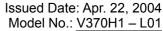


Issued Date: Apr. 22, 2004 Model No.: V370H1 – L01

Tentative


# **TFT LCD Tentative Specification**

MODEL NO.: V370H1 - L01

| TOARDS |
|--------|
|        |

| QRA Dept. | TVHD/PDD |          |          |  |  |  |
|-----------|----------|----------|----------|--|--|--|
|           | DDIII    | DDII     | DDI      |  |  |  |
| Approval  | Approval | Approval | Approval |  |  |  |
| 五亿人       | 李玉泽      | 起第       | 林文聰      |  |  |  |

LCD TV Marketing and Project Management Dept Project Manager

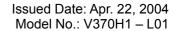






# - CONTENTS -

| REVISION HISTORY                                                                                                                                                                                                       |   | 3  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| 1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS                                                                                              |   | 4  |
| 2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT                                                                              |   | 5  |
| 3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL CHARACTERISTICS 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERTFACE CHARACTERISTI                                                  | C | 7  |
| 4. BLOCK DIAGRAM<br>4.1 TFT LCD MODULEL                                                                                                                                                                                |   | 12 |
| 5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE SIGNAL INPUT 5.2 TFT LCD MODULE POWER INPUT 5.3 BACKLIGHT UNIT 5.4 INVERTER UNIT 5.5 BLOCK DIAGRAM OF INTERFACE 5.6 LVDS INTERFACE 5.7 COLOR DATA INPUT ASSIGNMENT |   | 13 |
| 6. INTERFACE TIMING<br>6.1 INPUT SIGNAL TIMING SPECIFICATIONS<br>6.2 POWER ON/OFF SEQUENCE                                                                                                                             |   | 20 |
| 7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS                                                                                                                                              |   | 22 |
| 8. PRECAUTIONS<br>8.1 ASSEMBLY AND HANDLING PRECAUTIONS<br>8.2 SAFETY PRECAUTIONS                                                                                                                                      |   | 26 |




Issued Date: Apr. 22, 2004 Model No.: V370H1 – L01

Tentative

# **REVISION HISTORY**

| Apr.21,'04 | Page<br>(New) | All | Tentative Specification was first issued.  |
|------------|---------------|-----|--------------------------------------------|
|            |               |     | Teritative Specification was first issued. |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |
|            |               |     |                                            |



Tentative



### 1. GENERAL DESCRIPTION

#### 1.1 OVERVIEW

V370H1- L01 is a 37" TFT Liquid Crystal Display module with 20-CCFL Backlight unit and 2ch-LVDS interface. This module supports 1920 x 1080 HDTV format and can display true 16.7M colors (8-bit/color). The inverter module for backlight is optionally build-in.

# 1.2 FEATURES

- -Ultra wide viewing angle Super MVA technology
- -High brightness (550 nits)
- High contrast ratio (>600:1)
- Fast response time
- High color saturation NTSC 75%
- HDTV (1920 x 1080 pixels) resolution, true HDTV format .
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface

### 1.3 APPLICATION

- TFT LCD TVs

# 1.4 GENERAL SPECIFICATIONS

| Item                   | Specification                                                   | Unit  | Note |
|------------------------|-----------------------------------------------------------------|-------|------|
| Active Area            | 820.8(H) x 461.7 (V) (37.07" diagonal)                          | mm    | (1)  |
| Bezel Opening Area     | 828.8 (H) x 470.9 (V)                                           | mm    | (1)  |
| Driver Element         | a-si TFT active matrix                                          | -     | -    |
| Pixel Number           | 1920 x R.G.B. x 1080                                            | pixel | -    |
| Pixel Pitch            | 0.1425 (H) x 0.4275 (V)                                         | mm    | -    |
| Pixel Arrangement      | RGB vertical stripe                                             | -     | -    |
| Display Colors         | 16.7M                                                           | color | -    |
| Display Operation Mode | Transmissive mode / Normally black                              | -     | -    |
| Surface Treatment      | Hard coating (2H), Anti-reflective coating < less 2% reflection | -     | -    |

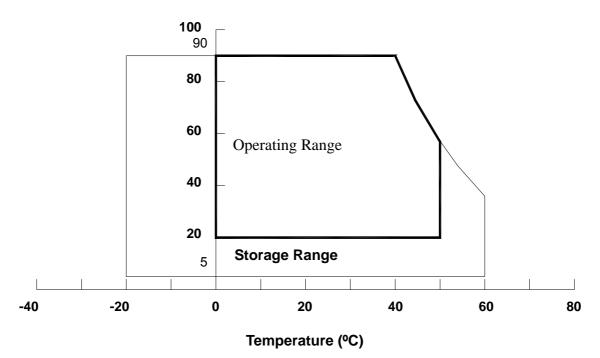
#### 1.5 MECHANICAL SPECIFICATIONS

| Item          |             |             | Min.  | Тур.  | Max.  | Unit | Note |
|---------------|-------------|-------------|-------|-------|-------|------|------|
| Horizontal(H) |             |             | 884.1 | 884.8 | 885.5 | mm   |      |
| Module Size   | Vertical(V) |             | 525.4 | 525.9 | 526.4 | mm   |      |
| Wodule Size   | Depth(D)    | W/PCB-Cover | ı     | 43.54 | -     | mm   |      |
|               | Deptii(D)   | W/I INV     | ı     | 52.24 | -     | mm   |      |
| Weight        |             |             | 8950  | 9150  | 9350  | g    | -    |

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.



### 2. ABSOLUTE MAXIMUM RATINGS


### 2.1 ABSOLUTE RATINGS OF ENVIRONMENT

| Item                          | Symbol           | Va   | Unit  | Note  |          |  |
|-------------------------------|------------------|------|-------|-------|----------|--|
| item                          | Symbol           | Min. | Max.  | Offic | NOLE     |  |
| Storage Temperature           | T <sub>ST</sub>  | -20  | +60   | °C    | (1)      |  |
| Operating Ambient Temperature | T <sub>OP</sub>  | 0    | +50   | °C    | (1), (2) |  |
| Shock (Non-Operating)         | S <sub>NOP</sub> | -    | (100) | G     | (3), (5) |  |
| Vibration (Non-Operating)     | $V_{NOP}$        | -    | (1.0) | G     | (4), (5) |  |

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The temperature of panel display area surface should be 0 °C Min. and 60 °C Max.
- Note (3) 2 ms, half sine wave, 1 time for  $\pm$  X,  $\pm$  Y,  $\pm$  Z.
- Note (4)  $10 \sim 200$  Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

