8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89601R Series

MB89601R/603/P601/PV620

■ DESCRIPTION

The MB89601R series is compact one-chip microcontrollers using the $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{~L}^{*} \mathrm{CPU}$ core for which can operate at low voltage but at high speed. The microcontrollers contain peripheral functions such as timers, a serial interface and an external interrupt and are applicable to welfare products, especially portable devices required savings in board space.
*: F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- High-speed processing at low voltage

Minimum execution time: $0.5 \mu \mathrm{~s} / 3.5 \mathrm{~V}$ at 8 MHz

- F^{2} MC-8L family CPU core
- Timer

8-bit PWM timer (also usable as a reload timer)

- Serial interface

Switchable transfer direction allows communication with various equipment.

- External interrupt

Capable of wake-up from low-power consumption modes (with an edge detection function)

- Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption.)
Sleep mode (The CPU stops to reduce the current consumption to approx. $1 / 3$ of normal.)

PACKAGE

PRODUCT LINEUP

Part number Parameter	MB89601R	MB89603	MB89P601	MB89PV620*1
Classification	Mass production products (mask ROM products)		One-time PROM product	Piggyback/evaluation product (for evaluation and development)
ROM size (internal ROM)	$4 \mathrm{~K} \times 8$ bits (internal mask ROM)	$8 \mathrm{~K} \times 8$ bits (internal mask ROM)	$4 \mathrm{~K} \times 8$ bits (external ROM, programming with general-purpose EPROM programmer)	$32 \mathrm{~K} \times 8$ bits (external ROM)
RAM size	80×8 bits			$1 \mathrm{~K} \times 8$ bits
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: $1,8,16$ bits Minimum execution time: $0.5 \mu \mathrm{~s} / 8 \mathrm{MHz}$ Interrupt processing time: $4.5 \mu \mathrm{~s} / 8 \mathrm{MHz}$			
Ports	Input ports: Output ports: I/O ports (N-ch open-drain) Output ports (CMOS): I/O ports (CMOS): Total:	1 (also serve as p none) 8 (3 ports also ser none 24 (1 port also serv 33	ipherals.) as peripherals) es as peripherals.)	5 (4 ports also serve as peripherals.) 8 (8 ports also serve as peripherals.) 8 (4 ports also serve as peripherals.) 8 (8 ports also serve as peripherals.) 24 (24 ports also serve as peripherals.)
8-bit PWM timer	8-bit reload timer operation (toggled output capable, operating clock cycle: 0.5 to $8 \mu \mathrm{~s}$) 8-bit resolution PWM operation (conversion cycle: 128 to $2048 \mu \mathrm{~s}$)			
8-bit pulse-width count timer		none		8-bit timer operation 8 -bit reload timer operation 8-bit pulse-width measurement operation
16-bit timer/counter		none		16-bit timer operation 16-bit event conter
8-bit serial I/O	LSB fir One clock sel (one external shift clock, th	8 bits first/MSB first selecta electable from four tr hree internal shift clock	ility sfer clocks $1.0 \mu \mathrm{~s}, 4.0 \mu \mathrm{~s}, 16.0 \mu \mathrm{~s})$	SI/O $\times 2$ channels
8-bit A/D converter		none		8-bit resolution $\times 8$ channels A/D conversion mode Sense mode Reference voltage input
External interrupt	Edge selection Rising ed Used also for (Edge detectio	tion, interrupt vector, dge/falling edge sele wake-up from stop/s is also permitted in	source flag tability eep modes. stop mode.)	External interrupt $\times 4$ channels

(Continued)

MB89601R Series

(Continued)

Part number Parameter	MB89601R	MB89603	MB89P601	MB89PV620*1
Standby mode	Sleep mode, stop mode			
Process	CMOS			
Operating voltage*1	2.2 V to 6.0 V	2.7 V to 6.0 V		
EPROM for use		-		MBM27C256A-20TV MBM27C256A-20CZ

*1: The piggyback/evaluation product is applicable to the MB89620 series.
*2: Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89601R MB89603 MB89P601	MB89PV620
DIP-48P-M05	\circ	\times
MDP-64C-P02	\times	\bigcirc
MQP-64C-P01	\times	\circ

O : Available \times : Not available
Note: For more information about each package, see section "■ Package Dimensions."

- DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- On the MB89601R, MB89603, MB89P601, upper than 0140н of each register bank cannot be used.
- The stack area, etc., is set at the upper limit of the RAM.
- External area is used.

