HR411.2 411.2MHz One-Port SAW Resonator

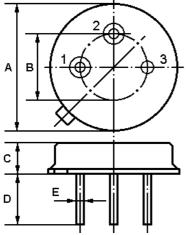
Approved by:

Checked by:

Issued by:

SPECIFICATION

PRODUCT: SAW RESONATOR MODEL: HR411.2 TO-39

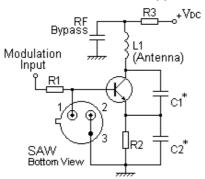

HOPE MICROELECTRONICS CO., LIMITED

Tel:+86-755-82973806 Fax:+86-755-82973550 E-mail: <u>sales@hoperf.com</u> http://www.hoperf.com Page 1 of 1

HR441.2

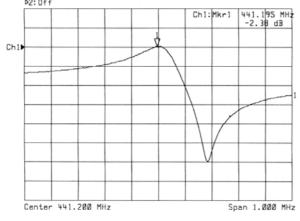
The HR441.2 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile metal TO-39 case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 441.200 MHz.

1.Package Dimension (TO-39)

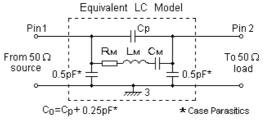

2.Marking

HR441.2

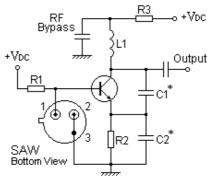
Color: Black or Blue


4.Typical Application Circuits

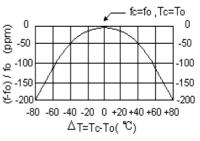
1) Low-Power Transmitter Application


5.Typical Frequency Response

I:Transmission /M Log Mag 5.0 dB/ Ref b2:Off -2.50 dB



Pin	Configuration			
1	Input / Output			
2	Output / Input			
3	Case Ground			
Dimension	Data (unit: mm)			
А	9.30±0.20			
В	5.08±0.10			
С	3.40±0.20			
D	3±0.20 / 5±0.20			
E	0.45±0.20			


3.Equivalent LC Model and Test Circuit

2) Local Oscillator Application

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Any two Pins	V _{DC}	± 30	V
Storage Temperature Range	T _{stg}	-40 to +85	
Operating Temperature Range	T _A	-10 to +60	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25)	Absolute Frequency	f _C	441.125		441.275	MHz
	Tolerance from 441.200MHz	Δf_{C}		± 75		kHz
Insertion Loss		IL		2.7	3.1	dB
Quality Factor	Unloaded Q	Q _U		13,460		
	50 Ω Loaded Q	QL		3,600		
Temperature Stability	Turnover Temperature	T ₀	25		55	
	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/ ²
Frequency Aging Absolute Value during the First Year		f _A		10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		36.5	43	Ω
	Motional Inductance	L _M		177.3536		μH
	Motional Capacitance	См		0.7345		fF
	Pin 1 to Pin 2 Static Capacitance	C ₀	1.00	1.15	1.30	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

C 2003. All Rights Reserved.

- 1. The center frequency, f_C, is measured at the minimum IL point with the resonator in the 50 test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3 dB bandwidth, f_c versus T_c , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail sales@hoperf.com.