User's Manual

IE-178098-NS-EM1

Emulation Board

Target Device μ PD178078 Subseries μ PD178098 Subseries μ**PD178F098**

Document No. U14013EJ2V0UM00 (2nd edition) Date Published February 2000 N CP(K)

© NEC Corporation 1999 Printed in Japan

[MEMO]

V40 is a trademark of NEC Corporation

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288	NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580	NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 NEC Electronics Hong Kong Ltd.
NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490	NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99	Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411
NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290	NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860	NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583 NEC Electronics Taiwan Ltd.
NEC Electronics Italiana s.r.l. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99	NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388	Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951 NEC do Brasil S.A. Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

Major Revisions in This Edition

Page	Description
p.33	Addition of 3.5 Jumper Settings on IE-78K0-NS
p.43	Addition of APPENDIX B REVISION HISTORY

The mark ***** shows major revised points.

6

INTRODUCTION

Product Overview	The IE-178098-NS-EM1 is designed to be used following target devices that belong to microcontrollers.	-
	 μPD178078 Subseries: μPD178076, 1780 μPD178098 Subseries: μPD178096, 1780 μPD178F098 	
Target Readers	This manual is intended for engineers who wi 78K0-NS to perform system debugging. Engineers who use this manual are expected device's functions and use methods and to be	to be thoroughly familiar with the target
Organization	When using the IE-178098-NS-EM1, refer to r 178098-NS-EM1) but also the manual that is su IE-78K0-NS User's Manual • Basic specifications • System configuration • External interface functions	
		 Differences between target devices and target interface circuits
Purpose	This manual's purpose is to explain various do when using the IE-178098-NS-EM1.	ebugging functions that can be performed

Terminology

The meanings of certain terms used in this manual are listed below.

Term	Meaning		
Emulation device	This is a general term that refers to the device in the emulator that is used to emulate the target device. It includes the emulation CPU.		
Emulation CPU	This is the CPU block in the emulator that is used to execute user-generated programs.		
Target device	This is the device to be emulated (real chip).		
Target system	This includes the target program and the hardware provided by the user. When defined narrowly, it includes only the hardware.		
IE system	This refers to the combination of the IE-78K0-NS and the IE-178098-NS-EM1.		

Conventions	Data significance:	Higher digits on the left and lower digits on the right
	Note:	Footnote for item marked with Note in the text
	Caution:	Information requiring particular attention
	Remark:	Supplementary information

Related Documents The related documents (user's manuals) indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Document Name	Document Number	
	English	Japanese
IE-78K0-NS	U13731E	U13731J
IE-178098-NS-EM1	This manual	U14013J
ID78K0-NS Integrated Debugger Reference Windows™ Based	U12900E	U12900J
μPD178078, 178098 Subseries	U12790E	U12790J

Caution The documents listed above are subject to change without notice. Be sure to use the latest documents when designing.

CONTENTS

CHAPT	TER 1 GENERAL	13
1.1	System Configuration	
1.2	Hardware Configuration	
1.3	Basic Specifications	17
СНАРТ	TER 2 PART NAMES	
2.1	Parts of Main Unit	20
СНАРТ	TER 3 INSTALLATION	21
3.1	Connection	
3.2	Switch Settings	
3.3	Clock Settings	
	3.3.1 Overview of clock settings	
	3.3.2 Main system clock settings	27
3.4	Low-Voltage Emulation Setting	
3.5	Jumper Settings on IE-78K0-NS	
СНАРТ	TER 4 DIFFERENCES BETWEEN TARGET DEVICES AND	
	TARGET INTERFACE CIRCUITS	35
APPEN	IDIX A EMULATION PROBE PIN ASSIGNMENT TABLE	41
APPEN	IDIX B REVISION HISTORY	43