2. Current Consumption

- In the case of the MB89PV620, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.

However, the current consumption in sleep/stop modes is the same. (For more information, see sections "■ Electrical Characteristics" and "■ Example Characteristics.")

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.
Before using options check " \quad Mask Options."
Take particular care on the following point:

- Options are fixed on the MB89PV620 and MB89P601.

MB89601R Series

PIN ASSIGNMENT

(FPT-48P-M05)

(MDP-64C-P02)

MB89601R Series

- Pin assignment on package top (MB89PV620 only)

Pin no.	Pin name						
65	N.C.	73	A2	81	N.C.	89	$\overline{\text { OE }}$
66	VPp	74	A1	82	O4	90	N.C.
67	A12	75	A0	83	O5	91	A11
68	A7	76	N.C.	84	O6	92	A9
69	A6	77	O1	85	O7	93	A8
70	A5	78	O2	86	O8	94	A13
71	A4	79	O3	87	$\overline{\text { CE }}$	95	A14
72	A3	80	Vss	88	A10	96	Vcc

N.C.: Internally connected. Do not use.

PIN DESCRIPTION

- MB89601R/603/P601

Pin no.	Pin name	Circuit type	Function
3	X0	A	Cystal oscillator pins
2	X1		
38	MOD0	B	Operating mode selection pins Connect directly to Vss.
35	MOD1		
14	RST	C	Reset I/O pin This pin is an N-ch open-drain output type with a pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".
27 to 34	P00 to P07	D	General-purpose I/O ports
39 to 46	P10 to P17		
16 to 22	P30 to P36	E	General-purpose I/O ports This port is a hysteresis input type. A software pull-up resistor is provided as an option.
23	P37/PTO		General-purpose I/O port This port is a hysteresis input type. Also serves as the toggle output for the 8-bit PWM timer. A software pull-up resistor is provided as an option.
4 to 8	P40 to P44	G	N-ch open-drain I/O port This port is a hysteresis input type.
9	P45/SCK		N -ch open-drain I/O port This port is a hysteresis input type. Also serves as the clock I/O for the serial I/O.
$\begin{aligned} & 10, \\ & 11 \end{aligned}$	$\begin{aligned} & \text { P46/SO, } \\ & \text { P47/SI, } \end{aligned}$		N -ch open-drain I/O port This port is a hysteresis input type. Also serves as the data output for the serial I/O.
15	P60/INT	1	General-purpose input-only port Also serves as an external interrupt input. This port is a hysteresis input type.
26	Vcc	-	Power supply pin
47	Vss	-	Power supply (GND) pin
$\begin{aligned} & 1,12,13, \\ & 24,25,36, \\ & 37,48 \end{aligned}$	N.C.	-	Be sure to leave them open.

* : FPT-48P-M05

MB89601R Series

- MB89PV620

| Pin no. | | Pin name | Circuit
 type | Function |
| :---: | :---: | :--- | :---: | :--- | :--- |

[^0](Continued)

MB89601R Series

(Continued)

Pin no.		Pin name	$\underset{\text { type }}{\text { Circuit }}$	Function
MDIP*1	MQFP ${ }^{2}$			
33	26	P27/ALE	F	General-purpose output-only port When an external bus is used, this port functions as an address latch signal output.
58	51	P30/ADST	E	General-purpose I/O port Also serves as the external activation input for the A/D converter. This port is a hysteresis input type.
59	52	P31/SCK1	E	General-purpose I/O port Also serves as the clock I/O for the serial I/O 1. This port is a hysteresis input type.
60	53	P32/SO1	E	General-purpose I/O port Also serves as the data output for the serial I/O 1. This port is a hysteresis input type.
61	54	P33/SI1	E	General-purpose I/O port Also serves as the data input for the serial I/O 1. This port is a hystereisis input type.
62	55	P34/EC	E	General-purpose I/O port Also serves as the external clock input for the 16-bit timer/counter. This port is a hysteresis input type.
63	56	P35/PWC	E	General-purpose I/O port Also serves as the measured-pulse input for the 8-bit pulse width-counter. This port is a hysteresis input type.
1	58	P36/WTO	E	General-purpose I/O port Also serves as the toggle output for the 8 -bit pulse-width counter. This port is a hysteresis input type.
2	59	P37/PTO	E	General-purpose I/O port Also serves as the toggle output for the 8-bit PWM timer. This port is a hysteresis input type.
3 to 6	60 to 63	P40 to P43	G	N-ch open-drain I/O ports This port is a hysteresis input type.
7	64	P44/BZ	G	N-ch open-drain I/O port Also serves as a buzzer output. This port is a hysteresis input type.
8	1	P45/SCK2	G	N-ch open-drain I/O port Also serves as the clock I/O for the serial I/O 2. This port is a hysteresis input type.
9	2	P46/SO2	G	N-ch open-drain I/O port Also serves as the data output for the serial I/O 2. This port is a hysteresis input type.

