## Features

## ■ Memory organization

a Industry's largest first in first out (FIFO) memory densities: 18-Mbit, 36-Mbit and 72-Mbit
$\square$ Selectable memory organization: $\times 9, \times 12, \times 16, \times 18, \times 20$, $\times 24, \times 32, \times 36$

■ Up to $100-\mathrm{MHz}$ clock operation

- Unidirectional operation
$■$ Independent read and write ports
$\square$ Supports simultaneous read and write operations
$\square$ Reads and writes operate on independent clocks upto a maximum ratio of two enabling data buffering across clock domains
a Supports multiple I/O voltage standard: Low voltage complementary metal oxide semiconductor (LVCMOS) 3.3 V and 1.8 V voltage standards.
■ Input and output enable control for write mask and read skip operations

■ User configured multi-queue operating mode upto 8-queues
■ Mark and retransmit: resets read pointer to user marked position

- Empty and full flags

■ Flow-through mailbox register to send data from input to output port, bypassing the FIFO sequence
■ Configure programmable flags and registers through serial or parallel modes

- Separate serial clock (SCLK) input for serial programming

■ Master reset to clear entire FIFO
■ Joint test action group (JTAG) port provided for boundary scan function

■ Industrial temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

## Functional Description

The Cypress programmable FIFO family offers the industry's highest-density programmable FIFO memory device. It has independent read and write ports, which can be clocked up to 100 MHz . User can configure input and output bus sizes. The maximum bus size of 36 bits enables a maximum data throughput of 3.6 Gbps. The read and write ports can support multiple I/O voltage standards. The user-programmable registers enable user to configure the device operation as desired. The device also offers a simple and easy-to-use interface to reduce implementation and debugging efforts, improve time-to-market, and reduce engineering costs. This makes it an ideal memory choice for a wide range of applications including multiprocessor interfaces, video and image processing, networking and telecommunications, high-speed data acquisition, or any system that needs buffering at very high speeds across different domains.
As implied by the name, the functionality of the FIFO is such that the data is read out of the read port in the same sequence in which it was written into the write port. The data is sequentially written into the FIFO from the write port. If the writes and inputs are enabled, the data on the write port gets written into the device at the rising edge of the write clock. Enabling the reads and outputs fetches data on the read port at every rising edge of the read clock. Both reads and writes can occur simultaneously at different speeds provided the ratio of read to write clock is in the range of 0.5 to 2 . Appropriate flags are set whenever the FIFO is empty or full.
The device also supports multi-queue operation upto 8 queues, mark and retransmit of data, and a flow-through mailbox register.
All product features and specs are common to all densities (CYF2072V, CYF2036V, and CYF2018V) unless otherwise specified. All descriptions are given assuming the device is CYF2072V operated in $\times 36$ mode. They hold good for other densities (CYF2036V, and CYF2018V) and all port sizes $\times 9$, $\times 12, \times 16, \times 18, \times 20, \times 24$ and $\times 32$ unless otherwise specified. The only difference will be in the input and output bus width. Table 1 on page 8 shows the part of bus with valid data from $D[35: 0]$ and $Q[35: 0]$ in $\times 9, \times 12, \times 16, \times 18, \times 20, \times 24, \times 32$ and $\times 36$ modes.

CYF2018V, CYF2036V CYF2072V

## Logic Block Diagram



## Contents

Pin Diagram for CYF2XXXV ..... 4
Pin Definitions ..... 5
Architecture ..... 7
Reset Logic ..... 7
Flag Operation ..... 7
Full Flag ..... 7
Empty Flag ..... 7
Retransmit from Mark Operation ..... 7
Flow-through mailbox Register ..... 7
Selecting Word Sizes ..... 7
Data Valid Signal (DVal) ..... 8
Queue Valid Signal (QVal[2:0]) ..... 8
Power Up ..... 8
Write Mask and Read Skip Operation ..... 9
Multi-Queue Operation ..... 9
Width Expansion Configuration ..... 11
Memory Organization for Different Port Sizes ..... 11
Read/Write Clock Requirements ..... 12
JTAG operation ..... 13
Maximum Ratings ..... 14
Operating Range ..... 14
Recommended DC Operating Conditions ..... 14
Electrical Characteristics ..... 14
I/O Characteristics ..... 15
Latency Table ..... 15
Switching Characteristics ..... 16
Switching Waveforms ..... 17
Ordering Information ..... 26
Ordering Code Definitions ..... 26
Package Diagram ..... 27
Acronyms ..... 28
Document Conventions ..... 28
Units of Measure ..... 28
Document History Page ..... 29
Sales, Solutions, and Legal Information ..... 30
Worldwide Sales and Design Support ..... 30
Products ..... 30
PSoC Solutions ..... 30

## Pin Diagram for CYF2XXXV

Figure 1. 209-ball FBGA (Top View)