*

 \star

LIST OF FIGURES

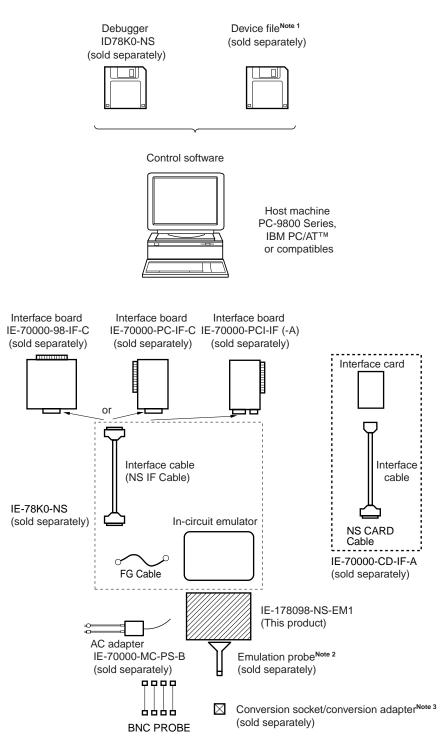
Figure	e No. Title	Page
1-1	System Configuration	14
1-2	Basic Hardware Configuration	16
2-1	IE-178098-NS-EM1 Part Names	20
3-1	Connection of Emulation Probe	22
3-2	S1 Setting	23
3-3	S2 and S3 Settings	23
3-4	S4 Setting	24
3-5	S5, S6, and S7 Settings	24
3-6	External Circuits Used as System Clock Oscillator	25
3-7	When Using Clock That Is Already Mounted on Emulation Board	26
3-8	When Using User-Mounted Clock	26
3-9	When Using an External Clock	27
3-10	Connections on Parts Board (When Using Main System Clock or User-Mounted Clock)	
3-11	Crystal Oscillator (When Using Main System Clock or User-Mounted Clock)	
3-12	Pin Alignment of Crystal Oscillator and Socket	
4-1	Equivalent Circuit 1 of Emulator	
4-2	Equivalent Circuit 2 of Emulator	
4-3	Equivalent Circuit 3 of Emulator	
4-4	Equivalent Circuit 4 of Emulator	40

LIST OF TABLES

Table	e No.	Title	Page
1-1	Basic Specifications		
3-1	Main System Clock Settings		27
3-2	Jumper Settings on IE-78K0-NS		
A-1	NP-100GF Pin Assignments		41

[MEMO]

CHAPTER 1 GENERAL

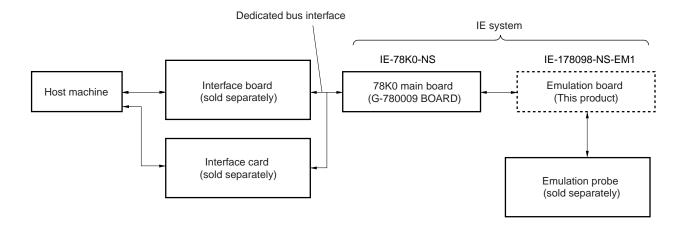

The IE-178098-NS-EM1 is a development tool for efficient debugging of hardware or software when using one of the following target devices that belong to the 178K Series of 8-bit single-chip microcontrollers. This chapter describes the IE-178098-NS-EM1's system configuration and basic specifications.

• Target device

- μPD178078 Subseries
- μPD178098 Subseries
- µPD178F098

1.1 System Configuration

Figure 1-1 illustrates the IE-178098-NS-EM1's system configuration.


Figure 1-1. System Configuration

- **Notes 1.** The device file is as follows, in accordance with the subseries. μ S \times \times DF178098: μ PD178078, 178098 Subseries
 - The emulation probe is as follows, in accordance with the package. NP-100GF: 100-pin plastic QFP (GF-3BA type)
 The NP-100GF is a product of Naito Densei Machida Mfg. Co., Ltd.
 For further information, contact Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-44-822-3813)
 - The conversion socket/conversion adapter are as follows, in accordance with the package. EV-9200GF-100: 100-pin plastic QFP (GF-3BA type)

1.2 Hardware Configuration

Figure 1-2 shows the IE-178098-NS-EM1's position in the basic hardware configuration.

1.3 Basic Specifications

The IE-178098-NS-EM1's basic specifications are listed in Table 1-1.

Table 1-1. Basic Specifications

Parameter	Description		
Supervisor	V40 [™] (Operation frequency 16.0 MHz)		
Target Device	μPD178078, 178098 Subseries, 178F098		
System clock	6.3 MHz		
Clock supply	External: Input via an emulation probe from the target system		
	Internal: Mounted on the emulation probe (6.3 MHz) or mounted on the board by the user		
Emulation memory capacity	64 KB		
Mapping unit	Internal ROM: 4 KB (Maximum 60 KB)		
	Internal high-speed RAM: 64 bytes (Maximum 1 KB)		
	Internal low-speed RAM: 128 bytes (Maximum 32 KB)		
Emulation function	Real-time execution		
	Break execution		
	Step execution		
RAM monitor	Space: Entire memory space		
	Timing: Data access		
Event detection	Program execution detection		
	Bus event detection		
	External trigger detection		
	External trigger output		
Event integration	Bus counter		
	Trace qualify condition		
	Delay condition		
	Trigger condition		
Break source	Event break		
	Manual break		
	Command break		
	Fail-safe break		
Real-time trace	Trace sources: All traces		
	Qualify trace		
	Trace capacity: 64 bits \times 8 K		
	Trace contents: Address, data, status		
Execution time measurement	Maximum: 4 min. 28 sec. Resolution: 62.5 ns		
Target interface	Prepare the probe according to the shape of the target device		
Host interface	Dedicated bus interface		
Host machine	PC-9800 series, IBM PC/AT or compatibles		
Power supply	DC 5 V		