*1: MDP-64C-P02
*2: MQP-64C-P01

MB89601R Series

(Continued)

Pin no.		Pin name	$\underset{\text { type }}{\text { Circuit }}$	Function
MDIP* ${ }^{1}$	MQFP ${ }^{+2}$			
10	3	P47/SI2	G	N-ch open-drain I/O port Also serves as the data I/O for the serial I/O 2. This port is a hysteresis input type.
11 to 18	4 to 11	P50/ANO to P57/AN7	H	N-ch open-drain output-only ports Also serves as the analog input for the A/D converter.
22 to 25	15 to 18	P60/INT0 to P63/INT3	I	General-purpose input-only ports Also serves as an external interrupt input. This port is a hysteresis input type.
26	19	P64	1	General-purpose input-only port This port is a hysteresis input type.
64	57	Vcc	-	Power supply pin
$\begin{aligned} & 32, \\ & 57 \end{aligned}$	$\begin{aligned} & 25, \\ & 50 \end{aligned}$	Vss	-	Power supply (GND) pins
19	12	AV ${ }_{\text {cc }}$	-	A/D converter power supply pin
20	13	AVR	-	A/D converter reference voltage input pin
21	14	AVss	-	A/D converter power supply pin. Use this port at the same voltage as V_{ss}.

*1: MDP-64C-P02
*2: MQP-64C-P01

MB89601R Series

- External EPROM pins (MB89PV620 only)

Pin no.		Pin name	I/O	Function
MDIP	MQFP			
65	66	$\mathrm{V}_{\text {PP }}$	0	" H " level output pin
$\begin{aligned} & 66 \\ & 67 \\ & 68 \\ & 69 \\ & 70 \\ & 71 \\ & 72 \\ & 73 \\ & 74 \end{aligned}$	$\begin{aligned} & 67 \\ & 68 \\ & 69 \\ & 70 \\ & 71 \\ & 72 \\ & 73 \\ & 74 \\ & 75 \end{aligned}$	A12 A7 A6 A5 A4 A3 A2 A1 A0	O	Address output pins
$\begin{aligned} & 75 \\ & 76 \\ & 77 \end{aligned}$	$\begin{aligned} & 77 \\ & 78 \\ & 79 \end{aligned}$	$\begin{aligned} & \mathrm{O} 1 \\ & \mathrm{O} 2 \\ & \mathrm{O} 3 \end{aligned}$	1	Data input pins
78	80	Vss	O	Power supply (GND) pin
$\begin{aligned} & 79 \\ & 80 \\ & 81 \\ & 82 \\ & 83 \end{aligned}$	$\begin{aligned} & 82 \\ & 83 \\ & 84 \\ & 85 \\ & 86 \end{aligned}$	$\begin{aligned} & \text { O4 } \\ & \text { O5 } \\ & 06 \\ & 07 \\ & 08 \end{aligned}$	I	Data input pins
84	87	$\overline{\mathrm{CE}}$	0	ROM chip enable pin Outputs "H" during standby.
85	88	A10	O	Address output pin
86	89	$\overline{\mathrm{OE}}$	O	ROM output enable pin Outputs " L " at all times.
$\begin{aligned} & 87 \\ & 88 \\ & 89 \end{aligned}$	$\begin{aligned} & 91 \\ & 92 \\ & 93 \end{aligned}$	$\begin{aligned} & \text { A11 } \\ & \text { A9 } \\ & \text { A8 } \end{aligned}$	O	Address output pins
90	94	A13	0	
91	95	A14	O	
92	96	Vcc	O	EPROM power supply pin
-	$\begin{aligned} & 65 \\ & 76 \\ & 81 \\ & 90 \end{aligned}$	N.C.	-	Internally connected pins Be sure to leave them open.

