

Precision Operational Amplifier

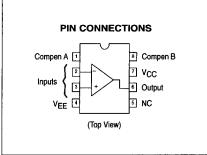
The LM308A operational amplifier provides high input impedance, low input offset and temperature drift, and low noise. These characteristics are made possible by use of a special Super Beta processing technology. This amplifier is particularly useful for applications where high accuracy and low drift performance are essential. In addition high speed performance may be improved by employing feedforward compensation techniques to maximize slew rate without compromising other performance criteria.

The LM308A offers extremely low input offset voltage and drift specifications allowing usage in even the most critical applications without external offset nulling.

- Operation from a Wide Range of Power Supply Voltages
- · Low Input Bias and Offset Currents
- Low Input Offset Voltage and Guaranteed Offset Voltage Drift Performance
- · High Input Impedance

LM308A

SUPER GAIN OPERATIONAL AMPLIFIER


SEMICONDUCTOR TECHNICAL DATA

N SUFFIX PLASTIC PACKAGE CASE 626

D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO-8)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
LM308AN LM308AD	T _A = 0° to +70°C	Plastic DIP SO–8

MOTOROLA ANALOG IC DEVICE DATA

2-34

LM308A

MAXIMUM RATINGS (TA = +25°C, unless otherwise noted.)

Rating	Symbol	Value	Unit	
Power Supply Voltage	V _{CC} , V _{EE}	±18	Vdc	
Input Voltage (See Note 1)	V _I	±15	٧	
Input Differential Current (See Note 2)	liD	±10	mA	
Output Short Circuit Duration	t _{SC} Indefinite			
Operating Ambient Temperature Range	TA	0 to +70	°C	
Storage Temperature Range	T _{stg} -65 to +		°C	
Junction Temperature	TJ	+150 ,	°C	

NOTES: 1. For supply voltages less than ±15 V, the maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted these specifications apply for supply voltages of $+5.0 \text{ V} \le \text{V}_{CC} \le +15 \text{ V}$ and $-5.0 \text{ V} \ge \text{V}_{EE} \ge -15 \text{ V}$, $T_A = +25^{\circ}\text{C}$.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage	VIO	_	0,3	0.5	mV
Input Offset Current	110	_	0.2	1.0	nA
Input Bias Current	Iв	-	1.5	7.0	nA
Input Resistance	rį	10	40		MΩ
Power Supply Currents (VCC = +15 V, VEE = -15 V)	ICC, IEE	_	±0.3	±0.8	mA
Large Signal Voltage Gain (V _{CC} = ± 10 V, V _{EE} = -15 V, V _O = ± 10 V, R _L ≥ 10 kΩ)	Avol	80	300	_	V/mV

The following specifications apply over the operating temperature range.

Input Offset Voltage	V _{IO}	_	_	0.73	mV
Input Offset Current	10	_	T -	1.5	nA
Average Temperature Coefficient of Input Offset Voltage $T_A \; (\text{min}) \leq T_A \leq T_A \; (\text{max})$	ΔV _{IO} /ΔΤ	_	1.0	5.0	μV/°C
Average Temperature Coefficient of Input Offset Current	ΔΙ _{ΙΟ} /ΔΤ	-	2.0	10	pA/°C
Input Bias Current	Iв	_	_	10	nA
Large Signal Voltage Gain $(V_{CC} + 15 \text{ V, V}_{EE} = -15 \text{ V, V}_{O} = \pm 10 \text{ V, R}_{L} \geq 10 \text{ k}\Omega)$	AVOL	60	-	-	V/mV
Input Voltage Range (V _{CC} = +15 V, V _{EE} = -15 V)	VICR	±14	_	-	V
Common Mode Rejection $(R_{S} \leq 50 \; k\Omega)$	CMR	96	110	-	dB
Supply Voltage Rejection $({\rm R_S} \le 50~{\rm k}\Omega)$	PSR	96	110	_	dB
Output Voltage Range (V _{CC} = +15 V, V _{EE} = -15 V, R _L = 10 k Ω)	VOR	±13	±14	-	V

6367253 0100345 T68 **■**

MOTOROLA ANALOG IC DEVICE DATA

2-35

voltage.

2. The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1.0 V is applied between the inputs, unless some limiting resistance is used.

0.2 0 -40 -20

0

T, TEMPERATURE (°C)

20 40 60

D

80 100 120 140

Figure 2. Maximum Equivalent Input Offset Voltage Error versus Input Resistance

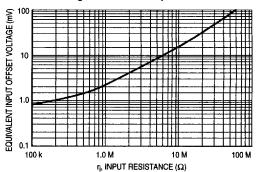


Figure 3. Voltage Gain versus Supply Voltages

130

TA = 0°C

+25°C

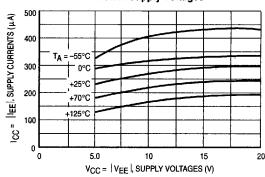
-55°C

+70°C

+125°C

90

CF = 0


f = 100 Hz

10

V_{CC} = | V_{EE} |, SUPPLY VOLTAGES (V)

20

Figure 4. Power Supply Currents versus Power Supply Voltages

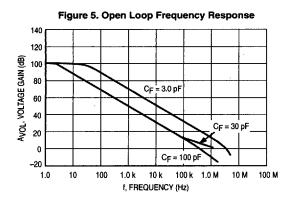
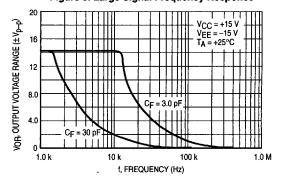
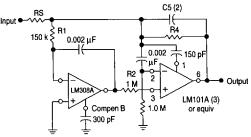



Figure 6. Large Signal Frequency Response

■ 6367253 0100346 9T4 **■**

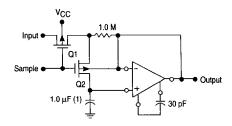
MOTOROLA ANALOG IC DEVICE DATA


LM308A

SUGGESTED DESIGN APPLICATIONS

INPUT GUARDING

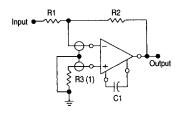
Special care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the LM308A amplifier. Boards must be thoroughly cleaned with alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.


Figure 7. Fast (1) Summing Amplifier with **Low Input Current**

- (1) Power Bandwidth: 250 kHz Small Signal Bandwidth: 3.5 MHz Slew Rate: 10 V/µs
- (3) In addition to increasing speed, the LM101A raises high and low frequency gain, increases output drive capability and eliminates thermal feedback.

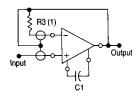
Even with properly cleaned and coated boards, leakage currents may cause trouble at +125°C, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high voltage pins are then absorbed by the guard.

Figure 8. Sample and Hold

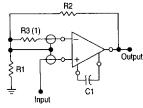


(1) Teflon, Polyethylene or Polycarbonate Dielectric Capacitor

(2) $C5 = \frac{6 \times 10^{-8}}{}$


Figure 9. Connection of Input Guards

Inverting Amplifier



(1) Used to compensate for large source resistances.

Follower

Noninverting Amplifier

R1 R2 must be an impedance. R1 +R2

6367253 OlOO347 830 **...**

Representative Circuit Schematic