# **Relative Humidity (%RH)**





Issued Date: Apr. 22, 2004 Model No.: V370H1 – L01

Tentative

### 2.2 ELECTRICAL ABSOLUTE RATINGS

### 2.2.1 TFT LCD MODULE

| Item                 | Symbol          | Va   | lue  | Unit  | Note |
|----------------------|-----------------|------|------|-------|------|
| item                 | Syllibol        | Min. | Max. | Ullit | Note |
| Power Supply Voltage | Vcc             | -0.3 | 20   | V     | (1)  |
| Logic Input Voltage  | V <sub>IN</sub> | -0.3 | 4    | V     | (1)  |

# 2.2.2 BACKLIGHT UNIT

| Item                 | Symbol   | Test<br>Condition | Min. | Туре | Max.  | Unit      | Note                     |
|----------------------|----------|-------------------|------|------|-------|-----------|--------------------------|
| Lamp Voltage         | $V_W$    | Ta = 25           | ı    | ı    | 3000  | $V_{RMS}$ |                          |
| Input Voltage        | $V_{BL}$ | -                 | ı    | 120  | (132) | >         | (1), (2), $I_L = 5.5$ mA |
| Control Signal Level | -        | -                 | -0.3 | -    | 7     | V         | (1), (2), (4)            |

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp and inverter (Refer to 3.2 for further information).

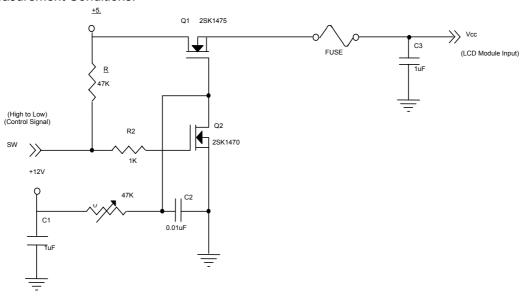
Note (3) Protect inverters from moisture condensation and freezing.

Note (4) The control signal level is including On/Off Control Voltage, Internal PWM Control Voltage, External PWM Control Voltage and Internal/External PWM Selection Voltage.

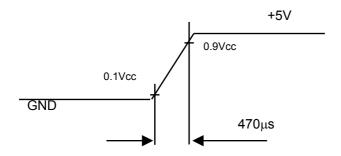


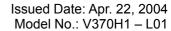


# 3. ELECTRICAL CHARACTERISTICS


# 3.1 TFT LCD MODULE

Ta = 25 ± 2 °C


| Parameter                                      |                 | Cymbol            |       | Value | Unit  | Note  |      |
|------------------------------------------------|-----------------|-------------------|-------|-------|-------|-------|------|
|                                                |                 | Symbol            | Min.  | Typ.  | Max.  | Offic | Note |
| Power Supply Voltage                           |                 | Vcc               | 16.2  | 18    | 19.8  | V     | -    |
| Ripple Voltage                                 |                 | $V_{RP}$          | -     |       | 200   | mV    | -    |
| Rush Current                                   |                 | I <sub>RUSH</sub> | -     | 4     | 4.5   | Α     | (2)  |
|                                                | White           |                   | -     | 0.75  | TBD   | Α     | (3)a |
| Power Supply Current                           | Black           | lcc               | -     | 0.41  | TBD   | Α     | (3)b |
|                                                | Vertical Stripe |                   | -     | TBD   | TBD   | Α     | (3)c |
| LVDS differential input high threshold voltage |                 | $V_{TH}$          | -     | -     | +100  | mV    |      |
| LVDS differential input low threshold voltage  |                 | $V_{TL}$          | -100  | -     | -     | mV    |      |
| LVDS common input voltage                      |                 | Vic               | 1.125 | 1.25  | 1.375 | V     |      |
| Terminating Resistor                           |                 | Rт                | -     | 100   | -     | ohm   |      |

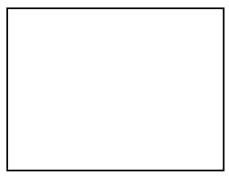

Note (1) The module should be always operated within above ranges.

# Note (2) Measurement Conditions:



# Vcc rising time is 470µs





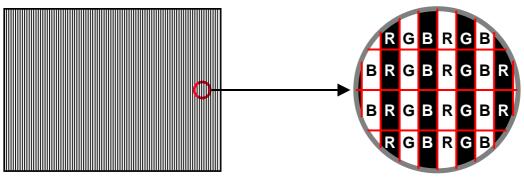

Tentative




Note (3) The specified power supply current is under the conditions at Vcc = 5 V, Ta =  $25 \pm 2$  °C,  $f_v = 60$  Hz, whereas a power dissipation check pattern below is displayed.

# a. White Pattern




Active Area

#### b. Black Pattern



Active Area

# c. Vertical Stripe Pattern

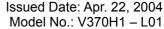


Active Area

# 3.2 BACKLIGHT UNIT

# 3.2.1 CCFL CHARACTERISTICS (Ta = $25 \pm 2$ °C)


| Parameter            | Symbol   |      | Value          | Unit | Note       |                          |
|----------------------|----------|------|----------------|------|------------|--------------------------|
| Farameter            | Syllibol | Min. | Min. Typ. Max. |      |            |                          |
| Lamp Input Voltage   | $V_{L}$  | 1113 | 1237           | 1361 | $V_{RMS}$  | $I_L = (5.5) \text{ mA}$ |
| Lamp Current         | ΙL       | 5.2  | 5.5            | 5.8  | $mA_{RMS}$ | (1)                      |
| Lamp Turn On Voltage | Vs       | 2460 | -              | 3000 | $V_{RMS}$  | (2), Ta = 25 °C          |
| Lamp Turn On Voltage |          | 2800 | =              | 3000 | $V_{RMS}$  | (2), Ta = 0 °C           |
| Operating Frequency  | $F_L$    | 40   | 55             | 70   | KHz        | (3)                      |
| Lamp Life Time       | $L_BL$   | 50K  | -              | ı    | Hrs        | (5)                      |




### 3.2.2 INVERTER CHARACTERISTICS

| Parameter             | Symbol    | Value |      |      | Unit      | Note                       |
|-----------------------|-----------|-------|------|------|-----------|----------------------------|
| Farameter             | Syllibol  | Min.  | Тур. | Max. | Offic     | Note                       |
| Power Consumption     | $P_{BL}$  | -     | 170  | -    | W         | $(5), I_L = 5.5 \text{mA}$ |
| Input Voltage         | $V_{BL}$  | 108   | 120  | 132  | $V_{DC}$  |                            |
| Input Current         | $I_{BL}$  | -     | 1.4  | -    | Α         | Non Dimming                |
| Input Ripple Noise    | -         | -     | -    | 2.5  | $V_{P-P}$ | VBL=108V                   |
| Backlight Starting    | \/        | 2750  | -    | 3000 | $V_{RMS}$ | Ta = 0 °C                  |
| Voltage               | $V_{BS}$  | 2410  | -    | 3000 | $V_{RMS}$ | Ta = 25 °C                 |
| Oscillating Frequency | $F_W$     | 51    | 54   | 57   | kHz       |                            |
| Dimming frequency     | $F_B$     | 150   | 160  | 170  | Hz        |                            |
| Minimum Duty Ratio    | $D_{MIN}$ | -     | 20   | -    | %         |                            |