MB89601R Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
B	$\square \longrightarrow-$	
C		- At an output pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ - Hysteresis input
D		- CMOS I/O - Pull-up resistor optional (MB89601R/603 only)
E		- CMOS output - Hysteresis input - Software pull-up resistor optional

(Continued)

MB89601R Series

(Continued)

Type	Circuit	Remarks
F		- CMOS output
G		- N-ch open-drain output - Hysteresis input - Pull-up resistor optional (MB89601R/603 only)
H		- N-ch open-drain output - Analog input - Pull-up resistor optional
I		- Hysteresis input - Pull-up resistor optional (MB89601R/603 only)

MB89601R Series

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to input and output pins other than P40 to P47, P60 or if higher than the voltage which shows on section "■ Electrical Characteristics" is applied between V_{cc} and V_{ss}.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

4. Power Supply Voltage Fluctuations

Although V_{cc} power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V_{cc} ripple fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard V cc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

5. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

MB89601R Series

PROGRAMMING TO THE EPROM ON THE MB89P601

The MB89P601 is an OTPROM version of the MB89601R series.

1. Features

- 4-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in each mode such as 4-Kbyte PROM is diagrammed below.

Address	Single chip	EPROM mode (Corresponding addresses on the EPROM programmer)	
$0000 \mathrm{H} \rightarrow \square_{\mathrm{I} / \mathrm{O}}$			
0080 $\mathrm{H} \rightarrow$	RAM		
0140H \rightarrow	Not available		
$8000 \mathrm{H} \rightarrow$	Not available		Vacancy (Read value FFH)
$\mathrm{E} 000 \mathrm{H} \rightarrow$	PROM 4 KB		$\begin{gathered} \text { EPROM } \\ 4 \mathrm{~KB} \end{gathered}$
FFFFH \rightarrow		- 7FFFH	

3. Programming to the EPROM

In EPROM mode, the MB89P601 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.
When the operating ROM area for a single chip is 32 Kbytes ($8000_{\text {н }}$ to $\mathrm{FFFF}_{\mathrm{H}}$) the PROM can be programmed as follows:

- Programming procedure

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 7000 н to 7 FFFн (note that addresses $\mathrm{EOOO}_{\text {н }}$ to FFFF н while operating as a single chip assign to 7000 н to 7 FFFн in EPROM mode).
(3) Program to 0000 н to 7 FFFF with the EPROM programmer.

MB89601R Series

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-48P-M05	ROM-48QF-28DP-8L

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760 Note: Connect the adapter jumper pin to Vss when using.

MB89601R Series

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TV, MBM27C256A-20CZ

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32(Rectangle)	ROM-32LC-28DP-YG

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

3. Memory Space

Memory space in each mode, such as 32-Kbyte PROM, is diagrammed below.

4. Programming to the EPROM

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0006н to 7 FFF н.
(3) Program to 0000 to 7 FFFF with the EPROM programmer.

MB89601R Series

BLOCK DIAGRAM

MB89601R Series

CPU CORE

1. Memory Space

The microcontrollers of the MB89601R series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89601R series is structured as illustrated below.

Memory Space

MB89601R Series

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification
Extra pointer (EP):
Stack pointer (SP):
A 16-bit pointer for indicating a memory address
A 16-bit register for indicating a stack area
Program status (PS)

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

MB89601R Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low $=$ no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

MB89601R Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to 32 banks can be used on the architecture, but only 8 banks can be used on the MB89601R series due to the restricted internal RAM size. The bank currently in use is indicated by the register bank pointer (RP).

Register Bank Configuration

Note: For software development, take care that the usable register banks on the MB89601R/603 are different from that on the MB89PV620. On the MB89PV620, up to 32 banks can be used.

MB89601R Series

I/O MAP

Address	Read/write	Register name	Register description
00H	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	SPCR	Port 3 pull-up register
05 H			Vacancy
06н			Vacancy
07H			Vacancy
08H	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog timer control register
ОАн	(R/W)	TBTC	Clock interrupt control register
OBн			Vacancy
$0 \mathrm{CH}_{\mathrm{H}}$	(R/W)	PDR3	Port 3 data register
ODH	(W)	DDR3	Port 3 data direction register
ОЕн	(R/W)	PDR4	Port 4 data register
OF\%			Vacancy
10н			Vacancy
11H	(R)	PDR6	Port 6 data register
12H	(R/W)	CNTR	PWM control register
13H	(W)	COMR	PWM compare register
14 H			Vacancy
15 H			Vacancy
16 ${ }^{\text {H}}$			Vacancy
17 ${ }^{\text {H}}$			Vacancy
18H			Vacancy
19н			Vacancy
$1 \mathrm{AH}^{\text {H}}$			Vacancy
1 BH			Vacancy
1 CH			Vacancy
1䉼			Vacancy
1Ен	(R/W)	SMR	Serial mode register
1 FH	(R/W)	SDR	Serial data register

(Continued)

MB89601R Series

(Continued)

Address	Read/write	Register name	Register description
2 OH			Vacancy
21H			Vacancy
22 H			Vacancy
23-			Vacancy
24 +	(R/W)	EIC	External interrupt control register
25- to 7Вн			Vacancy
$7 \mathrm{C}_{\mathrm{H}}$	(W)	ILR1	Interrupt level setting register 1
7D	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7F			Vacancy

Note: Do not use vacancies.