[MEMO]

CHAPTER 2 PART NAMES

This chapter introduces the parts of the IE-178098-NS-EM1 main unit.

The packing box contains the emulation board (IE-178098-NS-EM1), packing list, user's manual, and guarantee card.

If there are any missing or damaged items, please contact an NEC sales representative.

Fill out and return the guarantee card that comes with the main unit.

2.1 Parts of Main Unit

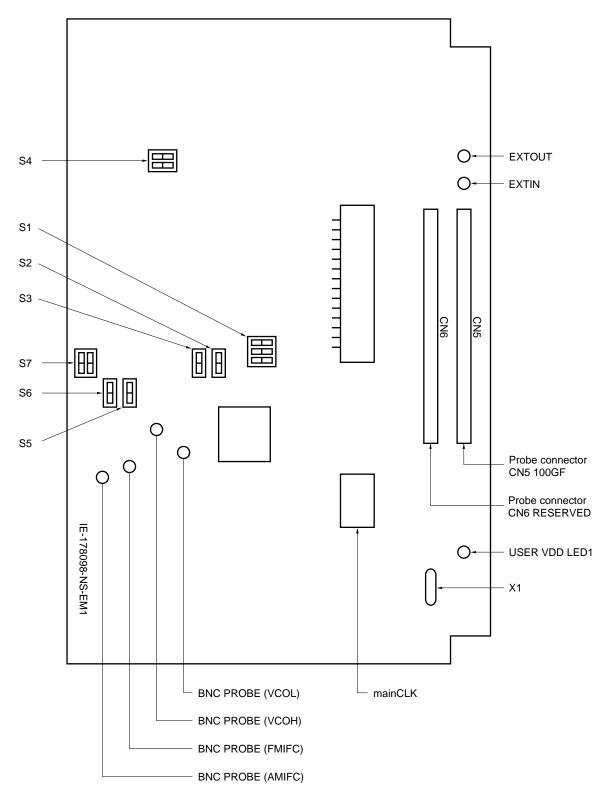


Figure 2-1. IE-178098-NS-EM1 Part Names

CHAPTER 3 INSTALLATION

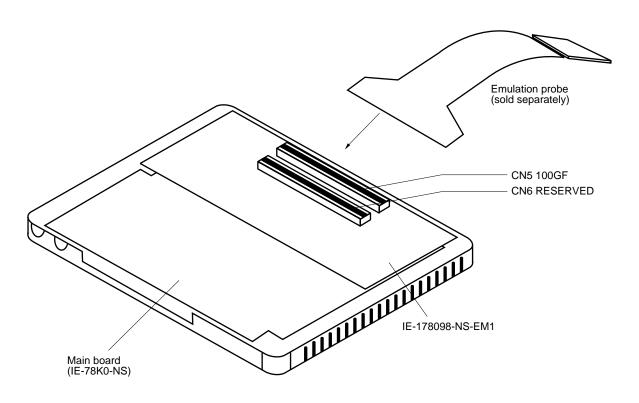
This chapter describes methods for connecting the IE-178098-NS-EM1 to the IE-78K0-NS, emulation probe, etc. Mode setting methods are also described.

3.1 Connection

(1) Connection with IE-78K0-NS main unit

See the IE-78K0-NS User's Manual for a description of how to connect the IE-178098-NS-EM1 to the IE-78K0-NS.

(2) Connection with emulation probe


See the IE-78K0-NS User's Manual for a description of how to connect an emulation probe to the IE-178098-NS-EM1.

On this board, connect the emulation probe to CN5.

Cautions 1. Incorrect connection may damage the ICE main unit.

Be sure to read the emulation probe's user's manual for a detailed description of the connection method.

2. Do not use CN6 as it is for extension.

Figure 3-1. Connection of Emulation Probe

(3) How to connect BNC PROBE

Connect the supplied BNC PROBE \times 4 to the IE-178098-NS-EM1 and the target board. The following four signals can be connected to the target board using the BNC PROBE.