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

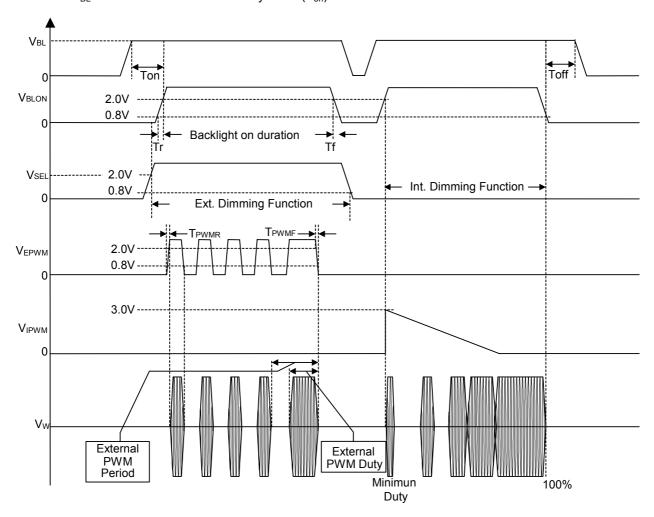


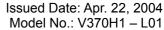






- Note (2) The lamp starting voltage  $V_S$  should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined by the brightness is larger than 50% or the effective discharge length is shorter than 80% of its original value (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point.) as the time in which it continues to operate under the condition  $Ta = 25 \pm 2$  and  $I_L = 5.2 \sim 5.8$  mArms.
- Note (5) The power source capacity should be higher than inverter total power consumption P<sub>BL</sub> and the transient response of power supply when inverter operate at dimming function also should be considered under design.


### 3.2.3 INVERTER INTERTFACE CHARACTERISTICS

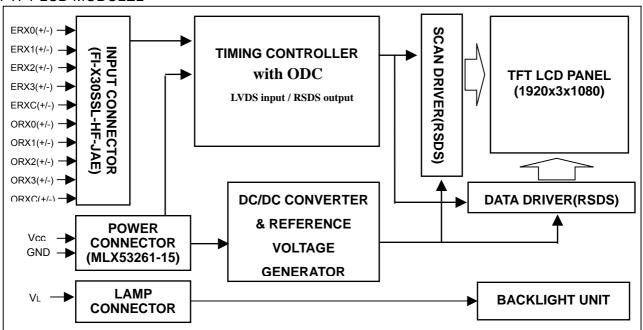

| ITEM                   | ITEM   |                   | TEST<br>CONDITION    | MIN | TYPE | MAX | UNIT | NOTE <sup>(1-2)</sup> |
|------------------------|--------|-------------------|----------------------|-----|------|-----|------|-----------------------|
| On/Off Control         | ON     | \/                | -                    | 2.0 | ı    | 5.0 | >    | See as below          |
| Voltage                | OFF    | $V_{BLON}$        | -                    | 0   | ı    | 0.8 | >    | See as below          |
| Internal/External      | HI     | V <sub>SEL</sub>  | -                    | 2.0 | ı    | 5.0 | >    | Ext. Dim. Control     |
| PWM Select Voltage     | LO     | V SEL             | -                    | 0   | -    | 8.0 | V    | Int. Dim. Control     |
| Internal PWM           | MAX    | \/                | V <sub>SEL</sub> = L | -   | -    | 3.0 | V    | Minimum Duty Ratio    |
| Control Voltage        | MIN    | $V_{IPWM}$        | V <sub>SEL</sub> = L | -   | 0    | -   | V    | Maximum Duty Ratio    |
| External PWM           | HI     | V                 | V <sub>SEL</sub> = H | 2.0 | -    | 5.0 | V    | ON Duration           |
| Control Voltage        | LO     | $V_{\text{EPWM}}$ | V <sub>SEL</sub> = H | 0   | -    | 8.0 | V    | OFF Duration          |
| Control Signal Rising  | g Time | Tr                | -                    | -   | -    | 100 | ms   |                       |
| Control Signal Falling | g Time | Tf                | -                    | -   | -    | 100 | ms   | See as below          |
| PWM Signal Rising      | Time   | T <sub>PWMR</sub> | -                    | -   | -    | 50  | us   | See as below          |
| PWM Signal Falling     | Time   | T <sub>PWMF</sub> | -                    | -   | -    | 50  | us   |                       |
| Input impedance        |        | R <sub>IN</sub>   | -                    | 1   | -    | -   | М    |                       |
| BLON Delay Time        |        | T <sub>on</sub>   | -                    | 300 | -    | 500 | mS   | (3)                   |
| BLON Off Time          | )      | T <sub>OFF</sub>  | -                    | 300 | -    | 500 | mS   |                       |

- Note (1) External PWM control signal (E\_PWM) should be connected to low in case internal PWM was selected. (SEL = low). Internal PWM control signal (I\_PWM) should be connected to ground in case external PWM was selected. (SEL = high) and the, floating of any control signal is not allowed. Besides, The SEL pin should be a definite level before the BLON signal.
- Note (2) For dimming control function operation chart was shown as below.
- Note (3) The power on sequence was defined as following. Before BLON signal raised, the input power



 $V_{\text{BL}}$  shall maintain a BLON Delay Time  $(T_{\text{on}})$  time in advance.