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $\overline{\text { FF }}$ | D0 | D1 | WQSEL0 | PORTSZ0 | PORTSZ1 | DNU | RQSEL0 | RT | Q0 | Q1 |
| B | $\overline{\text { EF }}$ | D2 | D3 | WQSEL1 | DNU | PORTSZ2 | DNU | RQSEL1 | $\overline{\text { REN }}$ | Q2 | Q3 |
| C | D4 | D5 | $\overline{\text { WEN }}$ | WQSEL2 | VCC1 | DNU | VCC1 | RQSEL2 | RCLK | Q4 | Q5 |
| D | D6 | D7 | VSS | VCC1 | DNU | $\overline{\text { LD }}$ | DNU | VCC1 | VSS | Q6 | Q7 |
| E | D8 | D9 | VCC2 | VCC2 | VCCIO | VCCIO | vCCIO | VCC2 | VCC2 | Q8 | Q9 |
| F | D10 | D11 | VSS | VSS | VSS | DNU | VSS | VSS | VSS | Q10 | Q11 |
| G | D12 | D13 | VCC2 | VCC2 | VCCIO | VCC1 | VCCIO | VCC2 | VCC2 | Q12 | Q13 |
| H | D14 | D15 | VSS | VSS | VSS | VCC1 | VSS | VSS | VSS | Q14 | Q15 |
| J | D16 | D17 | VCC2 | VCC2 | VCCIO | VCC1 | VCCIO | VCC2 | VCC2 | Q16 | Q17 |
| K | DNU | DNU | WCLK | DNU | VSS | $\overline{\text { IE }}$ | VSS | DNU | VCCIO | VCCIO | VCCIO |
| L | D18 | D19 | VCC2 | VCC2 | VCCIO | VCC1 | VCCIO | VCC2 | VCC2 | Q18 | Q19 |
| M | D20 | D21 | VSS | VSS | VSS | VCC1 | VSS | VSS | VSS | Q20 | Q21 |
| N | D22 | D23 | VCC2 | VCC2 | VCCIO | VCC1 | VCCIO | VCC2 | VCC2 | Q22 | Q23 |
| P | D24 | D25 | VSS | VSS | VSS | $\overline{\text { SPI_SEN }}$ | VSS | VSS | VSS | Q24 | Q25 |
| R | D26 | D27 | VCC2 | VCC2 | VCCIO | VCCIO | VCCIO | VCC2 | VCC2 | Q26 | Q27 |
| T | D28 | D29 | VSS | VCC1 | VCC1 | SPI_SI | VCC1 | VCC1 | VSS | Q28 | Q29 |
| U | $\overline{\text { DVal }}$ | DNU | D30 | D31 | DNU | DNU | SPI_SCLK | Vref | $\overline{\text { OE }}$ | Q30 | Q31 |
| V | QVa11 | QVal0 | D32 | D33 | DNU | $\overline{\text { MRS }}$ | MB | DNU | MARK | Q32 | Q33 |
| W | TDO | QVal2 | D34 | D35 | TDI | $\overline{\text { TRST }}$ | TMS | TCK | Vref | Q34 | Q35 |

## Pin Definitions

| Pin Name | 1/0 | Pin Description |
| :---: | :---: | :---: |
| D[35:0] | Input | Data inputs: Data inputs for a 36-bit bus. |
| Q[35:0] | Output | Data outputs: Data outputs for a 36-bit bus. |
| $\overline{\text { WEN }}$ | Input | Write enable: $\overline{\text { WEN }}$ enables WCLK to write data into the FIFO memory and configuration registers. |
| $\overline{\text { REN }}$ | Input | Read enable: $\overline{\text { REN }}$ enables RCLK to read data from the FIFO memory and configuration registers. |
| $\overline{\mathrm{I}}$ | Input | Input enable: $\overline{I E}$ is the data input enable signal that controls the enabling and disabling of the 36 -bit data input pins. If it is enabled, data on the $\mathrm{D}[35: 0]$ pins is written into the FIFO. The internal write address pointer is always incremented at rising edge of WCLK if $\overline{\mathrm{WEN}}$ is enabled, regardless of the $\overline{\mathrm{IE}}$ level. This is used for 'write masking' or incrementing the write pointer without writing into a location. |
| $\overline{\mathrm{OE}}$ | Input | Output enable: When $\overline{\mathrm{OE}}$ is LOW, FIFO data outputs are enabled; when $\overline{\mathrm{OE}}$ is HIGH, the FIFO's outputs are in High Z (high impedance) state. |
| WCLK | Input | Write clock: When enabled by $\overline{\mathrm{WEN}}$, the rising edge of WCLK writes data into the FIFO if $\overline{\mathrm{LD}}$ is high and into the configuration registers if LD is low. |
| RCLK | Input | Read clock: When enabled by $\overline{\operatorname{REN}}$, the rising edge of RCLK reads data from the FIFO memory if $\overline{\mathrm{LD}}$ is high and from the configuration registers if $\overline{L D}$ is low. |
| $\overline{\mathrm{EF}}$ | Output | Empty flag: When $\overline{\mathrm{EF}}$ is LOW, the Queue is empty. $\overline{\mathrm{EF}}$ is synchronized to RCLK. |
| $\overline{\mathrm{FF}}$ | Output | Full flag: When $\overline{\mathrm{FF}}$ is LOW, the Queue is full. $\overline{\mathrm{FF}}$ is synchronized to WCLK. |
| $\overline{\text { LD }}$ | Input | Load: When $\overline{\mathrm{LD}}$ is LOW, $\mathrm{D}[7: 0]$ (Q[7:0]) are written (read) into (from) the configuration registers. When $\overline{\mathrm{LD}}$ is HIGH, D[35:0] (Q[35:0]) are written (read) into (from) the FIFO. |
| RT | Input | Retransmit: A HIGH pulse on RT resets the internal read pointer to a physical location of the FIFO which is marked by the user (using MARK pin). With every valid read cycle after retransmit, previously accessed data is read and the read pointer is incremented until it is equal to the write pointer. |
| $\overline{\mathrm{MRS}}$ | Input | Master reset: $\overline{\mathrm{MRS}}$ initializes the read and write pointers to zero and sets the output register to all zeroes. During Master Reset, the configuration registers are all set to default values and the flags are reset. |
| SPI_SCLK | Input | Serial clock: A rising edge on SPI_SCLK clocks the serial data present on the SPI_SI input into the offset registers if SPI_SEN is enabled. |
| SPI_SI | Input | Serial input: Serial input when SPI_SEN is enabled. |
| SPI_SEN | Input | Serial enable: Enables serial loading of programmable flag offsets and configuration registers. |
| MARK | Input | Mark for retransmit: When this pin is asserted the current location of the read pointer is marked. Any subsequent retransmit operation resets the read pointer to this position. |
| MB | Input | Mailbox: When asserted the reads and writes happen to flow-through mailbox register. |
| WQSEL[2:0] | Input | Write Queue select: Select maximum eight Queues using pins. |
| RQSEL[2:0] | Input | Read Queue select: Select maximum eight Queues using pins. |
| TCK | Input | Test clock (TCK) pin for JTAG. |
| TRST | Input | Reset pin for JTAG. |
| TMS | Input | Test mode select (TMS) pin for JTAG. |
| TDI | Input | Test data in (TDI) pin for JTAG. |
| TDO | Output | Test data out (TDO) for JTAG. |
| $\overline{\text { DVal }}$ | Output | Data valid: Active low data valid signal to indicate valid data on Q[35:0]. |

