCI device. Writes to this register have no effect.

Bit	Description
15:0	Vendor Identification Number. This is a 16-bit value assigned to Intel. Intel VID = 8086h.

3.4.2 DID—Device Identification Register (Device 0)

Address Offset: 02–03h
Default Value: 2531h
Attribute: Read Only
Size: 16 bits

This 16-bit register combined with the Vendor Identification register uniquely identifies any PCI device. Writes to this register have no effect.

Bit	Description
15:0	Device Identification Number. This is a 16-bit value assigned to the MCH Host-Hub Interface_A Bridge Function #0.

3.4.3 PCICMD—PCI Command Register (Device 0)

Address Offset: 04–05h Default: 0006h

Access: Read/Write, Read Only

Size 16 bits

Since MCH Device 0 does not physically reside on PCI0 many of the bits are not implemented. Writes to bits that are not implemented have no affect.

Bit	Descriptions						
15:10	Reserved						
9	Fast Back-to-Back—RO. Not implemented; hardwired to 0. This bit controls whether or not the master can do fast back-to-back write. Since Device 0 is strictly a target this bit is not implemented.						
8	SERR Enable (SERRE)—R/W. This bit is a global enable bit for Device 0 SERR messaging. The MCH does not have an SERR# signal. The MCH communicates the SERR# condition by sending an SERR message to the ICH2.						
	1 = Enable. MCH is enabled to generate SERR messages over Hub Interface_A for specific Device 0 error conditions that are individually enabled in the ERRCMD register. The error status is reported in the ERRSTS and PCISTS registers.						
	0 = Disable.						
	NOTE: This bit only controls SERR message for the Device 0. Devices 1-5 have their own SERRE bits to control error reporting for error conditions occurring on their respective devices.						
7	Address/Data Stepping—RO. Not implemented; hardwired to 0.						
6	Parity Error Enable (PERRE)—R/W.						
	1 = MCH will generate an SERR message over Hub Interface_A to the ICH2 when an address or data parity error is detected by the MCH on Hub Interface_A (DPE set in PCISTS).						
	0 = MCH does not take any action when it detects a parity error on Hub Interface_A.						
5	VGA Palette Snoop—RO. Not implemented; hardwired to 0.						
4	Memory Write and Invalidate Enable (MWIE)—RO. Not implemented; hardwired to 0.						
3	Special Cycle Enable(SCE)—RO. Not implemented; hardwired to 0.						
2	Bus Master Enable (BME)—RO. Not implemented; hardwired to 1. The MCH is always enabled as a master on Hub Interface_A.						
1	Memory Access Enable (MAE)—RO. Not implemented; hardwired to 1.The MCH always allows access to main memory.						
0	I/O Access Enable (IOAE)—RO. Not implemented; hardwired to 0.						

3.4.4 PCISTS—PCI Status Register (Device 0)

Address Offset: 06–07h Default Value: 0090h

Access: Read Only, Read/Write Clear

Size: 16 bits

PCISTS is a 16-bit status register that reports the occurrence of error events on devices on the hub interface (Device 0s). Since MCH Device 0 is the Host-to-Hub Interface_A bridge, many of the bits are not implemented.

Bit	Description
15	Detected Parity Error (DPE)—R/WC.
	1 = MCH detects a parity error on Hub Interface_A.
	0 = Software clears this bit by writing a 1 to it.
14	Signaled System Error (SSE)—R/WC.
	1 = Device 0 generates an SERR message over Hub Interface_A for any enabled Device 0 error condition. Device 0 error conditions are enabled in the PCICMD and ERRCMD registers. Device 0 error flags are read/reset from the PCISTS or ERRSTS registers.
	0 = Software sets SSE to 0 by writing a 1 to this bit.
13	Received Master Abort Status (RMAS)—R/WC.
	1 = MCH generates a Hub Interface_A request that receives a Master Abort completion packet or Master Abort Special Cycle.
	0 = Software sets SSE to 0 by writing a 1 to this bit.
12	Received Target Abort Status (RTAS)—R/WC.
	1 = MCH generates a Hub Interface_A request that receives a Target Abort completion packet or Target Abort Special Cycle.
	0 = Software sets SSE to 0 by writing a 1 to this bit.
11	Signaled Target Abort Status (STAS)—RO. Not implemented; hardwired to 0. The MCH will not generate a Target Abort Hub Interface_A completion packet or Special Cycle.
10:9	DEVSEL Timing (DEVT) . Hardwired to 00. Hub interface does not comprehend DEVSEL# protocol.
8	Master Data Parity Error Detected (DPD)—RO. Hardwired to 0. PERR signaling and messaging are not implemented by the MCH.
7	Fast Back-to-Back (FB2B)—RO. Hardwired to 1.
6:5	Reserved
4	Capability List (CLIST)—RO.
	1 = Indicates to the configuration software that this device/function implements a list of new capabilities. A list of new capabilities is accessed via register CAPPTR at configuration address offset 34h. Register CAPPTR contains an offset pointing to the start address within configuration space of this device where the AGP Capability standard register resides.
3:0	Reserved

3.4.5 RID—Revision Identification Register (Device 0)

Address Offset: 08h
Default Value: 04h
Access: Read Only
Size: 8 bits

This register contains the revision number of the MCH Device 0. These bits are read only and writes to this register have no effect.

Bit	Description
7:0	Revision Identification Number. This is an 8-bit value that indicates the revision identification number for the MCH Device 0.
	A-3 Stepping = 04h.

3.4.6 SUBC—Sub-Class Code Register (Device 0)

Address Offset: 0Ah
Default Value: 00h
Access: Read Only
Size: 8 bits

This register contains the Sub-Class Code for the MCH Device 0.

Bit	Description
7:0	Sub-Class Code (SUBC) . This is an 8-bit value that indicates the category of bridge for the MCH.
	00h = Host Bridge.

3.4.7 BCC—Base Class Code Register (Device 0)

Address Offset: 0Bh
Default Value: 06h
Access: Read Only
Size: 8 bits

This register contains the Base Class Code of the MCH Device 0.

Bit	Description
7:0	Base Class Code (BASEC). This is an 8-bit value that indicates the Base Class Code for the MCH.
	06h = Bridge device.

3.4.8 MLT—Master Latency Timer Register (Device 0)

Address Offset: 0Dh
Default Value: 00h
Access: Read Only
Size: 8 bits

The hub interface does not comprehend the concept of Master Latency Timer. Therefore, this register is not implemented.

Bit	Description
7:0 These bits are hardwired to 0. Writes have no effect.	

3.4.9 HDR—Header Type Register (Device 0)

Offset: 0Eh
Default: 00h
Access: Read Only
Size: 8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Description
7:0	This read only field always returns 0s when read and writes have no affect.

3.4.10 APBASE—Aperture Base Configuration Register (Device 0)

Offset: 10–13h
Default: 00000008h

Access: Read/Write, Read Only

Size: 32 bits

The APBASE is a standard PCI Base Address register that is used to set the base of the Graphics Aperture. The standard PCI Configuration mechanism defines the base address configuration register such that only a fixed amount of space can be requested (dependent on which bits are hardwired to 0 or behave as hardwired to 0). To allow for flexibility (of the aperture), an additional register called APSIZE is used as a "back-end" register to control which bits of the APBASE will behave as hardwired to 0. This register will be programmed by the MCH specific BIOS code that will run before any of the generic configuration software is run.

Note: Bit 9 of the MCHCFG register is used to prevent accesses to the aperture range before configuration software initializes this register and the appropriate translation table structure has been established in the main memory.

Bit							Description
31:28		•	•	able B		ddress	bits—R/W. These bits are used to locate the range size
	Defa	ult = 00	000				
27:22		lwired"			_		ase Address bits—R/W. These bits behave as a ding on the contents of the APSIZE register as defined
	27	26	25	24	23	22	Aperture Size
	r/w	r/w	r/w	r/w	r/w	r/w	4 MB
	r/w	r/w	r/w	r/w	r/w	0	8 MB
	r/w	r/w	r/w	r/w	0	0	16 MB
	r/w	r/w	r/w	0	0	0	32 MB
	r/w	r/w	0	0	0	0	64 MB
	r/w	0	0	0	0	0	128 MB
	0	0	0	0	0	0	256 MB
	Bits 2	27:22 a	re con	trolled	by the	bits 5:0	of the APSIZE register in the following manner:
				=0, API		27]=0. It	f APSIZE[5]=1, APBASE[27]=R/W. The same applies
	 Default for APSIZE[5:0]=000000b forces default APBASE[27:22] =000000b (i.e., all bits respond as hardwired to 0). This provides a default to the maximum aperture size of 25 The MCH specific BIOS is responsible for selecting smaller size (if required) before PC configuration software runs and establishes the system address map. 				vides a default to the maximum aperture size of 256 MB. le for selecting smaller size (if required) before PCI		
21:4	Hard	lwired	to 0. T	his for	ces mir	nimum a	aperture size selected by this register to be 4 MB.
3	prefe regai	tchable	e (i.e., of the b	there a oyte en	re no s	ide effe	d to 1 to identify the graphics aperture range as octs on reads, the device returns all bytes on reads MCH may merge processor writes into this range
2:1	the a		range	define			essing type and they are hardwired to 00 to indicate that bits of this register can be located anywhere in the
0	Mem	ory Sp	ace In	dicato	r—RO	. Hardw	ired to 0 to identify aperture range as a memory range.

3.4.11 SVID—Subsystem Vendor ID Register (Device 0)

Offset: 2C-2Dh Default: 0000h

Access: Read/Write Once

Size: 16 bits

This value is used to identify the vendor of the subsystem.

Bit	Description
15:0	Subsystem Vendor ID. The default value is 00h. This field should be programmed during bootup. After this field is written once, it becomes read only.

3.4.12 SID—Subsystem ID Register (Device 0)

Offset: 2E–2Fh Default: 0000h

Access: Read/Write Once

Size: 16 bits

This value is used to identify a particular subsystem.

Bit	Description
15:0	Subsystem ID (R/WO). The default value is 00h. This field should be programmed during bootup. After this field is written once, it becomes read only.

3.4.13 CAPPTR—Capabilities Pointer Register (Device 0)

Offset: 34h

Default: AGP-A0h Access: Read Only Size: 8 bits

The CAPPTR provides the offset that is the pointer to the location where the AGP standard registers are located.

Bit	Description
7:0	Pointer to the start of AGP standard register block. This pointer indicates where software can find the beginning of the AGP register block. The value in this field is A0h when the AGP interface is configured for AGP mode.

3.4.14 GAR[0:15]—RDRAM* Device Group Architecture Register (Device 0)

Address Offset: 40–4Fh
Default Value: 80h

Access: Read/Write, Read Only

Size: 8 bits/register

This 8-bit register defines the #of banks and DRAM technology of each device group in the Rambus Channel. There are 16 GAR registers (GAR0–GAR15) that are used to define 16 groups for the Rambus Channel.

Bit	Description					
7:6	Device Page Size (DPS). This field defines the page size of the each device in the corresponding group.					
	00 = Reserved					
	01 = Reserved					
	10 = 1 KB					
	11 = 2 KB					
5	Reserved					
4	Device Banks (DB). This field defines the number of bank architecture in each device in the group.					
	0 = 16 dependent Banks					
	1 = 32 dependent Banks arranged in two groups of 16 dependent banks (i.e., 2x16)					
3	Reserved					
2:1	Device DRAM Technology (DDT). This field defines the DRAM technology of each device in the group.					
	00 = Reserved					
	01 = 128/144Mbit					
	10 = 256/288Mbit					
	11 = Reserved					
0	Reserved					

3.4.15 MCHCFG—MCH Configuration Register (Device 0)

Offset: 50–51h

Default: 0000_0000_0000_0s00b

Access: Read/Write Once, Read/Write, Read Only

Size: 16 bits

Bit	Description								
15:13	Number of Stop Grant Cycles—R/W. Number of Stop Grant transactions expected on the host bus before a Stop Grant Acknowledge packet is sent to the ICH2. This field is programmed by the BIOS after it has enumerated the processors and before it has enabled Stop Clock generation in the ICH2. Note that each enabled thread within each processor will generate Stop Grant Acknowledge transactions.								
	Bits[15:13] HL_A Stop Grant Generated After								
	000 1 System Bus Stop Grant (default)								
	001 2 System Bus Stop Grants								
	010 3 System Bus Stop Grants								
	011 4 System Bus Stop Grants								
	100 5 System Bus Stop Grants								
	101 6 System Bus Stop Grants								
	110 7 System Bus Stop Grants								
	111 8 System Bus Stop Grants								
12	Reserved								
11	Direct RDRAM* Device Frequency—R/W. These bits are written by the BIOS after polling the Direct RDRAM devices and finding the least common denominator speed.								
	0 = 300 MHz (default)								
	1 = 400 MHz								
10	Reserved								
9	Aperture Access Global Enable—R/W. This bit is used to prevent access to the graphics aperture from any port (host, Hub Interface_A, Hub Interface_B, Hub Interface_C, or AGP) before configuration software establishes the aperture range and appropriate translation table in the main DRAM has been initialized. It must be set after system is fully configured for aperture accesses.								
	1 = Enable								
	0 = Disable (default)								
8:7	DRAM Data Integrity Mode (DDIM)—R/W. These bits select one of two DRAM data integrity modes.								
	00 = Non-ECC (Byte-Wise Writes supported, RDRAM device only) (default)								
	01 = Reserved								
	10 = ECC Mode (Generation and Error Checking/Correction)								
	11 = Reserved								
6	Reserved								

Bit	Description
5	MDA Present (MDAP)—R/W. This bit works with the VGA enable bit in the BCTRL register of Device 1–3 to control the routing of host-initiated transactions targeting MDA compatible I/O and memory address ranges. This bit should not be set when the VGA enable bit is not set in either Device 1–3. If the VGA enable bit is set, accesses to IO address range x3BCh–x3BFh are forwarded to Hub Interface_A. MDA resources are defined as follows:
	Memory: 0B0000h-0B7FFFh
	I/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh, (including ISA address aliases, A[15:10] are not used in decode)
	Any I/O reference that includes the I/O locations listed above, or their aliases, will be forwarded to the Hub Interface_A even if the reference includes I/O locations not listed above.
	Refer to the System Address Map section of this document for further information.
4:3	Reserved
2	In-Order Queue Depth (IOQD)—RO. This bit reflects the value sampled on HA7# on the deassertion of the CPURST#. It indicates the depth of the host bus in-order queue (i.e., level of host bus pipelining). If IOQD is set to 1 (i.e., HA7# sampled 1, undriven on the host bus), then the depth of the host bus in-order queue is configured to the maximum allowed by the host bus protocol (i.e., 12). Note that the MCH has an 8-deep IOQ and asserts BNR# on the bus to limit the number of queued bus transactions to 8. If the IOQD bit is set to 0 (HA7# is sampled 0, asserted), then the depth of the host bus in-order queue is set to 1 (i.e., no pipelining support on the host bus).
	Note: HA7# is not driven by the MCH during CPURST#. If an IOQ size of 1 is desired, HA7# must be driven low during CPURST# by an external source.
1	APIC Memory Range Disable (APICDIS)—RW.
	1 = Disable. The MCH forwards accesses to the IOAPIC regions to the appropriate interface, as specified by the memory and PCI configuration registers.
	0 = Enable. The MCH sends cycles between 0_FEC0_0000 and 0_FEC7_FFFF to Hub Interface_A; accesses between 0_FEC8_0000 and 0_FEC8_0FFF are sent to Hub Interface_B; accesses between 0_FEC8_1000 and 0_FEC8_1FFF are sent to Hub Interface_C.

3.4.16 FDHC—Fixed DRAM Hole Control Register (Device 0)

Address Offset: 58h Default Value: 00h

Access: Read/Write, Read Only

Size: 8 bits

This 8-bit register controls a fixed DRAM hole.

Bit	Description
7	Hole Enable (HEN). This field enables a memory hole in DRAM space. Host cycles matching an enabled hole are passed on to ICH2 through the hub interface. The hub interface cycles matching an enabled hole will be ignored by the MCH. Note that a selected hole is not re-mapped.
	0 = Disable (No hole)
	1 = Enable. Hole at 15 MB–16 MB (1 MB)
6:0	Reserved.

3.4.17 PAM[0:6]—Programmable Attribute Map Registers (Device 0)

Address Offset: 59–5Fh Default Value: 00h

Attribute: Read/Write, Read Only

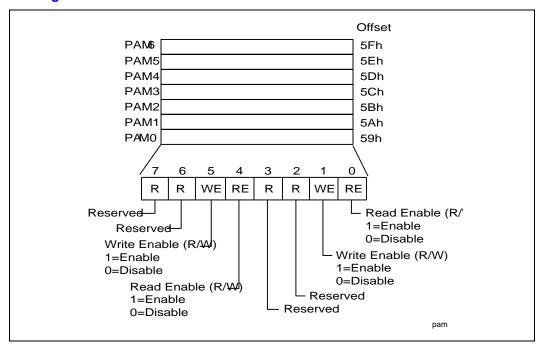
Size: 8 bits

The MCH allows programmable memory attributes on 13 legacy memory segments of various sizes in the 640-KB to 1-MB address range. Seven Programmable Attribute Map (PAM) Registers are used to support these features. Cacheability of these areas is controlled via the MTRR registers in the processor. Two bits are used to specify memory attributes for each memory segment. These bits apply to host initiator only access to the PAM areas. MCH will forward to main memory for any AGP, PCI or Hub Interface_A—C initiated accesses to the PAM areas. These attributes are:

- **RE** (**Read Enable**). When RE = 1, the host read accesses to the corresponding memory segment are claimed by the MCH and directed to main memory. Conversely, when RE = 0, the host read accesses are directed to PCIO.
- WE (Write Enable). When WE = 1, the host write accesses to the corresponding memory segment are claimed by the MCH and directed to main memory. Conversely, when WE = 0, the host write accesses are directed to PCIO.

The RE and WE attributes permit a memory segment to be read only, write only, read/write, or disabled. For example, if a memory segment has RE = 1 and WE = 0, the segment is read only.

Each PAM register controls two regions, typically 16 KB in size. Each of these regions has a 4-bit field. The four bits that control each region have the same encoding and are defined in the following table.


Bits [7, 3] Reserved	Bits [6, 2] Reserved	Bits [5, 1] WE	Bits [4, 0] RE	Description
Х	Х	0	0	Disabled. DRAM is disabled and all accesses are directed to the Hub Interface_A. The MCH does not respond as a PCI target for any read or write access to this area.
X	X	0	1	Read Only. Reads are forwarded to DRAM and writes are forwarded to the Hub Interface_A for termination. This write protects the corresponding memory segment. The MCH will respond as an AGP or the Hub Interface_A target for read accesses but not for any write accesses.
Х	X	1	0	Write Only. Writes are forwarded to DRAM and reads are forwarded to the hub interface for termination. The MCH will respond as an AGP or Hub Interface_A target for write accesses but not for any read accesses.
Х	Х	1	1	Read/Write. This is the normal operating mode of main memory. Both read and write cycles from the host are claimed by the MCH and forwarded to DRAM. The MCH will respond as an AGP or the Hub Interface_A target for both read and write accesses.

At the time that a HI or AGP accesses to the PAM region may occur, the targeted PAM segment must be programmed to be both readable and writeable.

As an example, consider BIOS that is implemented on the expansion bus. During the initialization process, BIOS can be shadowed in main memory to increase the system performance. When BIOS is shadowed in main memory, it should be copied to the same address location. To shadow BIOS, the attributes for that address range should be set to write only. BIOS is shadowed by first doing a read of that address. This read is forwarded to the expansion bus. The host then does a write of the same address, which is directed to main memory. After BIOS is shadowed, the attributes for that memory area are set to read only so that all writes are forwarded to the expansion bus. Table 7 and Figure 3 show the PAM registers and the associated attribute bits.

Figure 3. PAM Register Attribute Bits

Table 7. PAM Registers

PAM Reg	Attribute Bits				Memory Segment	Comments	Offset
PAM0[3:0]	Reserved						59h
PAM0[7:4]	R	R	WE	RE	0F0000h-0FFFFFh	BIOS Area	59h
PAM1[3:0]	R	R	WE	RE	0C0000h-0C3FFFh	ISA Add-on BIOS	5Ah
PAM1[7:4]	R	R	WE	RE	0C4000h-0C7FFFh	ISA Add-on BIOS	5Ah
PAM2[3:0]	R	R	WE	RE	0C8000h-0CBFFFh	ISA Add-on BIOS	5Bh
PAM2[7:4]	R	R	WE	RE	0CC000h-0CFFFFh	ISA Add-on BIOS	5Bh
PAM3[3:0]	R	R	WE	RE	0D0000h-0D3FFFh	ISA Add-on BIOS	5Ch
PAM3[7:4]	R	R	WE	RE	0D4000h-0D7FFFh	ISA Add-on BIOS	5Ch
PAM4[3:0]	R	R	WE	RE	0D8000h-0DBFFFh	ISA Add-on BIOS	5Dh
PAM4[7:4]	R	R	WE	RE	0DC000h-0DFFFFh	ISA Add-on BIOS	5Dh
PAM5[3:0]	R	R	WE	RE	0E0000h-0E3FFh	BIOS Extension	5Eh
PAM5[7:4]	R	R	WE	RE	0E4000h-0E7FFFh	BIOS Extension	5Eh
PAM6[3:0]	R	R	WE	RE	0E8000h-0EBFFFh	BIOS Extension	5Fh
PAM6[7:4]	R	R	WE	RE	0EC000h-0EFFFFh	BIOS Extension	5Fh

For details on overall system address mapping scheme see the *System Address Map* section of this document.

- DOS Application Area (00000h–9FFFh): The DOS area is 640 KB and is divided into two parts. The 512 KB area at 0 to 7FFFFh is always mapped to the main memory controlled by the MCH. The 128 KB address range from 080000 to 09FFFFh can be mapped to PCI0 or to main memory. By default this range is mapped to main memory and can be declared as a main memory hole (accesses forwarded to PCI0) via MCH FDHC configuration register.
- Video Buffer Area (A0000h–BFFFFh): Attribute bits do not control this 128 KB area. The host -initiated cycles in this region are always forwarded to either PCI0 or AGP unless this range is accessed in SMM mode. Routing of accesses is controlled by the Legacy VGA control mechanism of the "virtual" PCI-PCI bridge device embedded within the MCH. This area can be programmed as SMM area via the SMRAM register. When used as a SMM space, this range cannot be accessed from the hub interface or AGP.
- Expansion Area (C0000h–DFFFFh): This 128 KB area is divided into eight 16 KB segments that can be assigned with different attributes via PAM control register as defined by Table 7.
- Extended System BIOS Area (E0000h–EFFFFh): This 64 KB area is divided into four 16 KB segments that can be assigned with different attributes via PAM control register as defined by Table 7.
- System BIOS Area (F0000h–FFFFFh): This area is a single 64 KB segment that can be assigned with different attributes via PAM Control register as defined by the table above.

3.4.18 GBA[0:15]—RDRAM* Device Group Boundary Address Register (Device 0)

Address Offset: 60–7Fh
Default: 0001h
Access: Read/Write
Size 16 bits/register

This register is locked and becomes read only when the D_CLK bit in the SMRAM register is set. This is done to improve SMM security.

The Direct RDRAM device-pairs are logically arranged into groups. There are eight groups when the MCH is configured for single channel-pair mode operation (No repeater hubs), and there are four groups for multiple channel-pair mode operation (with repeater hubs). Each group requires a separate GBA register. The GBA registers define group ID and the upper and lower addresses for each group in a channel-pair. Contents of bits 0:10 of this register represent the boundary addresses in 16-MB granularity.

For example, a value of 01h indicates that the programmed group applies to memory below 16 MB. Only the first eight GBA registers are used in single channel-pair mode. All 16 GBA registers are used in multiple channel-pair mode. Note that GBA15 must always contain the group boundary address that points to the TOM, whether the MCH is being used in single channel-pair mode or multiple channel-pair mode.

```
60–61h GBA0 = Total memory in group0 (in 16 MB)
62–63h GBA1 = Total memory in group0 + group1 (in 16 MB)
64–65h GBA2 = Total memory in group0 + group1 + group2 (in 16 MB)
66–67h GBA3 = Total memory in group0 + group1 + group2 + group3 (in 16 MB)
7E–7Fh GBA15 = Total memory in group0 + group1 + group2 + ... + group15 (in 16 MB)
```

Bit	Description
15:14	Channel ID (CHID). Reflects the ID of the Rambus* Channel described by this GBA entry. This field is only used when Intel [®] MRH-R is present.
13:11	Group ID (GID). This 3-bit value is used to identify a logical group of Direct RDRAM* devices. This value and appropriate address bits are used to generate the device RDRAM_D device ID.
	Note: All device-pairs populated in a group must be of the same memory technology.
10:0	Group Boundary Address (GBA). This 11-bit value is compared against address lines A[34:24] to determine the upper address limit of a particular group of devices (i.e., GBA minus previous GBA = group size).

3.4.19 RDPS—RDRAM* Device Pool Sizing Register (Device 0)

Address Offset: 88h Default Value: 10h

Access: Read Only, Write Once, Lock

Size: 8 bits

Bit	Description				
7	Pool Lock (LOCK).				
	1 = RDPS register is read only.				
	0 = RDPS register is read/write.				
6	Reserved				
5	Reinitialize Direct RDRAM* Device Pools (POOLINIT). When the POOLINIT bit is set, the Direct RDRAM device pools are reinitialized to the default value contained in this register. As long as this bit is 0, the other fields in this register may be modified without changing the behavior of the pools. Only when this bit is set or when a thermal over-temperature condition occurs are the values programmed into this register re-examined by the pool logic.				
	Following a write of 1 to this bit, the new pool sizes will take effect and the DRAM interface logic will perform any operations (e.g., NAP'ing devices) necessary to comply with the new pool constraints. When these compliance operations are completed and the MCH is operating with the new pool settings, the POOLINIT bit is cleared to 0. Software can poll the bit to check for completion of the pool mode transition prior to proceeding with test cases.				
	Note: While over-temperature conditions (during OVERT# or current calibration) do cause new pool values to be loaded, they do not have any effect on the contents of this bit.				
4	Pool C Operating Mode (PCS).				
	1 = All devices found neither in pool A nor in pool B are assumed to be in nap mode.				
	0 = all devices in pool C are assumed to be in standby mode.				
	Note: Even though this bit defaults to 1 (which is pool C nap mode), the MCH functionally defaults to pool C standby mode. This bit must be written to a 1 to invoke pool C nap mode.				
3:2	Pool A Capacity (PAC). This field defines the maximum number of Direct RDRAM devices that can reside in Pool A at a time.				
	00 = 1				
	01 = 2				
	10 = 4 11 = 8				
4.0					
1:0	Pool B Capacity (PBC). This field defines the maximum number of Direct RDRAM devices that can reside in Pool B at a time.				
	00 = 1				
	01 = 4				
	10 = 8				
	11 = 16				

3.4.20 DRD—RDRAM* Device Register Data Register (Device 0)

Address Offset: 90–93h
Default Value: 0000h
Access: Read/Write
Size: 32 bits

Bit	Description
31:0	Register Data (RD). Bits 31:0 contain the 32 bits of data to be written to a Direct RDRAM* device register or the data read from a Direct RDRAM device register as a result of IOP execution. Data will be valid when the IIO bit of the RICM register has transitioned from 1 to 0. Bits 31:16 apply to Rambus* Channel A and bits 15:0 apply to Rambus Channel B.

3.4.21 RICM—RDRAM* Device Initialization Control Management Register (Device 0)

Address Offset: 94–97h
Default Value: 00000000h

Access: Read/Write, Read Only

Size: 32 bits

Bit	Description			
31:30	Reserved			
29:28	Time To Powerup (TPU). This field defines the total powerdown exit time for Direct RDRAM* devices and corresponds to the Direct RDRAM* device (PDNA+tPDNB) timing.			
	00 = 42.0 μs			
	01 = 34.5 μs			
	10 = 27.0 μs			
	11 = 19.5 μs			
27	Initialization Complete (IC). This bit is for hardware use.			
	1 = BIOS sets this bit to 1 after the initialization of the Direct RDRAM device memory array is complete.			
26:25	Reserved			
24	MRH-R Present (MRHRP).			
	1 = This bit is asserted by software when it detects the presence of Memory Repeater Hub for Direct RDRAM device in the system.			
23	Initiate Initialization Operation (IIO). The software must check to see if this bit is 0 before writing to it.			
	1 = Execution of the initialization operation specified by IOP starts.			
	0 = After the execution is completed, the MCH clears this bit to 0. The operations that specify register data read from the Direct RDRAM device will have the data valid in DRD register when this is cleared to 0.			
22	Reserved			

Bit	Description			
21:20	Channel ID (CID). This field specifies the channel address for which the initialization or the channel reset operation is initialed.			
19	Broadcast Address (BA).			
	1 = Initialization operation (IOP) is broadcast to a field is don't care.	all devices. When this bit is set to 1, the DSA		
18:10	Device Register Address (DRA). This field specifies the register address for the registers read and write operations.			
9:5	Serial Device/Channel Address (SDCA). This 5 Direct RDRAM* device to which the initialization of to be sent by MCH.	·		
4:0	Initialization Opcode (IOP). This field specifies the initialization operation to be done on Direct RDRAM devices.			
	00000 = RDRAM Register Read 00001 = RDRAM Register Write 00010 = RDRAM Set Reset 00011 = Reserved 00100 = RDRAM Set Fast Clock Mode 00101 = RDRAM Temperature Calibrate Enable 00110 = RDRAM Temperature Calibrate 00111 = Reserved 01000 = MRH Redirect Next SIO 01001 = MRH Stick SIO Reset 01010 = RESERVED 01011 = RESERVED 01011 = RESERVED 01101 = RESERVED 01101 = RESERVED 01101 = RESERVED 01111 = RESERVED	10000 = RDRAM Current Calibration 10001 = RDRAM SIO Reset 10010 = RDRAM Powerdown Exit 10011 = RDRAM Powerdown Entry 10100 = RDRAM Nap Entry 10101 = RDRAM Nap Exit 10110 = RDRAM Refresh 10111 = RDRAM Precharge 11000 = Manual Current Calibr. of MCH RAC 11001 = MCH RAC load RAC A config. Reg. 11010 = MCH RAC load RAC B config. Reg. 11011 = Initialize MCH RAC 11100 = MCH RAC Current Calibration 11101 = MCH RAC Thermal Calibration 11110 = Reserved 11111 = PowerUp All Sequence		

3.4.22 SMRAM—System Management RAM Control Register (Device 0)

Address Offset: 9Dh Default Value: 02h

Access: Read/Write, Read Only, Lock

Size: 8 bits

The SMRAMC register controls how accesses to Compatible and Extended SMRAM spaces are treated. The open, close, and lock-bits function only when G_SMRAME bit is set to a 1. Also, the open bit must be reset before the lock-bit is set. A system device must not access the System Management Mode (SMM) space through the graphic aperture GTLB.

Bit	Description			
7	Reserved			
6	SMM Space Open (D_OPEN).			
	1 = Open. When D_OPEN=1 and D_LCK=0, the SMM space DRAM is made visible even when SMM decode is not active. This is intended to help BIOS initialize SMM space. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time. When D_LCK is set to a 1, D_OPEN is reset to 0 and becomes read only.			
	0 = Not open			
5	SMM Space Closed (D_CLS).			
	1 = Closed. SMM space DRAM is not accessible to data references, even if SMM decode is active. Code references may still access SMM space DRAM. This will allow SMM software to reference "through" SMM space to update the display even when SMM is mapped over the VGA range. Software should ensure that D_OPEN=1 and D_CLS=1 are not set at the same time.			
	0 = Not Closed			
	Note: That the D_CLS bit only applies to Compatible SMM space.			
4	SMM Space Locked (D_LCK).			
	1 = When D_LCK is set to 1 then D_OPEN is reset to 0 and D_LCK, D_OPEN, C_BASE_SEG, H_SMRAM_EN, TSEG_SZ and TSEG_EN become "read only". D_LCK can be set to 1 via a normal configuration space write but can only be cleared by a Full Reset. The combination of D_LCK and D_OPEN provide convenience with security. The BIOS can use the D_OPEN function to initialize SMM space and then use D_LCK to "lock down" SMM space in the future so that no application software (or BIOS itself) can violate the integrity of SMM space, even if the program has knowledge of the D_OPEN function.			
	0 = Can only be cleared by a full reset.			
3	Global SMRAM Enable (G_SMRAME).			
	1 = Enable. Compatible SMRAM functions are enabled, providing 128 KB of DRAM accessible at the A0000h address while in SMM (ADS# with SMM decode). To enable Extended SMRAM function this bit has to be set to 1.			
	0 = Disable			
	Note: Once D_LCK is set, this bit becomes read only.			
2:0	Compatible SMM Space Base Segment (C_BASE_SEG)—RO. This field indicates the location of SMM space. "SMM DRAM" is not remapped. It is simply "made visible" if the conditions are right to access SMM space, otherwise the access is forwarded to the hub interface. C_BASE_SEG is hardwired to 010 to indicate that the MCH supports the SMM space at A0000h—BFFFFh.			

3.4.23 ESMRAMC—Extended System Management RAM Control Register (Device 0)

Address Offset: 9Eh Default Value: 38h

Access: Read Only, Read/Write, Read/Write Clear, Lock

Size: 8 bits

The Extended SMRAM register controls the configuration of Extended SMRAM space. The Extended SMRAM (E_SMRAM) memory provides a write-back cacheable SMRAM memory space that is above 1 MB.