Tentative



### 4. BLOCK DIAGRAM

# 4.1 TFT LCD MODULEL





# 5. INPUT TERMINAL PIN ASSIGNMENT

# 5.1 TFT LCD MODULE SIGNAL INPUT

| Pin | Name  | Description                                                  |
|-----|-------|--------------------------------------------------------------|
| 1   | GND   | Ground                                                       |
| 2   | NC    | No Connection                                                |
| 3   | NC    | No Connection                                                |
| 4   | NC    | No Connection                                                |
| 5   | NC    | No Connection                                                |
| 6   | NC    | No Connection                                                |
| 7   | NC    | No Connection                                                |
| 8   | GND   | Ground                                                       |
| 9   | ERX0- | Even pixel, negative LVDS differential data input, channel 0 |
| 10  | ERX0+ | Even pixel, positive LVDS differential data input, channel 0 |
| 11  | ERX1- | Even pixel, negative LVDS differential data input, channel 1 |
| 12  | ERX1+ | Even pixel, positive LVDS differential data input, channel 1 |
| 13  | ERX2- | Even pixel, negative LVDS differential data input, channel 2 |
| 14  | ERX2+ | Even pixel, positive LVDS differential data input, channel 2 |
| 15  | ECLK- | Even pixel, negative LVDS differential clock input           |
| 16  | ECLK+ | Even pixel, positive LVDS differential clock input           |
| 17  | ERX3- | Even pixel, negative LVDS differential data input, channel 3 |
| 18  | ERX3+ | Even pixel, positive LVDS differential data input, channel 3 |
| 19  | GND   | Ground                                                       |
| 20  | ORX0- | Odd pixel, negative LVDS differential data input, channel 0  |
| 21  | ORX0+ | Odd pixel, positive LVDS differential data input, channel 0  |
| 22  | ORX1- | Odd pixel, negative LVDS differential data input, channel 1  |
| 23  | ORX1+ | Odd pixel, positive LVDS differential data input, channel 1  |
| 24  | ORX2- | Odd pixel, negative LVDS differential data input, channel 2  |
| 125 | ORX2+ | Odd pixel, positive LVDS differential data input, channel 2  |
| 26  | OCLK- | Odd pixel, negative LVDS differential clock input            |
| 27  | OCLK+ | Odd pixel, positive LVDS differential clock input            |
| 28  | ORX3- | Odd pixel, negative LVDS differential data input, channel 3  |
| 29  | ORX3+ | Odd pixel, positive LVDS differential data input, channel 3  |
| 30  | GND   | Ground                                                       |

Note (1) Connector Part No.: FI-X30SSL-HF (JAE)

# 5.2 TFT LCD MODULE POWER INPUT

| Pin | Name  | Description        |
|-----|-------|--------------------|
| 1   | VCC   | Power input (+18V) |
| 2   | VCC   | Power input (+18V) |
| 3   | VCC   | Power input (+18V) |
| 4   | VCC   | Power input (+18V) |
| 5   | VCC   | Power input (+18V) |
| 6   | GND   | Ground             |
| 7   | GND   | Ground             |
| 8   | GND   | Ground             |
| 9   | GND - | Ground             |
| 10  | GND   | Ground             |
| 11  | NC    | No Connection      |
| 12  | NC    | No Connection      |
| 13  | NC    | No Connection      |
| 14  | NC    | No Connection      |
| 15  | NC    | No Connection      |

Note (1) Connector Part No.: MLX53261-15

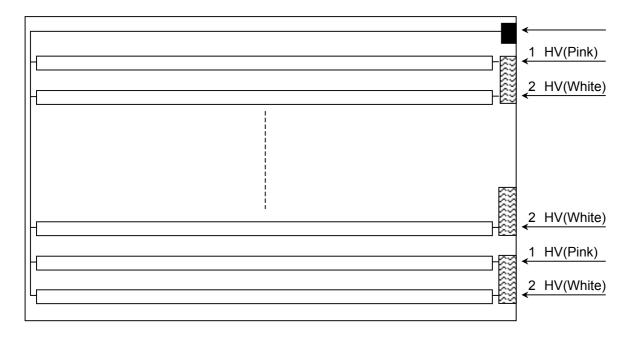




#### 5.3 BACKLIGHT UNIT

The pin configuration for the connector is shown in the table below.

CN3-CN12: BHR-03VS-1


| Pin № | Signal name | Feature      | Wire Color |
|-------|-------------|--------------|------------|
| 1     | HV          | High Voltage | Pink       |
| 2     | HV          | High Voltage | White      |

Note (1) The backlight interface connector for high voltage side is a model **BHR-03VS-1**, manufactured by JST. The mating connector on inverter part number is SM02(12.0)B-BHS-1-TB or equivalent.

CN10: ZHR-2 or equivalent

| Pin № | Signal name | Feature     | Wire Color |
|-------|-------------|-------------|------------|
| 1     | LV          | Low Voltage | Black      |
| 2     | LV          | Low Voltage | Black      |
| 3     | LV          | Low Voltage | Black      |
| 4     | LV          | Low Voltage | Black      |
| 5     | LV          | Low Voltage | Black      |
| 6     | LV          | Low Voltage | Black      |
| 7     | LV          | Low Voltage | Black      |
| 8     | LV          | Low Voltage | Black      |
| 9     | LV          | Low Voltage | Black      |
| 10    | LV          | Low Voltage | Black      |

Note (2) The backlight interface connector for low voltage side is a model **ZHR-2**, manufactured by JST or equivalent. The mating connector on inverter part number is S10ZR-SM3A-TF(JST) or equivalent.





Issued Date: Apr. 22, 2004 Model No.: V370H1 – L01

Tentative

#### 5.4 INVERTER UNIT

Note: (1) The inverter input power source connector CN1 is a model S8-PH-SM3-TB, manufactured by JST or equivalent. The inverter interface connector CN2 for control signal is a model S10-PH-SM3-TB, manufactured by JST or equivalent.

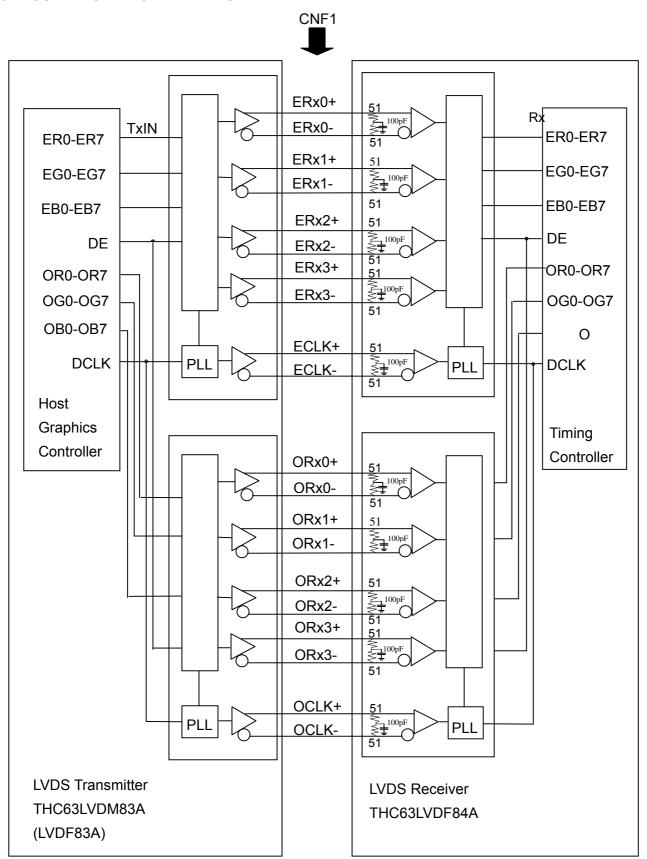
CN1: S8B-PH-SM3-TB(JST)

| Pin № | Signal name | Feature |  |  |  |  |
|-------|-------------|---------|--|--|--|--|
| 1     |             |         |  |  |  |  |
| 2     | VBL         | +120V   |  |  |  |  |
| 3     |             |         |  |  |  |  |
| 4     | NC          | NC      |  |  |  |  |
| 5     | NC NC       | NC      |  |  |  |  |
| 6     |             |         |  |  |  |  |
| 7     | GND         | GND     |  |  |  |  |
| 8     |             |         |  |  |  |  |