MB89601R Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	V cc	Vss -0.3	Vss +7.0	V	
Input voltage	V_{11}	Vss-0.3	Vcc +0.3	V	Except P40 to P47, P60
	V_{12}	Vss-0.3	Vss +7.0	V	P40 to P47, P60
Output voltage	Vo1	Vss-0.3	Vcc +0.3	V	Except P40 to P47
	Vo2	Vss-0.3	Vss +7.0	V	P40 to P47
" L " level maximum output current	IoL	-	20	mA	
"L" level average output current	lolav	-	4	mA	Average value (operating current \times operating rate)
"L" level total average output current	£lolav	-	40	mA	Average value (operating current \times operating rate)
"L" level total maximum output current	Elo	-	100	mA	
" H " level maximum output current	Іон	-	-20	mA	
" H " level average output current	Iohav	-	-4	mA	Average value (operating current \times operating rate)
"H" level total average output current	\sum lohav	-	-20	mA	Average value (operating current \times operating rate)
" H " level total maximum output current	£ ${ }^{\text {loн }}$	-	-50	mA	
Power consumption	PD	-	300	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded.
Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB89601R Series

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	2.2*	6.0	V	Normal operation assurance range* MB89601R/603
		2.7*	6.0	V	Normal operation assurance range* MB89P601
		1.5	6.0	V	Retains the RAM state in stop mode
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	

*: These values vary with the operating frequency. See Figure 1.

Note: The shaded area is assured only for the MB89601R/603.

Figure 1 Operating Voltage vs. Clock Operating Frequency

MB89601R Series

3. DC Characteristics

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
" H " level input voltage	$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & \hline \text { P00 to P07, } \\ & \text { P10 to P17 } \end{aligned}$	-	0.7 Vcc	-	$\mathrm{V}_{\mathrm{cc}}+0.3$	V	
	VIHS1	$\begin{aligned} & \text { P30 to P37, } \\ & \text { MOD0, MOD1, } \\ & \hline \text { RST } \end{aligned}$	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	VIHS2	$\begin{aligned} & \text { P40 to P47, } \\ & \text { P60 } \end{aligned}$	-	0.8 Vcc	-	Vss +6.0	V	
"L" level input voltage	VIL	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17 } \end{aligned}$	-	Vss - 0.3	-	0.3 Vcc	V	
	Vıss	```P30 to P37, MOD0, MOD1, RST, P40 to P47, P60```	-	Vss - 0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	V	P40 to P47	-	Vss - 0.3	-	Vss +6.0	V	
"H" level output voltage	Vон	P00 to P07, P10 to P17, P30 to P37	$\mathrm{lor}=-2.0 \mathrm{~mA}$	4.0	-	-	V	
"L" level output voltage	Vol	P00 to P07, P10 to P17, P30 to P37, P40 to P47	$\mathrm{loL}=+1.8 \mathrm{~mA}$	-	-	0.4	V	
	VoL2	$\overline{\mathrm{RST}}$	$\mathrm{loL}=+4.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current (Hi-z output leakage current)	IL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P60, MOD0, MOD1	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-	-	± 5	$\mu \mathrm{A}$	Without pullup resistor
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P60, RST	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$	

(Continued)

MB89601R Series

(Continued)
$\left(\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current*	Icc	Vcc	$\mathrm{Fc}=8 \mathrm{MHz}$ Normal operating mode	-	9	15	mA	
			$\mathrm{Fc}=8 \mathrm{MHz}$	-	10	18	mA	MB89P601
	Iccs		$\begin{aligned} & \mathrm{F}_{\mathrm{c}}=8 \mathrm{MHz} \\ & \text { Sleep mode } \end{aligned}$	-	3	4	mA	External clock
	Іссн		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { Stop mode } \end{aligned}$	-	-	10	$\mu \mathrm{A}$	
Input capacitance	Cin	Other than $V_{c c}$ and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

*:The power supply current is measured at the external clock.
Note: A pull-up resistor for P00 to P07, P10 to P17, P40 to P47 and P60 is selectable on MB89601R/603 only.