Bit	Description
7	H_SMRAM_EN (H_SMRAME)—R/W. This bit controls the SMM memory space location (i.e., above 1 MB or below 1 MB).
	1 = When G_SMRAME is 1, the high SMRAM memory space is enabled. SMRAM accesses from FEDA0000h to FEDBFFFFh are remapped to DRAM address 000A0000h–000BFFFFh.
	Note: Once D_LCK is set, this bit becomes read only.
6	E_SMRAM_ERR (E_SMERR)—R/WC.
	The host accesses the defined memory ranges in Extended SMRAM (High Memory and T-segment) while not in SMM space and with the D-OPEN bit = 0.
	0 = It is software's responsibility to clear this bit. The software must write a 1 to clear this bit.
5	SMRAM_Cache (SM_CACHE)—R/O. Hardwired to 1.
4	SMRAM_L1_EN (SM_L1)—RO. Hardwired to 1.
3	SMRAM_L2_EN (SM_L2)—RO. Hardwired to 1.
2:1	TSEG_SZ[1:0] (T_SZ)—R/W. This field selects the size of the TSEG memory block if enabled. This memory is taken from the top of DRAM space (i.e., TOM - TSEG_SZ), which is no longer claimed by the memory controller (all accesses to this space are sent to the hub interface if TSEG_EN is set). This field decodes as follows:
	00 = (TOM - 128 KB) to TOM
	01 = (TOM - 256 KB) to TOM
	10 = (TOM - 512 KB) to TOM
	11 = (TOM - 1 MB) to TOM
	Note: Once D_LCK is set, this bit becomes read only.
0	TSEG_EN (T_EN)—R/W. Enabling of SMRAM memory (TSEG, 128 KB, 256 KB, 512 KB or 1 MB of additional SMRAM memory) for Extended SMRAM space only.
	1 = Enable. When G_SMRAME =1 and TSEG_EN = 1, the TSEG is enabled to appear in the appropriate physical address space.
	0 = Disable.
	Note: Once D_LCK is set, this bit becomes read only.

3.4.24 ACAPID—AGP Capability Identifier Register (Device 0)

Address Offset:

Default Value:

Access:

Read Only
Size:

32 bits

This register provides standard identifier for AGP capability.

Bit	Description
31:24	Reserved
23:20	Major AGP Revision Number. These bits provide a major revision number of AGP specification to which this version of MCH conforms. This field is hardwired to value of "0010b" (i.e., implying Rev 2.x).
19:16	Minor AGP Revision Number. These bits provide a minor revision number of AGP specification to which this version of MCH conforms. This number is hardwired to value of "0000" (i.e., implying Revision x.0)
	Note: Together with major revision number this field identifies MCH as an <i>AGP Revision 2.0</i> -compliant device.
15:8	Next Capability Pointer. AGP capability is the first and the last capability described via the capability pointer mechanism and therefore these bits are hardwired to 0 to indicate the end of the capability linked list.
7:0	AGP Capability ID. This field identifies the linked list item as containing AGP registers. This field has a value of 0000_0010b assigned by the PCI SIG.

3.4.25 AGPSTAT—AGP Status Register (Device 0)

Address Offset: A4–A7h
Default Value: 1F000217h
Access: Read Only
Size: 32 bits

This register reports AGP device capability/status.

Bit	Description	
31:24	Requests (RQ). This field is hardwired to 1Fh to indicate a maximum of 32 outstanding AGP command requests can be handled by the MCH. This field contains the maximum number of AGP command requests the MCH is configured to manage.	
	Default =1Fh to allow a maximum of 32 outstanding AGP command requests.	
23:10	Reserved.	
9	Side Band Addressing (SBA). Hardwired to 1. This bit indicates that the MCH supports side band addressing.	
8:6	Reserved	
5	Greater Than 4 GB Addressing (4GB). Hardwired to 0. This bit indicates that the MCH does not support addresses greater than 4 GB.	
4	Fast Writes (FW). Hardwired to 1. This bit indicates that the MCH supports Fast Writes from the host to the AGP master.	
3	Reserved	
2:0	RATE. After reset the MCH reports its data transfer rate capability. Bit 0 identifies if AGP device supports 1x data transfer mode, bit 1 identifies if AGP device supports 2x data transfer mode, bit 2 identifies if AGP device supports 4x data transfer mode. 1x, 2x, and 4x data transfer modes are supported by the MCH and therefore this bit field has a Default Value = 111.	
	Note: The selected data transfer mode applies to both the AD bus and SBA bus. It also applies to Fast Writes, if they are enabled.	

3.4.26 AGPCMD—AGP Command Register (Device 0)

Address Offset: A8–ABh
Default Value: 00000000h

Access: Read/Write, Read Only

Size: 32 bits

This register provides control of the AGP operational parameters.

Bit	Description	
31:10	Reserved	
9	Side Band Addressing Enable (SBA_EN).	
	1 = Enable.	
	0 = Disable.	
8	AGP Enable. When this bit is reset to 0, the MCH ignores all AGP operations, including the sync cycle. Any AGP operations received while this bit is set to 1 will be serviced even if this bit is reset to 0. If this bit transitions from a 1 to a 0 on a clock edge in the middle of an SBA command being delivered in 1X mode the command will be issued. When this bit is set to 1, the MCH responds to AGP operations delivered via PIPE#, or to operations delivered via SBA (if SBA_EN=1).	
	1 = Enable.	
	0 = Disable.	
7:6	Reserved	
5	Greater Than 4 GB Addressing Enable (4GB_EN). Hardwired to 0. The MCH, as an AGP target, does not support addressing greater than 4 GB.	
4	Fast Write Enable (FW_EN).	
	1 = MCH uses the Fast Write protocol for memory write transactions from the MCH to the AGP master. Fast Writes will occur at the data transfer rate selected by the data rate bits (2:0) in this register. When this bit is cleared, or when the data rate bits are set to 1x mode, the Memory Write transactions from the MCH to the AGP master use standard PCI protocol.	
	0 = Disable	
3	Reserved.	
2:0	Data Rate. The settings of these bits determine the AGP data transfer rate. One (and only one) bit in this field must be set to indicate the desired data transfer rate. The same bit must be set on both master and target.	
	Bit 0 = 1X	
	Bit 1 = 2X	
	Bit 2 = 4x	
	Configuration software will update this field by setting only one bit that corresponds to the capability of AGP master (after that capability has been verified by accessing the same functional register within the AGP masters' configuration space.)	
	Note: This field applies to the AD and SBA buses. It also applies to Fast Writes, if they are enabled.	

3.4.27 AGPCTRL – AGP Control Register

Address Offset: B0-B3h
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

This register provides for additional control of the AGP interface.

Bit	Description
31:8	Reserved
7	GTLB Enable (and GTLB Flush Control).
	1 = Enable. Selects normal operations of the Graphics Translation Lookaside Buffer.
	0 = Disable. GTLB is flushed by clearing the valid bits associated with each entry. (Default)
6:0	Reserved

3.4.28 APSIZE—Aperture Size (Device 0)

Address Offset: B4h Default Value: 00h

Access: Read/Write Size: 8 bits

This register determines the effective size of the graphics aperture used for a particular MCH configuration. This register can be updated by the MCH specific BIOS configuration sequence before the PCI standard bus enumeration sequence takes place. If the register is not updated, a default value will select an aperture of maximum size (i.e., 256 MB). The size of the table that will correspond to a 256 MB aperture is not practical for most applications; therefore, these bits must be programmed to a smaller practical value that will force adequate address range to be requested via APBASE register from the PCI configuration software.

Bit		Description					
7:6	Res	served					
5:0	APE 0, it	Graphics Aperture Size (APSIZE). Each bit in APSIZE[5:0] operates on similarly ordered bits in APBASE[27:22] of the Aperture Base configuration register. When a particular bit of this field is 0, it forces the similarly ordered bit in APBASE[27:22] to behave as "hardwired" to 0. When a particular bit of this field is set to 1, it allows corresponding bit of the APBASE[27:22] to be read/write accessible. Only the following combinations are allowed:					
	5	4	3	2	1	0	Aperture Size
	1	1	1	1	1	1	4 MB
	1	1	1	1	1	0	8 MB
	1	1	1	1	0	0	16 MB
	1	1	1	0	0	0	32 MB
	1	1	0	0	0	0	64 MB
	1	0	0	0	0	0	128 MB
	0	0	0	0	0	0	256 MB
	as '	ʻhardwi gramm	red" to ing AP	0). Thi SIZE[5	is provi i:0]=11	ides ma	es default APBASE[27:22] =000000b (i.e., all bits respond ximum aperture size of 256MB. As another example, ardwires APBASE[24:22]=000b and while enabling amable.

3.4.29 ATTBASE—Aperture Translation Table Base Register (Device 0)

Address Offset: B8-BBh
Default Value: 00000000h
Access: Read/Write
Size: 32 bits

This register provides the starting address of the Graphics Aperture Translation Table Base located in the main memory. This value is used by the MCH graphics aperture address translation logic (including the GTLB logic) to obtain the appropriate address translation entry required during the translation of the aperture address into a corresponding physical DRAM address. The ATTBASE register may be dynamically changed.

Note: The address provided via ATTBASE is 4-KB aligned.

Bit	Description
31:12	Aperture Translation Table Base Address (ATT_BA). This field contains a pointer to the base of the translation table used to map memory space addresses in the aperture range to addresses in main memory.
	Note: This field should only be modified when the GTLB has been disabled.
11:0	Reserved

3.4.30 AMTT—AGP Interface Multi-Transaction Timer Register (Device 0)

Address Offset: BCh Default Value: 00h

Access: Read/Write Size: 8 bits

AMTT is an 8-bit register that controls the amount of time that the MCH arbiter allows an AGP master to perform multiple back-to-back transactions. The MCH AMTT mechanism is used to optimize the performance of the AGP master (using PCI protocol) that performs multiple back-to-back transactions to fragmented memory ranges (and as a consequence it can not use long burst transfers). The AMTT mechanism applies to the host-AGP transactions as well and it guarantees to the processor a fair share of the AGP interface bandwidth.

The number of clocks programmed in the AMTT represents the guaranteed time slice (measured in 66 MHz clocks) allotted to the current agent (either AGP master or host bridge) after which the AGP arbiter will grant the bus to another agent. The default value of AMTT is 00h and disables this function. The AMTT value can be programmed with 8-clock granularity. For example, if the AMTT is programmed to 18h, the selected value corresponds to the time period of 24 AGP (66 MHz) clocks.

Bit	Description
7:3	Multi-Transaction Timer Count Value. The number programmed in this field represents the guaranteed time slice (measured in eight 66 MHz clock granularity) allotted to the current agent (either AGP master or MCH) after which the AGP arbiter will grant the bus to another agent.
2:0	Reserved.

3.4.31 LPTT—Low Priority Transaction Timer Register (Device 0)

Address Offset: BDh Default Value: 00h

Access: Read/Write Size: 8 bits

LPTT is an 8-bit register similar in function to AMTT. This register is used to control the minimum tenure on the AGP for low priority data transaction (both reads and writes) issued using PIPE# or SB mechanisms.

The number of clocks programmed in the LPTT represents the guaranteed time slice (measured in 66 MHz clocks) allotted to the current low priority AGP transaction data transfer state. This does not necessarily apply to a single transaction but it can span over multiple low-priority transactions of the same type. After this time expires, the AGP arbiter may grant the bus to another agent if there is a pending request. The LPTT does not apply in the case of high-priority request where ownership is transferred directly to high-priority requesting queue. The default value of LPTT is 00h and disables this function. The LPTT value can be programmed with 8-clock granularity. For example, if the LPTT is programmed to 10h, then the selected value corresponds to the time period of 16 AGP (66 MHz) clocks.

Bit	Description
7:3	Low Priority Transaction Timer Count Value. The number of clocks programmed in these bits represents the guaranteed time slice (measured in eight 66 MHz clock granularity) allotted to the current low priority AGP transaction data transfer state.
2:0	Reserved

3.4.32 RDTR—RDRAM* Device Timing Register (Device 0)

Address Offset: BEh Default Value: 00h

Access: Read/Write Size: 8 bits

This 8-bit register defines the timing parameters for all devices in the Rambus Channel. The BIOS programs this register with the "least common denominator" values after reading configuration registers of each device in the Rambus Channel. This register applies to the entire DRAM array.

Bit	Description
7:6	Row to Column Delay (tRCD). This field defines the minimum interval between opening a row and column operation on that row in units of Direct Rambus clocks.
	00 = Reserved
	01 = 7 Rclks
	10 = 9 Rclks
	11 = Reserved
	Note: When using an Intel [®] MRH-R, this field should be set to 10 (9 Rclks).
5	Reserved
4:0	RDRAM* Total CAS Access Delay (tRDRAM). This field defines the minimum round trip propagation time of the Rambus* Channel in units of Direct RDRAM device clocks. This value includes the CAS access time, the channel delay time, or any Intel MRH-R delay time.
	tRDRAM = tCAC + tRDLY
	tRDRAM has a minimum value of 8 Rclks since the supported Direct RDRAM device tCAC = 8 Rclks.
	tRDLY is the total channel delay time and should include the channel delay time of the Direct RDRAM device in the MCH Direct RDRAM device interface, the Intel MRH-R propagation delay time, and the channel delay time of the Direct RDRAM device in the Intel MRH-R Direct RDRAM device interface.
	The minimum tRDRAM value for use with the Intel MRH-R is 14 Direct RDRAM device clks (tCAC of 8 + MRH-R delay of 6). The maximum tRDRAM value for use with Intel MRH-R is 19 Direct RDRAM device clks (tCAC of 8 + MRH-R delay of 6 + total channel delay of 5).

Table 8. Valid tRCD and tCAC combinations for 300 MHz and 400 MHz

Direct RDRAM Device * Frequency (RcIk)	tRCD in Rclks	tCAC in Rclks
300 MHz	7	8
400 MHz	9	8
400 MHz	7	8

3.4.33 TOM—Top of Low Memory Register (Device 0)

Address Offset: C4h
Default Value: 0100h
Access: Read/Write
Size: 16 bits

A memory hole is present under normal operating conditions from TOM up to the 4-GB address where TOM is the Top of Low Memory register. This hole is used to access devices present behind hub interfaces_A-C, the AGP bus, the memory-mapped APIC register, and the boot BIOS area just below 4 GB. If the total amount of main memory is less than 4 GB, then the addresses (i.e., not their "values") indicated by the TOM and GBA15 (or TOM and SRBA7) registers will be identical.

Note: That this register must be set to a value of 0100h (16 MB) or greater.

Bit	Description	
15:4	Top of Low Memory (TOM). This register contains the address that corresponds to bits 31 to 20 (1-MB granularity) of the maximum DRAM memory address that lies below 4 GB. Configuration software should set this value to either the maximum amount of memory in the system or to the minimum address allocated for PCI memory or the graphics aperture, whichever is smaller.	
	Programming example: C00h = 3 GB (assuming that GAR15 is set > 4 GB):	
	 An access to 0_C000_0000h or above (but < 4 GB) will be considered above the TOM; therefore, the access is not to DRAM. It may go to AGP or one of the hub interfaces and will subtractively decode to Hub Interface_A. 	
	An access to 0_BFFF_FFFFh and below will be considered below the TOM and go to DRAM.	
	Note: Locked accesses that cross TOM are illegal and should not be performed.	
3:0	Reserved	

3.4.34 ERRSTS—Error Status Register (Device 0)

Address Offset: C8–C9h Default Value: 0000h

Access: Read/Write Clear

Size: 16 bits

This register is used to report various error conditions via the hub interface messages to the ICH2. An, SERR, SMI, or SCI error message may be generated via Hub Interface_A on a 0-to-1 transition of any of these flags, when enabled, in the PCICMD/ERRCMD, SMICMD, or SCICMD registers respectively. These bits are set, regardless of whether or not the SERR is enabled and generated.

Bit	Description
15	FSB Request Parity Error (FSBRPAR).
	1 = MCH detected a parity error on either the address or request signals of the system bus.
	0 = Software must write a 1 to clear this bit.
14	System Bus Data Parity Error (FSBDPAR).
	1 = MCH detected a data parity error on the system bus.
	0 = Software must write a 1 to clear this bit.
13	System Bus Address Strobe Glitch Detected (FSBAGL).
	1 = MCH detected a glitch on one of the address strobes.
	0 = Software must write a 1 to clear this bit.
12	System Bus Data Strobe Glitch Detected (FSBDGL).
	1 = MCH detected a glitch on one of the data strobes.
	0 = Software must write a 1 to clear this bit.
11	Reserved
10	External Thermal Sensor Throttle (ETST).
	1 = MCH detected a rising edge on the OVERT# or the Direct RDRAM* devices report an over temperature conditions. The OVERT# should be used to receive an interrupt from an external thermal sensor when the sensor has been tripped.
	0 = Software must write a 1 to clear this bit.
9	LOCK to non-DRAM Memory Flag (LCKF).
	1 = A host-initiated LOCK cycle targeting non-DRAM memory space occurred.
	0 = Software must write a 1 to clear this bit.
8	0 = Software must write a 1 to clear this bit. System Bus Address above TOM (FSBATOM).
8	
8	System Bus Address above TOM (FSBATOM).

Bit	Description		
6	SERR on Hub Interface_A Target Abort (TAHLA).		
	1 = MCH detected that an MCH originated Hub Interface_A cycle was terminated with a Target Abort completion packet or special cycle.		
	0 = Software must write a 1 to clear this bit.		
5	MCH Detects Unimplemented Hub Interface_A Special Cycle (HIAUSC).		
	1 = MCH detected an Unimplemented Special Cycle on the Hub Interface_A.		
	0 = Software must write a 1 to clear this bit.		
4	AGP Access Outside of Graphics Aperture Flag (OOGF).		
	1 = An AGP access occurred to an address that is outside of the graphics aperture range.		
	0 = Software must write a 1 to clear this bit.		
3	Invalid AGP Access Flag (IAAF).		
	1 = An AGP access was attempted outside of the graphics aperture and either to the 640 KB-1 MB range or above the TOM.		
	0 = Software must write a 1 to clear this bit.		
2	Invalid Graphics Aperture Translation Table Entry (ITTEF).		
	1 = An invalid translation table entry was returned in response to an AGP access to the graphics aperture.		
	0 = Software must write a 1 to clear this bit.		
1	Multiple-bit DRAM ECC Error Flag (DMERR).		
	1 = A memory read data transfer had an uncorrectable multiple-bit error. When this bit is set, the address, channel number, and device number that caused the error are logged in the EAP register. Once this bit is set, the EAP, CN, DN, and ES fields are locked until the processor clears this bit by writing a 1. Software uses bits [1:0] to detect whether the logged error address is for single- or multiple-bit error.		
	0 = Once software completes the error processing, a value of 1 is written to this bit field to clear the value (back to 0) and unlock the error logging mechanism.		
0	Single-bit DRAM ECC Error Flag (DSERR).		
	1 = A memory read data transfer had a single-bit correctable error and the corrected data was sent for the access. When this bit is set, the address, channel number, and device number that caused the error are logged in the EAP register. Once this bit is set, the EAP, CN, DN, and ES fields are locked to further single-bit error updates until the processor clears this bit by writing a 1. A multiple-bit error that occurs after this bit is set will overwrite the EAP, CN, and DN fields with the multiple-bit error signature and the MEF bit will also be set.		
	0 = Software must write a 1 to clear this bit and unlock the error logging mechanism.		

3.4.35 ERRCMD—Error Command Register (Device 0)

Address Offset: CA-CBh
Default Value: 0000h
Access: Read/Write
Size: 16 bits

This register enables various errors to generate a SERR message via the Hub Interface_A. Since the MCH does not have an SERR# signal, SERR messages are passed from the MCH to the ICH2 over the hub interface. When a bit in this register is set, a SERR message will be generated on Hub Interface_A when the corresponding flag is set in the ERRSTS register. The actual generation of the SERR message is globally enabled for Device 0 via the PCI Command register.

Note: An error can generate one and only one error message via the Hub Interface_A. It is software's responsibility to make sure that when an SERR error message is enabled for an error condition, SMI and SCI error messages are disabled for that same error condition.

Bit	Description		
15	SERR on System Bus Request Parity Error (HBRERR).		
	1 = Enable. Generation of the Hub Interface_A SERR message is enabled for the parity errors on the address or request signals of the system bus.		
	0 = Disable.		
14	SERR on System Bus Data Parity Error (HBDERR).		
	Enable. Data parity errors on the System Bus will cause the MCH to send an SERR message over Hub Interface_A to the ICH2.		
	0 = Disable.		
13	SERR on System Bus Address Strobe Glitch (AGLERR).		
	1 = Enable. MCH will generate a Hub Interface_A SERR message when a glitch is detected on one of the system bus address strobes.		
	0 = Disable.		
12	SERR on System Bus Data Strobe Glitch (DGLERR).		
	1 = Enable. MCH will generate a Hub Interface_A SERR message when a glitch is detected on one of the system bus data strobes.		
	0 = Disable.		
11	Reserved		
10	SERR on External Thermal Sensor Trip (THERM_SERR).		
	1 = Enable. Generation of the Hub Interface_A SERR message is enabled when the MCH has detected a rising edge on the OVERT# or the Direct RDRAM* devices report an over- temperature conditions.		
	0 = Disable.		
9	SERR on Non-DRAM Lock (LCKERR).		
	1 = Enable. MCH will generate a Hub Interface_A SERR special cycle when a processor lock cycle is detected that does not hit DRAM.		
	0 = Disable.		

Bit	Description	
8	SERR on Host Bus Access above TOM (HBATOMERR).	
	Enable. MCH will generate Hub Interface_A SERR special cycle when the processor generates an access above 4 GB and above the TOM.	
	0 = Disable.	
7	Reserved	
6	SERR on Target Abort on Hub Interface_A Exception (TAHLA_SERR).	
	1 = Enable. Generation of the Hub Interface_A SERR message is enabled when an MCH- originated Hub Interface_A cycle is completed with "Target Abort" completion packet or special cycle status.	
	0 = Disable.	
5	SERR on Detecting Hub Interface_A Unimplemented Special Cycle (HIAUSCERR). SERR messaging for Device 0 is globally enabled in the PCICMD register.	
	1 = Enable. MCH generates an SERR message over Hub Interface_A when an Unimplemented Special Cycle is received on the hub interface.	
	0 = Disable. The MCH does not generate an SERR message for this event.	
4	SERR on AGP Access Outside of Graphics Aperture (OOGF_SERR).	
	1 = Enable. Generation of the Hub Interface_A SERR message is enabled when an AGP access occurs to an address outside of the graphics aperture.	
	0 = Disable.	
3	SERR on Invalid AGP Access (IAAF_SERR).	
	 1 = Enable. Generation of the Hub Interface_A SERR message is enabled when an AGP access occurs to an address outside of the graphics aperture and either to the 640 KB – 1 MB range or above the TOM. 	
	0 = Disable.	
2	SERR on Invalid Translation Table Entry (ITTEF_SERR).	
	1 = Enable. Generation of the Hub Interface_A SERR message is enabled when an invalid translation table entry was returned in response to an AGP access to the graphics aperture.	
	0 = Disable.	
1	SERR Multiple-Bit DRAM ECC Error (DMERR_SERR).	
	1 = Enable. Generation of the Hub Interface_A SERR message is enabled when the MCHDRAM controller detects a multiple-bit error.	
	0 = Disable. For systems not supporting ECC, this bit must be disabled.	
0	SERR on Single-bit ECC Error (DSERR).	
	1 = Enable. Generation of the Hub Interface_A SERR message is enabled when the MCH DRAM controller detects a single-bit error.	
	0 = Disable. For systems that do not support ECC, this bit must be disabled.	

3.4.36 **SMICMD—SMI Command Register (Device 0)**

CC-CDh Address Offset: Default Value: 0000h

Read/Write, Read Only Access:

Size: 16 bits

This register enables various errors to generate a SMI message via the Hub Interface_A.

Note: An error can generate one and only one error message via the Hub Interface_A. It is software's responsibility to make sure that when an SMI error message is enabled for an error condition, SERR and SCI error messages are disabled for that same error condition.

Bit	Description		
15:2	Reserved		
1	SMI on Multiple-Bit DRAM ECC Error (DMERR_SMI).		
	1 = Enable. Generation of the Hub Interface_A SMI message is enabled when the MCH DRAM controller detects a multiple-bit error.		
	0 = Disable. For systems not supporting ECC, this bit must be disabled.		
0	SMI on Single-bit ECC Error (DSERR_SMI).		
	1 = Enable. Generation of the Hub Interface_A SMI message is enabled when the MCH DRAM controller detects a single-bit error.		
	0 = Disable. For systems that do not support ECC, this bit must be disabled.		

3.4.37 SCICMD—SCI Command Register (Device 0)

CE-CFh Address Offset: Default Value: 0000h

Access: Read/Write, Read Only

Size: 16 bits

This register enables various errors to generate a SCI message via the Hub Interface_A.

Note: An error can generate one and only one error message via the Hub Interface_A. It is software's responsibility to make sure that when an SCI error message is enabled for an error condition, SERR and SMI error messages are disabled for that same error condition.

Bit	Description	
15:2	Reserved.	
1	SCI on Multiple-Bit DRAM ECC Error (DMERR_SCI).	
	1 = Enable. Generation of the Hub Interface_A SCI message is enabled when the MCH DRAM controller detects a multiple-bit error.	
	0 = Disable. For systems not supporting ECC, this bit must be disabled.	
0	SCI on Single-bit ECC Error (DSERR_SCI).	
	1 = Enable. Generation of the Hub Interface_A SCI message is enabled when the MCH DRAM controller detects a single-bit error.	
	0 = Disable. For systems that do not support ECC, this bit must be disabled.	

DRAMRC—RDRAM* Device Refresh Control Register 3.4.38 (Device 0)

Address Offset: DC-DDh Default Value: 0000h

Access: Read Only, Read/Write

Size: 16 bits

This register is loaded by configuration software with the refresh timings for all Rambus Channels present in the system. The value placed into this register should represent the least common denominator of all of the devices on the specified channel pair.

The refresh rate for a channel is programmed to that of the device with the fastest refresh rate on that channel. That is, if a channel has a mix of 128/144 Mbit (3.9 µs) and 256/288 Mbit (1.95 µs) technology devices, the refresh rate for the channel will be programmed to $1.95~\mu s$.

Bit	Description
15:12	Reserved.
11:9	DRAM Refresh Rate for Rambus* Channel pair #3 (DRR3). The DRAM refresh rate is adjusted according to the frequency selected by this field. Note that refresh is also disabled via this field, and that disabling refresh results in the eventual loss of DRAM data. This field is programmed by the BIOS after collecting configuration information from all Direct RDRAM* devices in the channel and determining the least common denominator value for refresh.
	000 = Refresh Disabled
	$001 = 1.95 \mu s$
	010 = 3.9 μs
	011 – 111 = Reserved
8:6	DRAM Refresh Rate Rambus Channel Pair #2 (DRR2). The DRAM refresh rate is adjusted according to the frequency selected by this field. Note that refresh is also disabled via this field, and that disabling refresh results in the eventual loss of DRAM data. This field is programmed by BIOS after collecting configuration information from all Direct RDRAM devices in the channel and determining the least common denominator value for refresh.
	000 = Refresh Disabled
	001 = 1.95 μs
	010 = 3.9 μs
	011 – 111 = Reserved
5:3	DRAM Refresh Rate Rambus Channel Pair #1 (DRR1). The DRAM refresh rate is adjusted according to the frequency selected by this field. Note that refresh is also disabled via this field, and that disabling refresh results in the eventual loss of DRAM data. This field is programmed by BIOS after collecting config information from all Direct RDRAM devices in the channel and determining the least common denominator value for refresh.
	000 = Refresh Disabled
	001 = 1.95 μs
	010 = 3.9 μs
	011 – 111 = Reserved
2:0	DRAM Refresh Rate Rambus Channel Pair #0 (DRR0). The DRAM refresh rate is adjusted according to the frequency selected by this field. Note that refresh is also disabled via this field, and that disabling refresh results in the eventual loss of DRAM data. This field is programmed by BIOS after collecting configuration information from all Direct RDRAM devices in the channel and determining the least common denominator value for refresh.
	000 = Refresh Disabled
	001 = 1.95 μs
	010 = 3.9 μs
	011 – 111 = Reserved

3.4.39 SKPD—Scratchpad Data (Device 0)

Address Offset: DE-DFh
Default Value: 0000h
Access: Read/Write
Size: 16 bits

Bit	Description
15:0	Scratchpad [15:0]. These bits are R/W storage bits that have no effect on the MCH functionality.

3.4.40 DERRCTL_STS—DRAM Error Control/Status Register (Device 0)

Address Offset: E2–E3h
Default Value: 0000h
Access: Read Only
Size: 16 bits

This register enables and reflects the status of various errors checking functions that the MCH supports on the DRAM interface.

Bit	Description
15:8	Reserved
7:0	DRAM ECC Syndrome (DECCSYN). After a DRAM ECC error, hardware loads this field with a syndrome that describes the set of bits found to be in error. Note that this field is locked from the time that it is loaded up to the time when the error flag is cleared by software. If the first error was a single-bit, correctable error, then a subsequent multiple-bit error will overwrite this field. In all other cases, an error that occurs after the first error and before the error flag has been cleared by software will escape recording.

3.4.41 EAP—Error Address Pointer Register (Device 0)

Address Offset: E4–E7h
Default Value: 0000h
Access: Read Only
Size: 32 bits

This register stores the DRAM address when an ECC error occurs.

Bit	Description		
31:9	Error Address Pointer (EAP). This field is used to store address bits A[33:11] of the 4-KB block of main memory of which an error (single-bit or multiple-bit error) has occurred. Note that the value of this bit field represents the address of the first single- or the first multiple-bit error occurrence after the error flag bits in the ERRSTS register have been cleared by software. A multiple-bit error will overwrite a single-bit error.		
	Once the error flag bits are set as a result of an error, this bit field is locked and does not change as a result of a new error until the error flag is cleared by software.		
8:1	Reserved.		
0	Error Address Segment (EAS). This bit indicates whether the reported error was found on Rambus* Channel A or on Rambus Channel B. Once the error flag bits are set as a result of an error, this bit is locked and does not change as a result of a new error until the error flag is cleared by software.		
	1 = Rambus Channel B		
	0 = Rambus Channel A		

3.4.42 MISC_CNTL—Miscellaneous Control Register (Device 0)

Address Offset: F4–F7h
Default: 0000F874h
Default: R/W
Size 32 bits

Bit	Description	
31:22	Reserved.	
21	Write Combining Disable (PCIBWCD).	
	 1 = Disable. Write combining is disabled for host bus writes targeting AGP (depends on configuration). 	
	0 = Enable (default).	
	Note: This bit must be set to 1 (disable) for normal operations.	
20:0	Reserved.	

3.5 AGP Bridge Registers (Device 1)

Table 9 describes the access attributes for the Device 1 configuration space.

Table 9. MCH Configuration Space (Device 1)

Address Offset	Symbol	Register Name	Default Value	Access
00–01h	VID1	Vendor Identification	8086h	RO
02–03h	DID1	Device Identification	2532h	RO
04–05h	PCICMD1	PCI Command Register	0000h	RO, R/W
06–07h	PCISTS1	PCI Status Register	00A0h	RO, R/WC
08h	RID1	Revision Identification	04h	RO
09h	_	Reserved	_	_
0Ah	SUBC1	Sub-Class Code	04h	RO
0Bh	BCC1	Base Class Code	06h	RO
0Ch	_	Reserved	_	_
0Dh	MLT1	Master Latency Timer	00h	RO, R/W
0Eh	HDR1	Header Type	01h	RO
0F-17h	_	Reserved	_	_
18h	PBUSN1	Primary Bus Number	00h	RO
19h	SBUSN1	Secondary Bus Number	00h	R/W
1Ah	SUBUSN1	Subordinate Bus Number	00h	R/W
1Bh	SMLT1	Secondary Bus Master Latency Timer	00h	RO, R/W
1Ch	IOBASE1	I/O Base Address Register	F0h	RO, R/W
1Dh	IOLIMIT1	I/O Limit Address Register	00h	RO, R/W
1E-1Fh	SSTS1	Secondary Status Register	02A0h	RO, R/WC
20–21h	MBASE1	Memory Base Address Register	FFF0h	RO, R/W
22–23h	MLIMIT1	Memory Limit Address Register	0000h	RO, R/W
24–25h	PMBASE1	Prefetchable Memory Base Address Register	FFF0h	RO, R/W
26–27h	PMLIMIT1	Prefetchable Memory Limit Address Register	0000h	RO, R/W
28–3Dh	_	Reserved	_	_
3Eh	BCTRL1	Bridge Control Register	00h	RO, R/W
3Fh	_	Reserved	_	_
40h	ERRCMD1	Error Command	00h	RO, R/W
41–FFh		Reserved	_	_

3.5.1 VID1—Vendor Identification Register (Device 1)

Address Offset: 00–01h
Default Value: 8086h
Attribute: Read Only
Size: 16 bits

The VID register contains the vendor identification number. This 16-bit register combined with the Device Identification register uniquely identifies any PCI device. Writes to this register have no effect.

Bi	it	Description
15:	0:5	Vendor Identification Number . This is a 16-bit value assigned to Intel. Intel VID = 8086h.

3.5.2 DID1—Device Identification Register (Device 1)

Address Offset: 02–03h
Default Value: 2532h
Attribute: Read Only
Size: 16 bits

This 16-bit register combined with the Vendor Identification register uniquely identifies any PCI device. Writes to this register have no effect.

Bit	Description
15:0	Device Identification Number. This is a 16-bit value assigned to the MCH Device 1.
	MCH Device 1 DID =2532h.

3.5.3 PCICMD1—PCI-PCI Command Register (Device 1)

Address Offset: 04–05h Default: 0000h

Access: Read Only, Read/Write

Size 16 bits

Bit	Descriptions
15:10	Reserved
9	Fast Back-to-Back—RO. Not implemented; hardwired to 0.
8	SERR Message Enable (SERRE1)—R/W. This bit is a global enable bit for Device 1 SERR messaging. The MCH communicates the SERR# condition by sending an SERR message to the ICH2.
	1 = Enable. MCH is enabled to generate SERR messages over the hub interface for specific Device 1 error conditions that are individually enabled in the BCTRL register. The error status is reported in the PCISTS1 register.
	0 = Disable. SERR message is not generated by the MCH for Device 1.
	Note: This bit only controls SERR messaging for Device 1. Device 0 has its own SERRE bit to control error reporting for error conditions occurring on Device 0.
7	Address/Data Stepping—RO. Not implemented; hardwired to 0.
6	Parity Error Enable (PERRE1)—RO. Not implemented; hardwired to 0. Parity checking is not supported on the primary side of this device.
5	Reserved
4	Memory Write and Invalidate Enable—RO. Not implemented; hardwired to 0.
3	Special Cycle Enable—RO. Not implemented; hardwired to 0.
2	Bus Master Enable (BME1)—R/W. This bit is not functional. It is a R/W bit for compatibility with compliance testing software.
1	Memory Access Enable (MAE1)—R/W.
	1 = Enable. This bit must be set to 1 to enable the Memory and Prefetchable memory address ranges defined in the MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 registers.
	0 = Disable. All of Device 1's memory space is disabled.
0	I/O Access Enable (IOAE1)—R/W.
	1 = Enable. This bit must be set to1 to enable the I/O address range defined in the IOBASE1, and IOLIMIT1 registers.
	0 = Disable. All of Device 1's I/O space is disabled.