Pin Definitions (continued)

| Pin Name | I/O | Pin Description |
| :---: | :---: | :---: |
| QVal[2:0] |  |  |
| PORTSZ [2:0] | Input | Port word size select: Port word width select pins (common for read and write ports). |
| VCC1 | Power Supply | Core voltage supply 1:1.8 V supply voltage |
| VCC2 | Power Supply | Core voltage supply 2 : 1.5 V supply voltage |
| vccio | Power Supply | Supply for I/Os |
| Vref | Input Reference | Reference voltage: Reference voltage (regardless of I/O standard used) |
| vss | Ground | Ground |
| DNU | - | Do not use: These pins need to be left floating. |

## Architecture

The CYF2072V, CYF2036V, and CYF2018V are of memory arrays of $72-\mathrm{Mbit}, 36-\mathrm{Mbit}$, and $18-\mathrm{Mbit}$ respectively. The memory organization is user configurable and word sizes can be selected as $\times 9, \times 12, \times 16, \times 18, \times 20, \times 24, \times 32$, or $\times 36$. The logic blocks to implement FIFO functionality and the associated features are built around these memory arrays.
The input and output data buses have a maximum width of 36 bits configurable through PORTSZ[2:0]. The input data bus goes to an input register and the data flow from the input register to the memory is controlled by the write logic block. The inputs to the write logic block are WCLK, WEN, IE, and WQSEL[2:0]. When the writes are enabled through WEN and if the inputs are enabled by $\overline{\mathrm{IE}}$, then the data on the input bus is written into the memory array at the rising edge of WCLK. This also increments the write pointer. Enabling writes but disabling the data input pins through IE only increments the write pointer without doing any writes or altering the contents of the location. WQSEL[2:0] selects the Queue in which the write should occur.
Similarly, the output register is connected to the data output bus. Transfer of contents from the memory to the output register is controlled by the read control logic. The inputs to the read control logic include RCLK, REN, OE, RQSEL[2:0], MARK and RT. When reads are enabled by $\overline{\mathrm{REN}}$ and outputs are enabled through $\overline{\mathrm{OE}}$, the data from the memory pointed by the read pointer is transferred to the output data bus at the rising edge of RCLK along with active low DVal. Qval[2:0] indicates the Queue number for which the read data belongs to. If the outputs are disabled but the reads enabled, the outputs are in high impedance state, but internally the read pointer is incremented. RQSEL[2:0] selects the Queue from which the read occurs. The MARK signal is used to 'mark' the location from which data is retransmitted when requested.
During write operation, the number of writes performed is always a even number (i.e., minimum write burst length is two and number of writes always a multiple of two). Whereas during read operation, the number of reads performed can be even or odd (i.e., minimum read burst length is one).

By default, the FIFO is accessed as a single Queue device. It is possible to divide the whole memory space into 2,4 or 8 equal sized arrays. For more more explanation please refer to Multi-Queue Operation on page 9.

## Reset Logic

The Master Reset ( $\overline{\mathrm{MRS}}$ ) initializes the read and write pointers to zero, sets the output registers to zero and sets the status of the flags to $\overline{\mathrm{FF}}$ deasserted and $\overline{\mathrm{EF}}$ asserted. $\overline{\mathrm{MRS}}$ also resets the configuration register and the mark address to their default values. $\overline{M R S}$ configures the device into single Queue mode. A $\overline{\text { MRS }}$ is required after power up before accessing the FIFO. After MRS, a minimum latency of 1024 clocks is necessary before the first access. The word size is configured through pins; values of the three PORTSZ pins are latched on rising edge of MRS.After $\overline{M R S}$, the device is configured in single Queue mode by default.

## Flag Operation

This device provides two flag pins to indicate the condition of the FIFO contents.

## Full Flag

The Full Flag ( $\overline{\mathrm{FF}}$ ) goes LOW when the device is full. All write operation are inhibited whenever $\overline{\mathrm{FF}}$ is LOW regardless of the state of WEN. $\overline{\mathrm{FF}}$ is synchronized to WCLK, that is, it is exclusively updated by each rising edge of WCLK. The worst case assertion latency for Full Flag is four. As the user cannot know that the FIFO is full for four clock cycles, it is possible that user continues writing data during this time. In this case, the four data word written will be stored to prevent data loss and these words have to be read back in order for full flag to get de-asserted. In 2Q/4Q/8Q mode, $\overline{\mathrm{FF}}$ indicates the status of the Queue selected by WQSEL[2:0]. The minimum number of reads required to de-assert full-flag is two and the maximum number of reads required to de-assert full flag is six. The assertion and de-assertion of Full flag with associated latencies is explained in Latency Table on page 15.

## Empty Flag

The Empty Flag ( $\overline{\mathrm{EF}}$ ) goes LOW when the device is empty. All read operations are ignored whenever $\overline{\mathrm{EF}}$ is LOW, regardless of the state of $\overline{R E N}$. EF is synchronized to RCLK, i.e., it is exclusively updated by each rising edge of RCLK. In 2Q/4Q/8Q mode, EF indicates the status of the Queue selected by RQSEL[2:0]. The assertion and de-assertion of empty flag with associated latencies is explained in Latency Table on page 15.

