

Signal Conditioned Accelerometer 0.5 to 4.5 VDC Output Intergral Temperature Compensation High Performance

- Vibration/Shock Testing
- Geophysical Monitoring
- Modal Analysis
- Structural Analysis
- Elevator Ride Control

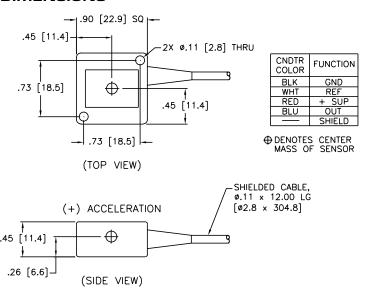
FEATURES

- ▶ Bolt Mount
- ▶ ±0.5% Non-linearity (typical)
- ▶ ±2.0% Temperature Performance
- ▶ DC Response
- ▶ Built-in Damping
- ▶ Built-in Overrange Stops
- Low Power

STANDARD RANGES

Range	g
±2	•
±5	•
±10	•
±20	•
±50	•
±100	•

DESCRIPTION


The Model 3150 is a high performance accelerometer intended for instrumentation applications. The 3150 provides a fully signal conditioned output with performance similar to traditional instrumentation accelerometers but at a much lower cost.

The accelerometer consists of a silicon micro machined accelerometer with signal conditioning electronics in a lightweight Valox $^{\text{\tiny TM}}$ housing that can be easily attached to a mounting surface.

The sensing element is a micro machined silicon mass suspended by multiple beams from a silicon frame. Piezoresistors located in the beams change their resistance as the

motion of the suspended mass changes the strain in the beams. Silicon caps on the top and bottom of the device are added to provide over-range stops. This design provides for a very low profile, high shock resistance, durability and built-in damping over a wide usable bandwidth.

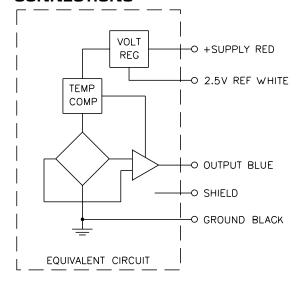
DIMENSIONS

PERFORMANCE SPECIFICATIONS

Supply Current: 12 VDC, Ambient Temperature: 25°C (Unless otherwise specified)

		RANGE						
PARAMETERS	±2G	±5G	±10G	±20G	±50G	±100G	UNITS	NOTES
Frequency Response [MIN]	0-200	0-300	0-400	0-500	0-1000	0-1500	Hz	2, 7
Mounted Resonant Frequency [MIN]	450	600	950	1500	2750	3000	Hz	2
Sensitivity (Nominal)	1 V/g	400	200	100	40	20	mV/g	

PARAMETERS	MIN	TYP	MAX	UNITS	NOTES
Full Scale Output Span	3.92	4.00	4.08	Volts	1, 2
Zero Acceleration Output	2.46	2.50	2.54	Volts	1, 2
Accuracy		0.5	1.0	±% Span	3
Transverse Sensitivity		1.0	3.0	±% Span	
Temperature Error - Span (-20°C to +85°C)		1.0	2.0	±% Span	2, 4
Temperature Error - Zero (-20°C to +85°C)		1.0	2.0	±% Span	2, 4
Supply Voltage	8.0	12.0	30.0	Volts	
Supply Current		5.0		mA	
Reference Voltage		2.5		Volts	5
Output Resistance		0.1		Ω	
Output Noise		0.5		mV p-p	6
Output Load Resistance	2			kΩ	
Acceleration Limits		20X		Rated	
Operating Temperature	-20°C to +85°C				
Storage Temperature	-40°C to +125°C				
Weight (Including Cable) 13 Grams					


Notes

- The output voltage increases from the Zero Acceleration Output for positive acceleration and decreases for negative acceleration. The sensitivity is then 2V/Range. For example, the ±5g range has a sensitivity of 2V/5g or 400mV/g.
- Actual test data for this parameter is included on the calibration sheet provided with each sensor.
- 3. Includes repeatability, hysteresis, and linearity (best fit straight line).
- 4. Compensated temperature range: -20°C to $+85^{\circ}\text{C}$ in reference to 25°C .
- 5. Pin 2 provides an optional 2.5V reference which may be used, if desired, to provide a stable zero-g reference. Thus, the full scale differential output between REF and OUTPUT would be ± 2 VDC. If a single-ended output signal is preferred (0.5-4.5 VDC), make no connection to REF. To avoid damage to the internal voltage regulator, do not connect REF to GND. Minimum load resistance connected to REF without affecting output is $100 \ \mathrm{k}\Omega$.
- 6. 10 Hz to 1 kHz.
- 7. The useful frequency range is defined as the range of frequencies over which the device sensitivity is within $\pm5\%$ of the DC value.

ORDERING INFORMATION

CONNECTIONS

June 2001