3.5.4 PCISTS1—PCI-PCI Status Register (Device 1)

Address Offset: 06–07h Default Value: 00A0h

Access: Read Only, Read/Write Clear

Size: 16 bits

PCISTS1 is a 16-bit status register that reports the occurrence of error conditions associated with primary side of the "virtual" PCI-PCI bridge in the MCH. Since this device does not physically reside on PCI_A, it reports the optimum operating conditions so that it does not restrict the capability of PCI_A.

Bit	Descriptions
15	Detected Parity Error (DPE1)—RO. Not implemented; hardwired to 0.
14	Signaled System Error (SSE1)—R/WC
	1 = MCH Device 1 generates an SERR message over the Hub Interface_A for any enabled Device 1 error condition. Device 1 error conditions are enabled in the ERRCMD, PCICMD1 and BCTRL1 registers. Device 1 error flags are read/reset from the ERRSTS and SSTS1 register.
	0 = Software clears this bit by writing a 1 to it.
13	Received Master Abort Status (RMAS1)—RO. Not implemented; hardwired to 0.
12	Received Target Abort Status (RTAS1)—RO. Not implemented; hardwired to 0.
11	Signaled Target Abort Status (STAS1)—RO. Not implemented; hardwired to 0.
10:9	DEVSEL# Timing (DEVT1): This bit field is hardwired to "00b" to indicate that the Device 1 uses the fastest possible decode.
8	Data Parity Detected (DPD1)—RO. Not implemented; hardwired to 0.
7	Fast Back-to-Back (FB2B1)—RO. This bit is hardwired to 1 to indicate that the AGP port always supports fast back-to-back transactions.
6	Reserved
5	66 MHz Capability—RO. This bit is hardwired to 1 to indicate that the AGP port is 66 MHz capable.
4:0	Reserved

3.5.5 RID1—Revision Identification Register (Device 1)

Address Offset: 08h
Default Value: 04h
Access: Read Only
Size: 8 bits

This register contains the revision number of the MCH Device 1. These bits are read only and writes to this register have no effect.

Bit	Description
7:0	Revision Identification Number . This is an 8-bit value that indicates the revision identification number for the MCH Device 1.
	A-3 Stepping = 04h

3.5.6 SUBC1—Sub-Class Code Register (Device 1)

Address Offset: 0Ah
Default Value: 04h
Access: Read Only
Size: 8 bits

This register contains the Sub-Class Code for the MCH Device 1.

Bit	Description
7:0	Sub-Class Code (SUBC1). This is an 8-bit value that indicates the category of bridge for the MCH.
	04h = Host Bridge.

3.5.7 BCC1—Base Class Code Register (Device 1)

Address Offset: 0Bh
Default Value: 06h
Access: Read Only
Size: 8 bits

This register contains the Base Class Code of the MCH Device 1.

Bit	Description
7:0	Base Class Code (BASEC). This is an 8-bit value that indicates the Base Class Code for the MCH Device 1.
	06h = Bridge device.

3.5.8 MLT1—Master Latency Timer Register (Device 1)

Address Offset: 0Dh Default Value: 00h

Access: Read/Write, Read Only

Size: 8 bits

This functionality is not applicable. It is described here since these bits should be implemented as read/write to prevent standard PCI-PCI bridge configuration software from getting "confused".

Bit	Description
7:3	Not applicable but support read/write operations. (Reads return previously written data.)
2:0	Reserved

3.5.9 HDR1—Header Type Register (Device 1)

Offset: 0Eh
Default: 01h
Access: Read Only
Size: 8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Descriptions
7:0	This read only field always returns 01h when read. Writes have no effect.

3.5.10 PBUSN1—Primary Bus Number Register (Device 1)

Offset: 18h
Default: 00h
Access: Read Only
Size: 8 bits

This register identifies that "virtual" PCI-PCI Bridge is connected to bus #0.

Bit	Descriptions
7:0	Bus Number. Hardwired to 0.

3.5.11 SBUSN1—Secondary Bus Number Register (Device 1)

Offset: 19h Default: 00h

Access: Read /Write Size: 8 bits

This register identifies the bus number assigned to the second bus side of the "virtual" PCI-PCI bridge (i.e., to AGP). This number is programmed by the PCI configuration software to allow mapping of configuration cycles to AGP.

Bit	Descriptions
7:0	Bus Number. Programmable
	Default = 00h.

3.5.12 SUBUSN1—Subordinate Bus Number Register (Device 1)

Offset: 1Ah Default: 00h

Access: Read /Write Size: 8 bits

This register identifies the subordinate bus (if any) that resides at the level below AGP. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to AGP.

Bit	Descriptions
7:0	Bus Number. Programmable
	Default = 00h.

3.5.13 SMLT1—Secondary Master Latency Timer Register (Device 1)

Address Offset: 1Bh Default Value: 00h

Access: Read/Write, Read Only

Size: 8 bits

This register controls the bus tenure of the MCH on AGP. MLT is an 8-bit register that controls the amount of time the MCH as an AGP/PCI bus master, can burst data on the AGP Bus. The count value is an 8-bit quantity; however, MLT[2:0] are reserved and assumed to be 0 when determining the count value. The MCH's MLT is used to guarantee to the AGP master a minimum amount of the system resources. When the MCH begins the first AGP FRAME# cycle after being granted the bus, the counter is loaded and enabled to count from the assertion of FRAME#. If the count expires while the MCH's grant is removed (due to AGP master request), then the MCH will lose the use of the bus and the AGP master agent may be granted the bus. If the MCH's bus grant is not removed, the MCH will continue to own the AGP bus, regardless of the MLT expiration or idle condition. Note that the MCH must always properly terminate an AGP transaction, with FRAME# negation prior to the final data transfer.

The number of clocks programmed in the MLT represents the guaranteed time slice (measured in 66 MHz AGP clocks) allotted to the MCH, after which it must complete the current data transfer phase and then surrender the bus as soon as its bus grant is removed. For example, if the MLT is programmed to 18h, the value is 24 AGP clocks. The default value of MLT is 00h and disables this function. When the MLT is disabled, the burst time for the MCH is unlimited (i.e., the MCH can burst forever).

Bit	Description
7:3	Secondary MLT Counter Value. Default=0 (i.e., SMLT disabled)
2:0	Reserved

3.5.14 IOBASE1—I/O Base Address Register (Device 1)

Address Offset: 1Ch Default Value: F0h

Access: Read/Write, Read Only

Size: 8 bits

This register controls the host-to-AGP I/O access routing based on the following formula:

IO_BASE ≤ address ≤ IO_LIMIT

Only upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0] are treated as 0. Thus, the bottom of the defined I/O address range will be aligned to a 4-KB boundary.

Note: BIOS must not set this register to 00h; otherwise, 0CF8h/0CFCh accesses will be forwarded to AGP.

Bi	it	Description
7:4	4	I/O Address Base. Corresponds to A[15:12] of the I/O address. Default=F0h
3:0	0	Reserved

3.5.15 IOLIMIT1—I/O Limit Address Register (Device 1)

Address Offset: 1Dh Default Value: 00h

Access: Read/Write, Read Only

Size: 8 bits

This register controls the host-to-AGP I/O access routing based on the following formula:

 $IO_BASE \le address \le IO_LIMIT$

Only the upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4-KB aligned address block.

Bit	Description
7:4	I/O Address Limit. Corresponds to A[15:12] of the I/O address. Default=0
3:0	Reserved. Only 16-bit addressing is supported.

3.5.16 SSTS1—Secondary PCI-PCI Status Register (Device 1)

Address Offset: 1E-1Fh
Default Value: 02A0h

Access: Read Only, Read/Write Clear

Size: 16 bits

SSTS1 is a 16-bit status register that reports the occurrence of error conditions associated with secondary side (i.e., AGP side) of the "virtual" PCI-PCI bridge in the MCH.

Bit	Descriptions
15	Detected Parity Error (DPE1)—R/WC.
	1 = MCH detected a parity error in the address or data phase of AGP bus transactions.
	0 = Software clears this bit by writing a 1 to it.
14	Received System Error (SSE1)—R/WC.
	1 = MCH detects G_SERR# assertion on the secondary side of this device.
	0 = Software clears this bit by writing a 1 to it.
13	Received Master Abort Status (RMAS1)—R/WC.
	1 = MCH terminates a Host-to-AGP with an unexpected master abort.
	0 = Software clears this bit by writing a 1 to it.
12	Received Target Abort Status (RTAS1)—R/WC.
	1 = MCH-initiated transaction on AGP is terminated with a target abort.
	0 = Software clears this bit by writing a 1 to it.
11	Signaled Target Abort Status (STAS1)—RO. Hardwired to a 0; the MCH does not generate target abort on AGP.
10:9	DEVSEL# Timing (DEVT1)—RO. This 2-bit field indicates the timing of the G_DEVSEL# signal when the MCH responds as a target on AGP, and is hardwired to the value 01b (medium) to indicate the time when a valid G_DEVSEL# can be sampled by the initiator of the PCI cycle.
8	Master Data Parity Error Detected (DPD1)—RO. Hardwired to 0. MCH does not implement the G_PERR# signal.
7	Fast Back-to-Back (FB2B1)—RO. Hardwired to 1; MCH, as a target, supports fast back-to-back transactions on AGP.
6	Reserved
5	66 MHz Capable (CAP66)—RO. Hardwired to 1; AGP bus is capable of 66 MHz operation.
4:0	Reserved.

3.5.17 MBASE1—Memory Base Address Register (Device 1)

Address Offset: 20–21h Default Value: FFF0h

Access: Read/Write, Read Only

Size: 16 bits

This register controls the host to AGP non-prefetchable memory accesses routing based on the following formula:

 $MEMORY_BASE1 \leq address \leq MEMORY_LIMIT1$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom 4 bits of this register are read-only and return 0s when read. Configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bit	Description
15: 4	Memory Address Base 1 (MEM_BASE1). Corresponds to A[31:20] of the memory address.
3:0	Reserved

3.5.18 MLIMIT1—Memory Limit Address Register (Device 1)

Address Offset: 22–23h Default Value: 0000h

Access: Read/Write, Read Only

Size: 16 bits

This register controls the host-to-AGP non-prefetchable memory accesses routing based on the following formula:

MEMORY_BASE1≤ address ≤ MEMORY_LIMIT1

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom 4 bits of this register are read-only and return zeroes when read. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block.

Bit	Description	
15: 4	Memory Address Limit 1(MEM_LIMIT1). Corresponds to A[31:20] of the memory address. Default=0	
3:0	Reserved	

Note:

Memory range covered by the MBASE1 and MLIMIT1 registers are used to map non-prefetchable AGP address ranges (typically, where control/status memory-mapped I/O data structures of the graphics controller will reside) and PMBASE 1 and PMLIMIT1 are used to map prefetchable address ranges (typically, graphics local memory). This segregation allows application of USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address range for improved host-AGP memory access performance.

3.5.19 PMBASE1—Prefetchable Memory Base Address Register (Device 1)

Address Offset: 24–25h Default Value: FFF0h

Access: Read/Write, Read Only

Size: 16 bits

This register controls the host-to-AGP prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE1

address

PREFETCHABLE_MEMORY_LIMIT1

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom 4 bits of this register are read-only and return zeroes when read. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bit	Description	
15:4	Prefetchable Memory Address Base 1(PMEM_BASE1). Corresponds to A[31:20] of the memory address.	
3:0	Reserved	

3.5.20 PMLIMIT1—Prefetchable Memory Limit Address Register (Device 1)

Address Offset: 26–27h Default Value: 0000h

Access: Read/Write, Read Only

Size: 16 bits

This register controls the host-to-AGP prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE1

address

PREFETCHABLE_MEMORY_LIMIT1

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom 4 bits of this register are read-only and return zeroes when read. The configuration software must initialize this register. For the purpose of address decode, address, bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block.

Bit	Description	
15:4	Prefetchable Memory Address Limit 1(PMEM_LIMIT1). Corresponds to A[31:20] of the memory address. Default=0	
3:0	Reserved	

Note: Prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective.

3.5.21 BCTRL1—PCI-PCI Bridge Control Register (Device 1)

Address Offset: 3Eh Default: 00h

Access: Read Only, Read/Write

Size 8 bits

This register provides extensions to the PCICMD1 register that are specific to PCI-PCI bridges. The BCTRL provides additional control for the secondary interface (i.e., AGP) as well as some bits that affect the overall behavior of the "virtual" PCI-PCI bridge in the MCH (e.g., VGA-compatible address ranges mapping).

Bit	Descriptions		
7	Fast Back to Back Enable—RO. Hardwired to 0. Since there is only one target allowed on AGP, this bit is meaningless. The MCH will not generate FB2B cycles in 1x mode, but will generate FB2B cycles in 2x and 4x fast write modes.		
6	Secondary Bus Reset—RO. Hardwired to 0. MCH does not support generation of reset via this bit on the AGP.		
	Note: That the only way to perform a hard reset of the AGP is via the system reset either initiated by software or hardware via ICH2.		
5	Master Abort Mode—RO. This bit is hardwired to 0. This means that when acting as a master on AGP, the MCH will discard data on writes and return all 1s during reads when a Master Abort occurs.		
4	Reserved		
3	VGA Enable (VGAEN1)—R/W. This bit controls the routing of host-initiated transactions targeting VGA compatible I/O and memory address ranges.		
	1 = The MCH will forward the following host accesses to the AGP:		
	- memory accesses in the range 0A0000h to 0BFFFFh		
	 I/O addresses where A[9:0] are in the ranges 3B0h to 3BBh and 3C0h to 3DFh (inclusive of ISA address aliases - A[15:10] are not decoded) 		
	When this bit is set, forwarding of these accesses issued by the host is independent of the I/O address and memory address ranges defined by the previously defined base and limit registers. Forwarding of these accesses is also independent of the settings of bit 2 (ISA Enable) of this register if this bit is 1.		
	0 = VGA compatible memory and I/O range accesses are not forwarded to AGP; rather, they are mapped to primary PCI, unless they are mapped to AGP via I/O and memory range registers defined above (IOBASE1, IOLIMIT1, MBASE1, MLIMIT1, PMBASE1, PMLIMIT1). (default)		
	Refer to the System Address Map Chapter of this document for further information.		
	Note: This bit must be set to 1 if a video device sits behind this bridge (i.e., video device is on AGP). If there is no video device behind this bridge, then this bit must be set to 0. One of the MCH devices must set this bit. This must be enforced via software.		

Bit	Descriptions			
2	ISA Enable—R/W. This bit modifies the response by the MCH to an I/O access issued by the host that targets ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT Registers.			
	1 = Enable. MCH does not forward to AGP any I/O transactions addressing the last 768 bytes in each 1-KB block, even if the addresses are within the range defined by the IOBASE and IOLIMIT Registers. Instead of going to AGP, these cycles are forwarded to PCI0 where they can be subtractively or positively claimed by the ISA bridge.			
	0 = Disable. All addresses defined by the IOBASE and IOLIMIT for host I/O transactions are mapped to AGP. (default)			
	Note: This bit must be set to 1.			
1	SERR# Enable—R/W. This bit controls the forwarding of SERR# on the secondary interface to the primary interface.			
	Enable. MCH generates SERR messages to Hub Interface_A when the SERR# pin on AGP bus is asserted and when the messages are enabled by the SERRE bit in the PCICMD1 register.			
	0 = Disable			
0	Parity Error Response Enable—R/W. This bit controls the MCH's response to data phase parity errors on AGP.			
	1 = G_PERR# is not implemented by the MCH. However, when this bit is set to 1, address and data parity errors detected on AGP are reported via Hub Interface_A SERR# messaging mechanism, if further enabled by SERRE1.			
	0 = Address and data parity errors on AGP are not reported via the MCH Hub Interface_A SERR# messaging mechanism. Other types of error conditions can still be signaled via SERR# messaging independent of this bit's state.			

3.5.22 ERRCMD1—Error Command Register (Device 1)

Address Offset: 40h Default Value: 00h

Access: Read/Write, Read Only

Size: 8 bits

Bit	Description		
7:1	Reserved		
0	SERR on Receiving Target Abort (SERTA).		
	1 = MCH generates an SERR message over Hub Interface_A upon receiving a target abort on AGP. SERR messaging for Device 1 is globally enabled in the PCICMD1 register.		
	0 = MCH does not assert an SERR message upon receipt of a target abort on AGP.		

3.6 Hub Interface_B Bridge Registers (Device 2)

Table 10 provides an address map and describes the access attributes for the Device 2 configuration space.

Table 10. MCH Configuration Space (Device 2)

Address Offset	Symbol	Register Name	Default Value	Access
00–01h	VID2	Vendor Identification	8086h	RO
02–03h	DID2	Device Identification	2533h	RO
04–05h	PCICMD2	PCI Command Register	0000h	RO, R/W
06–07h	PCISTS2	PCI Status Register	00A0h	RO, R/WC
08h	RID2	Revision Identification	03h	RO
09h	_	Reserved	_	_
0Ah	SUBC2	Sub-Class Code	04h	RO
0Bh	BCC2	Base Class Code	06h	RO
0Ch	_	Reserved	_	_
0Dh	MLT2	Master Latency Timer	00h	RO, R/W
0Eh	HDR2	Header Type	01h	RO
0F–17h	_	Reserved	_	_
18h	PBUSN2	Primary Bus Number	00h	RO
19h	SBUSN2	Secondary Bus Number	00h	R/W
1Ah	SUBUSN2	Subordinate Bus Number	00h	R/W
1Bh	SMLT2	Secondary Bus Master Latency Timer	00h	R/W
1Ch	IOBASE2	I/O Base Address Register	F0h	RO, R/W
1Dh	IOLIMIT2	I/O Limit Address Register	00h	RO, R/W
1E-1Fh	SSTS2	Secondary Status Register	02A0h	RO, R/WC
20–21h	MBASE2	Memory Base Address Register	FFF0h	RO, R/W
22–23h	MLIMIT2	Memory Limit Address Register	0000h	RO, R/W
24–25h	PMBASE2	Prefetchable Memory Base Address Register	FFF0h	RO, R/W
26–27h	PMLIMIT2	Prefetchable Memory Limit Address Register	0000h	RO, R/W
28–3Dh	_	Reserved	_	_
3Eh	BCTRL2	Bridge Control Register	00h	RO, R/W
3Fh	_	Reserved		
40h	ERRCMD2	Error Command	00h	RO, R/W
41–FFh	_	Reserved	_	_

3.6.1 VID2—Vendor Identification Register (Device 2)

Address Offset: 00–01h
Default Value: 8086h
Attribute: Read Only
Size: 16 bits

The VID register contains the vendor identification number. This 16-bit register combined with the Device Identification register uniquely identifies any PCI device. Writes to this register have no effect.

Bit	Description
15:0	Vendor Identification Number. This is a 16-bit value assigned to Intel. Intel VID = 8086h.

3.6.2 DID2—Device Identification Register (Device 2)

Address Offset: 02–03h
Default Value: 2533h
Attribute: Read Only
Size: 16 bits

This 16-bit register, combined with the Vendor Identification register, uniquely identifies any PCI device. Writes to this register have no effect.

Bit	Description
15:0	Device Identification Number. This is a 16-bit value assigned to the MCH Device 2.
	MCH Device 2 DID =2533h.

3.6.3 PCICMD2—PCI-PCI Command Register (Device 2)

Address Offset: 04–05h Default: 0000h

Access: Read Only, Read/Write

Size 16 bits

Bit	Descriptions
15:10	Reserved.
9	Fast Back-to-Back—RO. Not implemented; Hardwired to 0.
8	SERR Message Enable (SERRE2)—R/W. This bit is a global enable bit for Device 2 SERR messaging. The MCH does not have an SERR# signal. The MCH communicates the SERR# condition by sending an SERR message to the ICH2.
	1 = Enable. MCH is enabled to generate SERR messages over the Hub Interface_A for specific Device 2 error conditions.
	0 = Disable. SERR message is not generated by the MCH for Device 2.
	Note: This bit only controls SERR messaging for the Device 2. Device 0–5 have their own SERRE bit to control error reporting for error conditions occurring on their device.
7	Address/Data Stepping—RO. Not implemented; Hardwired to 0.
6	Parity Error Enable (PERRE2)—RO. Hardwired to 0. Parity checking is not supported on the primary side of this device.
5	Reserved.
4	Memory Write and Invalidate Enable—RO. Not implemented; Hardwired to 0.
3	Special Cycle Enable—RO. Not implemented; Hardwired to 0.
2	Bus Master Enable (BME2)—R/W. Not applicable. However, supported as a read/write bit to avoid the problems with standard PCI-PCI Bridge configuration software.
1	Memory Access Enable (MAE2)—R/W.
	1 = Enable. Must be set to 1 to enable the Memory and Prefetchable memory address ranges defined in the MBASE2, MLIMIT2, PMBASE2, and PMLIMIT2 Registers.
	0 = Disable. All of Device 2's memory space is disabled.
0	I/O Access Enable (IOAE2)—R/W.
	1 = Enable. Must be set to 1 to enable the I/O address range defined in the IOBASE2 and IOLIMIT2 Registers.
	0 = Disable. All of Device 2's I/O space is disabled.

3.6.4 PCISTS2—PCI-PCI Status Register (Device 2)

Address Offset: 06–07h Default Value: 00A0h

Access: Read Only, Read/Write Clear

Size: 16 bits

PCISTS2 is a 16-bit status register that reports the occurrence of error conditions associated with the primary side of the "virtual" PCI-PCI bridge in the MCH. Since this device does not physically reside on PCI_A, it reports the optimum operating conditions so that it does not restrict the capability of PCI_A.

Bit	Descriptions
15	Detected Parity Error (DPE2)—RO. Not implemented; Hardwired to 0.
14	Signaled System Error (SSE2)—R/WC.
	MCH Device 2 generates an SERR message over the Hub Interface_A for any enabled Device 2 error condition.
	0 = Software clears this bit by writing a 1 to it.
13	Received Master Abort Status (RMAS2)—RO. Hardwired to 0. The concept of master abort does not exist on primary side of this device.
12	Received Target Abort Status (RTAS2)—RO. Hardwired to 0. The concept of target abort does not exist on primary side of this device.
11	Signaled Target Abort Status (STAS2)—RO. Hardwired to 0. The concept of target abort does not exist on primary side of this device.
10:9	DEVSEL# Timing (DEVT2)—RO. Hardwired to 00. Device 2 uses the fastest possible decode.
8	Master Data Parity Error Detected (DPD2)—RO. Hardwired to 0. Parity is not supported on the primary side of this device.
7	Fast Back-to-Back (FB2B2)—RO. Hardwired to 1. Fast back-to-back writes are always supported on this interface.
6	Reserved.
5	66 MHz Capability—RO. Hardwired to 1. Device is capable of 66 MHz operation.
4:0	Reserved.

3.6.5 RID2—Revision Identification Register (Device 2)

Address Offset: 08h
Default Value: 03h
Access: Read Only
Size: 8 bits

This register contains the revision number of the MCH Device 2. These bits are read only and writes to this register have no effect.

Bit	Description
7:0	Revision Identification Number . This is an 8-bit value that indicates the revision identification number for the MCH Device 2.
	A-3 Stepping = 03h.

3.6.6 SUBC2—Sub-Class Code Register (Device 2)

Address Offset: 0Ah
Default Value: 04h
Access: Read Only
Size: 8 bits

This register contains the Sub-Class Code for the MCH Device 2.

Bit	Description
7:0	Sub-Class Code (SUBC2). This is an 8-bit value that indicates the category of bridge for the MCH.
	04h = Host Bridge.

3.6.7 BCC2—Base Class Code Register (Device 2)

Address Offset:

Default Value:

Access:

Read Only
Size:

8 bits

This register contains the Base Class Code of the MCH Device 2.

Bit	Description
7:0	Base Class Code (BASEC2). This is an 8-bit value that indicates the Base Class Code for the MCH Device 2.
	06h = Bridge device.

3.6.8 MLT2—Master Latency Timer Register (Device 2)

Address Offset: 0Dh Default Value: 00h

Access: Read/Write, Read Only

Size: 8 bits

This functionality is not applicable. It is described here since these bits should be implemented as a read/write to prevent standard PCI-PCI bridge configuration software from getting "confused".

Bit	Description
7:3	Not applicable but support read/write operations. Reads return previously written data.
2:0	Reserved

3.6.9 HDR2—Header Type Register (Device 2)

Offset: 0Eh
Default: 01h
Access: Read Only
Size: 8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Descriptions
7:0	This read only field always returns 01h when read. Writes have no effect.

3.6.10 PBUSN2—Primary Bus Number Register (Device 2)

Offset: 18h
Default: 00h
Access: Read Only
Size: 8 bits

This register identifies that "virtual" PCI-PCI bridge is connected to bus #0.

Bit	Descriptions
7:0	Bus Number. Hardwired to 0.

3.6.11 SBUSN2—Secondary Bus Number Register (Device 2)

Offset: 19h Default: 00h

Access: Read /Write Size: 8 bits

This register identifies the bus number assigned to the second bus side of the "virtual" PCI-PCI bridge (the Hub Interface_B connection). This number is programmed by the PCI configuration software to allow mapping of configuration cycles to a second bridge device connected to Hub Interface_B.

Bit	Descriptions
7:0	Bus Number. Programmable. Default = 00h.

3.6.12 SUBUSN2—Subordinate Bus Number Register (Device 2)

Offset: 1Ah Default: 00h

Access: Read /Write Size: 8 bits

This register identifies the subordinate bus (if any) that resides at the level below the secondary hub interface. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to devices subordinate to the secondary hub interface port.

Bit	Descriptions
7:0	Bus Number. Programmable. Default = 00.

3.6.13 SMLT2—Secondary Master Latency Timer Register (Device 2)

Address Offset: 1Bh
Default Value: 00h
Access: Read Only
Size: 8 bits

Bit	Description
7:0	Reserved

3.6.14 IOBASE2—I/O Base Address Register (Device 2)

Address Offset: 1Ch Default Value: F0h

Access: Read/Write, Read Only

Size: 8 bits

This register control the host-to-Hub Interface_B I/O accesses routing based on the following formula:

IO_BASE2 ≤ address ≤ IO_LIMIT2

Only upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0] are treated as 0. Thus, the bottom of the defined I/O address range will be aligned to a 4-KB boundary.

Bit	Description
7:4	I/O Address Base 2. Corresponds to A[15:12] of the I/O addresses passed by the Device 2 bridge-to-Hub Interface_B. Default=F0h
3:0	Reserved

3.6.15 IOLIMIT2—I/O Limit Address Register (Device 2)

Address Offset: 1Dh Default Value: 00h

Access: Read/Write, Read Only

Size: 8 bits

This register control the host-to-Hub Interface_B I/O accesses routing based on the following formula:

IO_BASE2 ≤ address ≤ IO_LIMIT2

Only upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4-KB aligned address block.

Bit	Description
7:4	I/O Address Limit. Corresponds to A[15:12] of the I/O address limit of Device 2. Default = 0
3:0	Reserved. Only 16-bit addressing supported.

3.6.16 SSTS2—Secondary PCI-PCI Status Register (Device 2)

Address Offset: 1E-1Fh
Default Value: 02A0h

Access: Read Only, Read/Write Clear

Size: 16 bits

SSTS2 is a 16-bit status register that reports the occurrence of error conditions associated with the secondary side (i.e., Hub Interface_B side) of the "virtual" PCI-PCI bridge in the MCH.

Bit	Descriptions	
15	Detected Parity Error (DPE2)—R/WC.	
	1 = MCH detected a parity error in the address or data phase of Hub Interface_B bus transactions.	
	0 = Software clears this bit by writing a 1 to it.	
14	Received System Error (SSE2)—R/WC.	
	1 = MCH receives an SERR message across the Hub Interface_B.	
	0 = Software clears this bit by writing a 1 to it.	
13	Received Master Abort Status (RMAS2)—R/WC.	
	1 = MCH receives a Master Abort completion packet or Master Abort special cycle on Hub Interface_B.	
	0 = Software clears this bit by writing a 1 to it.	
12	Received Target Abort Status (RTAS2)—R/WC.	
	1 = MCH receives a Target Abort completion packet or Target Abort special cycle on Hub Interface_B this bit is set.	
	0 = Software clears this bit by writing a 1 to it.	
11	Signaled Target Abort Status (STAS2)—RO. Not Implemented; Hardwired to 1.	
10:9	DEVSEL# Timing (DEVT2)—RO. Not Applicable. Hardwired to 01b	
8	Master Data Parity Error Detected (DPD2)—RO. Not Implemented; Hardwired to 1.	
7	Fast Back-to-Back (FB2B2)—RO. Not Implemented; Hardwired to 1.	
6	Reserved	
5	66 MHz Capable (CAP66)—RO. Hardwired to 1. Hub Interface_B is capable of 66 MHz operation.	
4:0	Reserved	

3.6.17 MBASE2—Memory Base Address Register (Device 2)

Address Offset: 20–21h Default Value: FFF0h

Access: Read/Write, Read Only

Size: 16 bits

This register controls the host-to-Hub Interface_B non-prefetchable memory access routing based on the following formula:

 $MEMORY_BASE2 \leq address \leq MEMORY_LIMIT2$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read-only and return 0s when read. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bit	Description
15: 4	Memory Address Base 2 (MEM_BASE2). Corresponds to A[31:20] of the lower limit memory address that will be passed by the Device 2 to Hub Interface_B.
3:0	Reserved

3.6.18 **MLIMIT2—Memory Limit Address Register (Device 2)**

Address Offset: 22-23h Default Value: 0000h

Access: Read/Write, Read Only

Size: 16 bits

This register controls the host-to-Hub Interface_B non-prefetchable memory access routing based on the following formula:

MEMORY_BASE2 ≤ address ≤ MEMORY_LIMIT2

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read-only and return 0s when read. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block.

Bit	Description
15:4	Memory Address Limit 2(MEM_LIMIT2). Corresponds to A[31:20] of the upper limit memory address that will be passed by the Device 2 to Hub Interface_B.
	Default=0
3:0	Reserved

Note: The memory range covered by MBASE2 and MLIMIT2 Registers are used to map nonprefetchable Hub Interface_B address ranges (typically, where control/status memory-mapped I/O data structures of the graphics controller will reside) and PMBASE2 and PMLIMIT2 are used to map prefetchable address ranges (typically, graphics local memory). This segregation allows application of USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address range for improved host-hub interface memory access performance.

3.6.19 PMBASE2—Prefetchable Memory Base Address Register (Device 2)

Address Offset: 24–25h Default Value: FFF0h

Access: Read/Write, Read Only

Size: 16 bits

This register controls the host-to-Hub Interface_B prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE2 \le address \le PREFETCHABLE_MEMORY_LIMIT2

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read-only and return 0s when read. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bit	Description
15: 4	Prefetchable Memory Address Base 2 (PMEM_BASE2). Corresponds to A[31:20] of the memory address.
3:0	Reserved

3.6.20 PMLIMIT2—Prefetchable Memory Limit Address Register (Device 2)

Address Offset: 26-27h Default Value: 0000h

Access: Read/Write, Read Only

Size: 16 bits

This register controls the host-to-Hub Interface_B prefetchable memory access routing based on the following formula:

PREFETCHABLE MEMORY BASE2 ≤ address ≤ PREFETCHABLE MEMORY LIMIT2

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read-only and return zeroes when read. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block.

Bit	Description	
15: 4	Prefetchable Memory Address Limit 2(PMEM_LIMIT2). Corresponds to A[31:20] of the memory address.	
	Default=0	
3:0	Reserved	

The prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective.

3.6.21 BCTRL2—PCI-PCI Bridge Control Register (Device 2)

Address Offset: 3Eh Default: 00h

Access: Read/Write, Read Only

Size 8 bits

This register provides extensions to the PCICMD2 register that are specific to PCI-PCI bridges. The BCTRL2 provides additional control for the secondary interface (i.e., Hub Interface_B) as well as some bits that affect the overall behavior of the "virtual" PCI-PCI bridge in the MCH (e.g., VGA-compatible address ranges mapping).

Bit	Descriptions	
7	Fast Back to Back Enable—RO. Hardwired to 0. The MCH does not generate fast back-to-back cycles as a master on Hub Interface_B.	
6	Secondary Bus Reset—RO. Hardwired to 0. MCH does not support generation of reset via this bit on the Hub Interface_B.	
5	Master Abort Mode—RO. Hardwired to 0. As a master on Hub Interface_B, the MCH discards data on writes and returns all 1s during reads when a Master Abort occurs.	
4	Reserved	
3	VGA2 Enable (VGAEN2)—R/W. This bit controls the routing of host-initiated transactions targeting VGA compatible I/O and memory address ranges.	
	1 = MCH forwards the following host accesses to the Hub Interface_B:	
	memory accesses in the range 0A0000h–0BFFFFh	
	 I/O addresses where A[9:0] are in the ranges 3B0h to 3BBh and 3C0h to 3DFh (inclusive of ISA address aliases - A[15:10] are not decoded) 	
	When this bit is set, forwarding of these accesses issued by the processor is independent of the I/O address and memory address ranges defined by the previously defined base and limit registers. Forwarding of these accesses is also independent of the settings of the bit 2 (ISA Enable) of this register if this bit is 1.	
	0 = VGA compatible memory and I/O range accesses are not forwarded to Hub Interface_B; rather, they are subtractively mapped to primary PCI unless they are mapped to Hub Interface_B via I/O and memory range registers defined above (IOBASE2, IOLIMIT2, MBASE2, MLIMIT2, PMBASE2, PMLIMIT2). (default)	
	Refer to the System Address Map chapter of this document for further information.	
	Note: This bit must be set to 1 if a video device sits behind this bridge (i.e., video device is on AGP). If there is no video device behind this bridge, this bit must be set to 0. One of the MCH devices must set this bit. This must be enforced via software.	