## Retransmit from Mark Operation

The retransmit feature is useful for transferring packets of data repeatedly. It enables the receipt of data to be acknowledged by the receiver and retransmitted if necessary. The retransmit feature is used when the number of writes equal to or less than the depth of the FIFO has occurred - and at least one word has been read since the last reset cycle. A HIGH pulse on RT resets the internal read pointer to a physical location of the FIFO that is marked by the user (using the MARK pin). In multi-Queue mode the MARK and RT signals are validated with RQSEL[2:0], i.e., Mark or Retransmit function will be performed for the Queue that is selected by RQSEL[2:0]. With every valid read cycle after retransmit, previously accessed data is read and the read pointer is incremented until it is equal to the write pointer. Flags are governed by the relative locations of the read and write pointers and are updated during a retransmit cycle. Data written to FIFO after activation of RT are also transmitted. The full depth of the FIFO can be repeatedly retransmitted.
To mark a location, the Mark pin is asserted when reading that particular location.

## Flow-through mailbox Register

This feature transfers data from input to output directly by bypassing the FIFO sequence. When MB signal is asserted the data present in $\mathrm{D}[35: 0]$ will be available at Q [35:0] after two WCLK cycles. Normal read and write operations are not allowed during flow-through mailbox operation. Before starting Flow-through mailbox operation FIFO read should be completed to make data valid ( $\overline{\mathrm{DVal}}$ ) high in order to avoid data loss from FIFO. The width of flow-through mailbox register always corresponds to port size.

## Selecting Word Sizes

The word sizes are configured based on the logic levels on the PORTSZ pins during the master reset (MRS) cycle only (latched
on low to high edge). The port size cannot be changed during normal mode of operation and these pins are ignored. If word size is less than $\times 36$, the unused output pins are tri-stated by the device.and unused input pins will be ignored by the internal logic. The pins with valid data input $\mathrm{D}[\mathrm{N}: 0]$ and output $\mathrm{Q}[\mathrm{N}: 0]$ is given in Table 1.

## Data Valid Signal (DVal)

Data valid ( $\overline{\mathrm{DVal}}$ ) is an active low signal and is provided for easy capture of output data to the user. When a read operation is performed, the DVal signal goes low along with output data. This helps user to capture the data without keeping track of REN to data output latency. This signal also helps when write and read operations are performed continuously at different frequencies by indicating when valid data is available at the output port Q[35:0].

## Queue Valid Signal (QVal[2:0])

Queue Valid (Qval[2:0]) is a three bit output that indicates the Queue from which valid data is being read. With respect to data this bus has to be validated along with the DVal signal. when $\overline{D V a l}$ signal is high, the values on this bus can be ignored.

## Power Up

The device becomes functional after $\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCIO}}$, and Vref attain minimum stable voltage required as given in Recommended DC Operating Conditions on page 14. The device can be accessed in $\mathrm{t}_{\mathrm{pu}}$ time after these supplies attain the minimum required level
(see Switching Characteristics on page 16). There is no power sequencing required for the device.

## Table 1. Word Size Selection

| PORTSZ[2:0] | Word Size | Active input data pins D[X:0] | Active output data pins Q[X:0] |
| :---: | :---: | :---: | :---: |
| 000 | $\times 9$ | $\mathrm{D}[8: 0]$ | $\mathrm{Q}[8: 0]$ |
| 001 | $\times 12$ | $\mathrm{D}[11: 0]$ | $\mathrm{Q}[11: 0]$ |
| 010 | $\times 16$ | $\mathrm{D}[15: 0]$ | $\mathrm{Q}[15: 0]$ |
| 011 | $\times 18$ | $\mathrm{D}[17: 0]$ | $\mathrm{Q}[17: 0]$ |
| 100 | $\times 20$ | $\mathrm{D}[19: 0]$ | $\mathrm{Q}[19: 0]$ |
| 101 | $\times 24$ | $\mathrm{D}[23: 0]$ | $\mathrm{Q}[23: 0]$ |
| 110 | $\times 32$ | $\mathrm{D}[31: 0]$ | $\mathrm{Q}[31: 0]$ |
| 111 | $\times 36$ | $\mathrm{D}[35: 0]$ | $\mathrm{Q}[35: 0]$ |

Table 2. Multi-Queue Configuration

| operating mode (given by configuration register 0x3 [2:0]) | RQSEL[2:0]/WQSEL[2:0] | Queue Number Selected |
| :---: | :---: | :---: |
| 1 Q mode(register $0 \times 3[2: 0]=3$ 'b000) | 000 | 0 |
|  | 001-111 | Invalid |
| $\begin{gathered} 2 Q \text { mode } \\ \text { (register } 0 \times 3[2: 0]=3 \prime b 001 \text { ) } \end{gathered}$ | 000 | 0 |
|  | 001 | 1 |
|  | 010-111 | invalid |
| $\begin{gathered} 4 \mathrm{Q} \text { mode } \\ \text { (register } 0 \times 3[2: 0]=3 \mathrm{~b} 01 \mathrm{X}) \end{gathered}$ | 000 | 0 |
|  | 001 | 1 |
|  | 010 | 2 |
|  | 011 | 3 |
|  | 100-111 | invalid |
| $\begin{gathered} 8 \mathrm{Q} \text { mode } \\ \text { (register } 0 \times 3[2: 0]=3 \text { 'b1XX) } \end{gathered}$ | 000 | 0 |
|  | 001 | 1 |
|  | 010 | 2 |
|  | 011 | 3 |
|  | 100 | 4 |
|  | 101 | 5 |
|  | 110 | 6 |
|  | 111 | 7 |

## Write Mask and Read Skip Operation

As mentioned in Architecture on page 7, enabling writes but disabling the inputs (IE HIGH) increments the write pointer without doing any write operations or altering the contents of the location.
This feature is called Write Mask and allows user to move the write pointer without actually writing to the locations. This "write masking" ability is useful in some video applications such as Picture In Picture (PIP).
Similarly, during a read operation, if the outputs are disabled by having the OE high, the read data does not appear on the output bus; however, the read pointer is incremented.