CN3-CN12: SM02(12.0)B-BHS-1-TB(JST)

| Pin № | Signal name | Feature          |  |  |  |  |  |
|-------|-------------|------------------|--|--|--|--|--|
| 1     | CFL HOT     | CFL High voltage |  |  |  |  |  |
| 2     | CFL HOT     | CFL High voltage |  |  |  |  |  |

CN2: S10-PH-SM3-TB(JST)


| Pin № | Signal name | Feature                                |  |  |  |  |
|-------|-------------|----------------------------------------|--|--|--|--|
| 1     |             |                                        |  |  |  |  |
| 2     | GND         | GND                                    |  |  |  |  |
| 3     |             |                                        |  |  |  |  |
| 4     | Vcc         | +18V                                   |  |  |  |  |
| 5     | VCC         | T10V                                   |  |  |  |  |
| 6     | SYN         | Synchronous<br>Control                 |  |  |  |  |
| 7     | SEL         | Internal/Externa<br>I PWM<br>Selection |  |  |  |  |
| 8     | I_PWM       | Internal PWM<br>Control                |  |  |  |  |
| 9     | I_PWM       | Internal PWM<br>Control                |  |  |  |  |
| 10    | BLON        | BL ON/OFF                              |  |  |  |  |

CN13: S10ZR-SM3A-TF(JST) or equivalent

| Pin № | Signal name  | Feature            |
|-------|--------------|--------------------|
| 1     | Return cable | CFL Low voltage    |
| 2     | Return cable | CFL Low voltage    |
| 3     | Return cable | CFL Low voltage    |
| 4     | Return cable | CFL Low voltage    |
| 5     | Return cable | CFL Low voltage    |
| 6     | Return cable | CFL Low voltage    |
| 7     | Return cable | CFL Low voltage    |
| 8     | Return cable | CFL Low<br>voltage |
| 9     | Return cable | CFL Low voltage    |
| 10    | Return cable | CFL Low<br>voltage |



### 5.5 BLOCK DIAGRAM OF INTERFACE





Issued Date: Apr. 22, 2004 Model No.: V370H1 - L01

Tentative

ER0~ER7: Even pixel R data
EG0~EG7: Even pixel G data
EB0~EB7: Even pixel B data
OR0~OR7: Odd pixel R data
OG0~OG7: Odd pixel G data
OB0~OB7: Odd pixel B data
DE: Data enable signal
DCLK: Data clock signal

Notes: (1) The system must have the transmitter to drive the module.

(2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.





Issued Date: Apr. 22, 2004 Model No.: V370H1 - L01

Tentative

### 5.6 LVDS INTERFACE

|       | SIGNAL                                                                                                                                                                 |                                                                                                                                                          | SMITTER<br>BLVDM83A                                                                                                                                                                                             | INTERFACE CO                                                   | ONNECTOR                                  |                                                                                                                                                           | RECEIVER<br>FHC63LVDF84A                                                                                                                                                                                                                                                              | TFT CONTROL                                                                                        |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                        | PIN                                                                                                                                                      | INPUT                                                                                                                                                                                                           | Host                                                           | TFT-LCD                                   | PIN                                                                                                                                                       | OUTPUT                                                                                                                                                                                                                                                                                | INPUT                                                                                              |
| 24bit | R0<br>R1<br>R2<br>R3<br>R4<br>R5<br>G0<br>G1<br>G2<br>G3<br>G4<br>G5<br>B0<br>B1<br>B2<br>B3<br>B4<br>B5<br>DE<br>R6<br>R7<br>G6<br>G7<br>B6<br>B7<br>RSVD 1<br>RSVD 2 | 51<br>52<br>54<br>55<br>56<br>3<br>4<br>6<br>7<br>11<br>12<br>14<br>15<br>19<br>20<br>22<br>23<br>24<br>30<br>50<br>2<br>8<br>10<br>16<br>18<br>25<br>27 | TxIN0 TxIN1 TxIN2 TxIN3 TxIN4 TxIN6 TxIN7 TxIN8 TxIN9 TxIN12 TxIN13 TxIN14 TxIN15 TxIN18 TxIN19 TxIN20 TxIN21 TxIN20 TxIN21 TxIN21 TxIN21 TxIN22 TxIN26 TxIN27 TxIN5 TxIN10 TxIN11 TxIN16 TxIN17 TxIN123 TxIN24 | TA OUT0+ TA OUT1+ TA OUT1- TA OUT2+ TA OUT2- TA OUT3+ TA OUT3- | Rx 0+ Rx 0- Rx 1+ Rx 1- Rx 2- Rx 3+ Rx 3- | 27<br>29<br>30<br>32<br>33<br>35<br>37<br>38<br>39<br>43<br>45<br>46<br>47<br>51<br>53<br>54<br>55<br>1<br>6<br>7<br>34<br>41<br>42<br>49<br>50<br>2<br>3 | Rx OUT0 Rx OUT1 Rx OUT2 Rx OUT3 Rx OUT4 Rx OUT6 Rx OUT7 Rx OUT8 Rx OUT9 Rx OUT12 Rx OUT12 Rx OUT13 Rx OUT14 Rx OUT15 Rx OUT15 Rx OUT15 Rx OUT19 Rx OUT20 Rx OUT20 Rx OUT21 Rx OUT21 Rx OUT22 Rx OUT27 Rx OUT27 Rx OUT5 Rx OUT16 Rx OUT11 Rx OUT16 Rx OUT17 Rx OUT13 Rx OUT17 Rx OUT13 | R0 R1 R2 R3 R4 R5 G0 G1 G2 G3 G4 G5 B0 B1 B2 B3 B4 B5 DE R6 R7 G6 G7 B6 B7 Not connect Not connect |
|       | RSVD 3                                                                                                                                                                 | 28<br>31                                                                                                                                                 | TxIN25 TxCLK IN                                                                                                                                                                                                 | TxCLK OUT+<br>TxCLK OUT-                                       | RxCLK IN+<br>RxCLK IN-                    | 5<br>26                                                                                                                                                   | Rx OUT25<br>RxCLK OUT                                                                                                                                                                                                                                                                 | Not connect DCLK                                                                                   |

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE : Display timing signal

Notes: (1) RSVD(reserved)pins on the transmitter shall be "H" or "L".