Bit	Descriptions		
2	ISA Enable—R/W. Modifies the response by the MCH to an I/O access issued by the processor that targets ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers.		
	1 = Enable. The MCH does not forward to Hub Interface_B any I/O transactions addressing the last 768 bytes in each 1 KB block, even if the addresses are within the range defined by the IOBASE and IOLIMIT registers. Instead of going to Hub Interface_B, these cycles are forwarded to Hub Interface_A where they can be subtractively or positively claimed by the ISA bridge.		
	0 = All addresses defined by the IOBASE and IOLIMIT for processor I/O transactions will be mapped to Hub Interface_B. (default)		
	Note: This bit must be set to 1.		
1	SERR# Enable—R/W. This bit enables or disables forwarding of SERR messages from Hub Interface_B-to-Hub Interface_A, where they can be converted into interrupts that are eventually delivered to the processor.		
	1 = Enable		
	0 = Disable		
0	Parity Error Response Enable—R/W. This bit controls the MCH's response to data phase parity errors on Hub Interface_B.		
	1 = Address and data parity errors on Hub Interface_B are reported via the Hub Interface_A SERR# messaging mechanism, if further enabled by SERRE2.		
	0 = Address and data parity errors on Hub Interface_B are not reported via the MCH Hub Interface_A SERR# messaging mechanism. Other types of error conditions can still be signaled via SERR# messaging independent of this bit's state.		

3.6.22 ERRCMD2—Error Command Register (Device 2)

Address Offset: 40h Default Value: 00h

Access: Read/Write, Read Only

Size: 8 bits

Bit	Description	
7:4	Reserved	
3	SERR on Detecting Hub Interface_B Unimplemented Special Cycle (HIDUSCERR).	
	MCH generates an SERR message over Hub Interface_A when an Unimplemented Special Cycle is received on the hub interface.	
	0 = MCH does not generate an SERR message for this event. SERR messaging for Device 2 is globally enabled in the PCICMD2 register.	
2	SERR on Generating Hub Interface_B Master Abort (HIDMAERR).	
	MCH generates an SERR message over Hub Interface_A when an invalid address is received on the hub interface.	
	0 = MCH does not generate an SERR message for this event. SERR messaging for Device 2 is globally enabled in the PCICMD2 register.	
1	Reserved.	
0	SERR on Receiving Target Abort (HISERTA).	
	MCH generates a SERR message over Hub Interface_A upon receiving a target abort on Hub Interface_B.	
	0 = MCH does not assert an SERR message upon receipt of a target abort on Hub Interface_B. SERR messaging for Device 2 is globally enabled in the PCICMD2 register.	

3.7 Hub Interface_C Bridge Registers (Device 3)

Table 11 provides the address map and describes the access attributes for Device 3 configuration space.

Table 11. MCH Configuration Space (Device 3)

Address Offset	Symbol	Register Name	Default Value	Access
00–01h	VID3	Vendor Identification	8086h	RO
02–03h	DID3	Device Identification	2534h	RO
04–05h	PCICMD3	PCI Command Register	0000h	RO, R/W
06–07h	PCISTS3	PCI Status Register	00A0h	RO, R/WC
08	RID3	Revision Identification	03h	RO
09	_	Reserved	_	_
0Ah	SUBC3	Sub-Class Code	04h	RO
0Bh	BCC3	Base Class Code	06h	RO
0Ch	_	Reserved	_	_
0Dh	MLT3	Master Latency Timer	00h	RO, R/W
0Eh	HDR3	Header Type	01h	RO
0F–17h	_	Reserved	_	_
18h	PBUSN3	Primary Bus Number	00h	RO
19h	SBUSN3	Secondary Bus Number	00h	R/W
1Ah	SUBUSN3	Subordinate Bus Number	00h	R/W
1Bh	SMLT3	Secondary Bus Master Latency Timer	00h	RO, R/W
1Ch	IOBASE3	I/O Base Address Register	F0h	RO, R/W
1Dh	IOLIMIT3	I/O Limit Address Register	00h	RO, R/W
1E-1Fh	SSTS3	Secondary Status Register	02A0h	RO, R/WC
20–21h	MBASE3	Memory Base Address Register	FFF0h	RO, R/W
22-23h	MLIMIT3	Memory Limit Address Register	0000h	RO, R/W
24–25h	PMBASE3	Prefetchable Memory Base Address Register	FFF0h	RO, R/W
26–27h	PMLIMIT3	Prefetchable Memory Limit Address Register	0000h	RO, R/W
28–3Dh	_	Reserved		
3Eh	BCTRL3	Bridge Control Register	00h	RO, R/W
3Fh	_	Reserved	_	_
40h	ERRCMD3	Error Command	00h	RO, R/W
41–FFh	_	Reserved	_	_

3.7.1 VID3—Vendor Identification Register (Device 3)

Address Offset: 00–01h
Default Value: 8086h
Attribute: Read Only
Size: 16 bits

The VID register contains the vendor identification number. This 16-bit register combined with the Device Identification register uniquely identifies any PCI device. Writes to this register have no effect.

Bit	Description
15:0	Vendor Identification Number . This is a 16-bit value assigned to Intel. Intel VID = 8086h.

3.7.2 DID3—Device Identification Register (Device 3)

Address Offset: 02–03h
Default Value: 2534h
Attribute: Read Only
Size: 16 bits

This 16-bit register, combined with the Vendor Identification register, uniquely identifies any PCI device. Writes to this register have no effect.

Bit	Description
15:0	Device Identification Number. This is a 16-bit value assigned to the MCH Device 3.
	MCH1 Device 3 DID =2534h.

3.7.3 PCICMD3—PCI-PCI Command Register (Device 3)

Address Offset: 04–05h Default: 0000h

Access: Read Only, Read/Write

Size 16 bits

Bit	Descriptions	
15:10	Reserved	
9	Fast Back-to-Back—RO. Not implemented; Hardwired to 0.	
8	SERR Message Enable (SERRE3)—RW. This bit is a global enable bit for Device 3 SERR messaging. The MCH does not have an SERR# signal. The MCH communicates the SERR# condition by sending an SERR message to the ICH2.	
	1 = Enable. MCH is enabled to generate SERR messages over the Hub Interface_A for specific Device 3 error conditions.	
	0 = Disable. SERR message is not generated by the MCH for Device 3.	
	Note: This bit only controls SERR messaging for the Device 3. Device 0–5 have their own SERRE bit to control error reporting for error conditions occurring on their device.	
7	Address/Data Stepping—RO. Not implemented; Hardwired to 0.	
6	Parity Error Enable (PERRE3)—RO. Hardwired to 0. Parity checking is not supported on the primary side of this device.	
5	Reserved	
4	Memory Write and Invalidate Enable—RO. Not implemented; Hardwired to 0.	
3	Special Cycle Enable—RO. Not implemented; Hardwired to 0.	
2	Bus Master Enable (BME3)—R/W. Not applicable. However, supported as a read/write bit to avoid the problems with standard PCI-PCI Bridge configuration software.	
1	Memory Access Enable (MAE3)—R/W.	
	1 = Enable. Must be set to 1 to enable the memory and prefetchable memory address ranges defined in the MBASE3, MLIMIT3, PMBASE3, and PMLIMIT3 registers.	
	0 = Disable. All of Device 3's memory space is disabled.	
0	I/O Access Enable (IOAE3)—R/W.	
	1 = Enable. Must be set to 1 to enable the I/O address range defined in the IOBASE3 and IOLIMIT3 registers.	
	0 = Disable. All of Device 3's I/O space is disabled.	

3.7.4 PCISTS3—PCI-PCI Status Register (Device 3)

Address Offset: 06–07h Default Value: 00A0h

Access: Read Only, Read/Write Clear

Size: 16 bits

PCISTS3 is a 16-bit status register that reports the occurrence of error conditions associated with the primary side of the "virtual" PCI-PCI bridge in the MCH. Since this device does not physically reside on PCI_A, it reports the optimum operating conditions so that it does not restrict the capability of PCI_A.

Bit	Descriptions
15	Detected Parity Error (DPE3)—RO. Not Applicable. Hardwired to 0.
14	Signaled System Error (SSE3)—R/WC.
	1 = MCH Device 3 generates an SERR message over the Hub Interface_A for any enabled Device 3 error condition.
	0 = Software clears this bit by writing a 1 to it.
13	Received Master Abort Status (RMAS3)—RO. Hardwired to 0. The concept of master abort does not exist on primary side of this device.
12	Received Target Abort Status (RTAS3)—RO. Hardwired to 0. The concept of target abort does not exist on primary side of this device.
11	Signaled Target Abort Status (STAS3)—RO. Hardwired to 0. The concept of target abort does not exist on primary side of this device.
10:9	DEVSEL# Timing (DEVT3)—RO. Hardwired to 00; Device 3 uses the fastest possible decode.
8	Master Data Parity Error Detected (DPD3)—RO. Hardwired to 0. Parity is not supported on the primary side of this device.
7	Fast Back-to-Back (FB2B3)—RO. Hardwired to 1; fast back-to-back writes are always supported on this interface.
6	Reserved
5	66 MHz Capability—RO. Hardwired to a 1; device is capable of 66 MHz operation.
4:0	Reserved

3.7.5 RID3—Revision Identification Register (Device 3)

Address Offset: 08h
Default Value: 03h
Access: Read Only
Size: 8 bits

This register contains the revision number of the MCH Device 3. These bits are read only and writes to this register have no effect.

Bit	Description
7:0	Revision Identification Number . This is an 8-bit value that indicates the revision identification number for the MCH Device 3.
	A-3 Stepping = 03h.

3.7.6 SUBC3—Sub-Class Code Register (Device 3)

Address Offset: 0Ah
Default Value: 04h
Access: Read Only
Size: 8 bits

This register contains the Sub-Class Code for the MCH Device 3.

Bit	Description
7:0	Sub-Class Code (SUBC3). This is an 8-bit value that indicates the category of bridge for the MCH.
	04h = Host Bridge

3.7.7 BCC3—Base Class Code Register (Device 3)

Address Offset: 0Bh
Default Value: 06h
Access: Read Only
Size: 8 bits

This register contains the Base Class Code of the MCH Device 3.

Bit	Description
7:0	Base Class Code (BASEC3) . This is an 8-bit value that indicates the Base Class Code for the MCH Device 3.
	06h = Bridge device

3.7.8 MLT3—Master Latency Timer Register (Device 3)

Address Offset: 0Dh Default Value: 00h

Access: Read/Write, Read Only

Size: 8 bits

This functionality is not applicable. It is described here since these bits should be implemented as a read/write to prevent standard PCI-PCI bridge configuration software from getting "confused."

Bit	Description
7:3	Not applicable but supports read/write operations. Reads return previously written data.
2:0	Reserved

3.7.9 HDR3—Header Type Register (Device 3)

Offset: 0Eh
Default: 01h
Access: Read Only
Size: 8 bits

This register identifies the header layout of the configuration space. No physical register exists at this location.

Bit	Descriptions
7:0	This read only field always returns 01h when read. Writes have no effect.

3.7.10 PBUSN3—Primary Bus Number Register (Device 3)

Offset: 18h
Default: 00h
Access: Read Only
Size: 8 bits

This register identifies that "virtual" PCI-PCI bridge is connected to bus #0.

Bit	Descriptions
7:0	Bus Number. Hardwired to 0.

3.7.11 SBUSN3—Secondary Bus Number Register (Device 3)

Offset: 19h Default: 00h

Read /Write Access: Size: 8 bits

This register identifies the bus number assigned to the second bus side of the "virtual" PCI-PCI bridge (the Hub Interface C connection). This number is programmed by the PCI configuration software to allow mapping of configuration cycles to a second bridge device connected to Hub Interface_C.

Bit	Descriptions
7:0	Bus Number. Programmable. Default = 00h.

SUBUSN3—Subordinate Bus Number Register (Device 3) 3.7.12

Offset: 1Ah Default: 00h

Access: Read /Write

Size: 8 bits

This register identifies the subordinate bus (if any) that resides at the level below the secondary hub interface. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to devices subordinate to the secondary hub interface port.

Bit	Descriptions
7:0	Bus Number. Programmable. Default = 00.

SMLT3—Secondary Master Latency Timer Register 3.7.13 (Device 3)

Address Offset: 1Bh Default Value: 00h Access: Read Only Size: 8 bits

Bit	Description
7:0	Reserved

3.7.14 IOBASE3—I/O Base Address Register (Device 3)

Address Offset: 1Ch Default Value: F0h

Access: Read/Write, Read Only

Size: 8 bits

This register control the host-to-Hub Interface_C I/O access routing based on the following formula:

IO_BASE3 ≤ address ≤ IO_LIMIT3

Only upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0] are treated as 0. Thus, the bottom of the defined I/O address range will be aligned to a 4-KB boundary.

Bit	Description
7:4	I/O Address Base 3. Corresponds to A[15:12] of the I/O addresses passed by the Device 3 bridge to Hub Interface_C. Default=F0h
3:0	Reserved

3.7.15 IOLIMIT3—I/O Limit Address Register (Device 3)

Address Offset: 1Dh Default Value: 00h

Access: Read/Write, Read Only

Size: 8 bits

This register controls the host-to-Hub Interface_C I/O access routing based on the following formula:

IO_BASE3 ≤ address ≤ IO_LIMIT3

Only upper four bits are programmable. For the purpose of address decode, address bits A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4-KB aligned address block.

Bit	Description
7:4	I/O Address Limit. Corresponds to A[15:12] of the I/O address limit of Device 3. Default = 0
3:0	Reserved. Only 16-bit addressing supported.

3.7.16 SSTS3—Secondary PCI-PCI Status Register (Device 3)

Address Offset: 1E-1Fh
Default Value: 02A0h

Access: Read Only, Read/Write Clear

Size: 16 bits

SSTS3 is a 16-bit status register that reports the occurrence of error conditions associated with secondary side (i.e., Hub Interface_C side) of the "virtual" PCI-PCI bridge in the MCH.

Bit	Descriptions
15	Detected Parity Error (DPE3)—R/WC.
	1 = MCH detected of a parity error in the address or data phase of Hub Interface_C bus transactions.
	0 = Software clears this bit by writing a 1 to this bit.
14	Received System Error (SSE3)—R/WC.
	1 = MCH receives a SERR message across the Hub Interface_C.
	0 = Software clears this bit by writing a 1 to this bit.
13	Received Master Abort Status (RMAS3)—R/WC.
	1 = MCH receives a Master Abort completion packet or Master Abort special cycle on Hub Interface_C this bit is set.
	0 = Software clears this bit by writing a 1 to this bit.
12	Received Target Abort Status (RTAS3)—R/WC.
	1 = MCH receives a Target Abort completion packet or Target Abort special cycle on Hub Interface_C.
	0 = Software clears this bit by writing a 1 to this bit.
11	Signaled Target Abort Status (STAS3)—RO. Not Applicable. Hardwired to 0.
10:9	DEVSEL# Timing (DEVT3)—RO. Not Applicable. Hardwired to 01b
8	Master Data Parity Error Detected (DPD3)—RO. Not Applicable. Hardwired to 0.
7	Fast Back-to-Back (FB2B3)—RO. Not Applicable. Hardwired to 1.
6	Reserved
5	66 MHz Capable (CAP66)—RO. This bit is hardwired to 1 to indicate that Hub Interface_C is capable of 66 MHz operation.
4:0	Reserved

3.7.17 MBASE3—Memory Base Address Register (Device 3)

Address Offset: 20–21h Default Value: FFF0h

Access: Read/Write, Read Only

Size: 16 bits

This register controls the host-to-Hub Interface_C non-prefetchable memory access routing based on the following formula:

 $MEMORY_BASE3 \leq address \leq MEMORY_LIMIT3$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read-only and return 0s when read. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bit	Description
15: 4	Memory Address Base 3 (MEM_BASE3). Corresponds to A[31:20] of the lower limit memory address that will be passed by the Device 3 to Hub Interface_C.
3:0	Reserved

3.7.18 MLIMIT3—Memory Limit Address Register (Device 3)

Address Offset: 22–23h Default Value: 0000h

Access: Read/Write, Read Only

Size: 16 bits

This register controls the host-to-Hub Interface_C non-prefetchable memory access routing based on the following formula:

MEMORY_BASE3 ≤ address ≤ MEMORY_LIMIT3

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read-only and return 0s when read. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block.

Bit	Description
15:4	Memory Address Limit 3(MEM_LIMIT3). Corresponds to A[31:20] of the upper limit memory address that will be passed by the Device 3 to Hub Interface_C. Default = 0
3:0	Reserved

Note:

Memory range covered by MBASE3 and MLIMIT3 registers are used to map non-prefetchable Hub Interface_C address ranges (typically, where control/status memory-mapped I/O data structures of the graphics controller will reside) and PMBASE3 and PMLIMIT3 are used to map prefetchable address ranges (typically, graphics local memory). This segregation allows application of USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address range for improved host-hub interface memory access performance.

3.7.19 PMBASE3—Prefetchable Memory Base Address Register (Device 3)

Address Offset: 24–25h Default Value: FFF0h

Access: Read/Write, Read Only

Size: 16 bits

This register controls the host-to-Hub Interface_C prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE3

address

PREFETCHABLE_MEMORY_LIMIT3

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read-only and return 0s when read. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1-MB boundary.

Bit	Description
15: 4	Prefetchable Memory Address Base 3(PMEM_BASE3). Corresponds to A[31:20] of the memory address.
3:0	Reserved

3.7.20 PMLIMIT3—Prefetchable Memory Limit Address Register (Device 3)

Address Offset: 26–27h Default Value: 0000h

Access: Read/Write, Read Only

Size: 16 bits

This register controls the host-to-Hub Interface_C prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE3 ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT3

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32-bit address. The bottom four bits of this register are read-only and return 0s when read. The configuration software must initialize this register. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1-MB aligned memory block.

Bit	Description
15: 4	Prefetchable Memory Address Limit 3(PMEM_LIMIT3). Corresponds to A[31:20] of the memory address. Default=0
3:0	Reserved

NOTE:

The prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e., prefetchable) from the processor perspective.

3.7.21 BCTRL3—PCI-PCI Bridge Control Register (Device 3)

Address Offset: 3Eh Default: 00h

Access: Read/Write, Read Only

Size 8 bits

This register provides extensions to the PCICMD3 register that are specific to PCI-PCI bridges. The BCTRL3 provides additional control for the secondary interface (i.e., Hub Interface_C) as well as some bits that affect the overall behavior of the "virtual" PCI-PCI bridge in the MCH (e.g., VGA-compatible address ranges mapping).

Bit	Descriptions
7	Fast Back to Back Enable—RO. Hardwired to 0. The MCH does not generate fast back-to-back cycles as a master on Hub Interface_C.
6	Secondary Bus Reset—RO. Hardwired to 0. MCH does not support generation of reset via this bit on Hub Interface_C.
5	Master Abort Mode—RO. Hardwired to 0. As a master on Hub Interface_C the MCH will discard data on writes and return all 1s during reads when a Master Abort occurs.
4	Reserved
3	VGA3 Enable (VGAEN3)—R/W. This bit controls the routing of host-initiated transactions targeting VGA compatible I/O and memory address ranges.
	1 = The MCH forwards the following host accesses to Hub Interface_C:
	memory accesses in the range 0A0000h–0BFFFFh
	 I/O addresses where A[9:0] are in the ranges 3B0h to 3BBh and 3C0h to 3DFh (inclusive of ISA address aliases - A[15:10] are not decoded)
	When this bit is set, forwarding of these accesses issued by the processor is independent of the I/O address and memory address ranges defined by the previously defined base and limit registers. Forwarding of these accesses is also independent of the settings of the bit 2 (ISA Enable) of this register, if this bit is 1.
	0 = VGA compatible memory and I/O range accesses are not forwarded to Hub Interface_C; rather, they are subtractively mapped to primary PCI unless they are mapped to Hub Interface_C via I/O and memory range registers defined above (IOBASE3, IOLIMIT3, MBASE3, MLIMIT3, PMBASE3, PMLIMIT3). (default)
	Refer to the System Address Map chapter of this document for further information.
	Note: This bit must be set to 1 if a video device sits behind this bridge (i.e., video device is on AGP). If there is no video device behind this bridge, this bit must be set to 0. One of the MCH devices must set this bit. This must be enforced via software.

Bit	Descriptions
2	ISA Enable—R/W. This bit modifies the response by the MCH to an I/O access issued by the processor that targets ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers.
	1 = Enable. MCH does not forward to Hub Interface_C any I/O transactions addressing the last 768 bytes in each 1 KB block even if the addresses are within the range defined by the IOBASE and IOLIMIT registers. Instead of going to Hub Interface_C these cycles will be forwarded to Hub Interface_A where they can be subtractively or positively claimed by the ISA bridge.
	0 = All addresses defined by the IOBASE and IOLIMIT for processor I/O transactions will be mapped to Hub Interface_C. (default)
	Note: This bit must be set to 1.
1	SERR# Enable—R/W. This bit enables or disables forwarding of SERR messages from Hub Interface_C-to-Hub Interface_A, where they can be converted into interrupts that are eventually delivered to the processor.
	1 = Enable
	0 = Disable
0	Parity Error Response Enable—R/W. This bit controls the MCH's response to data phase parity errors on Hub Interface_C.
	1 = Address and data parity errors on Hub Interface_C are reported via the Hub Interface_A SERR# messaging mechanism, if further enabled by SERRE3.
	0 = Address and data parity errors on Hub Interface_C are not reported via the MCH Hub Interface_A SERR# messaging mechanism. Other types of error conditions can still be signaled via SERR# messaging independent of this bit's state.

3.7.22 ERRCMD3—Error Command Register (Device 3)

Address Offset: 40h Default Value: 00h

Access: Read/Write, Read Only

Size: 8 bits

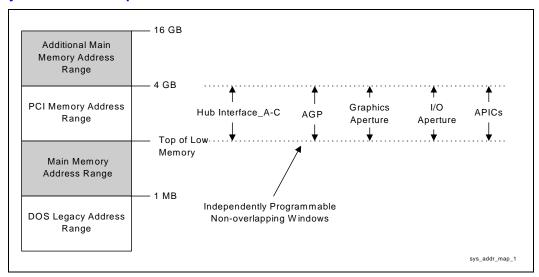
Bit	Description
7:4	Reserved
3	SERR on Detecting Hub Interface_C Unimplemented Special Cycle (HIDUSCERR).
	1 = MCH generates an SERR message over Hub Interface_A when an Unimplemented Special Cycle is received on the hub interface.
	0 = MCH does not generate an SERR message for this event. SERR messaging for Device 3 is globally enabled in the PCICMD3 register.
2	SERR on Generating Hub Interface_C Master Abort (HIDMAERR).
	1 = MCH generates an SERR message over Hub Interface_A when an invalid address is received on the hub interface.
	0 = MCH does not generate an SERR message for this event. SERR messaging for Device 3 is globally enabled in the PCICMD3 register.
1	Reserved.
0	SERR on Receiving Target Abort (HISERTA).
	1 = MCH generates an SERR message over Hub Interface_A upon receiving a target abort on Hub Interface_C.
	0 = MCH does not assert an SERR message upon receipt of a target abort on Hub Interface_C. SERR messaging for Device 3 is globally enabled in the PCICMD3 register.

This page is intentionally left blank.

4 System Address Map

A system based on the Intel 82860 MCH supports 16 GB of addressable memory space and 64 KB+3 of addressable I/O space. The I/O and memory spaces are divided by system configuration software into regions. The memory ranges are useful either as system memory or as specialized memory, while the I/O regions are used solely to control the operation of devices in the system.

When the MCH receives a write request whose address targets an invalid space, the data is ignored. For reads, the MCH responds by returning all zeros on the requesting interface.


4.1 Memory Address Ranges

The system memory map is divided into three categories:

- **High Memory Range (above 4 GB)** The first is DRAM only, and exists between 4 GB and 16 GB (bit 32 of the address is active)
- Extended Memory Range (1 MB to 4 GB) The second is extended memory, existing between 1 MB and 4 GB. It contains a 32-bit memory space, which is used for mapping PCI, AGP, APIC, SMRAM, and BIOS memory spaces.
- DOS Compatible Area (below 1 MB) The final range is a DOS legacy space, which is used for BIOS and legacy devices on the LPC interface.

Figure 4 shows the major portions of the system address Map. Figure 5 and Figure 6 provide detailed address maps for the DOS memory address range and extended memory address range.

Figure 4. System Address Map

These address ranges are always mapped to system memory, regardless of the system configuration. Memory may be taken out of the main memory segment for use by System Management Mode (SMM) hardware and software. The Top of Low Memory (TOM) register defines the top of Main Memory. Note that the address of the highest 16 MB quantity of valid memory in the system is placed into the GBA15 register. For memory populations < 3 GB, this value will be the same as the one programmed into the TOM register. For other memory configurations, the two are unlikely to be the same, since the PCI configuration portion of the BIOS software will program the TOM register to the maximum value that is less than the amount of memory in the system and that allows enough room for all populated PCI devices.

Figure 5. Detailed DOS Compatible Area Address Map

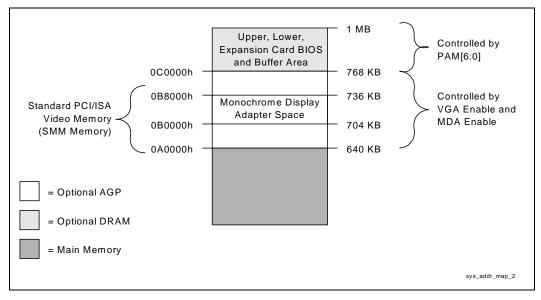
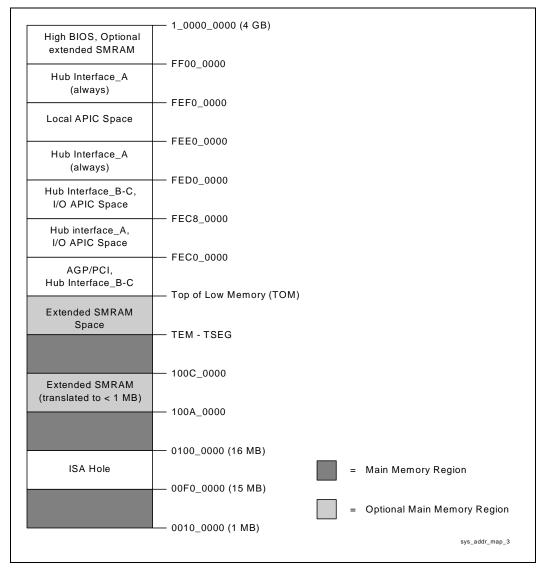



Figure 6. Detailed Extended Memory Range Address Map

4.1.1 VGA and MDA Memory Space

Video cards use these legacy address ranges to map a frame buffer or a character-based video buffer. The address ranges in this memory space are:

VGAA 0_000A_0000h to 0_000A_FFFFh
 MDA 0_000B_0000h to 0_000B_7FFFh
 VGAB 0_000B_8000h to 0_000B_FFFFh

By default, accesses to these ranges are forwarded to Hub Interface_A. However, if the VGA_EN bit is set in the BCTRL1-3 configuration registers, then transactions within the VGA and MDA spaces are sent to AGP or Hub Interface_B-C, respectively. Note that the VGA_EN bit may be set in one and only one of the BCTRL registers. Software must not set more than one of the VGA_EN bits. If the configuration bit MCHCFG.MDAP is set, accesses that fall within the MDA range will be sent to Hub Interface_A without regard for the VGAEN bits.

If the configuration bit MCHCFG.MDAP is set, then accesses that fall within the MDA range will be sent to Hub Interface_A without regard for the VGAEN bits. Legacy support requires the ability to have a second graphics controller (monochrome) in the system. In an Intel 82860 MCH system, accesses in the standard VGA range are forwarded to the AGP or Hub Interface_B-C (depending on configuration bits). Since the monochrome adapter may be on Hub Interface_A (or ISA bus) the MCH must decode cycles in the MDA range and forward them to Hub Interface_A. This capability is controlled by a configuration bit (MDAP bit). In addition to the memory range B0000h to B7FFFh, the MCH decodes I/O cycles at 3B4h, 3B5h, 3B8h, 3B9h, 3Bah, and 3BFh and forwards them to Hub Interface_A.

An optimization allows the system to reclaim the memory displaced by these regions. If SMM memory space is enabled by SMRAM.G_SMRARE and either the SMRAM.D_OPEN bit is set or the processor bus receives an SMM-encoded request for code (not data), then the transaction is steered to system memory rather than Hub Interface_A. Under these conditions, both of the VGAEN bits and the MDAP bit are ignored.

4.1.2 PAM Memory Spaces

The address ranges in this memory space are:

```
• PAMC0
            0 000C 0000h to 0 000C 3FFFh
• PAMC4
            0_000C_4000h to 0_000C_7FFFh
            0\_000C\_8000h to 0\_000C\_BFFFh
• PAMC8
• PAMCC
            0_000C_C000h to 0_000C_FFFFh
• PAMD0
            0_000D_0000h to 0_000D_3FFFh
• PAMD4
            0_000D_4000h to 0_000D_7FFFh
• PAMD8
            0_000D_8000h to 0_000D_BFFFh
• PAMDC
            0_000D_C000h to 0_000D_FFFFh
• PAME0
            0 000E 0000h to 0 000E 3FFFh
• PAME4
            0_000E_4000h to 0_000E_7FFFh
• PAME8
            0 000E 8000h to 0 000E BFFFh
• PAMEC
            0_000E_C000h to 0_000E_FFFFh
• PAMF0
            0_000F_0000h to 0_000F_FFFFh
```

The 256-KB PAM region is divided into three parts:

- ISA expansion region, a 128-KB area between 0_000C_0000h 0_000D_FFFFh
- Extended BIOS region, a 64-KB area between 0 000E 0000h 0 000E FFFFh
- System BIOS region, a 64-KB area between 0_000F_0000h 0_000F_FFFFh.

The ISA expansion region is divided into eight, 16-KB segments. Each segment can be assigned one of four read/write states: read-only, write-only, read/write, or disabled. Typically, these blocks are mapped through MCH and are subtractively decoded to ISA space.

The extended System BIOS region is divided into four 16 KB segments. Each segment can be assigned independent read and write attributes so it can be mapped either to main DRAM or to Hub Interface_A. Typically, this area is used for RAM or ROM.

The system BIOS region is a single 64-KB segment. This segment can be assigned read and write attributes. It is by default (after reset) read/write disabled and cycles are forwarded to Hub Interface_A. By manipulating the read/write attributes, the MCH can "shadow" BIOS into the main DRAM.

4.1.3 ISA Hole Memory Space

BIOS software may optionally open a "window" between 15 MB and 16 MB (0_00F0_0000h to 0_00FF_FFFFh) that relays transactions to Hub Interface_A instead of completing them with a system memory access. This window is opened with the FDHC.HEN configuration field.

4.1.4 TSEG SMM Memory Space

The TSEG SMM space (TOM – TSEG to TOM) allows system management software to partition a region of main memory just below the top of low memory (TOM) that is accessible only by system management software. This region may be 128 KB, 256 KB, 512 KB, or 1 MB, depending on the ESMRAMC.TSEG_SZ field. SMM memory is globally enabled by SMRAM.G_SMRARE. Requests may access SMM system memory when either SMM space is open (SMRAM.D_OPEN) or the MCH receives an SMM code request on its processor bus. In order to access the TSEG SMM space, the TSEG must be enabled by ESMRAMC.T_EN. When all of these conditions are met, a processor bus access to the TSEG space (between TOM-TSEG and TOM) is sent to system memory. If the high SMRAM is not enabled or if the TSEG is not enabled, all memory requests from all interfaces are forwarded to system memory. If the TSEG SMM space is enabled, and an agent attempts a non-SMM access to TSEG space, the transaction is specially terminated.

Hub interface and AGP originated accesses are not allowed to SMM space.

4.1.5 I/O APIC Memory Space

The I/OAPIC spaces are used to communicate with I/O APIC interrupt controllers that may be populated on Hub Interface_A-C. Since it is difficult to relocate an interrupt controller using plugand-play software, fixed address decode regions have been allocated for them. The address ranges are:

IOAPIC0 (Hub Interface_A) 0_FEC0_0000h to 0_FEC7_FFFFh
 IOAPIC1 (Hub Interface_B) 0_FEC8_0000h to 0_FEC8_0FFFh
 IOAPIC2 (Hub Interface C) 0_FEC8_1FFFh

Processor accesses to the IOAPIC0 region are always sent to Hub Interface_A. Processor accesses to the IOAPIC1 region are always sent to Hub Interface_B and so on.

4.1.6 System Bus Interrupt Memory Space

The system bus interrupt space (0_FEE0_0000h to 0_FEEF_FFFFh) is the address used to deliver interrupts to the system bus. Any device on AGP or Hub Interface_A-C may issue a memory write to 0FEEx_xxxxh. The MCH will forward this memory write, along with the data, to the system bus as an Interrupt Message Transaction. The MCH terminates the system bus transaction by providing the response and asserting TRDY#. This memory write cycle does not go to DRAM.

4.1.7 High SMM Memory Space

The HIGHSMM space (0_FEDA_0000h to 0_FEDB_FFFFh) allows cacheable access to the compatible SMM space by re-mapping valid SMM accesses between 0_FEDA_0000 and 0_FEDB_FFFF to accesses between 0_000A_0000 and 0_000B_FFFF. The accesses are remapped when SMRAM space is enabled, an appropriate access is detected on the processor bus, and when ESMRAMC.H_SMRAME allows access to high SMRAM space. SMM memory accesses from any hub interface or AGP are specially terminated: reads are provided with the value from address 0 while writes are ignored entirely.

4.1.8 AGP Aperture Space (Device 0 BAR)

Processors and AGP devices communicate through a special buffer called the "graphics aperture" (located at APBASE to APBASE + APSIZE). This aperture acts as a window into main memory and is defined by the APBASE and APSIZE configuration registers of the MCH. Note that the AGP aperture must be above the TOM and must not intersect with any other address space.