4. AC Characteristics

(1) Reset Timing

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\mathrm{RST}}$ "L" pulse width	tzızH	-	16 txcyL	-	ns	

Note: txcyL is the oscillation cycle $\left(1 / \mathrm{F}_{\mathrm{c}}\right)$ to input to the X 0 pin.

MB89601R Series

(2) Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tR	-	-	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Abrupt change in power supply voltage may cause a power-on reset.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Clock frequency	Fc	X0, X1	-	1	8	MHz	
Clock cycle time	txycL	X0, X1	-	125	-	ns	
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \mathrm{P}_{\mathrm{ww}} \end{aligned}$	X0	-	20	-	ns	External clock
Input clock rising/falling time	$\begin{aligned} & \text { tcr } \\ & \text { tcF } \end{aligned}$	X0	-	-	10	ns	External clock

MB89601R Series

X0 and X1 Timing and Conditions

Clock Conditions

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{F}_{\mathrm{c}}$	$\mu \mathrm{s}$	tinst $=0.5 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{c}}=8 \mathrm{MHz}$

(5) Serial I/O Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK	Internal shift clock mode	2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		1/2 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tshsL	SCK	External shift clock mode	1 tinst**	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsısh	SCK		1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tslov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		1/2 tins* ${ }^{*}$	-	$\mu \mathrm{S}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$	

[^1]
MB89601R Series

Internal Shift Clock Mode

External Shift Clock Mode

MB89601R Series

(6) Peripheral Input Timing

$\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Peripheral input "H" pulse width 1	tıIIH1	INT	-	2 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	tiHLL1			2 tinst*	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

MB89601R Series

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage

Vol vs. lol

(2) "H" Level Output Voltage

(3) "H" Level Input Voltage/"L" Level Input Voltage

Vin vs. Vcc

$\mathrm{V}_{\text {Iнs: }}$ Threshold when input voltage in hysteresis characteristics is set to " H " level
Vıs: Threshold when input voltage in hysteresis characteristics is set to "L" level

MB89601R Series

(4) Pull-up Resistance

MB89601R Series

- INSTRUCTIONS (136 INSTRUCTIONS)

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of x is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	The address indicated by the contents of x is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:
Mnemonic: Assembler notation of an instruction
~: \quad The number of instructions
\#: \quad The number of bytes
Operation: Operation of an instruction
TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH prior to the instruction executed.
- 00 becomes 00.
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

MB89601R Series

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(\mathrm{dir}) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) +off $) \leftarrow(A)$	-	-	-	----	46
MOV ext,A	4	3	$($ (ext) $\leftarrow(A)$	-	-	-		61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(A)$	-	-	-		47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	(A) \leftarrow d 8	AL	-	-	+ + - -	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ + - -	05
MOV A,@IX +off	4	2	(A) $\leftarrow($ (IX) + off $)$	AL	-	-	+ + - -	06
MOV A,ext	4	3	(A) $\leftarrow($ ext $)$	AL	-	-	+ + - -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}(A)\end{array}\right)$	AL	-	-	+ +--	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP}))$	AL	-	-	+ + -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	$(\mathrm{dir}) \leftarrow \mathrm{d} 8$	-	-	-	---	85
MOV @IX +off,\#d8	5	3	$($ (IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$((E P)) \leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-		88 to 8 F
MOVW dir,A	4	2	$($ dir $) \leftarrow(A H),($ dir +1$) \leftarrow(A L)$	-	-	-		D5
MOVW @IX +off,A	5	2	$\left\lvert\, \begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}\right.$	-	-	-	---	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-		D7
MOVW EP,A	2	1	$(E P) \leftarrow(A)$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(\mathrm{A}) \leftarrow \mathrm{d} 16$	AL	AH	dH	+ + --	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow$ (dir), $(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$(\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off})$, $(A L) \leftarrow((I X)+o f f+1)$	AL	AH	dH	+ +--	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow($ ext $),(\mathrm{AL}) \leftarrow($ ext + 1)	AL	AH	dH	+ + - -	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow(\mathrm{A}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{A})+1)$	AL	AH	dH	+ +--	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}), \mathrm{l}(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ +--	C7
MOVW A,EP	2	-	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	---	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	---	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	--	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	--	E1
MOVW A,SP	2		$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH		F1
MOV @A,T	3	1	$($ (A$) \mathrm{)} \leftarrow(\mathrm{~T})$	-	-	-		82
MOVW @A,T	4	1	$((\mathrm{A})) \leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-	---	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	---	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow$ (PS)	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	--- -	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, ${ }^{\text {T }}$	2	,	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Note During byte transfer to $A, T \leftarrow A$ is restricted to low bytes.
Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