VCOL, VCOH, FMIFC, AMIFC

Figure 3-2. S1 Setting

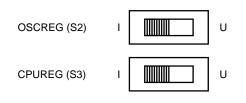
3.2 Switch Settings

(1) S1 setting

Set as follows in accordance with the target device.

			1
1	2	3	ON
	OFF		OFF

Target Device	S1-1	S1-2	S1-3
μPD178F098	OFF	OFF	OFF
RESERVED	OFF	ON	OFF
μPD178076, 178078, 178096, 178098	OFF	ON	ON
RESERVED	ON	OFF	OFF
RESERVED	ON	OFF	ON
RESERVED	ON	ON	OFF
RESERVED	ON	ON	ON


Remark The above figure shows the position at factory shipment.

(2) S2 and S3 settings

S2 and S3 switch the capacitor connection for the regulator.

- "I" side: Connect to the 0.1 μ F in the ICE
- "U" side: Connect to the capacitor in the target system

Figure 3-3. S2 and S3 Settings

Remark The above figure shows the position at factory shipment.

(3) S4 setting

Always use S4 in the OFF position.

Figure 3-4. S4 Setting

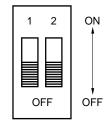
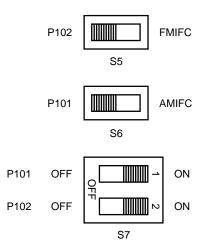



Figure 3-5. S5, S6, and S7 Settings

Remark The above figure shows the position at factory shipment.

(4) S5, S6, and S7 settings

S5, S6, and S7 switch the IF counter and ports.

	S6	S7-1
Use as P101	P101 side	ON
Use as AMIFC	AMIFC side	OFF

	S5	S7-2
Use as P102	P102 side	ON
Use as FMIFC	FMIFC side	OFF

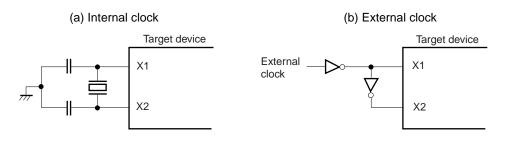
Remark The above figure shows the position at factory shipment.

3.3 Clock Settings

3.3.1 Overview of clock settings

The main system clock to be used during debugging can be selected from (1) to (3) below.

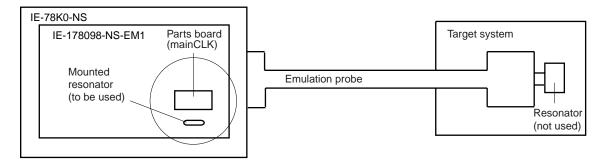
- (1) Clock that is already mounted on emulation board
- (2) Clock that is mounted by user
- (3) External clock


If the target system includes an internal clock, select either "(1) Clock that is already mounted on emulation board" or "(2) Clock that is mounted by user". For an internal clock, a resonator is connected to the target device and the target device's internal oscillator is used. An example of the external circuit is shown in part (a) of Figure 3-6. During emulation, the resonator that is mounted on the target system is not used. Instead, the clock that is mounted on the emulation board installed for the IE-78K0-NS is used.

If the target system includes an external clock, select "(3) External clock".

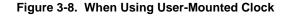
For an external clock, a clock signal is supplied from outside the target device and the target device's internal oscillator is not used. An example of the external circuit is shown in part (b) of Figure 3-6.

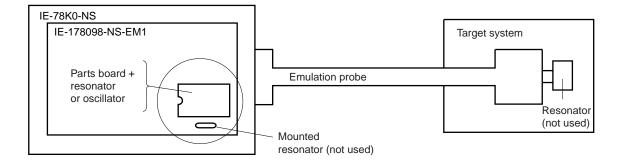
Caution The IE system will be hung-up if the main system clock is not supplied normally. Moreover, be sure to input a rectangular wave as the clock from the target. There is no need to supply a clock to the X2 pin.



(1) Clock that is already mounted on emulation board

A crystal oscillator (X1) is already mounted on the emulation board. Its frequency is 6.3 MHz. Note that 6 to 8 are shorted on the parts board.