4.1.9 AGP Memory and Prefetchable Memory

Plug-and-play software configures the AGP memory window to provide enough memory space for the devices behind this PCI-to-PCI bridge. Accesses whose addresses fall within this window are decoded and forwarded to AGP for completion. The address ranges are:

• M1 MBASE1 to MLIMIT1

• PM1 PMBASE1 to PMLIMIT1

Note that these registers must be programmed with values that place the AGP memory space window between the value in the TOM register and 4 GB. In addition, neither region should overlap with any other fixed or relocatable area of memory.

4.1.10 Hub Interface_B Memory and Prefetchable Memory

Plug-and-play software configures the Hub Interface_B memory window to provide enough memory space for the devices behind this PCI-to-PCI bridge. Accesses whose addresses fall within this window are decoded and forwarded to Hub Interface_B for completion. The address ranges are:

• M2 MBASE2 to MLIMIT2

• PM2 PMBASE2 to PMLIMIT2

Note that these registers must be programmed with values that place the Hub Interface_B memory space window between the value in the TOM register and 4 GB. In addition, neither region should overlap with any other fixed or relocatable area of memory.

4.1.11 Hub Interface_C Memory and Prefetchable Memory

Plug-and-play software configures the Hub Interface_C memory window to provide enough memory space for the devices behind this PCI-to-PCI bridge. Accesses whose addresses fall within this window are decoded and forwarded to Hub Interface_C for completion. The address ranges are:

• M3 MBASE3 to MLIMIT3

• PM3 PMBASE3 to PMLIMIT3

Note that these registers must be programmed with values that place the Hub Interface_C memory space window between the value in the TOM register and 4 GB. In addition, neither region should overlap with any other fixed or relocatable area of memory.

4.1.12 Hub Interface A Subtractive Decode

All accesses that fall between the values programmed into the TOM register and 4 GB are subtractively decoded and forwarded to Hub Interface_A, if they do not decode to a space that corresponds to another device.

4.2 AGP Memory Address Ranges

The MCH can be programmed to direct memory accesses to the AGP bus interface when addresses are within either of two ranges specified via registers in MCH Device 1 configuration space. The first range is controlled via the Memory Base (MBASE1) register and Memory Limit (MLIMIT1) register. The second range is controlled via the Prefetchable Memory Base (PMBASE1) register and Prefetchable Memory Limit (PMLIMIT1) register.

The MCH positively decodes memory accesses to AGP memory address space as defined by the following equations:

- Memory_Base_Address ≤ Address ≤ Memory_Limit_Address
- Prefetchable_Memory_Base_Address ≤ Address ≤ Prefetchable_Memory_Limit_Address

The plug-and-play configuration software programs the effective size of the range and it depends on the size of memory claimed by the AGP device.

Note: That the MCH Device 1 memory range registers described above are used to allocate memory address space for any devices sitting on AGP bus that require such a window.

4.2.1 AGP DRAM Graphics Aperture

Memory-mapped, graphics data structures can reside in a *Graphics Aperture* to main DRAM memory. This aperture is an address range defined by the APBASE and APSIZE configuration registers of the MCH Device 0. The APBASE register follows the standard Base Address register template as defined by the PCI 2.1 specification. The size of the range claimed by the APBASE is programmed via "back-end" register APSIZE (programmed by the chipset specific BIOS before plug-and-play session is performed). APSIZE allows the BIOS software to pre-configure the aperture size to be 4 MB, 8 MB, 16 MB, 32 MB, 64 MB, 128 MB or 256 MB. By programming APSIZE to specific size, the corresponding lower bits of APBASE are forced to 0 (behave as hardwired). Default value of APSIZE forces an aperture size of 256 MB. The aperture address range is naturally aligned.

Accesses within the aperture range are forwarded to the main DRAM subsystem. The MCH will translate the originally issued addresses via a translation table maintained in main memory. The range should be programmed as non-cacheable in the processor caches.

Note: Plug-and-play software configuration model does not allow overlap of different address ranges. Therefore the AGP Graphics Aperture and AGP Memory Address Range are independent address ranges that may abut, but cannot overlap one another.

4.3 System Management Mode (SMM) Memory Range

The MCH supports the use of main memory as System Management RAM (SMRAM) enabling the use of SMM. The MCH supports two SMRAM options: Compatible SMRAM (C_SMRAM) and Extended SMRAM (E_SMRAM). System Management RAM (SMRAM) space provides a memory area that is available for the SMI handler's and code and data storage. This memory resource is normally hidden from the system OS so that the processor has immediate access to this memory space upon entry to SMM. The MCH provides three SMRAM options:

- Below 1 MB option that supports compatible SMI handlers.
- Above 1 MB option that allows new SMI handlers to execute with write-back cacheable SMRAM.
- Optional larger write-back cacheable T_SEG area from 128 KB to 1 MB in size above 1 MB is reserved from the highest area in system DRAM memory. The above 1-MB solutions require changes to compatible SMRAM handlers' code to properly execute above 1 MB.

Note: Masters from the hub interface and AGP are not allowed to access the SMM space.

4.3.1 SMM Space Definition

The addressed SMM space is defined as the range of bus addresses used by the processor to access SMM space. DRAM SMM space is defined as the range of physical DRAM memory locations containing the SMM code. SMM space can be accessed at one of three transaction address ranges: Compatible, High and TSEG. The Compatible and TSEG SMM space is not remapped; therefore, the addressed and DRAM SMM space is the same address range. Since the High SMM space is remapped, the addressed and DRAM SMM space is a different address range. Note that the High DRAM space is the same as the Compatible Transaction Address space. Therefore, Table 12 describes three unique address ranges:

- Compatible Transaction Address
- High Transaction Address
- TSEG Transaction Address

Table 12. SMM Space Address Ranges

SMM Space Enabled	Transaction Address Space	DRAM Space (DRAM)
Compatible	A0000h to BFFFFh	A0000h to BFFFFh
High	0FEDA0000h to 0FEDBFFFFh	A0000h to BFFFFh
TSEG	(TOM-TSEG_SZ) to TOM	(TOM-TSEG_SZ) to TOM

NOTES:

- High SMM: This is different than in previous chip sets. In previous chip sets the High segment was the 384-KB region from A0000h to FFFFFh. However, C0000h to FFFFFh was not practically useful so it is deleted in MCH.
- TSEG SMM: This is different than in previous chipsets. In previous chipsets the TSEG address space was offset by 256 MB to allow for simpler decoding and the TSEG was remapped to just under the TOM. In the MCH 256 MB do not offset the TSEG region and it is not remapped.

4.3.2 SMM Space Restrictions

If any of the following conditions are violated, the results of SMM accesses are unpredictable and may cause the system to hang:

- The Compatible SMM space **must not** be setup as cacheable.
- High or TSEG SMM transaction address space **must not** overlap address space assigned to system DRAM, the AGP aperture range, or to any "PCI" devices (including hub interface and AGP devices). This is a BIOS responsibility.
- Both D_OPEN and D_CLOSE must not be set to 1 at the same time.
- When TSEG SMM space is enabled, the TSEG space **must not** be reported to the OS as available main memory. This is a BIOS responsibility.
- Any address translated through the AGP Aperture GTLB must not target main memory from 000A0000h to 000FFFFFh.

4.4 I/O Address Space

The MCH does not support the existence of any other I/O devices beside itself on the system bus. The MCH generates either Hub Interface_A-C or AGP bus cycles for all processor I/O accesses. The MCH contains two internal registers in the processor I/O space, Configuration Address (CONF_ADDR) register and the Configuration Data (CONF_DATA) register. These locations are used to the implement configuration space access mechanism as described in the *Register Description* chapter.

The processor allows 64K+3 bytes to be addressed within the I/O space. The MCH propagates the processor I/O address without any translation on to the destination bus and therefore provides addressability for 64K+3 byte locations. Note that the upper 3 locations can be accessed only during I/O address wrap-around when system bus A16# address signal is asserted. A16# is asserted on the system bus whenever an I/O access is made to 4 bytes from address 0FFFDh, 0FFFEh, or 0FFFFh. A16# is also asserted when an I/O access is made to 2 bytes from address 0FFFFh.

The I/O accesses (other than ones used for configuration space access) are forwarded normally to either the Hub Interface_A, Hub Interface_B, or Hub Interface_C unless they fall within the AGP I/O address range as defined by the mechanisms explained below. The MCH will not post I/O write cycles to IDE.

The MCH never responds to I/O or configuration cycles initiated on AGP or any of the hub interfaces. Hub interface transactions requiring completion are terminated with "master abort" completion packets on the hub interfaces. Hub interface write transactions not requiring completion are dropped. AGP/PCI I/O reads are never acknowledged by the MCH.

4.5 MCH Decode Rules and Cross-Bridge Address Mapping

The address map described above applies globally to accesses arriving on any of the five interfaces (i.e., Host bus, Hub Interface_A, Hub Interface_B, Hub Interface_C, or AGP).

4.5.1 Hub Interface_A Decode Rules

The MCH accepts accesses from the Hub Interface_A with the following address ranges:

- All memory read and write accesses to main memory (except SMM space).
- All memory write accesses from the Hub Interface_A-to-AGP memory range defined by MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1.
- All memory read/write accesses to the Graphics Aperture defined by APBASE and APSIZE.
- Memory writes to VGA range on AGP if enabled.

All memory reads from the Hub Interface_A that are targeted > 4 GB memory range are terminated with Master Abort completion, and all memory writes (> 4 GB) from the Hub Interface_A are ignored.

4.5.2 Hub Interface_B Decode Rules

The MCH accepts accesses from the Hub Interface_B from the following address ranges:

- All memory read and write accesses to Main DRAM (except SMM space).
- All memory write accesses from the hub interface-to-AGP memory range defined by MBASE2, MLIMIT2, PMBASE2, and PMLIMIT2.
- All memory read/write accesses to the Graphics Aperture defined by APBASE and APSIZE.
- Memory writes to VGA range on AGP if enabled.

Memory accesses from the Hub Interface_B that fall elsewhere within the memory range and I/O cycles will not be accepted. They are terminated with Master Abort completion.

4.5.3 Hub Interface C Decode Rules

The MCH accepts accesses from the Hub Interface_C from the following address ranges:

- All memory read and write accesses to main memory (except SMM space).
- All memory write accesses from the hub interface-to-AGP memory range defined by MBASE3, MLIMIT3, PMBASE3, and PMLIMIT3.
- All memory read/write accesses to the graphics aperture defined by APBASE and APSIZE.
- Memory writes to VGA range on AGP if enabled.

Memory accesses from the Hub Interface_C that fall elsewhere within the memory range and I/O cycles will not be accepted. They are terminated with Master Abort completion.

4.5.4 AGP Interface Decode Rules

Cycles Initiated Using AGP FRAME# Protocol

The MCH does not support any AGP FRAME# access targeting the Hub Interface_A. The MCH will claim AGP-initiated memory read and write transactions decoded to the main memory range or the graphics aperture range. All other memory read and write requests are master-aborted by the AGP initiator as a consequence of MCH not responding to a transaction.

Under certain conditions, the MCH restricts access to the DOS Compatibility ranges governed by the PAM registers by distinguishing access type and destination bus. The MCH does NOT accept AGP FRAME# write transactions to the compatibility ranges if the PAM designates main memory as writeable. If accesses to a range are not write-enabled by the PAM, the MCH does not respond and the cycle results in a master-abort. The MCH accepts AGP FRAME# read transactions to the compatibility ranges if the PAM designates main memory as readable. If accesses to a range are not read-enabled by the PAM, the MCH does not respond and the cycle results in a master-abort.

If an agent on AGP issues an I/O, PCI Configuration or PCI Special Cycle transaction, the MCH does not respond and the cycle results in a master-abort.

Cycles Initiated Using AGP PIPE# or SB Protocol

All cycles must reference main memory; that is, main memory address range (including PAM) or Graphics Aperture range (also physically mapped within main memory but using a different address range). AGP accesses to SMM space are not allowed. AGP-initiated cycles that target main memory are not snooped on the host bus, even if they fall outside of the AGP aperture range.

If a cycle is outside of the main memory range, it terminates as follows:

- **Reads:** remap to memory address 0h, return data from address 0h, and set the IAAF error bit in ERRSTS register in Device 0
- Writes: dropped "on the floor" (i.e., terminated internally without affecting any buffers or main memory)

AGP Accesses to MCH that Cross Device Boundaries

For AGP FRAME# accesses, when an AGP master gets disconnected, it resumes at the new address which allows the cycle to be routed to or claimed by the new target. Therefore, the target on potential device boundaries should disconnect accesses. The MCH disconnects AGP FRAME# transactions on 4 KB boundaries.

AGP PIPE# and SBA accesses are limited to 256 bytes and must hit main memory. Read accesses crossing a device boundary returns invalid data when the access crosses out of main memory. Write accesses crossing out of main memory are discarded. IAAF Error bit will be set.

5 Memory Interface

The MCH directly supports dual channels (interfaces) of Rambus Direct RDRAM devices operating in lock-step using RSL technology. The MCH supports two different operation modes:

- **Single Channel-Pair Mode.** The MCH is configured to directly support Direct RDRAM devices on its dual Rambus interfaces. There is no Intel MRH-R used on the memory subsystem. A maximum of 64 Direct RDRAM devices are supported on the paired channels without external logic.
- Multiple Channel-Pair Mode. The MCH is configured to use the Intel MRH-R on the memory subsystem. Each Rambus Channel of the Intel MRH-R on the MCH Direct Rambus Channel A is paired with one Rambus Channel of the Intel MRH-R on the Direct Rambus Channel B. The MCH supports one Intel MRH-R per interface, and each Intel MRH-R can support up to two Rambus Channels. Therefore, up to four Rambus Channels are supported by the MCH.

The interface between the MCH and Direct RDRAM devices is referred to either as a "channel" or as an "expansion channel." The channel interface consists of 33 signals including clocks (30 signals are RSL and three signals are CMOS). There are two additional RSL signals per channel when the Intel MRH-R is used for channel expansion.

Figure 7 shows the interconnections between the MCH and its dual Rambus Channels configured in single channel-pair mode.

Figure 7. Single Channel-Pair Mode

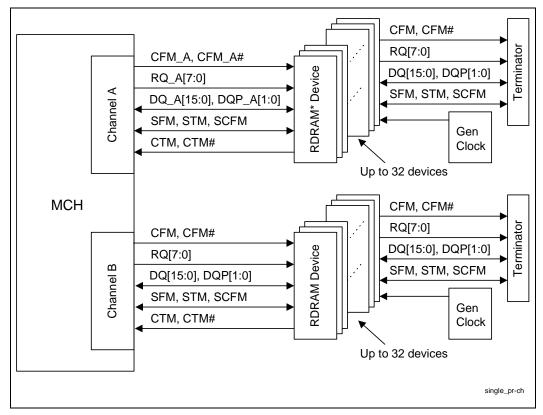
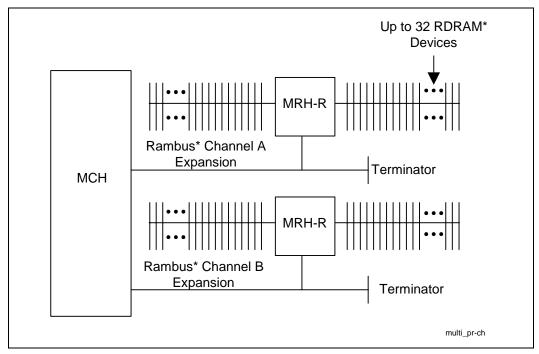



Figure 8 shows the interconnections between MCH and its dual Rambus Channels configured at multiple channel-pair mode.

Figure 8. Multiple Channel-Pair Mode

The maximum system memory supported by the MCH depends on the Direct RDRAM device technology (Section 1.4.2, *Memory Interface* lists the maximum memory supported). The row, column, and bank address bits required for the Direct RDRAM device depends on the number of banks and page size of the device (see Section 1.4.2, *Memory Interface* for further information).

A brief overview of the registers that configure the Direct RDRAM device interface is provided below:

- **Group Boundary Address Register (GBA).** GBA registers define the upper and lower addresses for a group of Direct RDRAM device pairs in a channel-pair. Each group requires a separate GBA register. Each group consists of four device-pairs in single-channel mode and eight device-pairs in multiple-channel mode. The MCH contains 16 GBA registers.
- Group Architecture Register (GAR). GAR registers specify the architecture features of each group of device pairs in a channel pair. The architecture features specified are bank-type and device-core technology. Each GAR represents a group consisting of four device-pairs in single-channel mode and eight device-pairs in multiple-channel mode. There is a 1:1 correspondence between GBA and GAR registers.
- Direct RDRAM Device Timing Register (RDTR). The DTR defines the timing parameters
 for all devices in all channels. BIOS programs this register with "least common denominator"
 values after reading the configuration registers of each device in the channels.
- **Direct RDRAM Device Pool Sizing Register (RPMR).** This register provides bits to program the number of RDRAM device-pair in one of three RDRAM power management states.
- **Direct RDRAM Device Initialization Control Register (RICM).** This register provides bits to program the MCH to do initialization activities on Direct RDRAM devices.

5.1 Direct RDRAM* Device Organization and Configuration

The MCH supports 16-/18-bit Direct RDRAM device configurations. The MCH supports a maximum of 64 Direct RDRAM devices (32 devices per channel) on its dual Rambus Channels. The Rambus Channel can be populated with a mix of 128-/144-Mbit and 256-/288-Mbit Direct RDRAM devices.

5.1.1 Rules for Populating Direct RDRAM* Devices

MCH Rambus Channels can be fully or partially loaded with Direct RDRAM devices; however, they must be populated in either single-device pair or multiple-device pair.

- Single-Device-pair. The MCH is configured to directly support Direct RDRAM devices on its dual Rambus Channel. Each Direct RDRAM device of the MCH Rambus Channel A is paired with one Direct RDRAM device of the Rambus Channel B. There is no Intel MRH-R used on the memory subsystem.
- **Multiple Device-pair.** The MCH is configured to use Intel MRH-R on the memory subsystem. Each Direct RDRAM device on Rambus Channel A is paired with one Direct RDRAM device on the Rambus Channel B.

Note: The MCH supports a maximum of two RIMMs per channel.

From the MCH point of view, all device-pairs in the channels are grouped into logical groups. System initialization software partitions the Direct RDRAM devices into groups of four device-pairs in single-channel mode operation and into groups of eight device-pairs in multiple channel mode operation. As a result, there can be a maximum of eight groups per channel-pair in single-channel pair operation and a maximum of four groups per channel pair in multiple channel-pair mode. All device-pairs populated in a group must be of the same architecture. In other words all device-pairs in a group must be the same core technology and have the same number of banks. Following are the rules for populating the groups:

- A group can be partially populated.
- There is no requirement that group members have to be populated in contiguous physical slots.
- There can be a maximum of eight groups in single-channel pair mode or four groups per channel in multiple channel-pair mode. A member that does not belong to any of the groups in the channel will not be recognized.

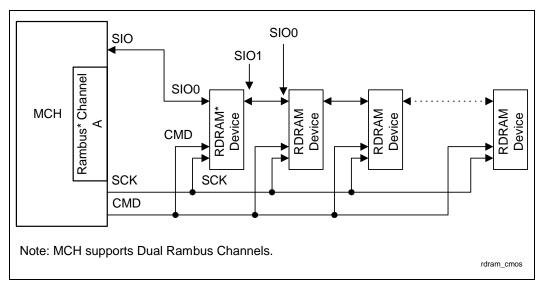
Table 13 provides the device IDs for members in all groups.

Table 13. Direct RDRAM* Device Grouping

Single-Chan	nel Mode	Multiple Chann	el Mode
Device-Pair IDs for Group Members	Group Name	Device Pair IDs for Group Members	Group Name
0, 1, 2, 3	Group#0	0, 1, 2, 3, 4, 5, 6, 7,	Ch#0 Pair, Group#0
4, 5, 6, 7	Group#1	8, 9, 10, 11, 12, 13, 14, 15	Ch#0 Pair, Group#1
8, 9, 10, 11	Group#2	16, 17, 18, 19, 20, 21, 22, 23	Ch#0 Pair, Group#2
12, 13, 14, 15	Group#3	24, 25, 26, 27, 28, 28, 30, 31	Ch#0 Pair, Group#3
16, 17, 18, 19	Group#4	0, 1, 2, 3, 4, 5, 6, 7,	Ch#1 Pair, Group#0
20, 21, 22, 23	Group#5	8, 9, 10, 11, 12, 13, 14, 15	Ch#1 Pair, Group#1
24, 25, 26, 27	Group#6	16, 17, 18, 19, 20, 21, 22, 23	Ch#1 Pair, Group#2
28, 29, 30, 31	Group#7	24, 25, 26, 27, 28, 28, 30, 31	Ch#1 Pair, Group#3
		0, 1, 2, 3, 4, 5, 6, 7,	Ch#2 Pair, Group#0
		8, 9, 10, 11, 12, 13, 14, 15	Ch#2 Pair, Group#1
		16, 17, 18, 19, 20, 21, 22, 23	Ch#2 Pair, Group#2
		24, 25, 26, 27, 28, 28, 30, 31	Ch#2 Pair, Group#3
		0, 1, 2, 3, 4, 5, 6, 7,	Ch#3 Pair, Group#0
		8, 9, 10, 11, 12, 13, 14, 15	Ch#3 Pair, Group#1
		16, 17, 18, 19, 20, 21, 22, 23	Ch#3 Pair, Group#2
		24, 25, 26, 27, 28, 28, 30, 31	Ch#3 Pair, Group#3

All RSL signals must be terminated at the far end from the MCH.

The default device ID for a Direct RDRAM device after power up is 1Fh.


5.1.2 Direct RDRAM* Device CMOS Signals

There are three CMOS signal pins per channel on the MCH to support Direct RDRAM device configuration, SIO reset, register accesses, and Nap and Powerdown exits. These signals are SCK, CMD and SIO. These signals are used to perform the following operations:

- SIO pin initialization
- SIO operations (includes register accesses and device reset)
- Device selection for Nap and Powerdown exits

Note: The MCH supports dual Rambus Channels

Figure 9. Direct RDRAM* Devices Sideband CMOS Signal Configuration on Rambus* Channel A

Table 14. Sideband CMOS Signal Description

Signal	Description
SCK	Serial Clock: This signal serves as the clock for SIO and CMD signals. SCK is a clock source used for reading from and writing to control register.
	 For SIO operations and pin initialization, SCK ≤ 1 MHz
	• For power mode operations, SCK ≤ 100 MHz
CMD	Command: CMD is a control signal used for power mode transitions, SIO pin configuration during initialization, and framing of SIO operations. CMD is active high. CMD is sampled at both edges of SCK. CMD is a level sensitive signal.
SIO	Serial In Out: This bi-directional signal is daisy chained through all Direct RDRAM* devices (SIO0 to SIO1) in a channel. This pin carries data used for SIO operations, which include register accesses, device reset, and device ID initialization. It is also used for power mode control. SIO is an active low signal and is sampled on the falling edge of SCK.

Table 15. CMD Signal Value Decode

SIC Val	SIO = 0, CMD Sample Value on 4 SCK Edges			Command	SIO = 1, CMD Sample Value on 4 SCK Edges			Command	
Сус	cle 0	0 Cycle 1			Сус	Cycle 0		le 1	
0	1	х	Х	Nap Exit	0	1	х	х	Power-down Exit
1	0	х	Х	Reserved	1	0	х	х	Reserved
0	0	х	Х	No-op	0	0	х	х	No-op
1	1	1	1	SIO Request Frame	1	1	1	1	SIO Request Frame
1	1	0	0	SIO Reset	1	1	0	0	SIO Reset
1	1	1	0	Reserved	1	1	1	0	Reserved
1	1	0	1	Reserved	1	1	0	1	Reserved

SIO Pin Initialization

The SIO0 and SIO1 pins on the Direct RDRAM devices are bi-directional and their direction needs to be initialized. The "SIO Reset" initializes the SIO0 and SIO1 pins on all Direct RDRAM devices as daisy chain configuration and is performed with the SCK and CMD. Once the SIO daisy chain is fully configured, SIO operations can occur.

Note: "SIO Reset" does NOT reset the entire device. For a complete description of the operation and associated timing diagrams, refer to the *Direct RDRAM Component* data sheet from Rambus.

SIO Operations

SIO operations are also known as Direct RDRAM device initialization operations. These operations include Direct RDRAM device register accesses and device reset, and is performed using the CMOS pins: SCK, CMD, SIO0, and SIO1. For a complete description of operation and associated timing diagram, refer to *Direct RDRAM Component* data sheet from Rambus.

Nap and Powerdown Exits

The Nap and Powerdown exits are performed using CMD, SIO and SCK signals. For complete description and timing diagrams associated with Nap and Powerdown exits, refer to *Direct RDRAM Component* data sheet from Rambus*.

5.1.3 Direct RDRAM* Device Core Refresh

All rows in a Direct RDRAM device must be refreshed within 32 ms. The refresh rate depends on the device size and page size of a device.

The MCH supports two core refresh mechanisms: Active refresh and self refresh

- Active Refresh: Refresh and precharge after Refresh commands are issued from the primary control packet. These commands provide refresh support in standby/active modes.
- **Self Refresh:** Internal time-base and row/bank address counters in the core allow for a self refresh in powerdown modes without controller support.

Direct RDRAM* Device Current Calibration

All Direct RDRAM devices must be current calibrated once every 100 ms. There are RSL commands to perform this function. The MCH schedules periodic current calibration activity such that every device in the channel is current calibrated at least once every 100 ms.

5.2 Direct RDRAM* Device Command Encoding

The operations on a Rambus Channel are performed using control packets. There are two types of command packets: row (ROWA/ROWR) packet and column (COLC/COLM/COLX) packet. Each command packet requires four Direct RDRAM device clock durations and packet data is transferred on both (leading and falling) edges of the clock. The row packet contains 24 bits and the column packet contains 40 bits.

5.2.1 Row Packet (ROWA/ROWR)

The row packet is defined using three RSL signals RQ[7:5]/ROW[2:0]. It will generally be the first control packet issued to a device. Major characteristics of row packet are:

- The only way to activate (sense) a row within a bank
- Independent of Direct RDRAM device Active/Standby state
- A non-broadcast row package causes an addressed Direct RDRAM device to move to Active state

The packet definition of row packet is given below.

Table 16. ROWA Packet for Activating (sensing) a Row (i.e., AV = 1)

Row	Cycle 0		Cycle 1		Сус	le 2	Cycle 3	
ROW 2	DR4T	DR[2]	BR[0]	BR[3]	R[10]	R[8]	R[5]	R[2]
ROW 1	DR4F	D[R1]	BR[1]	BR[4]	R[9]	R[7]	R[4]	R[1]
ROW 0	DR[3]	DR[0]	BR[2]	REV	AV = 1	R[6]	R[3]	R[0]

Table 17. ROWR Packet for Other Operations (i.e., AV = 0)

Row	Cycle 0		Cycle 1		Cycl	e 2	Cycle 3	
ROW 2	DR4T	DR[2]	BR[0]	BR[3]	ROP[10]	ROP[8]	ROP[5]	ROP[2]
ROW 1	DR4F	DR[1]	BR[1]	BR[4]	ROP[9]	ROP[7]	ROP[4]	ROP[1]
ROW 0	DR[3]	DR[0]	BR[2]	REV	AV = 0	ROP[6]	ROP[3]	ROP[0]

DR4T	DR4F	Device ID
0	0	No row packet
0	1	DR[3:0], DR[4] = 0
1	0	DR[3:0], DR[4] = 1
1	1	Broadcast

NOTES:

1. DR[4]–DR[0] 2. BR[5]–BR[0] 3. R[10]–R[0] **Device Address** Bank Address Row Address

4. AV 5. ROP[10]–ROP[0] Select between ROWA and ROWR, Active Row

Opcode for Primary Control Packet

6. REV Reserved

Table 18. Row Packet Encodings

AV				O	ocode b	its				Operation Description
	10	9	8	7	6	5	4	3	2: 0	
1	х	х	х	Х	х	х	х	х	xxx	Activate Row
0	1	1	0	0	0	0	0	0	000	Precharge
0	1	1	0	0	0	0	0	1	000	Precharge and Relax
0	0	0	0	1	1	0	0	0	000	Refresh
0	1	0	1	0	1	0	0	0	000	Precharge Postrefresh
0	0	0	0	0	0	1	0	0	000	Nap
0	0	0	0	0	0	1	1	0	000	Conditional Nap
0	0	0	0	0	0	0	1	0	000	Power Down
0	0	0	0	0	0	0	0	1	000	Relax
0	0	0	0	0	0	0	0	0	010	Temp Calibration Enable
0	0	0	0	0	0	0	0	0	001	Temp Calibration
0	0	0	0	0	0	0	0	0	000	No-op

NOTES:

- 1. x = Controller Drives 0 or 1
- 2. 0 = Controller Drives 0
- 3. 1 = Controller Drives 1

5.2.2 Column Packet (COLC/COLX)

The column packet is defined using five of the RSL signals RQ[4:0]/COL[4:0]. Major characteristics of column are:

- The only way to dispatch column operation for read or write
- Requires the target Direct RDRAM device to be in Active state

Note: When a Direct RDRAM device is in the Active state, it can receive both row and column packets. When a Direct RDRAM device is in the Standby state, it can only receive a row packet. Thus, before sending a column packet, make sure the addressed Direct RDRAM device is in the Active state.

The packet definition of column packet is given below.

Table 19. COLC Packet

Column	Cycle 0		Cycle 0		Cycle 1 Cycle 2		cle 2	Сус	le 3
COL4	DC[4]	S = 1					C[6]	C[4]	
COL3	DC[3]						C[5]	C[3]	
COL2	DC[2]	COP[1]				REV	BC[2]	C[2]	
COL1	DC[1]	COP[0]				BC[4]	BC[1]	C[1]	
COL0	DC[0]	COP[2]			COP[3]	BC[3]	BC[0]	C[0]	

NOTES:

1. DC[4:0] Device ID for Column Operation

2. S Start Bit; for framing

3. M Mask Bit; asserted indicates mask format for packet

4. COP[3:0] Column Operation Code
5. C[6:0] Address for Column Operation
6. BC[4:0] Bank Address for Column Operation

7. REV Reserved

Table 20. COLC Packet Field Encodings

S	COP[3]	COP[2]	COP[1]	COP[0]	Command Operation		
0	х	х	х	х	No operation		
1	х	0	0	0	NOCOP. Retire write buffer of this device		
1	х	0	0	1	Write		
1	х	0	1	1	Read		

NOTE: All other combination are reserved

COLX Packet (M = 0)

Column	Сус	Cycle 0		Cycle 1		e 2	Cycle 3	
COL4			DX[4]	XOP[4]	REV	BX[1]		
COL3		M = 0	DX[3]	XOP[3]	BX[4]	BX[0]		
COL2			DX[2]	XOP[2]	BX[3]			
COL1			DX[1]	XOP[1]	BX[2]			
COL0			DX[0]	XOP[0]				

NOTES:

DX[4:0] Device ID for Extra Operation
 BX[4:0] Bank Address for Extra Operation
 MA[7:0] Byte Mask (low order)

MA[7:0] Byte Mask (low order)
 MB[7:0] Byte Mask (high order)
 XOP[4:0] Opcode for Extra Operation

6. REV Reserved

Table 21. COLM Packet and COLX Packet Field Encodings

M		XOP Bits				Operation Description	
	4	3	2	1	0		
1	х	х	х	х	Х	Non existent Xop	
0	0	0	0	0	0	NoXop	
0	1	0	0	0	0	Reserved	
0	0	1	0	0	0	Calibrate Current	
0	0	1	1	0	0	Calibrate Current and Sample	
0	0	0	0	0	1	Reserved	

NOTES:

- 1. x = Controller Drives 0 or 1
- 2. 0 = Controller Drives 0
- 3. 1 = Controller Drives 1

5.2.3 Data Packet

Table 22. Data Packet

Data Signals	Сус	Cycle 0		Cycle 1		Cycle 2		le 3
DQA[8:0]	DA0[8:0]	DA1[8:0]	DA2[8:0]	DA3[8:0]	DA4[8:0]	DA5[8:0]	DA6[8:0]	DA7[8:0]
DQB[8:0]	DB0[8:0]	DB1[8:0]	DB2[8:0]	DB3[8:0]	DB4[8:0]	DB5[8:0]	DB6[8:0]	DB7[8:0]

5.3 Direct RDRAM* Device Register Programming

Software can read and write Direct RDRAM device registers by programming the Direct RDRAM Device Initialization Control Management register (RICM) in the MCH. The register data returned by the device is available in the Device Register Data register (DRD).

5.4 Direct RDRAM* Device Operating States

The Direct RDRAM devices support different operating and idle states to minimize the power consumption and thermal overload. Table 23 provides an overview of the different operating/power states supported by Direct RDRAM devices.

Table 23. DRAM Operating States

Direct RDRAM* Device State	Functionality	Refresh Scheme	Direct RDRAM Device Clock State						
Inactive States									
Powerdown	No operation allowed except refresh. Direct RDRAM* device awaits CMOS signals to exit Powerdown state	Self Refresh	stopped						
Nap	No operation allowed except refresh. Direct RDRAM device awaits Nap exit command to exit Nap	Active Refresh	stopped						
Active States									
Standby	Device Ready to receive row packet with fast clock	Active Refresh	full speed						
Active	Device ready to receive any control packet	Active Refresh	full speed						
Active-Read	Device ready to receive any control packet. Transmitting data on channel	Active Refresh	full speed						
Active-Write	Device ready to receive any control packet. Receiving data from channel	Active Refresh	full speed						

Active-Read/Write State

A Direct RDRAM device is in Active-Read/Write state when it is transferring data. This state lasts as long as data transfer is occurring. Once the data transfer is complete, the Direct RDRAM device transitions into Active or Standby state based on the column command last executed.

Active State

A Direct RDRAM device enters into the Active state immediately after the data transfer from/to that device is complete and the last COLC command that caused the data transfer does not have its RC bit set to 1. When a device is in Active state, it can accept both row and column packets.