MB89601R Series

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(A) \leftarrow(A)+d 8+C$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(A) \leftarrow(A)+($ dir $)+C$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(A) \leftarrow(A)+((I X)+$ off $)+C$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{EP}))+\mathrm{C}$	-	-	-	+ + + +	27
ADDCW A	3	1	$(A) \leftarrow(A)+(T)+C$	-	-	dH	+ + + +	23
ADDC A	2	1	$(A L) \leftarrow(A L)+(T L)+C$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(A) \leftarrow(A)-(R i)-C$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(A) \leftarrow(A)-d 8-C$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(A) \leftarrow(A)-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(A) \leftarrow(A)-((I X)+$ off $)-C$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(A) \leftarrow(A)-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(A) \leftarrow(T)-(A)-C$	-	-	dH	+ + + +	33
SUBC A	2	1	$(A L) \leftarrow(T L)-(A L)-C$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + + -	C8 to CF
INCW EP	3	1	$(E P) \leftarrow(E P)+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	$(A) \leftarrow(A)+1$	-	-	dH	+ + - -	C0
DEC Ri	4	1	$(R i) \leftarrow(R i)-1$	-	-	-	+ + + -	D8 to DF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+ + - -	D0
MULU A	19	1	$(A) \leftarrow(A L) \times(T L)$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	-	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	+ + R -	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$\square \mathrm{C} \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + - +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) - ((EP))	-	-	-	$++++$	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	$++++$	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	+ + R -	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir)	-	-	-	$++\mathrm{R}-$	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	$++\mathrm{R}-$	57
XOR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$	-	-	-	$++\mathrm{R}-$	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	$++\mathrm{R}-$	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge$ d8	-	-	-	$++\mathrm{R}-$	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$	-	-	-	+ + R -	65

(Continued)

MB89601R Series

(Continued)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(A) \leftarrow(A L) \vee(T L)$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee \mathrm{d} 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow(A L) \vee($ dir $)$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow(A L) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	(A) $\leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	++++	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) + off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	----	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FD
BNZ/BNE rel	3	2	If $Z=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	--	FA
BLT rel	3	2	If $V \forall \mathrm{~N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-+--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b$)=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-+--	B 8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow$ ext	-	-	-	----	21
CALLV \#vct	6		Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	-	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	---	50
PUSHW IX	4	1		-	-	-	---	41
POPW IX	4	1		-	-	-	---	51
NOP	1	1		-	-	-	---	00
CLRC	1	1		-	-	-	$---R$	81
SETC	1	1		-	-	-	$---S$	91
CLRI			-	-	-	----	80	
SETI	1	1			-	90		

