PbS Photoconductive Cells # Easy-to-Use Photoconductive Detectors with High Responsivity Over 3 μ m PbS cells make use of the photoconductive effect by which the electrical resistance decreases with application of infrared radiation ### **Operates at Room Temperature** Since PbS cells operate stably at room temperature, they are used in a wide range of applications such as radiation thermometers and flame monitors. (Cooled types are also available for precision photometry.) ### **High Responsivity** Lower Temperature Detection Limit: Approx. 100℃ ### **Noncooled Types** These devices can stably operate at room temperature, making them easy to use in diverse fields. ### **Multielement Types** Multielement types are provided as standard items. ### SPECIFICATIONS (Common) | Peak wavelength | 2.2μ m (element temperature 25° C) | | | | | | | |----------------------------------|--|--|--|--|--|--|--| | Cutoff Wavelength | 2.9μ m (element temperature 25° C) | | | | | | | | N. 1 N. 1 1 | Borosilicate glass | | | | | | | | Window Material | Sapphire glass (P2682 series, P5168) | | | | | | | | Thermistor Allowable Dissipation | 0.2 mW | | | | | | | | Peltier Element Allowable | 1.5 A (one-stage TE-cooled types) | | | | | | | | Current | 1.0 A (two-stage TE-cooled types) | | | | | | | | Maximum Supply Voltage | 100 V | | | | | | | ### **Cooled Types** Thermoelectrically-cooled devices and glass dewar devices are available. Cooling a PbS cells enhances the responsivity and improves the S/N ratio, thus cooled types are widely used in precision photometry for applications such as in analytical instruments. | | -30 to $+50$ °C | |---------------------|-----------------| | Storage Temperature | -55 to $+50$ °C | ### ACCESSORIES (Optional) Heatsink for one-stage TE-cooled types : A3179 Heatsink for two-stage TE-cooled types : A3179-01 Temperature controller for TE-cooled types : C1103-04 Preamplifier for PbS/PbSe cells : C3757-02 : A3262-02 Housing for glass dewar devices (Dewar devices are available potted in the housing upon request.) (Typical data unless otherwise specified) | | | | | | | | | | | | | (·) · · · · · · · · · · · · · · · · · | | | |---|----------------------------|--------------------------------|---------------------------|---|--|-----------------------------|-------------------|--------------|---------------------|---|--------------------------|---|-----------------------------|--------------------------| | Type No. | Outline
No.
(P.34–36 | Package | Active Area | Element
Tempera-
ture | Photo
Sensitivity
S
at Ap
Vs=15V | | nal
4)
Typ: | THE STATE OF | Max. | D*(500
Min. | | D*
(λρ,600,1) | Rise Time
II
0 to 63% | Dark
Resistance