Standby State

A Direct RDRAM device enters into Standby state either from Active-Read/Write or Active state. Transition from Active-Read/Write to Standby happens if the last column executed has its RC bit set to 1. Transition from Active-to-Standby happens if COLC or row specifies an operation with the Relax command. When a device is in standby mode it can accept only row packets. Once a device receives any row packet, it transitions into Active state and then only it can accept a column packet.

Nap State

A Direct RDRAM device enters into Nap state when it receives a row packet that specified an operation with Nap. No operation except refresh is allowed during Nap state.

Powerdown State

A Direct RDRAM device enters into Powerdown state when it receives a row packet that specified an operation with powerdown. No operations except self-refresh is allowed during Powerdown state.

5.5 Direct RDRAM* Device Operating Pools

To minimize the operating power, the Direct RDRAM devices are grouped into three operating pools called Pool "A", Pool "B", and Pool "C".

Pool "A", Pool "B", and Pool "C" Operation

In the pool mode, three queues are used inside the MCH. The "A" pool contains references to device pairs that are currently in the active mode; the "B" pool contains references to device pairs that are in the standby mode. All devices that are **not** found in pool "A" or "B" are said to be in Pool "C" and can be configured for either napping or standby. The "A" pool may hold between 1 and 8 device pairs, while the "B" pool may be configured to contain between 1 and 16 device pairs.

5.6 Direct RDRAM* Device Power Management

Systems based on the Intel 82860 MCH support ACPI-based power management. The MCH puts all Direct RDRAM devices into Powerdown (PD) state during S3 power management states. To enter the Powerdown state all Direct RDRAM devices in the channel must be in active or standby state. The MCH then sends a broadcast Powerdown command to that channel.

During the Powerdown state, Direct RDRAM devices are put into self-refresh mode so that external (active) refreshes are not required. During the Powerdown state, the clocks to Direct RDRAM devices are shut off. Exiting the power-down and Nap states are done through CMOS signals.

Table 24 shows the actions taken by the MCH during different processor and system power states.

Table 24. Direct RDRAM* Device Power Management States

Processor State	System State	State of Direct RDRAM* Devices in Pool "A"	State of Direct RDRAM Devices in Pool "B"	State of Direct RDRAM Devices in Pool "C"	Refresh Scheme	Direct RDRAM Device Clock State
C0, C1, C2 (processor in working state)	SO	Active- Read/Write, Active	Standby	Nap or Standby	Active	Running
(processor in inactive state)	S1, S3(STR)	No devices in Pool "A"	No devices in Pool "B"	Power- down	Self	Stopped

5.7 Data Integrity

The MCH supports an error correcting code (or error checking and correcting) on the main memory interface. The MCH can optionally be configured to generate the ECC code for writes to memory and check the code for reads from memory. The MCH generates an 8-bit code word for each 64-bit QWord of memory. Since the code word covers a full QWord, writes of less than a QWord require a read-merge-write operation. Consider a DWord write to memory. In this case, when in ECC mode, the MCH will read the QWord where the addressed DWord will be written, merge in the new DWord, generate a code covering the new QWord and finally write the entire QWord and code back to memory. Any correctable (single) errors detected during the initial QWord read are corrected before merging the new DWord.

Single-bit and multiple-bit errors set separate flags in the ERRSTS register. Single-bit errors and multiple-bit errors can be independently enabled to generate hub interface SERR, SMI, or SCI special cycles to the ICH2. The address and syndrome of the first single-bit error are latched in the EAP and DERRCTL Registers. Subsequent single-bit errors will not overwrite the EAP and DERRCTL Registers unless the single-bit error status bit is cleared. A multiple-bit error will overwrite the EAP and DERRCTL Registers. Subsequent multiple-bit errors will not overwrite the EAP and DERRCTL Registers unless the multiple-bit error status bit is cleared.

Note: During a write to memory over hub interface_B/C, if a parity error occurs, the byte enables will be turned off. Parity Errors will be logged and can be recovered by system or device handlers. Data with parity errors will not be merged into memory. Some PCI cards do not implement Parity correctly. If a false parity error occurs, that transaction will not be placed in memory.

Note: When an Intel 860 chipset platform is configured for ECC support, if a multi-bit uncorrectable memory error is detected during a memory read by a system device, an SERR, SCI, or SMI will be generated. This typically results in an NMI; however, bad data can still reach the intended target before the NMI can be generated or before the NMI interrupt handler can service the problem. This can result in bad data being returned to the target and may be permanently stored, resulting in system data corruption. This chipset was not designed to ensure that targets are protected from this corrupted data in these situations.

5.8 Direct RDRAM* Device Array Thermal Management

The Direct RDRAM device thermal and power management of the MCH has been optimized for workstation system designs. It is assumed that proper system design will always provide and ensure adequate cooling in a system based on the Intel 860 chipset. The failsafe mechanism that protects the devices in the event of a catastrophic failure requires an external thermal sensor. When the thermal sensor is activated, the MCH immediately exits the "all devices on" mode and reverts to the pool mode that has been programmed by system software.

In a system based on the Intel 82860 MCH, Direct RDRAM devices operate in one of three modes: active, standby, or nap. The number of devices allowed in each state at any given time is dictated by the heat dissipation budget specified by the system designer. At any point, between 1 and 8 device-pairs may be in the "A" pool and are configured to operate in the active mode. In addition, between

1 and 16 device-pairs may be in the "B" pool and are configured to operate in the standby mode. The rest of the device-pairs are in the "C" pool and may be configured to operate in either nap mode or standby mode. Regardless of how many devices are configured into the "A" and "B" pools or whether the "C" pool devices are in napping or standby mode, the system designer is responsible for providing adequate cooling for the number of Direct RDRAM devices in the system.

After BIOS loads the system's "target" values into the DPS register and initializes the pools, it should load a "safer" set of values into the DPS register **without** setting the POOLINIT field. The POOLINIT bit instructs the MCH to transition to the new pool sizes. There are two other conditions that cause the MCH to resize and initialize the pools:

- The transition of the OVERT# pin from electrical 1 to electrical 0
- The detection of an over-temperature condition on any Direct RDRAM device

The OVERT# method is intended to allow system designers to use external thermal sensors to monitor the system temperature and assert OVERT# when the system temperature exceeds system specifications. When the MCH detects a falling edge on the OVERT# signal, it reinitializes and resizes the pools with the values that are in the DPS register. Also, the Direct RDRAM devices report over-temperature conditions back to the MCH via a special bit asserted during their current calibration operations. When the MCH detects an over-temperature condition in any of the memory devices, the Direct RDRAM device pools are reinitialized with "safer" values. Finally, the MCH may be configured to send an SERR, SCI, or SMI hub interface message to ICH2. Software may take action to cool the system or to log the condition

6 Electrical Characteristics

This chapter provides the absolute maximum ratings, thermal characteristics and DC Characteristics for the Intel 82860 MCH.

AGTL+ (Assisted Gunning Transceiver Logic) signals are open-drain and require termination to a supply that provides the high signal level. Termination resistors are provided on the MCH and are terminated to VTT. This eliminates the need to terminate the bus on the system motherboard. For reliable operation, always connect unused inputs or bi-directional signals to an appropriate signal level. Unused AGTL+ inputs should be left as no connects, as AGTL+ termination is provided on the chip. Unused active high inputs should be connected through a resistor to ground (VSS). Unused outputs can be left unconnected.

The Direct RDRAM device interface introduces a new type of interface called RSL (Rambus Signaling Level) signaling. RSL signals are open-drain drivers and must be terminated to 1.8 V via a $28~\Omega$ termination resistor.

6.1 Absolute Maximum Ratings

Table 25 lists the MCH's maximum environmental stress ratings. Functional operation at the absolute maximum and minimum is neither implied nor guaranteed.

Warning: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operating beyond the "operating Conditions" is not recommended and extended exposure beyond "operating Conditions" may affect reliability.

Table 25. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
Tdie	Die Temperature under Bias	0	110	°C	1
Tstorage	Storage Temperature	0	105	°C	
VCC	1.8 V Supply Voltage with respect to VSS	-0.3	2.5	V	
VTT	AGTL+ buffer DC input voltage with respect to VSS	1.4	1.7	V	
VDDQ	AGP bus DC input voltage with respect to VSS	1.4	1.8	V	

NOTES:

1. Based on a No Heatsink condition.

6.2 Thermal Characteristics

The MCH is designed for operation at die temperatures between 0 °C and 110 °C. The thermal resistance of the package is provided in Table 26.

Table 26. Intel® 860 Chipset Package Thermal Resistance

Parameter	Air Flow (°C/Watt)			
	No Air Flow	1 m/s		
Psi _{jt}	0.0	0.7		
Theta _{ja}	20.0	16.0		

NOTE: Typical value measured in accordance with EIA/JESD 51-2 testing standard.

6.3 Power Characteristics

Table 27. DC Characteristics Functional Operating Range (VCC1_8 = 1.8V ±5%; Tdie = 110 °C)

Symbol	Parameter		Тур	Max	Unit	Notes
P _{Colusa}	Thermal Power Dissipation for Intel [®] 860 chipset		7.2	9.5	W	1
I _{VTT}	Intel 860 chipset VTT supply Current			2.2	Α	
I _{DDQ}	Power supply current for AGP interface			370	mA	
Icc	Power supply current for Intel 860 chipset			4.3	Α	

NOTES:

1. This specification is the Thermal Design Power and it is the estimated maximum possible expected power generated in a component by a realistic application. It is based on extrapolations in both hardware and software technology over the life of the component. It does not represent the expected power generated by a power virus. Studies by Intel indicate that no application will cause thermally significant power dissipation exceeding this specification, although it is possible to concoct higher power synthetic workloads that write but never read. Under realistic read/write conditions, this higher power workload can only be transient, and is accounted in the Icc (Max) specification. For more information, refer to the Intel® 860 Chipset Thermal Considerations Application Note (AP-721).

6.4 I/O Interface Signal Groupings

The signal description includes the type of buffer used for the particular signal:

AGTL+ Open Drain AGTL+ interface signal. Refer to the AGTL+ I/O Specification for

complete details. The MCH integrates AGTL+ termination resistors.

AGP interface signals. These signals are compatible with AGP 2.0 1.V Signaling

Environment DC and AC Specifications. The buffers are not 3.3 V tolerant.

CMOS 1.8V CMOS buffers.

RSL Rambus Signaling Level interface signal. Refer to the *RDRAM* Direct*

Specification for complete details.

RCMOS RCMOS buffers are 1.8 V CMOS buffers used for the CMOS signals on the

Direct RDRAM device interface.

Table 28. Signal Groups

Signal Group	Signal Type	Signals	Notes
(a)	AGTL+ I/O	ADS#, AP[1:0]#, BNR#, BRO#,DBSY#, DP[3:0]#, DBI[3:0]#, DRDY#, HA[35:3]#, HADSTB[1:0] #, HD[63:0]#,HDSTBP[3:0]#, HDSTBN[3:0]#, HIT#, HITM#, HREQ[4:0]#	
(b)	AGTL+ Output	BPRI#, CPURST#, DEFER#, HTRDY#, RS[2:0]#, RSP#	
(c)	AGTL+ Input	HLOCK#, BERR#	
(d)	Hub Interface's CMOS I/O	HL_A[11:0], HLA_STB, HLA_STB#, HL_B[19:0], HLB_STB[1:0], HLB_STB[1:0]#, HL_C[19:0], HLC_STB[1:0], HLC_STB[1:0]#	
(e)	CMOS Output	CHx_HCLK[A,B], CHx_RCLK[A,B]	
(f)	CMOS Input	TESTIN#, OVERT#, BUSPARK, HLA_ENH#	
(g)	Miscellaneous CMOS Input	RSTIN#(3.3 V)	
(h)	CMOS Clock Input	BCLK[1:0], 66IN	1
(i)	RSL I/O	DQA_A[8:0], DQB_A[8:0], DQA_B[8:0], DQB_B[8:0]	
(j)	RSL Output	RQ_A[7:5], RQ_A[4:0], CFM_A, CFM_A#, EXP_A[1:0], RQ_B[7:5], RQ_B[4:0], CFM_B, CFM_B#, EXP_B[1:0]	2
(k)	RSL Input	CTM_A, CTM_A#, CTM_B, CTM_B#	2
(1)	Rambus* CMOS I/O	SIO_A, SIO_B	
(m)	Rambus* CMOS Output	CMD_A, SCK_A, CMD_B, SCK_B	
(n)	AGP Input	PIPE#, SBA[7:0], RBF#, WBF#, SB_STB, SB_STB#, G_REQ#, G_SERR#	
(o)	AGP Output	ST[2:0], G_GNT#	

Signal Group	Signal Type	Signals	Notes
(p)	AGP I/O	AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, G_FRAME#, G_IRDY#, G_TRDY#, G_STOP#, G_DEVSEL#, G_AD[31:0], G_C/BE[3:0]#, G_PAR	
(q)	RSL Reference	CHA_REF[1:0], CHB_REF[1:0]	
(r)	AGTL+ Reference	HAVREF[1:0], HDVREF[3:0], CCVREF	
(s)	Hub interface's and AGP Reference	GREF_0, GREF_1, HLREF_A, HLREF_B, HLREF_C	
(t)	Host Compensation Reference Voltage	HSWNG[1:0]	
(u)	AGP / Hub Interface Compensation Reference Voltage	HLSWNG_B, HLSWNG_C,G_SWNG	
(v)	AGP I/O Voltage	VDDQ	
(w)	AGTL+ Termination Voltage	VTT	
(x)	1.8V	VCC1_8	

NOTES:

- 66IN is a 3.3 V signal coming from the system clock generator. A voltage translation occurs internally before the clocks are utilized in the 1.8 V MCH.
 CTM_A, CTM_A#, CTM_B, CTM_B#, CFM_A, CFM_A#, CFM_B, CFM_B# Rambus* Channel differential clocks are also operating at a different DC Value. For further details, refer to the DRCG data sheet at www.rambus.com

6.5 DC Characteristics

Table 29. DC Characteristics at VCC1_8 = 1.8V ±5%

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes
I/O Buffer S	Supply Vol	tage					
VCC1_8	(x)	CMOS I/O Supply Voltage	1.71	1.8	1.89	V	
VDDQ	(v)	AGP I/O Supply Voltage	1.425	1.5	1.575	V	
VTT	(w)	Host AGTL+ Termination Voltage	1.44	1.6	1.7	V	
Reference	Voltage						
CCVREF	(r)	Host Common Clock Reference Voltage	0.64 x VTT	2/3 x VTT	0.70 x VTT	V	
CHx_REF	(q)	Rambus* Channel RSL Reference Voltage	1.32	1.40	1.48	V	
GREF/ HLREF	(s)	Hub Interface Reference Voltage When Configured for Enhanced Buffer Mode	0.64 x VCC1_8	2/3 x VCC1_8	0.70 x VCC1_8	V	
		Hub Interface Reference Voltage when Configured for Standard Buffer Mode	0.48 x VCC1_8	1/2 x VCC1_8	0.52 x VCC1_8	V	
		AGP Reference Voltage	0.48 x VDDQ	1/2 x VDDQ	0.52 x VDDQ	V	
HxVREF	(r)	Host Address and Data Reference Voltage	0.64 x VTT	2/3 x VTT	0.70 x VTT	V	
HSWING	(t)	Host Compensation Reference Voltage	0.32 x VTT	1/3 x VTT	0.35 x VTT	V	
	(u)	Hub Interface Compensation Reference Voltage	0.32 x VCC1_8	1/3 x VCC1_8	0.35 x VCC1_8	V	
		AGP Compensation Reference Voltage	0.48 x VDDQ	1/2 x VDDQ	0.52 x VDDQ	V	

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes
Host Interf	ace				•		
$V_{IL_{-}H}$	(a), (c)	Host AGTL+ Input Low Voltage	_	_	(2/3 x VTT) - 0.1	V	
V_{IH_H}	(a), (c)	Host AGTL+ Input High Voltage	(2/3 x VTT) + 0.1	_	_	V	
V _{OL_H}	(a), (b)	Host AGTL+ Output Low Voltage	_	_	(1/3 x VTT) + 0.1	V	VTT =1.7 V
V _{OH_H}	(a), (b)	Host AGTL+ Output High Voltage	VTT - 0.1	_	_	٧	
I _{OL_H}	(a), (b)	Host AGTL+ Output Low Leakage	19	26.65	34	mA	V _{OL} max
I _{L_H}	(a), (c)	Host AGTL+ Input Leakage Current	_	_	10	μА	V _{OL} <vpad <<br="">VTT</vpad>
C_{PAD}	(a), (c)	Host AGTL+ Input Capacitance	_	_	3	pF	
Direct RDR	AM* Devi	ce Interface					
V_{IL_R}	(i)	RSL Input Low Voltage	CHx_REF - 0.5	_	CHx_REF - 0.175	V	
V _{IH_R}	(i)	RSL Input High Voltage	CHx_REF + 0.175	_	CHx_REF + 0.5	V	
V _{IL_RC}	(1)	Direct RDRAM Device CMOS Input Low Voltage	-0.3	_	(VCC1_8 / 2) - 0.25	V	
V _{IH_RC}	(1)	Direct RDRAM Device CMOS Input High	(VCC1_8 / 2) + 0.25	_	VCC1_8 + 0.3	V	
V _{OL_RC}	(I), (m)	Direct RDRAM Device CMOS Output Low Voltage	-	_	(VCC1_8 / 2) - 0.65	V	terminate using a 91 Ω to VCC1_8 and 39 Ω to VSS
V _{OH_RC}	(I), (m)	Direct RDRAM Device CMOS Output High Voltage	(VCC1.0 / 2) + 0.45	_	_	V	terminate using a 91 Ω to VCC1_8 and 39 Ω to VSS
I _{OL_R}	(i), (j)	RSL Output Low Current	30	_	90	mA	
I _{OH_R}	(i), (j)	RSL Output High Current	_	_	±10	mA	
I _{OL_RC}	(l), (m)	Direct RDRAM Device CMOS Output Low Current	_	_	14.9	MA	V _{OL} = (VCC1_8 / 2) - 0.6 and VCC1_8(min)

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes
I _{OH_RC}	(l), (m)	Direct RDRAM Device CMOS Output High Current	35.5	_	-	mA	V _{OH} = (VCC 1.8/ 2) + 0.4 and VCC 1.8 (max)
I _{L_RC}	(1)	Direct RDRAM Device CMOS Input Leakage Current	_	_	±10	μΑ	0 < Vin < VCC1_8
C _{IN_R}	(i)	RSL Input Capacitance	4	_	6	pF	F _C =1 MHz
C _{IN_RC}	(1)	Direct RDRAM Device CMOS Input (SCK, CMD) Capacitance	7	_	9	pF	F _C =1 MHz
	(1)	Direct RDRAM Device CMOS Input (SIO) Capacitance	4	_	6	pF	F _C =1 MHz
AGP Interf	ace						
V _{IL_A}	(n), (p)	AGP Input Low Voltage	-0.5	_	0.4 x VDDQ	V	
V _{IH_A}	(n), (p)	AGP Input High Voltage	0.6 x VDDQ	_	VDDQ + 0.5	V	
V _{OL_A}	(o), (p)	AGP Output Low Voltage	_	_	0.15 x VDDQ	V	
V _{OH_} A	(o), (p)	AGP Output High Voltage	0.85 x VDDQ	_	_	V	
I _{OL_A}	(o), (p)	AGP Output Low Current	_	_	1	mA	V _{OL} =0.15 VDDQ
I _{OH_A}	(o), (p)	AGP Output High Current	-0.2	_	_	mA	V _{OH} =0.85 VDDQ
I _{L_A}	(n), (p)	AGP Input Leakage Current	_	_	±10	μА	0 <vin< VDDQ</vin<
C _{IN_A}	(n), (p)	AGP Input Capacitance	_	_	8	pF	F _C =1 MHz
Hub Interfa	ace with No	ormal Buffer Mode					
V _{IL_HL}	(d)	Hub Interface Input Low Voltage	_	_	HLREF - 0.15	V	
V _{IH_HL}	(d)	Hub Interface Input High Voltage	HLREF + 0.15	_	_	V	
V _{OL_HL}	(d)	Hub Interface Output Low Voltage	_	_	0.1 x VCC1_8	V	I _{OL} = 1 mA
V _{OH_HL}	(d)	Hub Interface Output High Voltage	0.9 x VCC1_8		_	V	I _{OH} = 1 mA
I _{OL_HL}	(d)	Hub Interface Output Low Current	_	_	1	mA	V _{OL} =0.1 x VCC1_8

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes
I _{OH_HL}	(d)	Hub Interface Output High Current	-1	_	_	mA	V _{OH} =0.9 x VCC1_8
I _{L_HL}	(d)	Hub Interface Input Leakage Current	_	_	±10	μΑ	0 <vin< VCC1_8</vin<
C _{IN_HL}	(d)	Hub Interface Capacitance	_	_	8	pF	F _C =1 MHz
Hub Interfa	ice with E	nhanced Buffer Mode C	configured for 60 Ω				
V _{IL_HL}	(d)	Hub Interface Input Low Voltage	_	_	HLREF - 0.15	V	
V _{IH_HL}	(d)	Hub Interface Input High Voltage	HLREF + 0.15	_	_	V	
V _{OL_HLPD}	(d)	Hub Interface Output Low Voltage	0.33 x VCC1_8 -0.06	_	0.33 x VCC1_8 +0.06	V	60 Ω load to VCC1_8, buffer pulling down
V _{OL_HLPU}	(d)	Hub Interface Output Low Voltage	0.33 x VCC1_8 -0.06	_	0.33 x VCC1_8 +0.06	V	30 Ω load to ground, buffer pulling up
V _{OH_HL}	(d)	Hub Interface Output High Voltage	VCC1_8 - 0.1	_	_	V	I _{OH} = 1 mA
I _{OL_HL}	(d)	Hub Interface Output Low Current	17.5	_	22.5	mA	VCC1_8/3
I _{OH_HL}	(d)	Hub Interface Output High Current	_	_	1	mA	
IL_HL	(d)	Hub Interface Input Leakage Current	_	_	±10	μΑ	0 <vin< VCC1_8</vin<
CIN_HL	(d)	Hub Interface Capacitance	_	_	8	pF	FC=1 MHz
Hub Interfa	ice with E	nhanced Buffer Mode C	configured for 50 Ω				
V _{IL_HL}	(d)	Hub Interface Input Low Voltage	_	_	HLREF - 0.15	V	
V_{IH_HL}	(d)	Hub Interface Input High Voltage	HLREF + 0.15	_	_	V	
V_{OL_HLPD}	(d)	Hub Interface Output Low Voltage	0.33 x VCC1_8 -0.06	_	0.33 x VCC1_8 +0.06	V	50 Ω load to VCC1_8, buffer pulling down
V _{OL_HLPU}	(d)	Hub Interface Output Low Voltage	0.33 x VCC1_8 -0.06	_	0.33 x VCC1_8 +0.06	V	25 Ω load to ground, buffer pulling up
V _{OH_HL}	(d)	Hub Interface Output High Voltage	VCC1_8 - 0.1	_	_	V	I _{OH} = 1 mA
I _{OL_HL}	(d)	Hub Interface Output Low Current	21.3	_	27.3	mA	VCC1_8/3

Symbol	Signal Group	Parameter	Min	Nom	Max	Unit	Notes	
I _{OH_HL}	(d)	Hub Interface Output High Current	_	_	1	mA	mA	
I _{L_HL}	(d)	Hub Interface Input Leakage Current	_	_	±10	μА	0 <vin< VCC1_8</vin< 	
C _{IN_HL}	(d)	Hub Interface Capacitance	_	_	8	pF	F _C =1MHz	
1.8V CMOS	S Signals							
V _{IL_C}	(f)	CMOS Input Low Voltage	-0.3	_	(VCC1_8)/2 - 0.25	V		
V_{IH_C}	(f)	CMOS Input High Voltage	(VCC1_8)/2 + 0.25	_	VCC1_8 + 0.3	٧		
V_{OL_C}	(e)	CMOS Output Low Voltage	_	_	0.3	>		
V _{OH_C}	(e)	CMOS Output High Voltage	VCC1_8 - 0.3	_	_	V		
I _{OL_C}	(e)	CMOS Output Low Current	_	_	1	mA	V _{OL} =0.3 V	
I _{OH_C}	(e)	CMOS Output High Current	-0.25	_	_	mA	V _{OH} =VCC1_8 - 0.3 V	
I _{L_C}	(f)	CMOS Input Leakage Current	—v	_	±10	μА	0 <vin< VCC1_8</vin< 	
C_{IN_C}	(f)	CMOS Input Capacitance	_	_	9	pF	F _C =1 MHz	
Miscellane	ous Interf	ace						
V _{IL}	(g)	CMOS Input Low Voltage	-0.3	_	0.7	V		
V _{IH}	(g)	CMOS Input High Voltage	1.7	_	2.625	٧		
ΙL	(g)	CMOS Input Leakage Current	_	_	±10	μА		
C _{IN}	(g)	CMOS Input Capacitance	_	_	7	pF		
C _{IN_CLK}	(h)	CMOS Clock Input Capacitance	_	_	TBD	pF	F _C =1 MHz	

This page is intentionally left blank.

7 Ballout and Package Information

7.1.1 Ballout Information

This section lists the MCH ballout assignment. Figure 10 and Figure 11 show the footprint ballout assignment from a top view of he package. Table 30 lists the ballout assignment.

If Hub Interface_B or Hub Interface_C is not used, only the corresponding HLSWNG and HLREF should be connected to VCC1_8 and the hub interface VREF circuit respectively. The rest of the unused hub interface pins may be left as no connect.

Figure 10. MCH Ballout with AGP and Hub Interface Ball Names (Top View — Left Side)

	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
AM			G_AD8	VDDQ	G_AD15	G_C/BE1#	VSS	G_AD18	G_AD22	VDDQ	G_AD24	G_AD28	vss	SB_STB	WBF#	G_GNT#
AL		G_AD6	G_C/BE0#	G_AD11	VSS	Rsvd	G_C/BE2#	VDDQ	Rsvd	G_C/BE3#	VSS	AD_STB1	SBA7	VDDQ	SBA0	ST0
AK	G_AD2	G_AD5	VSS	AD_STB0	Rsvd	VDDQ	G_IRDY#	Rsvd	VSS	G_AD21	AD_STB1#	VDDQ	G_AD31	SB_STB#	VSS	ST1
AJ	VDDQ	G_AD4	AD_STB0#	VDDQ	G_AD14	G_STOP#	VSS	G_AD17	G_AD20	VDDQ	Rsvd	G_AD27	vss	SBA4	SBA1	ST2
АН	G_AD1	VSS	Rsvd	G_AD9	VSS	G_TRDY#	G_DEVSEL#	VDDQ	G_AD19	Rsvd	VSS	G_AD26	G_AD30	VDDQ	SBA2	RBF#
AG	G_AD0	Rsvd	VDDQ	G_AD10	G_AD13	G_SERR#	G_FRAME#	G_AD16	vss	66IN	G_AD23	VDDQ	G_AD29	SBA5	SBA3	PIPE#
AF	G_AD3	VSS	G_AD7	VSS	G_AD12	G_PAR	GREF_0	HL1_8	Rsvd	VSS	VCC1_8	G_AD25	G_SWNG	SBA6	GREF_1	GRCOMP
AE	VSS	DQA_A6	VSS	DQA_A8	VSS	DQA_A7	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
AD	VSS	VSS	DQA_A4	VSS	DQA_A5	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
AC	VSS	DQA_A2	VSS	DQA_A0	VSS	DQA_A1	vss	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	vss	VSS	VSS	VCC1_8
AB	VSS	vss	VCC1_8	VSS	DQA_A3	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	vss	VSS	VSS	VCC1_8
AA	CTM_A	CTM_A#	VSS	CHA_REF1	VSS	VCC1_8	VSS	VSS	VSS	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
Y	CFM_A#	CFM_A	VSS	CHA_REF0	VSS	VCC1_8	VSS	VSS	VSS	vss	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
w	VSS	vss	VCC1_8	VSS	RQ_A7	VSS	VSS	VSS	vss	vss	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
v	VSS	RQ_A6	VSS	EXP_A1	VSS	RQ_A5	VSS	VSS	vss	vss	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
U	RQ_A4	vss	EXP_A0	VSS	RQ_A3	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	vss	VSS	VSS	VCC1_8
т	VSS	RQ_A2	VSS	RQ_A1	VSS	DQB_A0	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	vss	VSS	VSS	VCC1_8
R	RQ_A0	vss	VCC1_8	VSS	VSS	VCC1_8	VSS	VSS	vss	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
Р	VSS	DQB_A1	VSS	DQB_A2	VSS	DQB_A4	VSS	VSS	VSS	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	vss
N	VSS	vss	DQB_A6	VSS	DQB_A8	VSS	VSS	VSS	vss	vss	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
М	VSS	DQB_A5	VSS	DQB_A3	VSS	DQB_A7	VSS	VSS	VSS	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	vss
L	CMD_A	VSS	SIO_A	VCC1_8	VSS	VCC1_8	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
κ	SCK_A	CHA_HCLKOUT	CHA_RCLKOUT	VSS	HLREF_B	HLRCOMP_B	HLSWNG_B	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
J	HL_B14	HL_B8	VCC1_8	HL_B15	HL_B11	VCC1_8	vss	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
Н	HLB_STB1	VSS	HL_B12	HL_B13	VSS	HL_B18	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
G	VCC1_8	HLB_STB1#	HL_B16	VCC1_8	HL_B19	HL_B17	vss	VSS	VSS	vss	VSS	VSS	VSS	VSS	VSS	vss
F	HL_B6	HL_B5	VSS	HL_B10	HL_B9	HLREF_A	HL_A10	VCC1_8	VSS	DQA_B1	VSS	VCC1_8	VCC1_8	VSS	RQ_B5	vss
E	HLB_STB0	VCC1_8	HL_B7	HLRCOMP_A	VSS	HL_A9	HL_A8	VSS	DQA_B5	VSS	DQA_B3	VSS	VSS	RQ_B7	VSS	RQ_B3
D	VSS	HLB_STB0#	HL_B1	HL_A0	HLA_STB	VCC1_8	VCC1_8	DQA_B7	VSS	DQA_B0	VSS	CHB_REF1	CHB_REF0	VSS	EXP_B1	VSS
С	HL_B4	HL_B3	VSS	HL_A1	VSS	HLA_STB#	HL_A11	VSS	DQA_B6	VSS	VCC1_8	VSS	VSS	VCC1_8	VSS	EXP_B0
В		VCC1_8	HL_B0	VCC1_8	HL_A3	HL_A5	vss	DQA_B8	VSS	DQA_B2	VSS	CTM_B#	CFM_B	VSS	RQ_B6	VSS
Α			HL_B2	HL_A2	HL_A4	HL_A6	HL_A7	VSS	DQA_B4	VSS	VSS	CTM_B	CFM_B#	VSS	VSS	RQ_B4
	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17

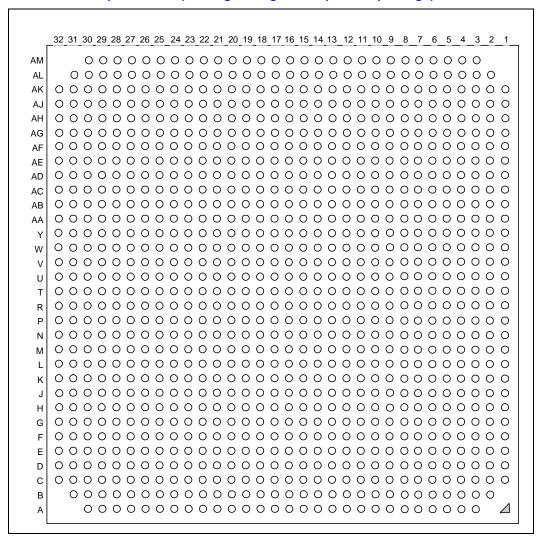


Figure 11. MCH Ballout with AGP and Hub Interface Ball Names (Top View — Right Side)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
AM			VTT	HA13#	HA20#	VTT	HA26#	HA27#	VTT	RS2#	RS0#	BNR#	DRDY#	HTRDY#	BRO#	RSTIN#
AL		HA16#	HA10#	HA14#	VSS	HA34#	HA35#	VSS	HA32#	RS1#	CPURST#	VSS	HIT#	VTT	RESERVD	G_REQ#
AK	VTT	HA15#	HA12#	VTT	HA30#	HA22#	VTT	HA33#	HA31#	VSS	AP0#	BPRI#	HITM#	RSP#	Rsvd	TESTIN#
AJ	HA9#	HADSTB0#	VSS	HA11#	HA25#	VSS	HADSTB1#	HA23#	VTT	HA21#	VTT	DBSY#	VSS	BERR#	Rsvd	OVERT#
АН	HA5#	VTT	HA6#	HA8#	VTT	HA28#	HA24#	VSS	HA19#	HA29#	AP1#	DEFER#	HLOCK#	VSS	HLA_ENH#	BUSPARK
AG	VSS	HA7#	HREQ0#	VSS	VCC1_8	BCLK0	BCLK1	VSS	HA18#	VTT	ADS#	VTT	CCVREF	VTT	VSS	VSS
AF	HREQ2#	HREQ1#	VTT	HA4#	HREQ3#	VTT	HA17#	HAVREF0	VTT	VSS	VTT	HSWNG0	HRCOMP0	VSS	VSS	VSS
AE	HD63#	VSS	HD59#	HREQ4#	VSS	HA3#	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
AD	VTT	HD57#	HD58#	VTT	HD60#	HAVREF1	VTT	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
AC	DBI3#	HD62#	VSS	HD61#	HD56#	vss	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
AB	HD54#	VTT	HD53#	HD55#	VTT	HD51#	VTT	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
AA	VSS	HDSTBP3#	HDSTBN3#	VSS	HD50#	HD49#	VSS	VSS	VSS	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
Υ	HD52#	HD48#	VTT	HD47#	HD46#	VTT	VTT	VSS	VSS	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
w	HD42#	VSS	HD45#	HD44#	VSS	HDVREF3	VSS	VSS	VSS	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
٧	VTT	DBI2#	HD41#	VTT	HD40#	HD43#	VTT	VSS	VSS	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
U	HD38#	HD35#	VSS	HD39#	HD37#	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
# Т	HDSTBP2#	VTT	HDSTBN2#	HD32#	VTT	HDVREF2	VTT	VCC1_8	VCC1_8	VCC1_8	VCC1_8	vss	vss	vss	VSS	VCC1_8
R	VSS	DP3#	HD33#	VSS	HD34#	HD36#	VSS	VSS	VSS	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
Р	DP0#	HD31#	VTT	DP1#	DP2#	VTT	HRCOMP1	VSS	vss	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
N	HD24#	VSS	HDSTBP1#	HDSTBN1#	VSS	HD30#	HSWNG1	VSS	vss	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
М	VTT	HD28#	HD25#	VTT	HD27#	HDVREF1	VTT	VSS	vss	VSS	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS
L	HD29#	HD26#	vss	HD22#	HD23#	vss	vss	VCC1_8	VCC1_8	VCC1_8	VCC1_8	vss	vss	vss	VSS	VCC1_8
к	DBI1#	VTT	HD20#	HD18#	VTT	HD16#	VTT	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
J	VSS	HD21#	HD19#	VSS	HD17#	HDVREF0	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
# Н	HDSTBP0#	HD12#	VTT	HD14#	HD15#	VTT	VSS	VCC1_8	VCC1_8	VCC1_8	VCC1_8	VSS	VSS	VSS	VSS	VCC1_8
G	HD11#	VSS	HDSTBN0#	HD10#	VSS	HD13#	VCC1_8	HLSWNG_C	VCC1_8	VSS	VCC1_8	VSS	VSS	VSS	VSS	VSS
F	VTT	HD5#	HD9#	VTT	HL_C0	HLREF_C	HLRCOMP_C	HL_C9	HL_C13	HL_C11	VSS	DQB_B7	VSS	DQB_B4	VCC1_8	DQB_B0
Е	HD2#	HD6#	VSS	HD3#	HL_C1	HL_C2	VCC1_8	HL_C14	HL_C8	VCC1_8	VSS	VSS	DQB_B8	VSS	VSS	VSS
D	HD8#	VTT	HD0#	HD7#	HLC_STB0#	VSS	HL_C17	HLC_STB1#	VSS	HL_C15	VCC1_8	DQB_B3	VSS	DQB_B2	VSS	RQ_B1
С	vss	HD4#	vss	HL_C3	VCC1_8	HLC_STB0	HL_C19	VCC1_8	HLC_STB1	CHB_RCLKOUT	SIO_B	vss	DQB_B6	vss	VCC1_8	VSS
В		HD1#	VTT	VSS	HL_C7	HL_C6	VSS	HL_C10	HL_C12	CHB_HCLKOUT	VSS	DQB_B5	VSS	DQB_B1	VSS	RQ_B2
А			DBI0#	HL_C5	HL_C4	VCC1_8	HL_C18	HL_C16	VCC1_8	SCK_B	CMD_B	VSS	VSS	VSS	RQ_B0	VSS
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Figure 12. MCH Ballout Topside View (looking through the top of the package)