### 5.7 COLOR DATA INPUT ASSIGNMENT

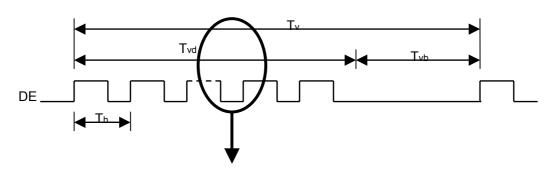
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

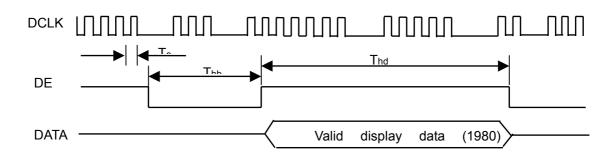
|               |                 |    |    |    |    |    |    |    |    |    |    | Da |    | Sigr |    |    |    | ı  |    |    |     |    |    |   |    |
|---------------|-----------------|----|----|----|----|----|----|----|----|----|----|----|----|------|----|----|----|----|----|----|-----|----|----|---|----|
|               | Color           |    |    |    | Re |    |    |    |    |    |    |    |    | reer |    |    |    |    |    |    | Blι |    |    |   |    |
|               | Dist            | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | R7 | R6 | G5 | G4 | G3   | G2 | G1 | G0 | R7 | R6 | B5 | B4  | B3 | B2 |   | B0 |
|               | Black           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
|               | Red             | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
| D : -         | Green           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1    | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
| Basic         | Blue            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 1 | 1  |
| Colors        | Cyan            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1 | 1  |
|               | Magenta         | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 1 | 1  |
|               | Yellow          | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1    | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
|               | White           | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1 | 1  |
|               | Red(0) / Dark   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
|               | Red(1)          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
| 0             | Red(2)          | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
| Gray          | :               |    | :  | :  | :  |    |    | •  | :  |    | :  |    |    | :    | :  | :  | :  | :  | :  | :  | :   | •  |    | : | :  |
| Scale         | :<br>D-4(050)   | :  | :  | :  | :  | ;  | :  | :  | :  | :  | :  | :  |    |      | :  |    | :  |    | :  | :  |     | :  | :  |   | :  |
| Of            | Red(253)        | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
| Red           | Red(254)        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
|               | Red(255)        | 1  | I  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
|               | Green(0) / Dark | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
|               | Green(1)        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
| Cross         | Green(2)        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 1  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
| Gray<br>Scale | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :    | :  | :  | :  | :  | :  | :  | :   | :  | :  | : | :  |
| Of            | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :    | :  | :  | :  | :  | :  | :  | :   | :  | :  | : | :  |
| Green         | Green(253)      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1    | 1  | 0  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
| Green         | Green(254)      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1    | 1  | 1  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
|               | Green(255)      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1  | 1    | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
|               | Blue(0) / Dark  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 0  |
|               | Blue(1)         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0 | 1  |
| Gray          | Blue(2)         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 1 | 0  |
| Scale         | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :    | :  | :  | :  | :  | :  | :  | :   | :  | :  | : | :  |
| Of            | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :    | :  | :  | :  | :  | :  | :  | :   | :  | :  | : | :  |
| Blue          | Blue(253)       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 0 | 1  |
| Diac          | Blue(254)       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 1 | 0  |
|               | Blue(255)       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 1 | 1  |

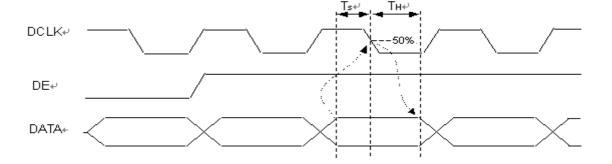
Note (1) 0: Low Level Voltage, 1: High Level Voltage



# 6. INTERFACE TIMING


# 6.1 INPUT SIGNAL TIMING SPECIFICATIONS

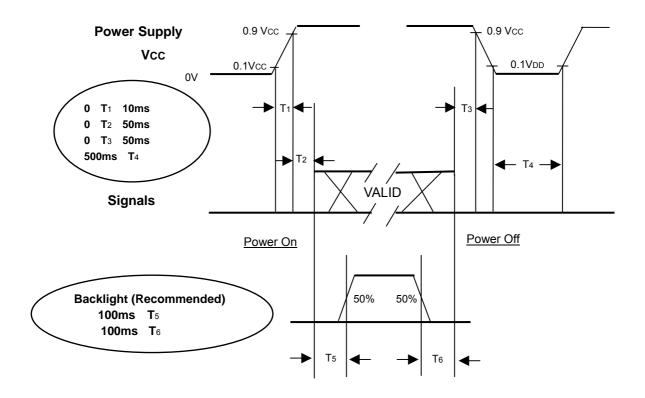

The input signal timing specifications are shown as the following table and timing diagram.


| Signal                         | Item       | Symbol | Min.   | Тур.   | Max.   | Unit | Note       |
|--------------------------------|------------|--------|--------|--------|--------|------|------------|
| Clock                          | Frequency  | 1/Tc   | (120)  | 148.5  | (160)  | MHZ  | -          |
|                                | Frame Rate | Fr     | (57)   | 60     | (63)   | Hz   | Tv=Tvd+Tvb |
| Vortical Active Display Torm   | Total      | Tv     | (1115) | (1125) | (1135) | Th   | ı          |
| Vertical Active Display Term   | Display    | Tvd    | 1080   | 1080   | 1080   | Th   | ı          |
|                                | Blank      | Tvb    | (35)   | 45     | (55)   | Th   | ı          |
|                                | Total      | Th     | (2100) | 2200   | (2300) | Tc   | Th=Thd+Thb |
| Horizontal Active Display Term | Display    | Thd    | 1920   | 1920   | 1920   | Tc   | ı          |
|                                | Blank      | Thb    | (180)  | 280    | (380)  | Tc   | ı          |
| Input data Term                | Setup time | Ts     | TBD    | TBD    | TBD    | ns   |            |
| Input data Term                | Hold time  | Тн     | TBD    | TBD    | TBD    | ns   |            |

Note: Because of this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

### **INPUT SIGNAL TIMING DIAGRAM**










#### 6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.



**Power ON/OFF** 

Note.

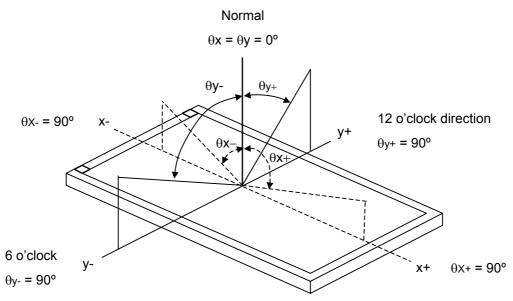
- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power of and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.