## Multi-Queue Operation

In general, the entire memory space is accessed as a single Fist In First Out (FIFO) order for the write and read operation. In this case, the entire memory space is called a single Queue. For example, for 72M device, the entire memory space is available as a single FIFO memory. In multi Queue mode, the entire memory space is divided into equal sized memory array and
each individual memory array can be accessed as an independent FIFO based on additional control signals. These independent memory arrays are called as Queues. For example, when 72M device, is configured into eight Queue mode, the entire memory space of 72 M is divided into eight 9 M memory array called as Queue-0 to Queue-7. These Queues can be accessed independently as a FIFO by selecting the Queue select signals WQSEL[2:0] and RQSEL[2:0]. In this way, upto eight Queues can be created for a given device where data can be stored independently and read out independently.
It is possible to configure the whole memory space of CYF2072V into 8 or 4 or 2 equal sized array, and each array can be independently accessed as an independent FIFO. This is like having eight or four or two independent Queues inside the FIFO instead of entire memory space acting as single Queue FIFO. The number of Queues is configured based on the value of D2, D1 \& D0 bit of configuration register $0 \times 3$ (refer to Table 3). Table 2 on page 8 shows the value to be set in D2, D1 \& D0 of configuration register $0 \times 3$ to configure the device in $1 / 2 / 4 / 8$ Queue modes.

Table 3. Configuration Registers

| ADDR | Configuration Register | Default | Bit [7] | Bit [6] | Bit [5] | Bit [4] | Bit [3] | Bit [2] | Bit [1] | Bit [0] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0x1 | Reserved | 0x00 | X | X | X | X | X | X | X | X |
| 0x2 | Reserved | 0x00 | X | X | X | X | X | X | X | X |
| 0x3 | Number of Queues | 0x00 | Enable Queue registers | X | X | X | X | D2 | D1 | D0 |
| 0x4 | Reserved | 0x7F | X | X | X | X | X | X | X | X |
| 0x5 | Reserved | 0x00 | X | X | X | X | X | X | X | X |
| 0x6 | Reserved | 0x00 | X | X | X | X | X | X | X | X |
| 0x7 | Reserved | 0x7F | X | X | X | X | X | X | X | X |
| 0x8 | Reserved | 0x00 | X | X | X | X | X | X | X | X |
| 0x9 | Reserved | 0x00 | X | X | X | X | X | X | X | X |
| 0xA | Fast CLK Bit Register | $1 \times X X X X X X b$ | $\begin{array}{\|c} \text { Fast CLK } \\ \text { bit } \end{array}$ | X | X | X | X | X | X | X |

Table 4. Writing and Reading Configuration Registers in Parallel Mode

| $\overline{\text { SPI_SEN }}$ | LD | WEN | $\overline{R E N}$ | WCLK | RCLK | SPI_SCLK | Operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | $\uparrow$ First rising edge because both LD and REN are low | X | X | Parallel write to first register |
| 1 | 0 | 0 | 1 | $\uparrow$ Second rising edge | X | X | Parallel write to second register |
| 1 | 0 | 0 | 1 | $\uparrow$ Third rising edge | X | X | Parallel write to third register |
| 1 | 0 | 0 | 1 | $\uparrow$ Fourth rising edge | X | X | Parallel write to fourth register |
| 1 | 0 | 0 | 1 | - | X | X | - |
| 1 | 0 | 0 | 1 | $\bullet$ | X | X | $\bullet$ |
| 1 | 0 | 0 | 1 | $\bullet$ | X | X | - |
| 1 | 0 | 0 | 1 | $\uparrow$ Tenth rising edge | X | X | Parallel write to tenth register |

Table 4. Writing and Reading Configuration Registers in Parallel Mode (continued)

| SPI_SEN | LD | WEN | REN | WCLK | RCLK | SPI_SCLK | Operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | $\uparrow$ Eleventh rising edge | X | X | Parallel write to first register (roll back) |
| 1 | 0 | 1 | 0 | X | $\uparrow$ Firstrising edge since both LD and REN are low | X | Parallel read from first register |
| 1 | 0 | 1 | 0 | X | $\uparrow$ Second rising edge | X | Parallel read from second register |
| 1 | 0 | 1 | 0 | X | $\uparrow$ Third rising edge | X | Parallel read from third register |
| 1 | 0 | 1 | 0 | X | $\uparrow$ Fourth rising edge | X | Parallel read from fourth register |
| 1 | 0 | 1 | 0 | X | - | X | - |
| 1 | 0 | 1 | 0 | X | $\bullet$ | X | $\bullet$ |
| 1 | 0 | 1 | 0 | X | $\bullet$ | X | $\bullet$ |
| 1 | 0 | 1 | 0 | X | $\uparrow$ Tenth rising edge | X | Parallel read from tenth register |
| 1 | 0 | 1 | 0 | X | $\uparrow$ Eleventh rising edge | X | Parallel read from first register (roll back) |
| 1 | X | 1 | 1 | X | X | X | No operation |
| X | 1 | 0 | X | $\uparrow$ Rising edge | X | X | Write to FIFO memory |
| X | 1 | X | 0 | X | $\uparrow$ Rising edge | X | Read from FIFO memory |
| 0 | 0 | X | 1 | X | X | X | Illegal operation |

Table 5. Writing into Configuration Registers in Serial Mode

| $\overline{\text { SPI_SEN }}$ | $\overline{\text { LD }}$ | $\overline{\text { WEN }}$ | $\overline{\text { REN }}$ | WCLK | RCLK | SCLK | Operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 1 | X | X | X | X | $\uparrow$ Rising edge | Each rising of the SCLK clocks <br> in one bit from the SI (Serial <br> In). Any of the 10 registers can <br> bee addressed and written to, <br> following the SPI protocol. |
| X | 1 | 0 | X | $\uparrow$ Rising edge | X | X | Parallel write to FIFO memory. |

Figure 2. Serial WRITE to Configuration Register


## Width Expansion Configuration

The width of CYF2072V can be expanded to provide word widths greater than 36 bits. During width expansion mode, all control line inputs are common and all flags are available. Empty (Full) flags are created by ANDing the Empty (Full) flags of every FIFO.