Table 30. MCH Alphabetical Ballout List

Signal	Ball #
66IN	AG23
AD_STB0	AK29
AD_STB0#	AJ30
AD_STB1	AL21
AD_STB1#	AK22
ADS#	AG11
AP0#	AK11
AP1#	AH11
BCLK0	AG6
BCLK1	AG7
BERR#	AJ14
BNR#	AM12
BPRI#	AK12
BRO#	AM15
BUSPARK	AH16
CCVREF	AG13
CFM_A	Y31
CFM_A#	Y32
CFM_B	B20
CFM_B#	A20
CHA_HCLKOUT	K31
CHA_RCLKOUT	K30
CHA_REF0	Y29
CHA_REF1	AA29
CHB_HCLKOUT	B10
CHB_RCLKOUT	C10
CHB_REF0	D20
CHB_REF1	D21
CMD_A	L32
CMD_B	A11
CPURST#	AL11
CTM_A	AA32
CTM_A#	AA31
CTM_B	A21

Signal	Ball #
CTM_B#	B21
DBI0#	A3
DBI1#	K1
DBI2#	V2
DBI3#	AC1
DBSY#	AJ12
DEFER#	AH12
DP0#	P1
DP1#	P4
DP2#	P5
DP3#	R2
DQA_A0	AC29
DQA_A1	AC27
DQA_A2	AC31
DQA_A3	AB28
DQA_A4	AD30
DQA_A5	AD28
DQA_A6	AE31
DQA_A7	AE27
DQA_A8	AE29
DQA_B0	D23
DQA_B1	F23
DQA_B2	B23
DQA_B3	E22
DQA_B4	A24
DQA_B5	E24
DQA_B6	C24
DQA_B7	D25
DQA_B8	B25
DQB_A0	T27
DQB_A1	P31
DQB_A2	P29
DQB_A3	M29
DQB_A4	P27

Signal	Ball #
DQB_A5	M31
DQB_A6	N30
DQB_A7	M27
DQB_A8	N28
DQB_B0	F16
DQB_B1	B14
DQB_B2	D14
DQB_B3	D12
DQB_B4	F14
DQB_B5	B12
DQB_B6	C13
DQB_B7	F12
DQB_B8	E13
DRDY#	AM13
EXP_A0	U30
EXP_A1	V29
EXP_B0	C17
EXP_B1	D18
G_AD0	AG32
G_AD1	AH32
G_AD2	AK32
G_AD3	AF32
G_AD4	AJ31
G_AD5	AK31
G_AD6	AL31
G_AD7	AF30
G_AD8	AM30
G_AD9	AH29
G_AD10	AG29
G_AD11	AL29
G_AD12	AF28
G_AD13	AG28
G_AD14	AJ28
G_AD15	AM28

Signal	Ball #
G_AD16	AG25
G_AD17	AJ25
G_AD18	AM25
G_AD19	AH24
G_AD20	AJ24
G_AD21	AK23
G_AD22	AM24
G_AD23	AG22
G_AD24	AM22
G_AD25	AF21
G_AD26	AH21
G_AD27	AJ21
G_AD28	AM21
G_AD29	AG20
G_AD30	AH20
G_AD31	AK20
G_C/BE0#	AL30
G_C/BE1#	AM27
G_C/BE2#	AL26
G_C/BE3#	AL23
G_DEVSEL#	AH26
G_FRAME#	AG26
G_GNT#	AM17
G_IRDY#	AK26
G_PAR	AF27
G_REQ#	AL16
G_SERR#	AG27
G_STOP#	AJ27
G_SWNG	AF20
G_TRDY#	AH27
GRCOMP	AF17
GREF_0	AF26
GREF_1	AF18
HA3#	AE6
HA4#	AF4

Signal	Ball #
HA5#	AH1
HA6#	AH3
HA7#	AG2
HA8#	AH4
HA9#	AJ1
HA10#	AL3
HA11#	AJ4
HA12#	AK3
HA13#	AM4
HA14#	AL4
HA15#	AK2
HA16#	AL2
HA17#	AF7
HA18#	AG9
HA19#	AH9
HA20#	AM5
HA21#	AJ10
HA22#	AK6
HA23#	AJ8
HA24#	AH7
HA25#	AJ5
HA26#	AM7
HA27#	AM8
HA28#	AH6
HA29#	AH10
HA30#	AK5
HA31#	AK9
HA32#	AL9
HA33#	AK8
HA34#	AL6
HA35#	AL7
HADSTB0#	AJ2
HADSTB1#	AJ7
HAVREF0	AF8
HAVREF1	AD6

Signal	Ball #
HD0#	D3
HD1#	B2
HD2#	E1
HD3#	E4
HD4#	C2
HD5#	F2
HD6#	E2
HD7#	D4
HD8#	D1
HD9#	F3
HD10#	G4
HD11#	G1
HD12#	H2
HD13#	G6
HD14#	H4
HD15#	H5
HD16#	K6
HD17#	J5
HD18#	K4
HD19#	J3
HD20#	К3
HD21#	J2
HD22#	L4
HD23#	L5
HD24#	N1
HD25#	МЗ
HD26#	L2
HD27#	M5
HD28#	M2
HD29#	L1
HD30#	N6
HD31#	P2
HD32#	T4
HD33#	R3
HD34#	R5

Signal	Ball #
HD35#	U2
HD36#	R6
HD37#	U5
HD38#	U1
HD39#	U4
HD40#	V5
HD41#	V3
HD42#	W1
HD43#	V6
HD44#	W4
HD45#	W3
HD46#	Y5
HD47#	Y4
HD48#	Y2
HD49#	AA6
HD50#	AA5
HD51#	AB6
HD52#	Y1
HD53#	AB3
HD54#	AB1
HD55#	AB4
HD56#	AC5
HD57#	AD2
HD58#	AD3
HD59#	AE3
HD60#	AD5
HD61#	AC4
HD62#	AC2
HD63#	AE1
HDSTBN0#	G3
HDSTBN1#	N4
HDSTBN2#	T3
HDSTBN3#	AA3
HDSTBP0#	H1
HDSTBP1#	N3

Signal	Ball #
HDSTBP2#	T1
HDSTBP3#	AA2
HDVREF0	J6
HDVREF1	M6
HDVREF2	T6
HDVREF3	W6
HIT#	AL13
HITM#	AK13
HL_A0	D29
HL_A1	C29
HL_A2	A29
HL_A3	B28
HL_A4	A28
HL_A5	B27
HL_A6	A27
HL_A7	A26
HL_A8	E26
HL_A9	E27
HL_A10	F26
HL_A11	C26
HL_B0	B30
HL_B1	D30
HL_B2	A30
HL_B3	C31
HL_B4	C32
HL_B5	F31
HL_B6	F32
HL_B7	E30
HL_B8	J31
HL_B9	F28
HL_B10	F29
HL_B11	J28
HL_B12	H30
HL_B13	H29
HL_B14	J32

Signal	Ball #
HL_B15	J29
HL_B16	G30
HL_B17	G27
HL_B18	H27
HL_B19	G28
HL_C0	F5
HL_C1	E5
HL_C2	E6
HL_C3	C4
HL_C4	A5
HL_C5	A4
HL_C6	В6
HL_C7	B5
HL_C8	E9
HL_C9	F8
HL_C10	B8
HL_C11	F10
HL_C12	В9
HL_C13	F9
HL_C14	E8
HL_C15	D10
HL_C16	A8
HL_C17	D7
HL_C18	A7
HL_C19	C7
HL1_8	AF25
HLA_ENH#	AH15
HLA_STB	D28
HLA_STB#	C27
HLB_STB0	E32
HLB_STB0#	D31
HLB_STB1	H32
HLB_STB1#	G31
HLC_STB0	C6
HLC_STB0#	D5

Signal	Ball #
HLC_STB1	C9
HLC_STB1#	D8
HLOCK#	AH13
HLRCOMP_A	E29
HLRCOMP_B	K27
HLRCOMP_C	F7
HLREF_A	F27
HLREF_B	K28
HLREF_C	F6
HLSWNG_B	K26
HLSWNG_C	G8
HRCOMP0	AF13
HRCOMP1	P7
HREQ0#	AG3
HREQ1#	AF2
HREQ2#	AF1
HREQ3#	AF5
HREQ4#	AE4
HSWNG0	AF12
HSWNG1	N7
HTRDY#	AM14
OVERT#	AJ16
PIPE#	AG17
RBF#	AH17
RQ_A0	R32
RQ_A1	T29
RQ_A2	T31
RQ_A3	U28
RQ_A4	U32
RQ_A5	V27
RQ_A6	V31
RQ_A7	W28
RQ_B0	A15
RQ_B1	D16
RQ_B2	B16

	T
Signal	Ball #
RQ_B3	E17
RQ_B4	A17
RQ_B5	F18
RQ_B6	B18
RQ_B7	E19
RS0#	AM11
RS1#	AL10
RS2#	AM10
RSP#	AK14
RSTIN#	AM16
Rsvd	AL15
Rsvd	AK15
Rsvd	AJ15
Rsvd	AH30
Rsvd	AG31
Rsvd	AL27
Rsvd	AK28
Rsvd	AL24
Rsvd	AK25
Rsvd	AJ22
Rsvd	AH23
Rsvd	AF24
SB_STB	AM19
SB_STB#	AK19
SBA0	AL18
SBA1	AJ18
SBA2	AH18
SBA3	AG18
SBA4	AJ19
SBA5	AG19
SBA6	AF19
SBA7	AL20
SCK_A	K32
SCK_B	A10
SIO_A	L30

Signal	Ball #
SIO_B	C11
ST0	AL17
ST1	AK17
ST2	AJ17
TESTIN#	AK16
VCC1_8	AB25
VCC1_8	U25
VCC1_8	T25
VCC1_8	L25
VCC1_8	K25
VCC1_8	J25
VCC1_8	H25
VCC1_8	AE24
VCC1_8	AD24
VCC1_8	AC24
VCC1_8	AB24
VCC1_8	U24
VCC1_8	T24
VCC1_8	L24
VCC1_8	K24
VCC1_8	J24
VCC1_8	H24
VCC1_8	AE23
VCC1_8	AD23
VCC1_8	AC23
VCC1_8	AB23
VCC1_8	U23
VCC1_8	T23
VCC1_8	L23
VCC1_8	K23
VCC1_8	J23
VCC1_8	H23
VCC1_8	AF22
VCC1_8	AE22
VCC1_8	AD22

Signal	Ball #
VCC1_8	AC22
VCC1_8	AB22
VCC1_8	U22
VCC1_8	T22
VCC1_8	L22
VCC1_8	K22
VCC1_8	J22
VCC1_8	H22
VCC1_8	Y21
VCC1_8	W21
VCC1_8	V21
VCC1_8	R21
VCC1_8	P21
VCC1_8	N21
VCC1_8	M21
VCC1_8	AA20
VCC1_8	Y20
VCC1_8	T16
VCC1_8	L16
VCC1_8	W20
VCC1_8	V20
VCC1_8	R20
VCC1_8	P20
VCC1_8	N20
VCC1_8	M20
VCC1_8	AA19
VCC1_8	Y19
VCC1_8	W19
VCC1_8	V19
VCC1_8	R19
VCC1_8	P19
VCC1_8	N19
VCC1_8	M19
VCC1_8	AA18
VCC1_8	Y18

Signal	Ball #
VCC1_8	W18
VCC1_8	V18
VCC1_8	R18
VCC1_8	P18
VCC1_8	N18
VCC1_8	M18
VCC1_8	AE17
VCC1_8	AD17
VCC1_8	AC17
VCC1_8	AB17
VCC1_8	U17
VCC1_8	T17
VCC1_8	L17
VCC1_8	K17
VCC1_8	J17
VCC1_8	H17
VCC1_8	AE16
VCC1_8	AD16
VCC1_8	AC16
VCC1_8	AB16
VCC1_8	U16
VCC1_8	K16
VCC1_8	J16
VCC1_8	H16
VCC1_8	AA15
VCC1_8	Y15
VCC1_8	W15
VCC1_8	V15
VCC1_8	R15
VCC1_8	P15
VCC1_8	N15
VCC1_8	AE10
VCC1_8	AD10
VCC1_8	M15
VCC1_8	F15

Signal	Ball #
VCC1_8	C15
VCC1_8	AA14
VCC1_8	Y14
VCC1_8	W14
VCC1_8	V14
VCC1_8	R14
VCC1_8	P14
VCC1_8	N14
VCC1_8	M14
VCC1_8	AA13
VCC1_8	Y13
VCC1_8	W13
VCC1_8	V13
VCC1_8	R13
VCC1_8	P13
VCC1_8	N13
VCC1_8	M13
VCC1_8	AA12
VCC1_8	Y12
VCC1_8	W12
VCC1_8	V12
VCC1_8	R12
VCC1_8	P12
VCC1_8	N12
VCC1_8	M12
VCC1_8	AE11
VCC1_8	AD11
VCC1_8	AC11
VCC1_8	AB11
VCC1_8	U11
VCC1_8	T11
VCC1_8	L11
VCC1_8	K11
VCC1_8	J11
VCC1_8	H11

Signal	Ball #
VCC1_8	G11
VCC1_8	D11
VCC1_8	AC10
VCC1_8	AB10
VCC1_8	U10
VCC1_8	T10
VCC1_8	L10
VCC1_8	K10
VCC1_8	J10
VCC1_8	H10
VCC1_8	E10
VCC1_8	AE9
VCC1_8	G32
VCC1_8	E31
VCC1_8	B31
VCC1_8	J30
VCC1_8	L29
VCC1_8	G29
VCC1_8	B29
VCC1_8	L27
VCC1_8	J27
VCC1_8	D27
VCC1_8	H26
VCC1_8	D26
VCC1_8	AE25
VCC1_8	AD25
VCC1_8	AC25
VCC1_8	AD9
VCC1_8	AC9
VCC1_8	AB9
VCC1_8	U9
VCC1_8	Т9
VCC1_8	L9
VCC1_8	K9
VCC1_8	J9

Signal	Ball #
VCC1_8	Н9
VCC1_8	G9
VCC1_8	A9
VCC1_8	AE8
VCC1_8	AD8
VCC1_8	AC8
VCC1_8	AB8
VCC1_8	U8
VCC1_8	Т8
VCC1_8	L8
VCC1_8	K8
VCC1_8	J8
VCC1_8	H8
VCC1_8	C8
VCC1_8	AG5
VCC1_8	G7
VCC1_8	E7
VCC1_8	A6
VCC1_8	C5
VCC1_8	AA21
VCC1_8RAC	F25
VCC1_8RAC	F21
VCC1_8RAC	F20
VCC1_8RAC	C19
VCC1_8RAC	AB30
VCC1_8RAC	W30
VCC1_8RAC	R30
VCC1_8RAC	AA27
VCC1_8RAC	Y27
VCC1_8RAC	R27
VCC1_8RAC	C22
VDDQ	AG21
VDDQ	AL19
VDDQ	AJ32
VDDQ	AG30

Signal	Ball #
VDDQ	AM29
VDDQ	AJ29
VDDQ	AK27
VDDQ	AL25
VDDQ	AH25
VDDQ	AM23
VDDQ	AJ23
VDDQ	AK21
VDDQ	AH19
VSS	M32
VSS	D32
VSS	AH31
VSS	AF31
VSS	AD31
VSS	AB31
VSS	W31
VSS	U31
VSS	R31
VSS	N31
VSS	L31
VSS	H31
VSS	AK30
VSS	AE30
VSS	AC30
VSS	AA30
VSS	Y30
VSS	V30
VSS	T30
VSS	P30
VSS	M30
VSS	F30
VSS	C30
VSS	AF29
VSS	AD29
VSS	AB29

Signal	Ball #
VSS	W29
VSS	U29
VSS	R29
VSS	N29
VSS	K29
VSS	AL28
VSS	AH28
VSS	AE28
VSS	AC28
VSS	AA28
VSS	Y28
VSS	V28
VSS	T28
VSS	R28
VSS	P28
VSS	M28
VSS	L28
VSS	H28
VSS	E28
VSS	C28
VSS	AD27
VSS	AB27
VSS	W27
VSS	U27
VSS	N27
VSS	M16
VSS	G16
VSS	E16
VSS	C16
VSS	A16
VSS	AG15
VSS	AF15
VSS	AE15
VSS	AD15
VSS	AC15
	,

Signal	Ball #
VSS	AB15
VSS	U15
VSS	T15
VSS	L15
VSS	K15
VSS	J15
VSS	H15
VSS	G15
VSS	E15
VSS	D15
VSS	B15
VSS	AH14
VSS	AF14
VSS	AE14
VSS	AD14
VSS	AC14
VSS	AB14
VSS	U14
VSS	T14
VSS	L14
VSS	K14
VSS	J14
VSS	H14
VSS	G14
VSS	E14
VSS	C14
VSS	A14
VSS	AJ13
VSS	AE13
VSS	AD13
VSS	AC13
VSS	AB13
VSS	U13
VSS	T13
VSS	L13

Signal	Ball #
VSS	K13
VSS	J13
VSS	H13
VSS	G13
VSS	F13
VSS	D13
VSS	AM26
VSS	AJ26
VSS	AE26
VSS	AD26
VSS	AC26
VSS	AB26
VSS	AA26
VSS	Y26
VSS	W26
VSS	V26
VSS	U26
VSS	T26
VSS	R26
VSS	P26
VSS	N26
VSS	M26
VSS	L26
VSS	J26
VSS	G26
VSS	B26
VSS	AA25
VSS	Y25
VSS	W25
VSS	V25
VSS	R25
VSS	P25
VSS	N25
VSS	M25
VSS	G25

	, , , , , , , , , , , , , , , , , , , ,
Signal	Ball #
VSS	E25
VSS	C25
VSS	A25
VSS	AK24
VSS	AG24
VSS	AA24
VSS	Y24
VSS	W24
VSS	V24
VSS	R24
VSS	P24
VSS	N24
VSS	M24
VSS	G24
VSS	F24
VSS	D24
VSS	B24
VSS	AF23
VSS	AA23
VSS	Y23
VSS	W23
VSS	V23
VSS	B13
VSS	A13
VSS	AL12
VSS	AE12
VSS	AD12
VSS	AC12
VSS	AB12
VSS	U12
VSS	T12
VSS	L12
VSS	K12
VSS	J12
VSS	H12

Signal	Ball #
VSS	G12
VSS	E12
VSS	C12
VSS	A12
VSS	AA11
VSS	Y11
VSS	W11
VSS	V11
VSS	R11
VSS	P11
VSS	N11
VSS	M11
VSS	F11
VSS	E11
VSS	B11
VSS	AK10
VSS	AF10
VSS	AA10
VSS	Y10
VSS	W10
VSS	V10
VSS	R10
VSS	P10
VSS	N10
VSS	M10
VSS	G10
VSS	AA9
VSS	Y9
VSS	W9
VSS	V9
VSS	R9
VSS	P9
VSS	N9
VSS	M9
VSS	D9

Signal	Ball #
VSS	AL8
VSS	AH8
VSS	AG8
VSS	R23
VSS	P23
VSS	N23
VSS	M23
VSS	G23
VSS	E23
VSS	C23
VSS	A23
VSS	AL22
VSS	AH22
VSS	AA22
VSS	Y22
VSS	W22
VSS	V22
VSS	R22
VSS	P22
VSS	N22
VSS	M22
VSS	G22
VSS	F22
VSS	D22
VSS	B22
VSS	A22
VSS	AE21
VSS	AD21
VSS	AC21
VSS	AB21
VSS	U21
VSS	T21
VSS	L21
VSS	K21
VSS	J21
•	

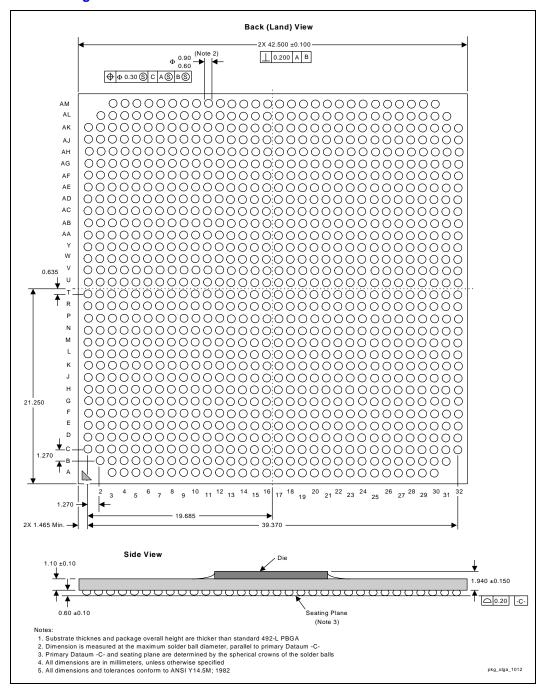
Signal	Ball #
VSS	H21
VSS	G21
VSS	E21
VSS	C21
VSS	AM20
VSS	AJ20
VSS	AE20
VSS	AD20
VSS	AC20
VSS	AB20
VSS	U20
VSS	T20
VSS	L20
VSS	K20
VSS	J20
VSS	H20
VSS	G20
VSS	E20
VSS	C20
VSS	AA8
VSS	Y8
VSS	W8
VSS	V8
VSS	R8
VSS	P8
VSS	N8
VSS	M8
VSS	AE7
VSS	AC7
VSS	AA7
VSS	W7
VSS	U7
VSS	R7
VSS	L7
VSS	J7

Signal	Ball #
VSS	H7
VSS	В7
VSS	AJ6
VSS	AC6
VSS	U6
VSS	L6
VSS	D6
VSS	AL5
VSS	AE5
VSS	W5
VSS	N5
VSS	G5
VSS	AG4
VSS	AA4
VSS	R4
VSS	J4
VSS	B4
VSS	U3
VSS	L3
VSS	E3
VSS	C3
VSS	AE2
VSS	N2
VSS	G2
VSS	AG1
VSS	AA1
VSS	R1
VSS	J1
VSS	C1
VSS	W2
VSS	AE32
VSS	AD32
VSS	AC32
VSS	AB32
VSS	W32

Signal	Ball #
VSS	V32
VSS	T32
VSS	P32
VSS	N32
VSS	AJ3
VSS	AC3
VSS	AE19
VSS	AD19
VSS	AC19
VSS	AB19
VSS	U19
VSS	T19
VSS	L19
VSS	K19
VSS	J19
VSS	H19
VSS	G19
VSS	F19
VSS	D19
VSS	B19
VSS	A19
VSS	AK18
VSS	AE18
VSS	AD18
VSS	AC18
VSS	AB18
VSS	U18
VSS	T18
VSS	L18
VSS	K18
VSS	J18
VSS	H18
VSS	G18
VSS	E18
VSS	C18

Signal	Ball #
VSS	A18
VSS	AA17
VSS	Y17
VSS	W17
VSS	V17
VSS	R17
VSS	P17
VSS	N17
VSS	M17
VSS	G17
VSS	F17
VSS	D17
VSS	B17
VSS	AG16
VSS	AF16
VSS	AA16
VSS	Y16
VSS	W16
VSS	V16
VSS	R16
VSS	P16
VSS	N16
VTT	H6
VTT	K5

Signal Ball # VTT AL14 VTT AG14 VTT AG12 VTT AJ11 VTT AF11 VTT AG10
VTT AG14 VTT AG12 VTT AJ11 VTT AF11 VTT AG10
VTT AG12 VTT AJ11 VTT AF11 VTT AG10
VTT AJ11 VTT AF11 VTT AG10
VTT AF11 VTT AG10
VTT AG10
VTT AM9
VTT AJ9
VTT AF9
VTT AK7
VTT AD7
VTT AB7
VTT Y7
VTT V7
VTT T7
VTT M7
VTT AM6
VTT AF6
VTT Y6
VTT P6
VTT AH5
VTT K7
VTT AB5
VTT T5


Signal	Ball #
VTT	AK4
VTT	AD4
VTT	V4
VTT	M4
VTT	F4
VTT	AM3
VTT	AF3
VTT	Y3
VTT	P3
VTT	НЗ
VTT	В3
VTT	AH2
VTT	AB2
VTT	T2
VTT	K2
VTT	D2
VTT	AK1
VTT	AD1
VTT	V1
VTT	M1
VTT	F1
WBF#	AM18

7.2 Intel[®] 82860 MCH Package Information

Figure 13 shows the package dimensions for the MCH.

Figure 13. MCH Package Dimensions

7.3 Chipset Interface Trace Length Compensation

In this section, detailed information about the internal component package trace length is provided to enable trace length compensation. Trace length compensation is very important to maximize design flexibility. These lengths must be considered when matching trace lengths as described in the *Intel*[®] 860 Chipset Platform Design Guide. Note that these lengths are normalized to 0 with the longest trace on the package. They do not represent the actual lengths from pad to ball.

The data given can be renormalized to start routing from a different ball. If a different signal (other than longest trace) is used for nominalization, use the following equation:

New
$$\Delta L_{pkg}$$
' = ΔL_{pkg} - ΔL_{Ref}

ullet ΔL_{Ref} is the reference signal used for nominalization

Table 31 shows an example where signal MEMORY1 trace length is used for nominalization.

Table 31. Example Nominalization Table

	ΔL _{Pkg} (mils)	New ∆L _{Pkg} (mils)
MEMORY1	102.756	0.000
MEMORY2	118.897	16.141
MEMORY3	130.315	27.559
MEMORY4	152.364	49.608

MEMORYN 175.984	73.228
-----------------	--------

7.3.1 MCH RSL Trace Length Compensation

Depending on the memory configuration, different trace length compensation equations are used to determine the ΔL_{PCB} for RSL signals. The following equations are for a RIMM only solution and Intel MRH-R for the expansion channel.

To calculate the ΔL_{PCB} for RSL signals from the MCH to RIMMs, use the following formula.

$$\Delta L_{PCB} = (\Delta L_{pkg_MCH}^* V_{pkg_MCH}) / V_{PCB}$$

- Δ LPCB is the nominal Δ PCB trace length to be added on the PCB
- ΔLPkg_MCH is the nominal Δ package trace length of the MCH
- Vpkg_MCH is the package trace velocity of the MCH, and its the nominal value is 167.64 ps/in (6.6 ps/mm)
- VPCB is the PCB trace velocity

To calculate the ΔL_{PCB} for RSL signals from the MCH to Intel MRH-R, first normalize the RSL signals to one signal. Then, use the following formula to calculate ΔL_{PCB} .

$$\Delta L_{PCB} = (\Delta L_{pkg_MCH} * V_{pkg_MCH} + \Delta L_{pkg_MRH-R} * V_{pkg_MRH-R}) / V_{PCB}$$

- Δ LPCB is the nominal Δ PCB trace length to be added on the PCB
- Δ LPkg_MCH is the nominal Δ package trace length of the
- Vpkg_MCH is the package trace velocity of the MCH, and its the nominal value is 167.64 ps/in (6.6 ps/mm)
- $\Delta LPkg_MRH_R$ is the nominal Δ package trace length of the Intel MRH-R
- Vpkg_MRH-R is the package trace velocity, and its the nominal value is 180 ps/in (7.09 ps/mm)
- VPCB is the PCB trace velocity

7.3.1.1 MCH RSL Normalized Trace Length Data

The MCH package trace length information for Rambus Channel A and Rambus Channel B is listed in Table 32.

Table 32. MCH ΔL_{Pkg} Data for Rambus* Channel A and Rambus Channel B

Channel A ΔL _{Pkg} Normalized to DQA_A7		
Signal	Ball No.	ΔL _{Pkg} (mils)
CFM_A	Y31	76.535
CFM_A#	Y32	5.394
CTM_A	AA32	13.307
CTM_A#	AA31	69.567
DQA_A0	AC29	118.189
DQA_A1	AC27	135.512
DQA_A2	AC31	12.874
DQA_A3	AB28	162.244
DQA_A4	AD30	31.496
DQA_A5	AD28	158.346
DQA_A6	AE31	6.575
DQA_A7	AE27	0.000
DQA_A8	AE29	46.732
DQB_A0	T27	316.102
DQB_A1	P31	69.331
DQB_A2	P29	208.386
DQB_A3	M29	129.882
DQB_A4	P27	330.276
DQB_A5	M31	20.866
DQB_A6	N30	154.331
DQB_A7	M27	243.346
DQB_A8	N28	218.780
EXP_A0	U30	157.638
EXP_A1	V29	208.780
RQ_A0	R32	51.890
RQ_A1	T29	196.811
RQ_A2	T31	105.039
RQ_A3	U28	249.213
RQ_A4	U32	58.937
RQ_A5	V27	295.433
RQ_A6	V31	89.370
RQ_A7	W28	230.079

Channel B ΔL _{Pkg} Normalized to DQA_B4		
Signal	Ball No.	ΔL _{Pkg} (mils)
CFM_B	B20	104.291
CFM_B#	A20	32.874
CTM_B	A21	41.024
CTM_B#	B21	98.031
DQA_B0	D23	146.654
DQA_B1	F23	156.417
DQA_B2	B23	41.417
DQA_B3	E22	213.898
DQA_B4	A24	0.000
DQA_B5	E24	195.157
DQA_B6	C24	105.236
DQA_B7	D25	90.906
DQA_B8	B25	21.890
DQB_B0	F16	331.417
DQB_B1	B14	105.197
DQB_B2	D14	212.677
DQB_B3	D12	137.677
DQB_B4	F14	337.047
DQB_B5	B12	60.276
DQB_B6	C13	155.669
DQB_B7	F12	258.661
DQB_B8	E13	228.268
EXP_B0	C17	186.102
EXP_B1	D18	237.283
RQ_B0	A15	79.409
RQ_B1	D16	231.024
RQ_B2	B16	139.016
RQ_B3	E17	281.693
RQ_B4	A17	82.362
RQ_B5	F18	324.055
RQ_B6	B18	120.394
RQ_B7	E19	258.504

7.3.2 MCH System Bus Signal Normalized Trace Length Data

To calculate the ΔL_{PCB} for the system bus, first normal the processor and MCH to the same signal within a group. Then follow the trace length equations documented in the $Intel^{\circledR}$ $Xeon^{TM}$ Processor and $Intel^{\circledR}$ 860 Chipset Platform Design Guide. The MCH system bus interface normalized data per group is provided in the following tables.