# 7. OPTICAL CHARACTERISTICS

# 7.1 TEST CONDITIONS

| Item                       | Symbol                                                        | Value | Unit |  |  |  |  |
|----------------------------|---------------------------------------------------------------|-------|------|--|--|--|--|
| Ambient Temperature        | Та                                                            | 25±2  | °C   |  |  |  |  |
| Ambient Humidity           | На                                                            | 50±10 | %RH  |  |  |  |  |
| Supply Voltage             | $V_{CC}$                                                      | 5.0   | V    |  |  |  |  |
| Input Signal               | According to typical value in "3. ELECTRICAL CHARACTERISTICS" |       |      |  |  |  |  |
| Inverter Current           | IL                                                            | (5.5) | mA   |  |  |  |  |
| Inverter Driving Frequency | FL                                                            | 54    | KHz  |  |  |  |  |
| Inverter                   |                                                               |       |      |  |  |  |  |


### 7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (7).

| Ite                        | em         | Symbol           | Condition                                                      | Min. | Тур.    | Max. | Unit              | Note                          |
|----------------------------|------------|------------------|----------------------------------------------------------------|------|---------|------|-------------------|-------------------------------|
| Contrast Ratio             |            | CR               |                                                                | -    | (700)   | -    | -                 | Note(2)                       |
| Response Time              |            | T <sub>R</sub>   | θ <sub>x</sub> =0°, θ <sub>Y</sub> =0°<br>Viewing Normal Angle | =    | (15)    | -    | ms                | , ,                           |
|                            |            | T <sub>F</sub>   |                                                                | -    | (10)    | -    | ms                | Note(3)                       |
|                            |            | Gray to          |                                                                |      | (16.6)  |      | ms                | Note(4)                       |
|                            |            | gray             |                                                                |      |         |      |                   |                               |
| Center Luminance of White  |            | L <sub>C</sub>   |                                                                |      | (550)   | -    | cd/m <sup>2</sup> | Note(5)                       |
| Average Luminance of White |            | L <sub>AVE</sub> |                                                                |      | (500)   | -    | cd/m <sup>2</sup> |                               |
| White Variation            |            | δW               |                                                                | ı    | -       | 1.3  | -                 | Note(8)                       |
| Cross Talk                 |            | CT               |                                                                | ı    | 1       | 4.0  | %                 | Note(6)                       |
| Color<br>Chromaticity      | Dod        | Rx               |                                                                |      | (0.652) |      | -                 |                               |
|                            | Red        | Ry               |                                                                |      | (0.333) |      | -                 |                               |
|                            | Green      | Gx               |                                                                |      | (0.273) |      | -                 |                               |
|                            |            | Gy               |                                                                |      | (0.604) |      | -                 |                               |
|                            | Blue       | Bx               |                                                                |      | (0.140) |      | -                 |                               |
|                            |            | Ву               |                                                                |      | (0.076) |      | -                 |                               |
|                            | White      | Wx               |                                                                |      | 0.285   |      | -                 | 9, 300K                       |
|                            | vviille    | Wy               |                                                                |      | 0.293   |      | -                 |                               |
| Viewing<br>Angle           | Horizontal | $\theta_{x}$ +   | CR≥10                                                          | (80) | (85)    | -    | Deg.              | No gray<br>scale<br>inversion |
|                            |            | $\theta_{x}$ -   |                                                                | (80) | (85)    | -    |                   |                               |
|                            | Vertical   | θ <sub>Y</sub> + |                                                                | (80) | (85)    | -    |                   |                               |
|                            |            | θ <sub>Y</sub> - |                                                                | (80) | (85)    | -    |                   |                               |



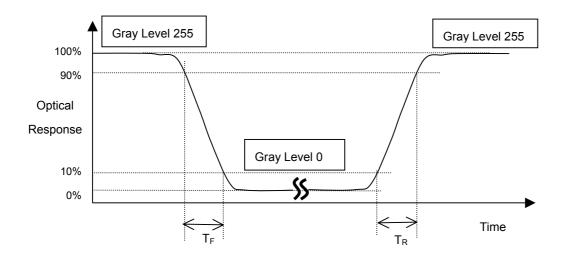
# Note (1) Definition of Viewing Angle ( $\theta x$ , $\theta y$ ):



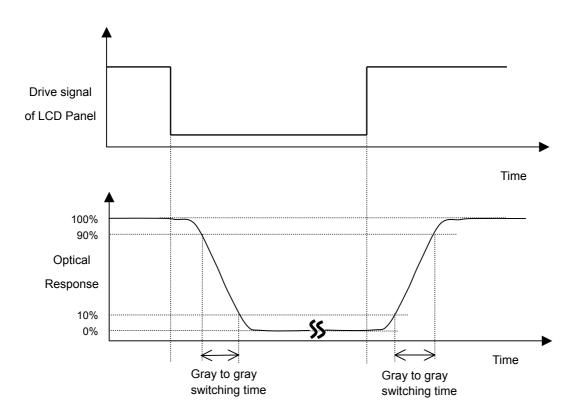
Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0


CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (8).

# Note (3) Definition of Response Time $(T_R, T_F)$ :



### Note (4) Definition of Gray to Gray Switching Time:



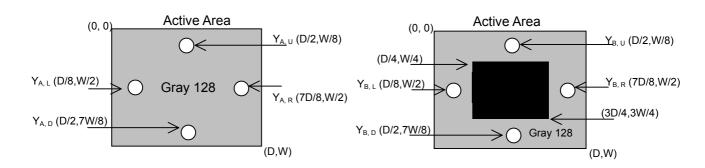
### Note (5) Definition of Luminance of White (L<sub>C</sub>, L<sub>AVE</sub>):

Measure the luminance of gray level 255 at center point and 5 points

$$L_{C} = L(5)$$

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

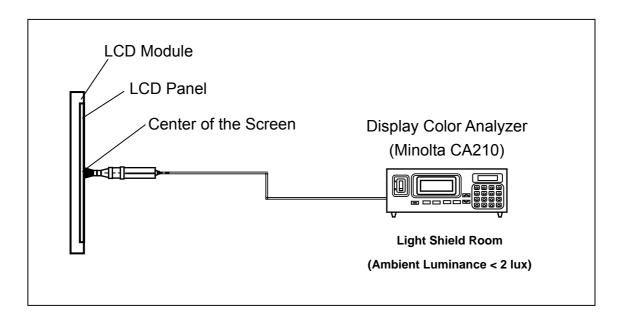
L (x) is corresponding to the luminance of the point X at the figure in Note (8).


# Note (6) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

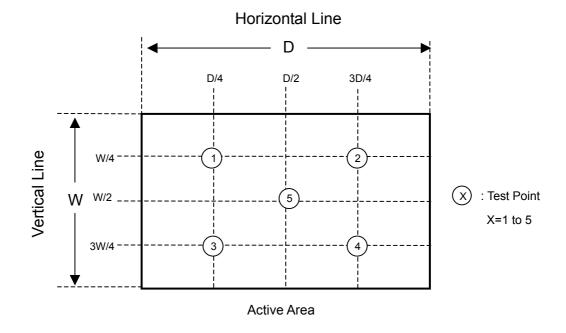
Y<sub>A</sub> = Luminance of measured location without gray level 0 pattern (cd/m<sup>2</sup>)


Y<sub>B</sub> = Luminance of measured location with gray level 0 pattern (cd/m<sup>2</sup>)





### Note (7) Measurement Setup:


The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.