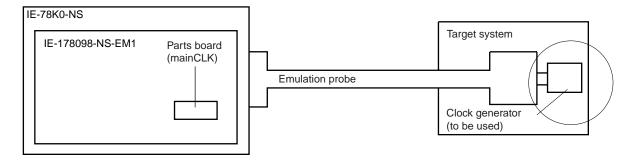




Remark The clock that is supplied by the IE-178098-NS-EM1's oscillator (encircled in the figure) is used.

(2) Clock that is mounted by user

The user is able to mount any clock supported by the set specifications on the IE-178098-NS-EM1. First mount the resonator on the parts board, then attach the parts board to the IE-178098-NS-EM1. This method is useful when using a different frequency from that of the premounted clock.



Remark The clock that is supplied by the IE-178098-NS-EM1's resonator (encircled in the figure) is used.

(3) External clock

An external clock connected to the target system can be used via an emulation probe. Note that 6 to 8 are shorted on the parts board.

Remark The clock supplied by the target system's clock generator (encircled in the figure) is used.

3.3.2 Main system clock settings

Table 3-1.	Main	System	Clock Settings	
------------	------	--------	-----------------------	--

Frequency of M	ain System Clock	IE-178098-NS-EM1 Parts Board (mainCLK)	CPU Clock Source Selection (ID)
When using clock that is already mounted on emulation board	6.3 MHz	6 to 8 shorted	Internal
When using clock mounted by user	Other than 6.3 MHz	Oscillator assembled by user	
When using external clock		6 to 8 shorted	External

- Caution When using an external clock, open the configuration dialog box when starting the integrated debugger (ID78K0-NS) and select "External" in the area (Clock) for selecting the CPU's clock source (this selects the user's clock).
- **Remark** The IE-178098-NS-EM1's factory settings are those listed above under "when using clock that is already mounted on emulation board".

(1) When using clock that is already mounted on emulation board

When the IE-178098-NS-EM1 is shipped, a 6.3 MHz crystal resonator (X1) is already mounted on the IE-178098-NS-EM1. When using the factory-set mode settings (6 to 8 are shorted on the parts board), there is no need to make any other hardware settings.

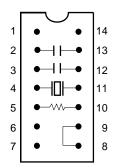
When starting the integrated debugger (ID78K0-NS), open the configuration dialog box and select "Internal" in the area (Clock) for selecting the CPU's clock source (this selects the emulator's internal clock).

(2) When using clock mounted by user

The settings described under either (a) or (b) are required, depending on the type of clock to be used. When starting the integrated debugger (ID78K0-NS), open the configuration dialog box and select "Internal" in the area (Clock) for selecting the CPU's clock source (this selects the emulator's internal clock).

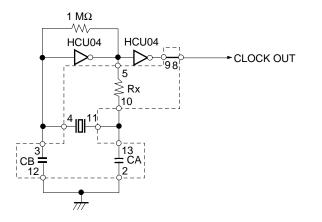
(a) When using a ceramic resonator or crystal resonator

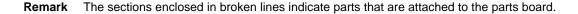
- Items to be prepared
 - · Ceramic resonator or crystal resonator
 - Resistor Rx


- Capacitor CA
- Capacitor CB
- Solder kit

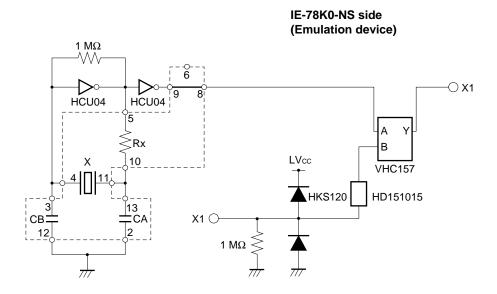
<Steps>

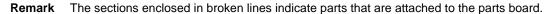
- <1> Prepare the IE-178098-NS-EM1.
- <2> Solder the target ceramic resonator or crystal resonator, resistor Rx, capacitor CA, and capacitor CB (all with suitable oscillation frequency) onto the parts board that is mounted in the IE-178098-NS-EMI's socket (as shown below).


Figure 3-10. Connections on Parts Board (When Using Main System Clock or User-Mounted Clock)


Parts board (mainCLK)

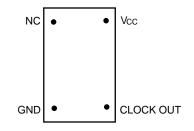
Pin No.	Connection
2-13	Capacitor CA
3-12	Capacitor CB
4-11	Ceramic resonator or crystal resonator
5-10	Resistor Rx
8-9	Short


Circuit diagram



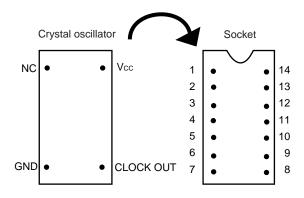
- <3> Make sure that the parts board is wired as shown in Figure 3-10.
- <4> Install the IE-178098-NS-EM1 in the IE-78K0-NS.