Table 33. MCH System Bus Signal Normalized Trace Length Data per Group

HADSTB0# Group Normalized to HA9#		
Signal	Ball No.	ΔL _{Pkg} (mils)
HADSTB0#	AJ2	38.031
AP0#	AK11	254.803
HA3#	AE6	364.252
HA4#	AF4	223.583
HA5#	AH1	38.780
HA6#	АН3	115.827
HA7#	AG2	136.220
HA8#	AH4	191.417
HA9#	AJ1	0.000
HA10#	AL3	36.772
HA11#	AJ4	138.189
HA12#	AK3	94.331
HA13#	AM4	19.606
HA14#	AL4	50.551
HA15#	AK2	42.717
HA16#	AL2	1.850
HREQ0#	AG3	123.307
HREQ1#	AF2	139.055
HREQ2#	AF1	72.087
HREQ3#	AF5	291.260
HREQ4#	AE4	273.701

HADSTB1# Group Normalized to HA32#		
Signal	Ball No.	ΔL _{Pkg} (mils)
HADSTB1#	AJ7	263.031
AP1#	AH11	402.874
HA17#	AF7	395.157
HA18#	AG9	437.283
HA19#	AH9	306.693
HA20#	AM5	71.693
HA21#	AJ10	349.961
HA22#	AK6	200.039
HA23#	AJ8	324.567
HA24#	AH7	349.252
HA25#	AJ5	235.276
HA26#	AM7	40.906
HA27#	AM8	100.709
HA28#	AH6	303.543
HA29#	AH10	380.984
HA30#	AK5	149.016
HA31#	AK9	265.157
HA32#	AL9	0.000
HA33#	AK8	249.094
HA34#	AL6	103.189
HA35#	AL7	163.701

HDSTBx3# Group Normalized to HD62#					
Signal	Ball No.	ΔL _{Pkg} (mils)			
HDSTBP3#	AA2	269.764			
HDSTBN3#	AA3	353.228			
HD48#	Y2	309.921			
HD49#	AA6	408.071			
HD50#	AA5	436.654			
HD51#	AB6	518.031			
HD52#	Y1	228.228			
HD53#	AB3	122.441			
HD54#	AB1	194.646			
HD55#	AB4	388.228			
HD56#	AC5	439.370			
HD57#	AD2	190.669			
HD58#	AD3	235.079			
HD59#	AE3	224.843			
HD60#	AD5	332.953			
HD61#	AC4	359.882			
HD62#	AC2	0.000			
HD63#	AE1	160.157			
DBI3#	AC1	104.724			

Table 34. MCH System Bus Signal Normalized Trace Length Data per Group (continued)

HDSTBx2# Group Normalized to HD42#				
Signal	Ball No.	ΔL _{Pkg} (mils)		
HDSTBP2#	T1	15.354		
HDSTBN2#	Т3	151.181		
HD32#	T4	215.630		
HD33#	R3	151.142		
HD34#	R5	246.417		
HD35#	U2	81.181		
HD36#	R6	281.850		
HD37#	U5	242.205		
HD38#	U1	14.291		
HD39#	U4	227.283		
HD40#	V5	261.772		
HD41#	V3	115.709		
HD42#	W1	0.000		
HD43#	V6	292.559		
HD44#	W4	196.339		
HD45#	W3	128.937		
HD46#	Y5	203.701		
HD47#	Y4	139.449		
DBI2#	V2	79.213		

HDSTBx1# Group Normalized to HDSTBN1#					
Signal	Ball No.	ΔL _{Pkg} (mils)			
HDSTBP1#	N3	26.024			
HDSTBN1#	N4	0.000			
HD16#	K6	596.378			
HD17#	J5	476.575			
HD18#	K4	499.843			
HD19#	J3	406.575			
HD20#	К3	425.669			
HD21#	J2	388.701			
HD22#	L4	515.276			
HD23#	L5	540.906			
HD24#	N1	367.953			
HD25#	МЗ	475.591			
HD26#	L2	390.157			
HD27#	M5	580.748			
HD28#	M2	378.543			
HD29#	L1	325.433			
HD30#	N6	621.339			
HD31#	P2	453.110			
DBI1#	K1	351.260			

HDSTBx0# Group Normalized to HD2#				
Signal	Ball No.	ΔL _{Pkg} (mils)		
HDSTBP0#	H1	10.236		
HDSTBN0#	G3	244.055		
HD0#	D3	169.803		
HD1#	B2	66.496		
HD2#	E1	0.000		
HD3#	E4	228.346		
HD4#	C2	96.181		
HD5#	F2	179.370		
HD6#	E2	132.126		
HD7#	D4	200.512		
HD8#	D1	86.850		
HD9#	F3	224.449		
HD10#	G4	278.701		
HD11#	G1	90.315		
HD12#	H2	173.543		
HD13#	G6	394.843		
HD14#	H4	324.843		
HD15#	H5	358.622		
DBI0#	А3	31.024		

7.3.3 MCH 16-Bit Hub Interface Normalized Trace Length

To calculate the ΔL_{PCB} for 16-bit hub interfaces to the Intel P64H, use the following formula.

$$\Delta L_{PCB} = (\Delta L_{pkg_MCH}^* V_{pkg_MCH}) / V_{PCB}$$

- \bullet Δ LPCB is the nominal Δ PCB trace length to be added on the PCB
- ΔLPkg_MCH is the nominal Δ package trace length of the MCH
- Vpkg_MCH is the package trace velocity of the MCH, and its the nominal value is 167.64 ps/in (6.6 ps/mm)
- VPCB is the PCB trace velocity
- Reference the *Intel*[®] *Xeon*TM *Processor and Intel*[®] *860 Chipset Platform Design Guide* for information regarding how and when to use this data contained in the following sections for the 16-bit Hub Interface_B–C.

7.3.3.1 MCH 16-Bit Hub Interface_B Normalized Trace Length Data

Below is the MCH package trace length information for the 16-bit Hub Interface_B.

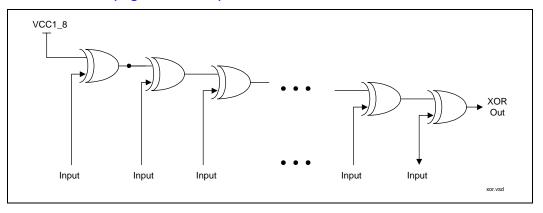
Table 35. MCH 16-bit Hub Interface_B Signal Normalized Trace Length Data

	Hub Interface_B Normalized to HL_B6							
Signal	Ball No.	ΔL _{Pkg} (mils)		Signal	Ball No.	ΔL _{Pkg} (mils)		
HL_B0	B30	264.094		HL_B2	A30	229.567		
HL_B1	D30	326.457		HL_B3	C31	270.433		
HL_B10	F29	283.543		HL_B4	C32	199.685		
HL_B11	J28	559.882		HL_B5	F31	190.157		
HL_B12	H30	424.528		HL_B6	F32	0.000		
HL_B13	H29	479.567		HL_B7	E30	301.772		
HL_B14	J32	347.362		HL_B8	J31	419.488		
HL_B15	J29	540.709		HL_B9	F28	449.803		
HL_B16	G30	428.189		HLB_STB0	E32	239.567		
HL_B17	G27	588.189		HLB_STB0#	D31	312.165		
HL_B18	H27	486.732		HLB_STB1	H32	302.205		
HL_B19	G28	509.449		HLB_STB1#	G31	372.244		

7.3.3.2 MCH 16-Bit Hub Interface_C Normalized Trace Length Data

Below is the MCH package trace length information for the 16-bit Hub Interface_C.

Table 36. MCH 16-Bit Hub Interface_C Signal Normalized Trace Length Data


Hub Interface_C Normalized to HLC_STB0#							
Signal	Ball No.	ΔL _{Pkg} (mils)	Signal	Ball No.	ΔL _{Pkg} (mils)		
HL_C0	F5	440.906	HL_C2	E6	431.575		
HL_C1	E5	359.331	HL_C3	C4	167.205		
HL_C10	B8	291.260	HL_C4	A5	152.795		
HL_C11	F10	552.244	HL_C5	A4	138.858		
HL_C12	В9	323.543	HL_C6	B6	229.331		
HL_C13	F9	527.953	HL_C7	B5	154.173		
HL_C14	E8	446.890	HL_C8	E9	464.567		
HL_C15	D10	472.283	HL_C9	F8	519.764		
HL_C16	A8	251.535	HLC_STB0	C6	246.654		
HL_C17	D7	222.992	HLC_STB0#	D5	0.000		
HL_C18	A7	220.827	HLC_STB1	C9	385.748		
HL_C19	C7	282.362	HLC_STB1#	D8	426.654		

8 Testability

In the MCH, the testability for Automated Test Equipment (ATE) board level testing has been implemented as an XOR chain. An XOR-Tree is a chain of XOR gates, each with one Input pin connected to it.

Figure 14. XOR-Tree Chain (High Level View)

The algorithm used for in-circuit test is as follows:

- Drive all Input pins to their initial logic level as indicated in the tables below. Observe the output.
- Toggle pins one at a time starting from the first pin continuing to the last pin from its initial logic level to its opposite level. Observe that the output changes with each pin toggle.

Certain pin pairs must be toggled together. These pin pairs are: AD_STB0 and AD_STB0#, AD_STB1 and AD_STB1#, and SB_STB and SB_STB#. For example AD_STB0 has an initial state of 1 and AD_STB0# has an initial state of 0 when reaching AD_STB0, both AD_STB0 and AD_STB0# should be toggled together (AD_STB0: 1 -> 0 and AD_STB0#: 0 -> 1). When these pins are toggled together, the output will not change.

It is important to use the initial input states found in the following tables.

The following pins must be connected to their proper circuit in order for the XOR chain to work:

- HLREF_A
- HLREF B
- HLREF_C
- HLSWNG B
- HLSWNG_C
- HL1 8
- All inputs must be driven to CMOS voltage levels (0-1.8 V) regardless of signal type.

8.1 XOR Test Mode Initialization

The MCH uses a single pin (TESTIN#) to activate the XOR test mode.

- 32,771 clocks (66IN) after the deassertion of PCI reset (RSTIN#), drive TESTIN# from 1 to 0.
- Start to serially load the bits: 8010 0000 1000 0000 0000 3F0C 003C 0001h into the TESTIN# pin.
- Once in the XOR test mode, any high-to-low transition on TESTIN# will cause the serial test mode entry state machine to be activated. Care should be taken to keep TESTIN# stable after activating the XOR test mode.

8.2 XOR Chains

Table 37. XOR Chain 1

Chain 1	Ball	Element #	Note	Initial Logic Level
HA13#	AM4	1	Input	1
HA14#	AL4	2	Input	1
HA10#	AL3	3	Input	1
HA11#	AJ4	4	Input	1
HA12#	AK3	5	Input	1
HA16#	AL2	6	Input	1
HA8#	AH4	7	Input	1
HA3#	AE6	8	Input	1
HA15#	AK2	9	Input	1
HREQ3#	AF5	10	Input	1
HADSTB0#	AJ2	11	Input	1
HA4#	AF4	12	Input	1
HA9#	AJ1	13	Input	1
HA6#	AH3	14	Input	1
HREQ4#	AE4	15	Input	1
HREQ0#	AG3	16	Input	1
HA7#	AG2	17	Input	1
HA5#	AH1	18	Input	1
HREQ1#	AF2	19	Input	1
HREQ2#	AF1	20	Input	1
HD56#	AC5	21	Input	1
HD59#	AE3	22	Input	1

Chain 1	Ball	Element #	Note	Initial Logic Level
HD60#	AD5	23	Input	1
HD61#	AC4	24	Input	1
HD51#	AB6	25	Input	1
HD49#	AA6	26	Input	1
HD63#	AE1	27	Input	1
HD57#	AD2	28	Input	1
HD55#	AB4	29	Input	1
HD58#	AD3	30	Input	1
HDSTBN3#	AA3	31	Input	1
HDSTBP3#	AA2	32	Input	1
HD53#	AB3	33	Input	1
DBI3#	AC1	34	Input	1
HD50#	AA5	35	Input	1
HD54#	AB1	36	Input	1
HD62#	AC2	37	Input	1
HD48#	Y2	38	Input	1
HD52#	Y1	39	Input	1
HD46#	Y5	40	Input	1
HD47#	Y4	41	Input	1
HD44#	W4	42	Input	1
HD45#	W3	43	Input	1
HD43#	V6	44	Input	1
HD42#	W1	45	Input	1
HD40#	V5	46	Input	1
DBI_2#	V2	47	Input	1
HD37#	U5	48	Input	1
HD41#	V3	49	Input	1
HD39#	U4	50	Input	1
HD35#	U2	51	Input	1
HD38#	U1	52	Input	1
HDSTBN2#	Т3	53	Input	1
HDSTBP2#	T1	54	Input	1
SBA0	AL18	55	Output	N/A

Table 38. XOR Chain 2

Chain 2	Ball	Element #	Note	Initial Logic Level
HD32#	T4	1	Input	1
HD33#	R3	2	Input	1
HD34#	R5	3	Input	1
HD36#	R6	4	Input	1
HD31#	P2	5	Input	1
HD24#	N1	6	Input	1
HRCOMP1	P7	7	Input	1
HD28#	M2	8	Input	1
HD29#	L1	9	Input	1
HD25#	МЗ	10	Input	1
HD26#	L2	11	Input	1
DBI1#	K1	12	Input	1
HD30#	N6	13	Input	1
HD27#	M5	14	Input	1
HDSTBN1#	N4	15	Input	1
HDSTBP1#	N3	16	Input	1
HD22#	L4	17	Input	1
HD20#	КЗ	18	Input	1
HD21#	J2	19	Input	1
HD23#	L5	20	Input	1
HD18#	K4	21	Input	1
HD19#	J3	22	Input	1
HD16#	K6	23	Input	1
HD17#	J5	24	Input	1
HD2#	E1	25	Input	1
HD11#	G1	26	Input	1
HD14#	H4	27	Input	1
HD12#	H2	28	Input	1
HD5#	F2	29	Input	1
HD15#	H5	30	Input	1
HD10#	G4	31	Input	1
HDSTBN0#	G3	32	Input	1
HDSTBP0#	H1	33	Input	1
HD9#	F3	34	Input	1

Chain 2	Ball	Element #	Note	Initial Logic Level
HD6#	E2	35	Input	1
HD8#	D1	36	Input	1
HD4#	C2	37	Input	1
HD0#	D3	38	Input	1
HD3#	E4	39	Input	1
HD1#	B2	40	Input	1
HD13#	G6	41	Input	1
HD7#	D4	42	Input	1
DBI0#	А3	43	Input	1
CMD_B	A11	44	Input	1
SIO_B	C11	45	Input	1
SCK_B	A10	46	Input	1
CHB_HCLKOUT	B10	47	Input	1
CHB_RCLKOUT	C10	48	Input	1
HL_A7	A26	49	Input	1
HL_A8	E26	50	Input	1
HL_A5	B27	51	Input	1
HL_A6	A27	52	Input	1
HL_A4	A28	53	Input	1
HL_A3	B28	54	Input	1
SBA1	AJ18	55	Output	N/A

Table 39. XOR Chain 3

Chain 3	Ball	Element #	Note	Initial Logic Level
DP3#	R2	1	Input	1
DP0#	P1	2	Input	1
DP2#	P5	3	Input	1
DP1#	P4	4	Input	1
HL_C0	F5	5	Input	1
HL_C17	D7	6	Input	1
HL_C1	E5	7	Input	1
HL_C2	E6	8	Input	1
HL_C3	C4	9	Input	1
HL_C7	B5	10	Input	1
HLC_STB0#	D5	11	Input	1
HLC_STB0	C6	12	Input	1
HLRCOMP_C	F7	13	Input	1
HL_C5	A4	14	Input	1
HL_C4	A5	15	Input	1
HL_C6	В6	16	Input	1
HL_C19	C7	17	Input	1
HL_C9	F8	18	Input	1
HL_C13	F9	19	Input	1
HL_C14	E8	20	Input	1
HL_C8	E9	21	Input	1
HLC_STB1#	D8	22	Input	1
HLC_STB1	C9	23	Input	1
HL_C18	A7	24	Input	1
HL_C11	F10	25	Input	1
HL_C16	A8	26	Input	1
HL_C15	D10	27	Input	1
HL_C10	B8	28	Input	1
HL_C12	В9	29	Input	1
HL_A11	C26	30	Input	1
HL_B2	A30	31	Input	1
HL_B0	B30	32	Input	1
HL_B1	D30	33	Input	1

Chain 3	Ball	Element #	Note	Initial Logic Level
HL_B6	F32	34	Input	1
HL_B3	C31	35	Input	1
HL_B17	G27	36	Input	1
HL_B4	C32	37	Input	1
HLB_STB0#	D31	38	Input	1
HLB_STB0	E32	39	Input	1
SBA2	AH18	40	Output	N/A

Table 40. XOR Chain 4

Chain 4	Ball	Element #	Note	Initial Logic Level
HL_A2	A29	1	Input	1
HLA_STB#	C27	2	Input	1
HLA_STB	D28	3	Input	0
HLRCOMP_A	E29	4	Input	1
HL_A9	E27	5	Input	1
HL_A0	D29	6	Input	1
HL_A1	C29	7	Input	1
HL_A10	F26	8	Input	1
CMD_A	L32	9	Input	1
SIO_A	L30	10	Input	1
SCK_A	K32	11	Input	1
CHA_RCLKOUT	K30	12	Input	1
CHA_HCLKOUT	K31	13	Input	1
G_AD1	AH32	14	Input	1
G_AD5	AK31	15	Input	1
G_AD0	AG32	16	Input	1
G_AD3	AF32	17	Input	1
G_AD10	AG29	18	Input	1
G_AD9	AH29	19	Input	1
G_AD14	AJ28	20	Input	1
G_AD2	AK32	21	Input	1
G_AD15	AM28	22	Input	1
AD_STB0	AK29	23	Input	1
AD_STB0#	AJ30	24	Input	0
G_AD4	AJ31	25	Input	1

Chain 4	Ball	Element #	Note	Initial Logic Level
G_C/BE0#	AL30	26	Input	1
G_AD11	AL29	27	Input	1
G_AD7	AF30	28	Input	1
G_AD6	AL31	29	Input	1
G_AD8	AM30	30	Input	1
G_AD12	AF28	31	Input	1
G_C/BE1#	AM27	32	Input	1
G_AD13	AG28	33	Input	1
G_DEVSEL#	AH26	34	Input	1
G_FRAME#	AG26	35	Input	1
G_IRDY#	AK26	36	Input	1
G_TRDY#	AH27	37	Input	1
G_STOP#	AJ27	38	Input	1
G_PAR	AF27	39	Input	1
G_C/BE2#	AL26	40	Input	1
G_AD20	AJ24	41	Input	1
G_AD16	AG25	42	Input	1
G_AD21	AK23	43	Input	1
G_AD17	AJ25	44	Input	1
G_AD18	AM25	45	Input	1
G_AD19	AH24	46	Input	1
G_AD23	AG22	47	Input	1
G_AD22	AM24	48	Input	1
AD_STB1	AL21	49	Input	1
AD_STB1#	AK22	50	Input	0
GRCOMP	AF17	51	Input	1
G_C/BE3#	AL23	52	Input	1
G_AD24	AM22	53	Input	1
G_AD25	AF21	54	Input	1
SBA3	AG18	55	Output	N/A

Table 41. XOR Chain 5

G_AD27	Chain 5	Ball	Element #	Note	Initial Logic Level
G_AD30	G_AD27	AJ21	1	Input	1
G_AD29	G_AD26	AH21	2	Input	1
G_AD28 AM21 5 Input 1 G_AD31 AK20 6 Input 1 SB_STB AM19 7 Input 1 SB_STB# AK19 8 Input 0 ST0 AL17 9 Input 1 ST1 AK17 10 Input 1 ST2 AJ17 11 Input 1 RBF# AH17 12 Input 1 G_GNT# AM17 13 Input 1 PIPE# AG17 14 Input 1 WBF# AM18 15 Input 1 G_REQ# AL16 16 Input 1 HLA_ENH# AH15 17 Input 1 BRO# AM15 18 Input 1 HTRDY# AM14 19 Input 1 HTRDY# AM13 20 Input 1 HIT#	G_AD30	AH20	3	Input	1
G_AD31 AK20 6 Input 1 SB_STB AM19 7 Input 1 SB_STB# AK19 8 Input 0 ST0 AL17 9 Input 1 ST1 AK17 10 Input 1 ST2 AJ17 11 Input 1 RBF# AH17 12 Input 1 G_GNT# AM17 13 Input 1 PIPE# AG17 14 Input 1 WBF# AM18 15 Input 1 MBF# AM18 15 Input 1 HLA_ENH# AH16 16 Input 1 HLA_ENH# AH15 17 Input 1 BRO# AM15 18 Input 1 HTRDY# AM14 19 Input 1 DRDY# AM13 20 Input 1 HIT#	G_AD29	AG20	4	Input	1
SB_STB AM19 7 Input 1 SB_STB# AK19 8 Input 0 ST0 AL17 9 Input 1 ST1 AK17 10 Input 1 ST2 AJ17 11 Input 1 RBF# AH17 12 Input 1 G_GNT# AM17 13 Input 1 PIPE# AG17 14 Input 1 WBF# AM18 15 Input 1 G_REQ# AL16 16 Input 1 HLA_ENH# AH15 17 Input 1 BRO# AM15 18 Input 1 HTRDY# AM14 19 Input 1 DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HIT# AK13 22 Input 1 HIT#	G_AD28	AM21	5	Input	1
SB_STB# AK19 8 Input 0 ST0 AL17 9 Input 1 ST1 AK17 10 Input 1 ST2 AJ17 11 Input 1 RBF# AH17 12 Input 1 G_GNT# AM17 13 Input 1 PIPE# AG17 14 Input 1 WBF# AM18 15 Input 1 MBF# AM18 15 Input 1 HLA_ENH# AH15 17 Input 1 BRO# AM15 18 Input 1 HTRDY# AM15 18 Input 1 DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HIT# AK13 22 Input 1 HIT# AK13 22 Input 1 HIT#	G_AD31	AK20	6	Input	1
ST0 AL17 9 Input 1 ST1 AK17 10 Input 1 ST2 AJ17 11 Input 1 RBF# AH17 12 Input 1 G_GNT# AM17 13 Input 1 PIPE# AG17 14 Input 1 WBF# AM18 15 Input 1 G_REQ# AL16 16 Input 1 HLA_ENH# AH15 17 Input 1 BRO# AM15 18 Input 1 HTARDY# AM14 19 Input 1 HTARDY# AM14 19 Input 1 HIT# AL13 20 Input 1 HIT# AK13 22 Input 1 HIT# AK13 22 Input 1 HIT# AK13 24 Input 1 BPR#	SB_STB	AM19	7	Input	1
ST1 AK17 10 Input 1 ST2 AJ17 11 Input 1 RBF# AH17 12 Input 1 G_GNT# AM17 13 Input 1 PIPE# AG17 14 Input 1 WBF# AM18 15 Input 1 G_REQ# AL16 16 Input 1 HLA_ENH# AH15 17 Input 1 BRO# AM15 18 Input 1 HTRDY# AM14 19 Input 1 DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HIT# AK13 22 Input 1 HIT# AK13 22 Input 1 HIT# AK13 22 Input 1 HIT# AK13 24 Input 1 BPR#	SB_STB#	AK19	8	Input	0
ST2 AJ17 11 Input 1 RBF# AH17 12 Input 1 G_GNT# AM17 13 Input 1 PIPE# AG17 14 Input 1 WBF# AM18 15 Input 1 WBF# AM18 15 Input 1 G_REQ# AL16 16 Input 1 HLA_ENH# AH15 17 Input 1 BRO# AM15 18 Input 1 HTRDY# AM15 18 Input 1 HTRDY# AM14 19 Input 1 DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HIT# AK13 22 Input 1 HIT# AK13 22 Input 1 HLOCK# AH13 24 Input 1 RS0# <td>ST0</td> <td>AL17</td> <td>9</td> <td>Input</td> <td>1</td>	ST0	AL17	9	Input	1
RBF# AH17 12 Input 1 G_GNT# AM17 13 Input 1 PIPE# AG17 14 Input 1 WBF# AM18 15 Input 1 G_REQ# AL16 16 Input 1 HLA_ENH# AH15 17 Input 1 BRO# AM14 19 Input 1 DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HITM# AK13 22 Input 1 BNR# AM12 23 Input 1 BRO# AM15 24 Input 1 CPURST# AL11 27 Input 1 CPURST# AL11 27 Input 1 DRSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 DEFER# AH12 32 Input 1	ST1	AK17	10	Input	1
G_GNT# AM17 13 Input 1 PIPE# AG17 14 Input 1 WBF# AM18 15 Input 1 G_REQ# AL16 16 Input 1 HLA_ENH# AH15 17 Input 1 BRO# AM15 18 Input 1 HTRDY# AM15 18 Input 1 HTRDY# AM14 19 Input 1 DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HIT# AK13 22 Input 1 HIT# AK13 22 Input 1 BNR# AM12 23 Input 1 BNR# AM12 23 Input 1 BPRI# AK12 25 Input 1 CPURST# AL11 27 Input 1 DBSY#	ST2	AJ17	11	Input	1
PIPE# AG17 14 Input 1 WBF# AM18 15 Input 1 G_REQ# AL16 16 Input 1 HLA_ENH# AH15 17 Input 1 BRO# AM15 18 Input 1 HTRDY# AM14 19 Input 1 DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HIT# AK13 22 Input 1 HIT# AK13 22 Input 1 BNR# AM12 23 Input 1 HLOCK# AH13 24 Input 1 BPRI# AK12 25 Input 1 RS0# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 HRCOMP	RBF#	AH17	12	Input	1
WBF# AM18 15 Input 1 G_REQ# AL16 16 Input 1 HLA_ENH# AH15 17 Input 1 BRO# AM15 18 Input 1 HTRDY# AM14 19 Input 1 DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HIT# AK13 22 Input 1 HIT# AK13 22 Input 1 BNR# AM12 23 Input 1 HLOCK# AH13 24 Input 1 BPRI# AK12 25 Input 1 RS0# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 HRCOMPO AF13 30 Input 1 HRCO	G_GNT#	AM17	13	Input	1
G_REQ# AL16 16 Input 1 HLA_ENH# AH15 17 Input 1 BRO# AM15 18 Input 1 HTRDY# AM14 19 Input 1 DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HITM# AK13 22 Input 1 BNR# AM12 23 Input 1 HLOCK# AH13 24 Input 1 BPRI# AK12 25 Input 1 RSO# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMPO AF13 30 Input 1 DEFER# AH12 32 Input 1 DEFER# AH12 32 Input 1	PIPE#	AG17	14	Input	1
HLA_ENH# AH15 17 Input 1 BRO# AM15 18 Input 1 HTRDY# AM14 19 Input 1 DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HITM# AK13 22 Input 1 BNR# AM12 23 Input 1 HLOCK# AH13 24 Input 1 BPRI# AK12 25 Input 1 RS0# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMPO AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS	WBF#	AM18	15	Input	1
BRO# AM15 18 Input 1 HTRDY# AM14 19 Input 1 DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HITM# AK13 22 Input 1 BNR# AM12 23 Input 1 HLOCK# AH13 24 Input 1 BPRI# AK12 25 Input 1 RSO# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMPO AF13 30 Input 1 DEFER# AH12 32 Input 1 DEFER# AH12 32 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	G_REQ#	AL16	16	Input	1
HTRDY# AM14 19 Input 1 DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HITM# AK13 22 Input 1 BNR# AM12 23 Input 1 HLOCK# AH13 24 Input 1 BPRI# AK12 25 Input 1 RS0# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMPO AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	HLA_ENH#	AH15	17	Input	1
DRDY# AM13 20 Input 1 HIT# AL13 21 Input 1 HITM# AK13 22 Input 1 BNR# AM12 23 Input 1 HLOCK# AH13 24 Input 1 BPRI# AK12 25 Input 1 RS0# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMP0 AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	BRO#	AM15	18	Input	1
HIT# AL13 21 Input 1 HITM# AK13 22 Input 1 BNR# AM12 23 Input 1 HLOCK# AH13 24 Input 1 BPRI# AK12 25 Input 1 RS0# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMPO AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	HTRDY#	AM14	19	Input	1
HITM# AK13 22 Input 1 BNR# AM12 23 Input 1 HLOCK# AH13 24 Input 1 BPRI# AK12 25 Input 1 RS0# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMPO AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	DRDY#	AM13	20	Input	1
BNR# AM12 23 Input 1 HLOCK# AH13 24 Input 1 BPRI# AK12 25 Input 1 RS0# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMPO AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	HIT#	AL13	21	Input	1
HLOCK# AH13 24 Input 1 BPRI# AK12 25 Input 1 RS0# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMP0 AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	HITM#	AK13	22	Input	1
BPRI# AK12 25 Input 1 RS0# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMPO AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	BNR#	AM12	23	Input	1
RS0# AM11 26 Input 1 CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMP0 AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	HLOCK#	AH13	24	Input	1
CPURST# AL11 27 Input 1 DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMP0 AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	BPRI#	AK12	25	Input	1
DBSY# AJ12 28 Input 1 RS2# AM10 29 Input 1 HRCOMP0 AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	RS0#	AM11	26	Input	1
RS2# AM10 29 Input 1 HRCOMP0 AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	CPURST#	AL11	27	Input	1
HRCOMP0 AF13 30 Input 1 RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	DBSY#	AJ12	28	Input	1
RS1# AL10 31 Input 1 DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	RS2#	AM10	29	Input	1
DEFER# AH12 32 Input 1 ADS# AG11 33 Input 1	HRCOMP0	AF13	30	Input	1
ADS# AG11 33 Input 1	RS1#	AL10	31	Input	1
	DEFER#	AH12	32	Input	1
HA21# AJ10 34 Input 1	ADS#	AG11	33	Input	1
	HA21#	AJ10	34	Input	1

Chain 5	Ball	Element #	Note	Initial Logic Level
HA31#	AK9	35	Input	1
HA29#	AH10	36	Input	1
HA19#	AH9	37	Input	1
HA27#	AM8	38	Input	1
HA26#	AM7	39	Input	1
HA23#	AJ8	40	Input	1
HADSTB1#	AJ7	41	Input	1
HA20#	AM5	42	Input	1
HA18#	AG9	43	Input	1
HA22#	AK6	44	Input	1
HA30#	AK5	45	Input	1
HA24#	AH7	46	Input	1
HA25#	AJ5	47	Input	1
HA28#	AH6	48	Input	1
HA17#	AF7	49	Input	1
SBA4	AJ19	50	Output	N/A

Table 42. XOR Chain 6

Chain 6	Ball	Element #	Note	Initial Logic Level
HLRCOMP_B	K27	1	Input	1
HL_B19	G28	2	Input	1
HL_B18	H27	3	Input	1
HL_B5	F31	4	Input	1
HL_B7	E30	5	Input	1
HL_B9	F28	6	Input	1
HL_B16	G30	7	Input	1
HL_B10	F29	8	Input	1
HL_B11	J28	9	Input	1
HLB_STB1#	G31	10	Input	1
HLB_STB1	H32	11	Input	1
HL_B13	H29	12	Input	1
HL_B12	H30	13	Input	1
HL_B15	J29	14	Input	1
HL_B8	J31	15	Input	1
HL_B14	J32	16	Input	1

Chain 6	Ball	Element #	Note	Initial Logic Level
Rsvd	AG31	17	Input	1
Rsvd	AH30	18	Input	1
Rsvd	AF24	19	Input	1
Rsvd	AK28	20	Input	1
Rsvd	AL27	21	Input	1
G_SERR#	AG27	22	Input	1
Rsvd	AK25	23	Input	1
Rsvd	AL24	24	Input	1
Rsvd	AH23	25	Input	1
Rsvd	AJ22	26	Input	1
OVERT#	AJ16	27	Input	1
BUSPARK	AH16	28	Input	1
Rsvd	AL15	29	Input	1
Rsvd	AK15	30	Input	1
Rsvd	AJ15	31	Input	1
RSP#	AK14	32	Input	1
BERR#	AJ14	33	Input	1
AP0#	AK11	34	Input	1
AP1#	AH11	35	Input	1
HA33#	AK8	36	Input	1
HA35#	AL7	37	Input	1
HA32#	AL9	38	Input	1
HA34#	AL6	39	Input	1
SBA5	AG19	40	Output	N/A

Table 43. XOR Chain 7

Chain 7	Ball	Element #	Note	Initial Logic Level
DQA_A5	AD28	1	Input	1
DQA_A3	AB28	2	Input	1
DQA_A7	AE27	3	Input	1
DQA_A6	AE31	4	Input	1
DQA_A8	AE29	5	Input	1
DQA_A0	AC29	6	Input	1
DQA_A4	AD30	7	Input	1
DQA_A1	AC27	8	Input	1
DQA_A2	AC31	9	Input	1
CTM_A	AA32	10	Input	1
CTM_A#	AA31	11	Input	1
RQ_A7	W28	12	Input	1
EXP_A1	V29	13	Input	1
RQ_A6	V31	14	Input	1
RQ_A5	V27	15	Input	1
RQ_A4	U32	16	Input	1
EXP_A0	U30	17	Input	1
RQ_A3	U28	18	Input	1
RQ_A0	R32	19	Input	1
RQ_A2	T31	20	Input	1
RQ_A1	T29	21	Input	1
DQA_B5	E24	22	Input	1
DQA_B1	F23	23	Input	1
DQA_B0	D23	24	Input	1
DQA_B6	C24	25	Input	1
DQA_B2	B23	26	Input	1
DQA_B3	E22	27	Input	1
DQA_B4	A24	28	Input	1
DQA_B8	B25	29	Input	1
DQA_B7	D25	30	Input	1
SBA6	AF19	31	Output	N/A

Table 44. XOR Chain 8

Chain 8	Ball	Element #	Note	Initial Logic Level
DQB_A5	M31	1	Input	1
DQB_A3	M29	2	Input	1
DQB_A7	M27	3	Input	1
DQB_A6	N30	4	Input	1
DQB_A8	N28	5	Input	1
DQB_A0	T27	6	Input	1
DQB_A4	P27	7	Input	1
DQB_A1	P31	8	Input	1
DQB_A2	P29	9	Input	1
CTM_B	A21	10	Input	1
CTM_B#	B21	11	Input	1
RQ_B7	E19	12	Input	1
EXP_B1	D18	13	Input	1
RQ_B6	B18	14	Input	1
RQ_B5	F18	15	Input	1
RQ_B4	A17	16	Input	1
EXP_B0	C17	17	Input	1
RQ_B3	E17	18	Input	1
RQ_B0	A15	19	Input	1
RQ_B2	B16	20	Input	1
RQ_B1	B14	21	Input	1
DQB_B5	B12	22	Input	1
DQB_B1	B14	23	Input	1
DQB_B0	F16	24	Input	1
DQB_B6	C13	25	Input	1
DQB_B2	D14	26	Input	1
DQB_B3	D12	27	Input	1
DQB_B4	F14	28	Input	1
DQB_B8	E13	29	Input	1
DQB_B7	F12	30	Input	1
SBA7	AL20	31	Output	N/A

RSTIN#, TESTIN#, CFM_A, CFM_A#, CHA_REF[0:1], CFM_B, CFM_B#, CHB_REF[0:1] are not part of any XOR chain. This is in addition to SBA[0:7].