HYBRID INTEGRATED CIRCUIT VHF/UHF WIDE-BAND AMPLIFIER

Three-stage wide-band amplifier in hybrid integrated circuit technique on a thin-film substrate, intended for use in mast-head booster-amplifiers, as preamplifier in MATV systems, and as general-purpose amplifier for v.h.f. and u.h.f. applications.

QUICK REFERENCE DATA

Frequency range	f	40	to 860	MHz
Source and load (characteristic) impedance	$R_s = R_{\ell} = Z_o$	=	75	Ω
Transducer gain	$G_{tr} = s_f ^2$	typ.	23	dB
Flatness of frequency response	$\pm \Delta s_{f} ^2$	typ.	1.0	dB
Output voltage at -60 dB intermodulation distortion (DIN 45004, 3-tone)	V _{O(rms)}	>	105	dΒμV
Noise figure	F	typ.	7	dB
D.C. supply voltage	V_{B}	=	12	V ± 10%
Operating ambient temperature	T _{amb}	−20 to +70 °C		

ENCAPSULATION 8-pin, in-line, resin-coated body, see MECHANICAL DATA (Fig. 2)

Fig. 1 Circuit diagram.

RATINGS

RATINGS				
Limiting values in accordance with the Absolute Maximu	ım System (IEC 134)			
Operating ambient temperature	T _{amb}	-20 ·	οС	
Storage temperature	T_{stg}	-40 to +125		oC
D.C. supply voltage	V _B	max.	15	٧
Peak incident powers on pins 1 and 7	^Р I1М ^{, Р} I7М	max.	100	mW
CHARACTERISTICS				
Measuring conditions				
Ambient temperature	T_{amb}	=	25	oC
D.C. supply voltage	V _B	=	12	٧
Source impedance and load impedance	R _s , Rℓ	=	75	Ω
Characteristic impedance of h.f. connections	z _o	=	75	Ω
Frequency range	f	= 40	to 860	MHz
Performance				
Supply current	۱ _B	typ.	56	mΑ
Transducer gain	$G_{tr} = s_f ^2$	typ. 21	23 to 25	-
Flatness of frequency response	$\pm \Delta s_f ^2$	typ.	1.0	dB
Individual maximum v.s.w.r.				
input	VSWR(i)	typ.	1,3	
output	VSWR _(o)	typ.	1,5	•
Back attenuation f = 100 MHz	s _r ²	typ.	42	dB
f = 860 MHz	$ \mathbf{s}_r ^2$	typ.		dB
Output voltage	•			
at -60 dB intermodulation distortion	V _{o(rms)}	>		dΒμV
(DIN 45004, par. 6.3: 3-tone)		typ.		dΒμV
Noise figure	F	typ.	7	dB

s-parameters:	sf = s21	s _i = s ₁₁
	s _r = \$12	s _o = s ₂₂

^{*} Highest value, for a sample, occurring in the frequency range.

OPERATING CONDITIONS

Ambient temperature range	T _{amb}	-20 to	ŀ70	οС
D.C. supply voltage	v_B	=	12	V ± 10%
Frequency range	f	40 to 8	360	MHz
Source impedance and load impedance	R _s , Rℓ	=	75	Ω

MECHANICAL DATA

Dimensions in mm

The device is resin coated.

Fig. 2 Encapsulation.

Terminal connections

1 = input 2, 3, 5, 6, 7 = common 4 = supply (+) 8 = output/supply (+)

Soldering recommendations

Hand soldering

Maximum contact time for a soldering-iron temperature of 260 °C up to the seating plane is 5 s.

Dip or wave soldering

260 °C is the maximum permissible temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted against the printed-circuit board, but the temperature of the device must not exceed 125 °C. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature below the allowable limit.

Mounting recommendations

The module should preferably be mounted on double-sided printed-circuit board, see the example shown below.

Input and output should be connected to 75 Ω tracks.

The connections to the 'common' pins should be as close to the seating plane as possible.

L > 5 µH; e.g. catalogue no. 3122 108 20150 or 27 turns enamelled Cu wire (0,3 mm) wound on a ferrite core with a diameter of 1,6 mm. C > 220 pF ceramic capacitor.

Fig. 4 Transducer gain as a function of frequency; $Z_0 = 75 \Omega$.

Fig. 5 Input impedance derived from input reflection coefficient s_i, co-ordinates in ohm x 75; typical values.

Fig. 6 Output impedance derived from output reflection coefficient s_0 , co-ordinates in ohm x 75; typical values.

Fig. 7 Output voltage and supply current as a function of the supply voltage; typical values.

Fig. 8 Variation of transducer gain with supply voltage; reference 0 dB at 12 V;

----- f = 500 MHz; ----- f = 100 MHz;

---- f = 860 MHz;

typical values.