# Note (8) Definition of White Variation ( $\delta W$ ):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$ 

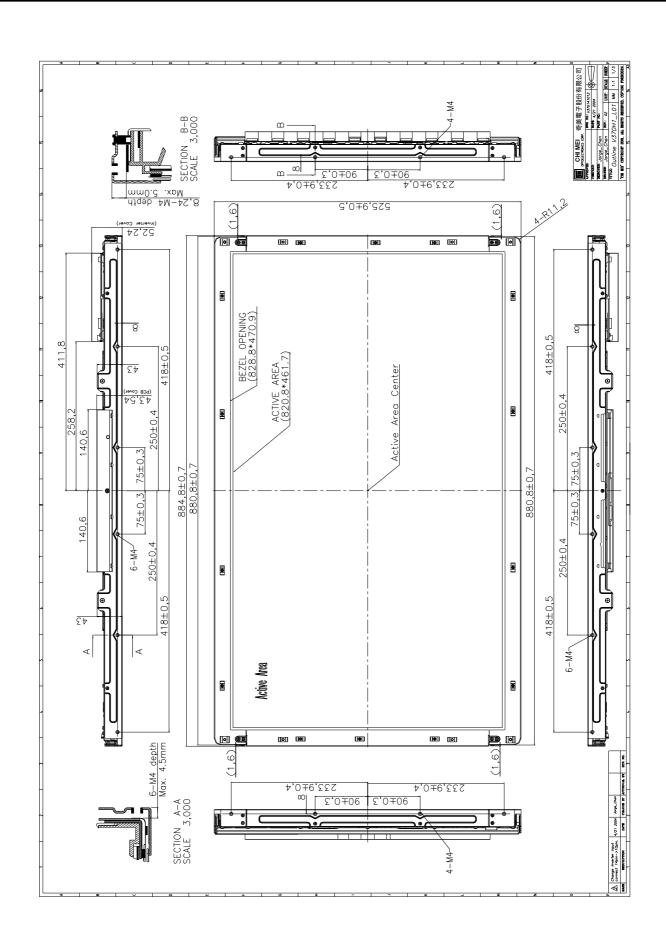




Issued Date: Apr. 22, 2004 Model No.: V370H1 - L01

Tentative

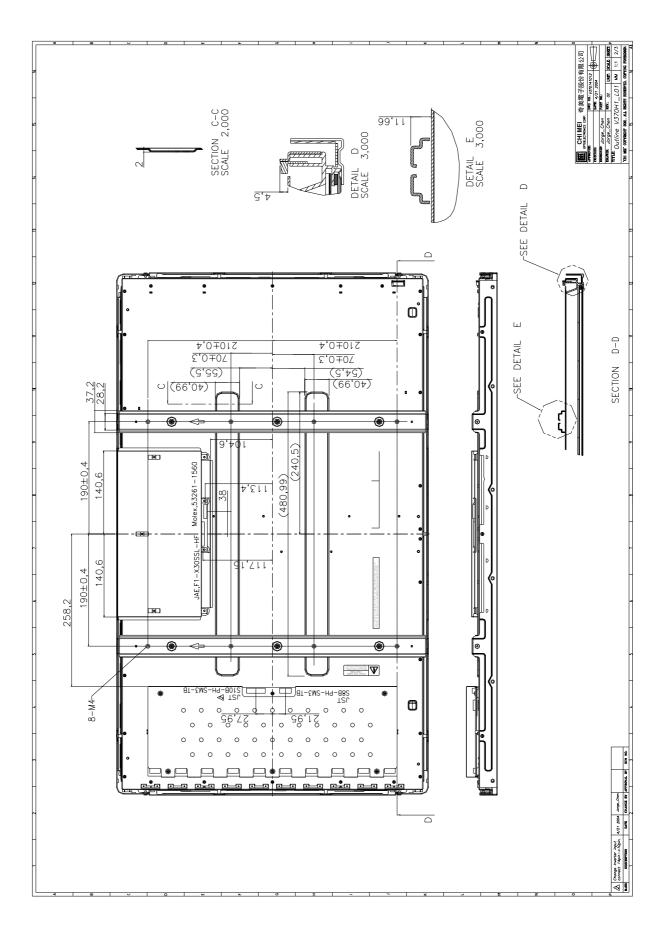
### 8. PRECAUTIONS


### 8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

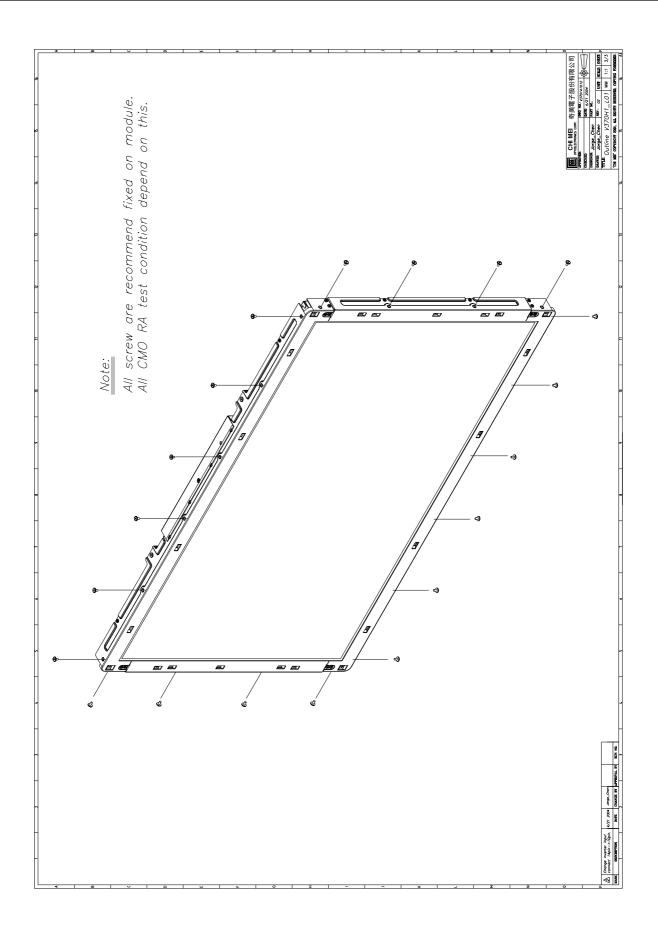
# **8.2 SAFETY PRECAUTIONS**

- (1) The startup voltage of Backlight is approximately 1700 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.






27 / 29








28 / 29