The above steps configure the following circuit and enable supply of the clock from the mounted resonator to the emulation device.



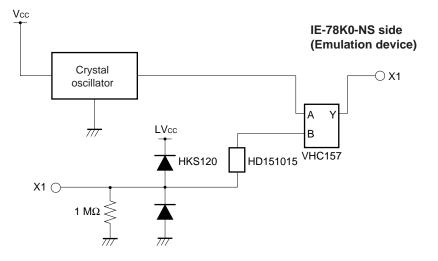
(b) When using a crystal oscillator

- Items to be prepared
 - Crystal oscillator (see pinouts shown in Figure 3-11)


Figure 3-11. Crystal Oscillator (When Using Main System Clock or User-Mounted Clock)

<Steps>

- <1> Prepare the IE-178098-NS-EM1.
- <2> Remove the parts board that is mounted in the IE-178098-NS-EM1's socket (the socket marked as mainCLK).
- <3> Connect the prepared crystal oscillator to the socket (mainCLK) from which the parts board was removed. Insert the crystal oscillator pin into the socket aligning the pins as shown in the figure below.



Crystal Oscillator Pin Name	Socket Pin No.
NC	1
GND	7
CLOCK OUT	8
Vcc	14

<4> Install the IE-178098-NS-EM1 in the IE-78K0-NS.

The above steps configure the following circuit and enable supply of the clock from the mounted resonator to the emulation device.

(3) When using external clock

When using factory-set mode settings (6 to 8 are shorted on the parts board), there is no need to make any other hardware settings.

When starting the integrated debugger (ID78K0-NS), open the configuration dialog box and select "External" in the area (Clock) for selecting the CPU's clock source (this selects the user's clock).

3.4 Low-Voltage Emulation Setting

When the target system is operating on low voltage, supply the same voltage as the target system to the TP1 terminal pin of the IE-78K0-NS (this is unnecessary when TP1 is 5 V). For details, refer to IE-78K0-NS User's Manual (U13731E).

 Maximum current consumption of TP1 100 mA (1.8 V) to 300 mA (5.0 V)

3.5 Jumper Settings on IE-78K0-NS

*

When using the IE-178098-NS-EM1, set the jumpers on the IE-78K0-NS as shown in Table 3-2. For details of these jumper settings, refer to the **IE-78K0-NS User's Manual (U13731E)**.

Table 3-2. Jumper Settings on IE-78K0-NS

	JP2	JP3	JP4	JP6	JP7	JP8
Setting	2 to 3	1 to 2	1 to 2	3 to 4	1 to 2	1 to 2
	shorted	shorted	shorted	shorted	shorted	shorted

[MEMO]

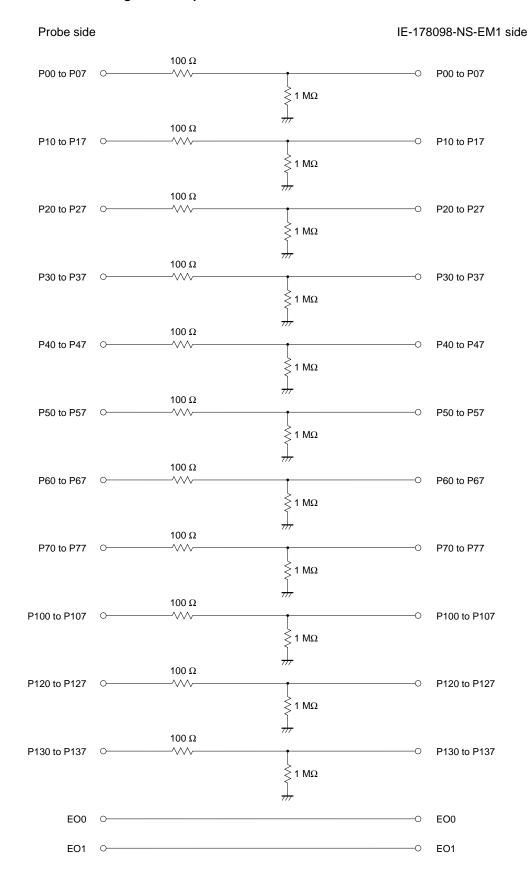
CHAPTER 4 DIFFERENCES BETWEEN TARGET DEVICES AND TARGET INTERFACE CIRCUITS

This chapter describes the differences between the target device's signal lines and the signal lines of the IE-178098-NS-EM1's target interface circuit.