This technique avoids reading data from or writing data to the FIFO that is "staggered" by one clock cycle due to the variations in skew between RCLK and WCLK. Figure 3 on page 11 demonstrates an example of a 72 bit-word width by using two 36-bit word CYF2072Vs.

Figure 3. Using Two CYF2072Vs for Width Expansion


## Memory Organization for Different Port Sizes

The 72-Mbit memory has different organization for different port sizes. Table 6 shows the depth of the FIFO for all port sizes.
Note that for all port sizes, four to eight locations are not available for writing the data and are used to safeguard against false synchronization of empty and full flags

Table 6. Word Size Selection

| PORTSZ[2:0] | Word Size | FIFO Depth | Memory Size |
| :---: | :---: | :---: | :---: |
| 000 | $\times 9$ | 8 Meg | 72 Mbit |
| 001 | $\times 12$ | 4 Meg | 48 Mbit |
| 010 | $\times 16$ | 4 Meg | 64 Mbit |
| 011 | $\times 18$ | 4 Meg | 72 Mbit |
| 100 | $\times 20$ | 2 Meg | 40 Mbit |
| 101 | $\times 24$ | 2 Meg | 48 Mbit |
| 110 | $\times 32$ | 2 Meg | 64 Mbit |
| 111 | $\times 36$ | 2 Meg | 72 Mbit |

The memory size mentioned is when the device is configured in single-Queue mode.

## Read/Write Clock Requirements

The read and write clocks must satisfy the following requirements:
■ Both read (RCLK) and write (WCLK) clocks should be free-running.

■ The clock frequency for both clocks should be between the minimum and maximum range given in Switching Characteristics on page 16.
■ the ratio of RCLK to WCLK should be in the range of 0.5 to 2 . For proper FIFO operation, the device must determine which of the input clocks - RCLK or WCLK - is faster. This is evaluated by using counters after the MRS cycle. The device uses two 10-bit counters inside (one running on RCLK and other on

WCLK), which count 1,024 cycles of read and write clock after $\overline{\text { MRS. }}$. The clock of the counter which reaches its terminal count first is used as master clock inside the FIFO.
When there is change in the relative frequency of RCLK and WCLK during normal operation of FIFO, user can specify it by using "Fast CLK bit" in the configuration register (0xA).
" 1 " - indicates $\mathrm{f}_{\text {req }}$ (WCLK) $>\mathrm{f}_{\text {req }}$ (RCLK)
" 0 " - indicates $\mathrm{f}_{\text {req }}$ (WCLK) $<\mathrm{f}_{\text {req }}$ (RCLK)
The result of counter evaluated frequency is available in this register bit. User can override the counter evaluated frequency for faster clock by changing this bit.
Whenever there is a change in this bit value, user must wait $t_{\text {PLL }}$ time before issuing the next read or write to FIFO.

## JTAG operation

CYF2XXXV has two devices connected internally in a JTAG chain as shown in Figure 4.
Figure 4. JTAG Operation


Table 7 shows the IR register length and device ID.

Table 7. JTAG IDCODES

|  | IR Register length | Device ID (HEX) | Bypass register length |
| :--- | :---: | :---: | :---: |
| Device-1 | 3 | "Ignore" | 1 |
| Device-2 | 8 | $1 E 3261 C F$ | 1 |

For boundary scan, device-1 should be in bypass mode.
Table 8 and Table 9 shows the JTAG instruction set for devices 1 and 2 respectively.

Table 8. JTAG Instructions

| Device-1 | opcode (Binary) |
| :---: | :---: |
| BYPASS | 111 |

Table 9. JTAG Instructions

| Device-2 | opcode (HEX) |
| :--- | :---: |
| EXTEST | 00 |
| HIGHZ | 07 |
| SAMPLE/PRELOAD | 01 |
| BYPASS | FF |
| IDCODE | $0 F$ |

## Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.
Storage temperature (without bias) ......... $-65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$
Ambient temperature with power applied $\qquad$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Core supply voltage 1 (VCC1) to ground potential $\qquad$ - -0.3 V to 2.5 V

Core supply voltage 2 (VCC2) to ground potential. $\qquad$ -0.3 V to 1.65 V
Latch-up current $\qquad$ > 100 mA

I/O port supply voltage (VCCIO)..................... -0.3 V to 3.7 V
Voltage applied to I/O pins $\qquad$ -0.3 V to 3.75 V

Output current into outputs (LOW)
Static discharge voltage. > 2001 V (per MIL-STD-883, Method 3015)
Operating Range

| Range | Ambient Temperature |
| :--- | :---: |
| Industrial | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |

## Recommended DC Operating Conditions

| Parameter | Description | Min | Typ | Max | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: |
| VCC1 | Core supply voltage 1 | 1.70 | 1.80 | 1.90 | V |
| VCC2 | Core supply voltage 2 | 1.425 | 1.5 | 1.575 | V |
| Vref | Reference voltage (irrespective of I/O standard used) | 0.7 | 0.75 | 0.8 | V |
| VCCIO | I/O supply voltage, read and write <br> banks. | LVCMOS33 | 3.00 | 3.30 | 3.60 |
|  |  | 1.70 | 1.8 | 1.90 | V |

## Electrical Characteristics

| Parameter | Description | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{l}_{\mathrm{cc}}$ | Active current | $\mathrm{V}_{\text {CC1 }}=\mathrm{V}_{\text {CC1MAX }}$ | - | - | 300 | mA |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 2 \mathrm{MAX}} \\ & \text { All I/O switching, } 100 \mathrm{MHz} \end{aligned}$ | - | - | 500 | mA |
|  |  | $\mathrm{V}_{\text {CCIO }}=\mathrm{V}_{\text {CCIOMAX }}$ (All outputs disabled) | - | - | 100 | mA |
| 1 | Input pin leakage current | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CCIOmax }}$ to 0 V | -15 | - | 15 | $\mu \mathrm{A}$ |
| $\mathrm{l}_{\mathrm{Oz}}$ | I/O pin leakage current | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CCIOmax }}$ to 0 V | -15 | - | 15 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{\mathrm{P}}$ | Capacitance for TMS and TCK | - | - | - | 16 | pF |
| $\mathrm{C}_{\mathrm{PIO}}$ | Capacitance for pins apart from TMS and TCK | - | - | - | 8 | pF |