Rd | | | ASSESSED TO SECOND | driedler. | (mm) | (°C) | (V/W) | (μV) | | (aV) | the the part of the | 1 TO | (cm+Hz10/W) | (cm•Hz1/2/W) | (μs) | (MΩ) | | Noncooled | Types | A ST. C. See Steel and St. Co. | PROTECTION OF TAXABLE SEE | 1 m 1 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 | E STATE OF THE CONTRACT | Jame 1 al Augus 1917 (1) 40 | (A) | Nat America | 25.149.38580.7 | To the second | payme southernoona, I. I | 1 The 201 BR 1 38 BR AND ROLL | 100 deline (c) 17, 10 mg 2 | 1.007 ms - C 41. 0 | | P394 | 1 (| 2-pin TO-5 | 1×5 | 25 | 1×10 ⁵ | 100 | 250 | 2 | 4 | 5×108 | 1×10 ⁹ | 1×10 ¹¹ | 50 to 200 | 0.1 to 1 | | P394A | | 2-pin TO-5 | 2×5 | 25 | 5×10 ⁴ | 100 | 250 | 2 | 4 | 5×10 ⁸ | 1×109 | 1×10 ¹¹ | 50 to 200 | 0.1 to 1.5 | | P3258-02 | 1 | 2-pin TO-5 | 2×2 | 25 | 1×10 ⁵ | 100 | 250 | 2 | 4 | 5×10 ⁸ | 1×109 | 1×10 ¹¹ | 50 to 200 | 0.5 to 2.5 | | P3258-03 | | 2-pin TO-5 | 3×3 | 25 | 5×10 ⁴ | 100 | 250 | 2 | 4 | 5×108 | 1×109 | 1×10 ¹¹ | 50 to 200 | 0.5 to 2.5 | | P3226-02 | 10 | 2-pin TO-5 | 1.5×1.5© | 25 | 1.5×10 ⁵ | 1500 | 2000 | 2 | 4 | 5×108 | 1×109 | 1×10 ¹¹ | 50 to 200 | 0.3 to 2 | | P397 | 18 | 2-pin TO-8 | 4×5 | 25 | 3×10⁴ | 100 | 250 | 2 | 4 | 2×10 ⁸ | 5×10 ⁸ | 5×10 ¹⁰ | 50 to 200 | 0.3 to 2 | | Multielement Types | | | | | | | | | | | | | | | | P3210-16 | 1 | 40-pin DIP | 1×1
(16 element) | 25 | 4×10 ⁵ | 100 | 200 | 4 | 8 | 5×108 | 1×10 ⁹ | 1×10 ¹¹ | 50 to 200 | 0.5 to 2.5 | | One-stage Thermoelectrically-cooled Types | | | | | | | | | | | | | | | | P2532 | - A | 6-pin TO-8 | | -10 | 6×10 ⁵ | 300 | 750 | 4 | 8 | 1×10 ⁹ | 2×109 | 2×10 ¹¹ | 200 to 600 | 0.3 to 5 | | P2532-01 | - 6 | 6-pin TO-8 | 4×5 | -10 | 9×10⁴ | 300 | 750 | 4 | 8 | 5×10 ⁸ | 1×109 | 1×10 ¹¹ | 200 to 600 | 0.5 to 10 | | Two-stage | Thermo | electrically- | cooled Type | es | | | | | | • | | | | | | P2682 | 6 | 6-pin TO-8 | 1×3 | -20 | 1×10 ⁶ | 600 | 1500 | 5 | 10 | 2×109 | 4×109 | 4×10 ¹¹ | 200 to 600 | 1 to 10 | | P2682-01 | 7 | 6-pin TO-8 | 4×5 | -20 | 2×10 ⁵ | 600 | 1500 | 5 | 10 | 8×10 ⁸ | 2×109 | 2×10 ¹¹ | 200 to 600 | 1 to 10 | | Glass Dewa | ar Types | 1 | | | | | | | | | | | | | | P5168® | 19 | Glass dewar | 2×10 | —77 | 1×10 ⁶ | 10000 | 20000 | 3 | 6 | 1×1010 | 2×1010 | . 1×10 ¹² | 2 to 10(ms) | 0.5 to 10 | | | | | | | | | | | | | | | | | 14 4229609 0004322 182 # Spectral Response 1.0 to 3.6 μ m ### Spectral Response KIRDB0045EA ## S/N Ratio vs. Supply Voltage If a voltage higher than 60V is applied, the noise increases exponentially, degrading the S/N ratio. The device should be operated at 60V or less. ## S/N Ratio vs. Chopping Frequency KIBDB0047E Increasing the chopping frequency reduces the 1/f noise and results in an improved S/N ratio. The S/N ratio can also be improved by narrowing the noise bandwidth using a lock-in amplifier. ### Responsivity vs. Temperature Cooling the device enhances its responsivity. But the responsivity also depends on the load resistance in the circuit. ### Dark Resistance, Rise Time vs. Temperature ### Linearity KIRDB0050FA When making the incident light spot is smaller than the active area, the upper limit of the linearity becomes lower. ### Connection Example KIRDC0003EA **3** 4229609 0004323 **0**19