Although the target device is a CMOS circuit, the IE-178098-NS-EM1's target interface circuit consists of emulators such as an emulation CPU, TTL, and CMOS-IC.

When the IE system is connected with the target system for debugging, the IE system performs emulation so as to operate as the actual target device would operate in the target system.

However, some minor differences exist since the operations are performed via the IE system's emulation.

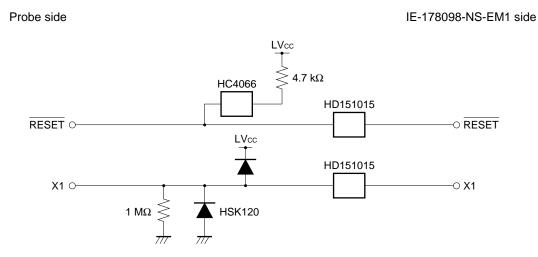

- (1) Signals directly input to or output from the evaluation chip and peripheral I/O chip
- (2) Signals input from the target system via a gate
- (3) Signals related to PLL
- (4) Other signals

The following is an explanation of the signals listed in (1) to (4) above, as they relate to the IE system's circuit.

(1) Signals directly input to or output from the evaluation chip and peripheral I/O chip.

The following signals perform the same operations as in the μ PD178078, μ PD178098 Subseries, and μ PD178F098. For signals related to ports, a 1 M Ω pull-down resistor and a 100 Ω resistor are inserted in series.

- Signals related to port 0
- Signals related to port 1
- Signals related to port 2
- Signals related to port 3
- Signals related to port 4
- Signals related to port 5
- Signals related to port 6
- Signals related to port 7
- Signals related to port 10
- Signals related to port 12
- Signals related to port 13
- EO0 signal
- EO1 signal


Figure 4-1. Equivalent Circuit 1 of Emulator

(2) Signals input from the target system via a gate

Since the following signals are input via a gate, their timing shows a delay compared to that of the μ PD178078, 178098 Subseries, and μ PD178F098. Their AC characteristics and DC characteristics are therefore different from the μ PD178078, 178098 Subseries, and μ PD178F098, making it necessary to observe a stricter timing design than in the case of the the μ PD178078, 178098 Subseries, and μ PD178F098.

- RESET signal
- Signals related to clock input

In all the signals input from the target system, the $\overline{\text{RESET}}$ signal, and signals related to clock input are input to the evaluation chip via a logic IC. The DC characteristics are therefore different from the μ PD178078, 178098 Subseries, and μ PD178F098. The AC characteristics are also different because of the delayed signal timing caused by the gate.

Figure 4-2. Equivalent Circuit 2 of Emulator

(3) Signals related to PLL

- AMIFC
- FMIFC
- VCOH
- VCOL
- REGOSC
- REGCPU
- VDDPLL
- GNDPLL

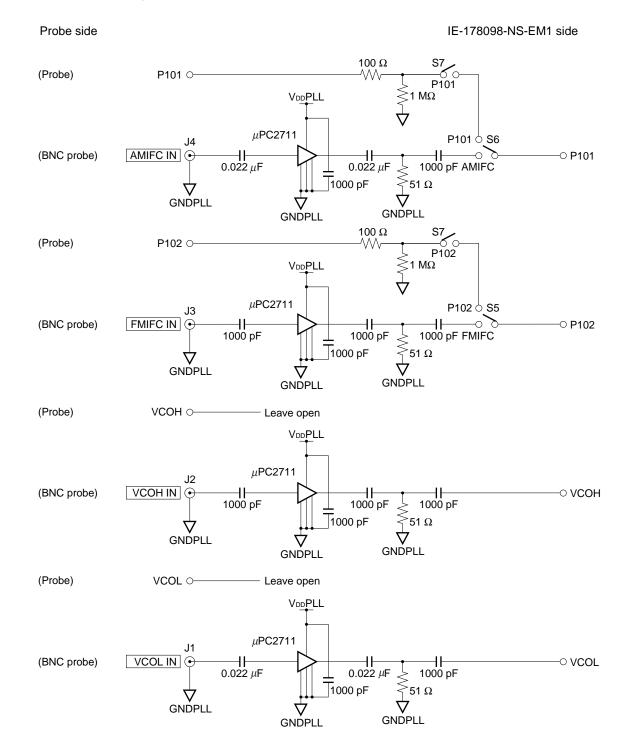
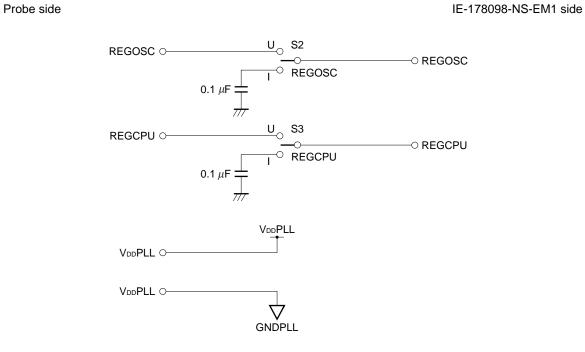