## I/O Characteristics

| $\mathrm{I} / \mathrm{O}$ standard | Nominal <br> I/O supply <br> voltage | Input Voltage (V) |  | Output voltage (V) |  | Output Current (mA) |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathbf{V}_{\mathbf{I H}}(\mathbf{m i n})$ | $\mathbf{V}_{\mathbf{O L}}(\mathbf{m a x})$ | $\mathbf{V}_{\mathrm{OH}}(\mathbf{m i n})$ | $\mathbf{I}_{\mathrm{OL}}(\mathbf{m a x})$ | $\mathbf{I}_{\mathbf{O H}}(\mathbf{m a x})$ |  |
| LVCMOS33 | 3.3 V | 0.80 | 2.20 | 0.45 | 2.40 | 24 | 24 |
| LVCMOS18 | 1.8 V | $30 \% \mathrm{~V}_{\mathrm{CCIO}}$ | $65 \% \mathrm{~V}_{\mathrm{CCIO}}$ | 0.45 | $\mathrm{~V}_{\mathrm{CCIO}}-0.45$ | 16 | 16 |

## Latency Table

| Latency Parameter | number of cycles | Detail |
| :---: | :---: | :---: |
| L/ $\overline{\text { FF_ASSERT }}$ | $\begin{aligned} & \text { Min }=0 \\ & \operatorname{Max}=4 \end{aligned}$ | Last data write to $\overline{\mathrm{FF}}$ going low |
| L $\overline{E F F}_{\text {_ }}$ ASSERT | 0 | Last data read to $\overline{\mathrm{EF}}$ going low |
| L ${ }_{\text {RQSEL_CHANGE }}$ | 1 | Minimum RCLK cycles before RQSEL[2:0] can change |
| LWQSEL_CHANGE | 2 | Minimum WCLK cycles before WQSEL[2:0] can change |
| $\mathrm{L}_{\text {MAILBOX }}$ | 2 | Latency from write port to read port when MB = 1 (w.r.t WCLK) |
| $\mathrm{L}_{\text {REN_TO_DATA }}$ | 4 | Latency when REN is asserted low to first data output from FIFO |
| L $\overline{\text { REN_TO_CONFIG }}$ | 4 | Latency when $\overline{\mathrm{REN}}$ is asserted along with $\overline{\mathrm{LD}}$ to first data read from configuration registers |
| L $\overline{\text { FF_DEASSERT }}$ | 7 | Read to $\overline{\text { FF }}$ going high |
| LRT_TO_REN | 9 | RT 5th cycle to REN going low for read |
| LRT_TO_DATA | $\begin{aligned} & \operatorname{Min}=22 \\ & \operatorname{Max}=24 \end{aligned}$ | RT 5th cycle to valid data on Q[35:0] |
| $\mathrm{L}_{\mathrm{IN}}$ | $\begin{aligned} & \operatorname{Min}=30 \\ & \operatorname{Max}=31 \end{aligned}$ | Initial latency for data read after FIFO goes empty during simultaneous read/write |
| $L_{\text {EF_DEASSERT }}$ | $\begin{aligned} & \hline \operatorname{Min}=28 \\ & M a x=29 \end{aligned}$ | Write to $\overline{\mathrm{EF}}$ going high |

Figure 5. AC test load conditions

(a) $\mathrm{V}_{\mathrm{CCIO}}=1.8 \mathrm{Volt}$
(b) $\mathrm{V}_{\mathrm{CCIO}}=3.3 \mathrm{Volt}$

(c) All Input Pulses

## Switching Characteristics

Over the Operating Range

| Parameter | Description |  | -100 |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| $\mathrm{t}_{\mathrm{PU}}$ | Power-up time after all supplies reach minimum value |  | - | 2 | ms |
| $\mathrm{t}_{\text {S }}$ | Clock cycle frequency | 3.3 V LVCMOS | 24 | 100 | MHz |
| $\mathrm{t}_{\text {s }}$ | Clock cycle frequency | 1.8 V LVCMOS | 24 | 100 | MHz |
| tA | Data access time |  | - | 10 | ns |
| tclk | Clock cycle time |  | 10 | 41.67 | ns |
| $\mathrm{t}_{\text {CLKH }}$ | Clock high time |  | 4.5 | - | ns |
| $\mathrm{t}_{\text {CLKL }}$ | Clock low time |  | 4.5 | - | ns |
| $\mathrm{t}_{\text {DS }}$ | Data setup time |  | 3 | - | ns |
| $\mathrm{t}_{\mathrm{DH}}$ | Data hold time |  | 3 | - | ns |
| $\mathrm{t}_{\mathrm{QS}}$ | RQSEL and WQSEL setup time |  | 3 | - | ns |
| $\mathrm{t}_{\text {QH }}$ | RQSEL and WQSEL hold time |  | 3 | - | ns |
| $\mathrm{t}_{\text {ENS }}$ | Enable setup time |  | 3 | - | ns |
| $\mathrm{t}_{\text {ENH }}$ | Enable hold time |  | 3 | - | ns |
| tens_SI | setup time for SI and SEN in SPI mode |  | 5 | - | ns |
| $\mathrm{t}_{\text {ENH_SI }}$ | hold time for SI and SEN in SPI mode |  | 5 | - | ns |
| trate_SPI | frequency of SCLK |  | - | 25 | MHz |
| $\mathrm{t}_{\mathrm{RS}}$ | Reset pulse width |  | 100 | - | ns |
| tres | Port size select to MRS seup time |  | 25 | - | ns |
| tezH | MRS to port size select hold time |  | 25 | - | ns |
| trsF | Reset to flag output time |  | - | 50 | ns |
| tret | Retransmit pulse width |  | 5 | - | RCLK cycles |
| tolz | Output enable to output in Low Z |  | 4 | 15 | ns |
| $\mathrm{t}_{\mathrm{OE}}$ | Output enable to output valid |  | - | 15 | ns |
| $\mathrm{t}_{\mathrm{OHz}}$ | Output enable to output in High Z |  | - | 15 | ns |
| $\mathrm{t}_{\text {WFF }}$ | Write clock to FF |  | - | 9.5 | ns |
| treF | Read clock to EF |  | - | 9.5 | ns |
| $\mathrm{t}_{\text {PLL }}$ | Time required to synchronize PLL |  | - | 1024 | cycles |
| $\mathrm{t}_{\text {RATE_JTAG }}$ | JTAG TCK cycle time |  | 100 | - | ns |
| $\mathrm{t}_{\text {S_JTAG }}$ | setup time for JTAG TMS, TDI |  | 8 | - | ns |
| $\mathrm{t}_{\mathrm{H} \text { _JTAG }}$ | hold time for JTAG TMS,TDI |  | 8 | - | ns |
| tco_JTAG | JTAG TCK low to TDO valid |  | - | 20 | ns |

## Switching Waveforms

Figure 6. Write Cycle Timing


Figure 7. Read Cycle Timing


Figure 8. Reset Timing


Switching Waveforms (continued)
Figure 9. $\overline{\mathrm{MRS}}$ to PORTSZ[2:0]


Figure 10. Flow-through mailbox Operation


Figure 11. Configuration Register Write


Figure 12. Configuration Register Read


Figure 13. WQSEL to $\overline{\mathrm{FF}}$


CYF2018V, CYF2036V CYF2072V

Figure 14. RQSEL to $\overline{\mathrm{EF}}$


Figure 15. Write to Empty Flag De-assertion


CYF2018V, CYF2036V CYF2072V

Figure 16. Read to Empty Flag Assertion


Figure 17. Full Flag Assertion


Figure 18. Full Flag De-assertion


Figure 19. Switching between Queues - Write

WCLK



CYF2018V, CYF2036V CYF2072V

Figure 20. Switching between Queues - Read


CYF2018V, CYF2036V CYF2072V

Figure 21. Simultaneous Write \& Read QUE - 0


CYF2018V, CYF2036V CYF2072V

Figure 22. Mark


Figure 23. Retransmit


## Ordering Information

| Speed <br> (MHz) | Ordering Code | Package Diagram | Package Type | Operating Range |
| :---: | :---: | :---: | :---: | :---: |
| 100 | CYF2018V33L-100BGXI | 51-85167 | 209-ball fine-pitch ball grid array (FBGA) ( $14 \times 22 \times 1.76 \mathrm{~mm}$ ) | Industrial |
|  | CYF2036V33L-100BGXI |  |  |  |
|  | CYF2072V33L-100BGXI |  |  |  |
|  | CYF2018V18L-100BGXI |  |  |  |
|  | CYF2036V18L-100BGXI |  |  |  |
|  | CYF2072V18L-100BGXI |  |  |  |

## Ordering Code Definitions



## Package Diagram

Figure 24. 209-ball FBGA ( $14 \times 22 \times 1.76 \mathrm{~mm}$ ), $\mathbf{5 1 - 8 5 1 6 7}$


## Acronyms

| Acronym | Description |
| :--- | :--- |
| $\overline{\text { FF }}$ | Full flag |
| FIFO | First in first out |
| $\overline{\text { IE }}$ | Input enable |
| I/O | Input/output |
| FPBGA | fine-pitch ball grid array |
| JTAG | Joint test action group |
| LVCMOS | Low voltage complementary metal oxide <br> semiconductor |
| MB | Mailbox |
| $\overline{\text { MRS }}$ | Master reset |
| $\overline{\text { OE }}$ | Output enable |
| RCLK | Read clock |
| $\overline{\text { REN }}$ | Read enable |
| RCLK | Read clock |
| RQSEL | Read Queue select |
| SCLK | Serial clock |
| TDI | Test data in |
| TDO | Test data out |
| TCK | Test clock |
| TMS | Test mode select |
| WCLK | Write clock |
| $\overline{\text { WEN }}$ | Write enable |
| WQSEL | Write Queue select |
| QUE-0 | Queue number 0 |
|  |  |

Document Conventions
Units of Measure

| Symbol | Unit of Measure |
| :--- | :--- |
| ${ }^{\circ} \mathrm{C}$ | degree Celsius |
| $\mu \mathrm{A}$ | micro Amperes |
| mA | milli Amperes |
| ms | milli seconds |
| MHz | Mega Hertz |
| ns | nano seconds |
| $\Omega$ | ohms |
| pF | pico Farad |
| V | Volts |
| W | Watts |

## Document History Page

Document Title: CYF2018V/CYF2036V/CYF2072V, 18/36/72-Mbit Programmable Multi-Queue FIFOs
Document Number: 001-68336

| Rev. | ECN No. | Orig. of <br> Change | Submission <br> Date | Description of Change |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $* *$ | 3209860 | SIVS | $03 / 30 / 2011$ | New data sheet |  |

## Sales, Solutions, and Legal Information

## Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

## Products

| Automotive | cypress.com/go/automotive |
| :--- | ---: |
| Clocks \& Buffers | cypress.com/go/clocks <br> cypress.com/go/interface |
| Interface | cypress.com/go/powerpsoc <br> Lighting \& Power Control <br> cypress.com/go/plc |
| Memory | cypress.com/go/memory |
| Optical \& Image Sensing | cypress.com/go/image |
| PSoC | cypress.com/go/psoc |
| Touch Sensing | cypress.com/go/touch |
| USB Controllers | cypress.com/go/USB |
| Wireless/RF | cypress.com/go/wireless |




 application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.



 the express written permission of Cypress.
 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