Figure 4-3. Equivalent Circuit 3 of Emulator (1/2)

Figure 4-3. Equivalent Circuit 3 of Emulator (2/2)

(4) Other signals

• VDD pin

When the emulation CPU is operating at 5 V, its power is supplied from the IE-178098-NS-EM1, and when operating at low-voltage, its power is supplied from the low-voltage pin (TP1) in the IE-78K0-NS. The V_{DD} pin of the target system is only used to control the LED (TVcc) in the IE-178098-NS-EM1 that monitors the input of the target system's power supply.

• Vss pin

The Vss pin is connected to GND in the IE-178098-NS-EM1.

• VPP/IC pin

The VPP/IC pin is not used in the IE-178098-NS-EM1.

• X2 pin

The X2 pin is not used in the IE-178098-NS-EM1.

GNDPORT pin


The GNDPORT pin is connected to GND into the IE-178098-NS-EM1.

• VDDPORT pin

The VDDPORT pin is not used in the IE-178098-NS-EM1.

- AVDD pin
- AVss pin

APPENDIX A EMULATION PROBE PIN ASSIGNMENT TABLE

Emulation Probe	CN1 Pin No.	Emulation Probe	CN1 Pin No.
1	116	35	104
2	115	36	103
3	87	37	100
4	88	38	99
5	83	39	94
6	84	40	93
7	77	41	30
8	78	42	29
9	73	43	24
10	74	44	23
11	69	45	20
12	70	46	19
13	63	47	16
14	64	48	15
15	61	49	10
16	62	50	9
17	65	51	6
18	66	52	5
19	71	53	33
20	72	54	34
21	75	55	37
22	76	56	38
23	79	57	43
24	80	58	44
25	85	59	47
26	86	60	48
27	89	61	51
28	90	62	52
29	118	63	57
30	117	64	58
31	114	65	59
32	113	66	60
33	108	67	55
34	107	68	56

Table A-1. NP-100GF Pin Assignments (1/2)

Remarks 1. The NP-100GF is a product of Naito Densei Machida Mfg. Co., Ltd.

^{2.} The numbers in the "Emulation probe" column indicate the corresponding pin number on the emulation probe tip.

Emulation Probe	CN1 Pin No.	Emulation Probe	CN1 Pin No.
69	49	85	18
70	50	86	17
71	45	87	22
72	46	88	21
73	41	89	28
74	42	90	27
75	35	91	92
76	36	92	91
77	31	93	98
78	32	94	97
79	4	95	102
80	3	96	101
81	8	97	106
82	7	98	105
83	14	99	112
84	13	100	111

Table A-1. NP-100GF Pin Assignments (2/2)

Remarks 1. The NP-100GF is a product of Naito Densei Machida Mfg. Co., Ltd.

2. The numbers in the "Emulation probe" column indicate the corresponding pin number on the emulation probe tip.

APPENDIX B REVISION HISTORY

The following shows the major revisions up to now.

 \star

Edition	Major Revisions from Previous Edition	Revised Chapters
2nd	Addition of 3.5 Jumper Settings on IE-78K0-NS	CHAPTER 3
	Addition of REVISION HISTORY	APPENDIX B

[MEMO]

Facsimile Message

From:	а
110111.	e
	р
Name	e
	P
Company	y y
	ir

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free nd up-to-date, we readily accept that rrors may occur. Despite all the care and precautions we've taken, you may ncounter problems in the documentation. Please complete this form whenever ou'd like to report errors or suggest nprovements to us.

Address

Tel.

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583
Europe NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Semiconductor Technical Hotline Fax: 044-548-7900
South America NEC do Brasil S.A. Fax: +55-11-6465-6829	Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951	

I would like to report the following error/make the following suggestion:

Document title:

Document number: _____ Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				