MB89601R Series

INSTRUCTION MAP

	0		2	3	4	5										
0	NOP	SWAP	RET	RETI	${ }_{\text {A }}$	POPW ${ }_{\text {A }}$	$\mathrm{MOV}_{\mathrm{A}, \mathrm{ext}}$		CLRI	SETI	dir:0	$\left\lvert\, \frac{\mathrm{BBC}}{\mathrm{dif}: \mathrm{O}, \mathrm{re}}\right.$	A	${ }_{\text {A }}$	@A	A,PC
1						${ }^{\text {POPW }}{ }_{\text {IX }}$	$\mathrm{MOV}_{\text {ext }, \mathrm{A}}$	Mown	CLRC		$\begin{aligned} & \text { R }{ }^{2 r}: 1 \end{aligned}$	$\left\lvert\, \begin{array}{\|c\|} \text { BBC } \\ \text { dir: } 1, \mathrm{re} \end{array}\right.$	${ }_{\text {SP }}$	w ${ }_{\text {sP }}$	$\mid \underset{\text { PP,A }}{\text { MOW }}$	MOVW ${ }_{\text {A,SP }}$
2		CMP			$\mathrm{XCH}_{\mathrm{A}, \mathrm{~T}}$	${ }^{\mathrm{XOR}} \mathrm{A}$	${ }^{\text {AND }}$ a	OR a	$\mathrm{CV} \mathrm{CAT}$	$\stackrel{A}{\mathrm{~A},(\mathrm{~A}}$	$\begin{aligned} & \text { dir: } 2 \end{aligned}$	$\mathrm{C} 2, \mathrm{rel}$	IX	IX	$\left\lvert\, \begin{array}{\|l\|l\|} \operatorname{Movw} \\ \mid \end{array}\right.$	A, ${ }^{\text {a }}$
3					$\underset{\text { A,T } T \mid}{\text { xСнw }}$	${ }^{\text {XORW }}{ }_{\text {A }}$	${ }^{\text {ANDW }}{ }_{\text {a }}$	ORW ${ }_{\text {A }}$	$\underset{\text { @OW, }}{\mathrm{MOW}}$	$\underset{\text { A,@A }}{\substack{\text { MOW }}}$	dir:	$\left\|\begin{array}{\|l\|} \hline \mathrm{BBC} \\ \text { dir: } 3, \mathrm{rel} \end{array}\right\|$	$\left.\right\|^{1 N C W}{ }_{E P}$	$\underset{\mathrm{EP}}{\mathrm{DECW}}$	$\underset{\text { EP, }}{\substack{\text { MOVW }}}$	A,EP
4	Cl	$\underset{\mathrm{A}, \mathrm{fd} \mathrm{di}}{\mathrm{CMP}}$	$\begin{array}{\|l\|} \hline \text { ADDC } \\ \text { A,\#d8 } \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { SUBC } \end{array}$			$\underset{A, \neq d 8}{A N D}$	A. $\ddagger d 8$	DAA	DAS	Bir:	$\left\lvert\, \begin{array}{l\|} \hline \mathrm{BBC} \\ \text { dif: } 4, \mathrm{rel} \end{array}\right.$	$\begin{array}{\|c\|} \hline \text { MOVW } \\ \text { A,ext } \end{array}$	$\underset{\text { exx, }, \mathrm{A}}{\operatorname{Movw}}$	$\underset{A, f+16}{M O W}$	$\mathrm{Am}_{\mathrm{A}, \mathrm{P},}$
5	${ }_{A, \text {,dir }}$	$\mathbb{P}_{\mathrm{A}, \text { dir }}$	$\mathrm{A}, \mathrm{~d}$	$\underset{\text { A,dir }}{\text { SUBC }}$		$\mathrm{xoR}_{\mathrm{A}, \mathrm{dir}}$	A,dir	$\mathrm{OR}_{\mathrm{A}, \mathrm{dir}}$			$\text { dir: } 5$	$\left\lvert\, \begin{array}{\|c\|} \hline \text { BBC } \\ \text { dir: reel } \end{array}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{MO}, \mathrm{dir} \end{aligned}\right.$	$\operatorname{Movw}_{\text {di, A }}$	$\underset{\text { SPOw } 146}{\text { Mow }}$	${ }_{A, S P}^{A N}$
6						$\begin{aligned} & \mathrm{XOR} \\ & \mathrm{~A}, \mathrm{QX}+\mathrm{d} \end{aligned}$	$\begin{aligned} & \text { AND } \\ & \text { A,@IX +d } \end{aligned}$	$\mathrm{O}_{\mathrm{A}, \mathrm{@X}+\mathrm{d}}$			$\text { dir: } 6$	$\underset{\text { dir: } 6, \text { rel }}{\text { BBC }}$	$\begin{array}{l\|l\|} \hline \text { MOVW } \\ \text { A, @IX } \\ \hline \end{array}$	$\left.\begin{array}{\|c\|c\|} \text { Movw } \\ @ \mid X+d, A \end{array} \right\rvert\,$	$\operatorname{Moww}_{\|x, \pm 16\|}$	N
7	A, C	$\underset{\mathrm{A}, \text { CMEPP }}{\text { CMP }}$	$\underset{\mathrm{A}, @ \in \mathrm{ADP}}{\mathrm{ADCO}}$	$\underset{A, \varrho \in P}{\substack{\text { SUBC }}}$	$\begin{array}{\|c\|c\|} \hline \text { MOV } \\ \text { @EP, } \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { AOR } \\ \hline \end{array}$	$\underset{\mathrm{A}, \text { ©ЕP }}{\text { AND }}$	$\underset{\mathrm{A}, \text { OEP }}{\mathrm{OR}}$			${ }_{\text {diri: } 7}$	$\left\lvert\, \begin{array}{l\|} \mathrm{BBC} \\ \text { dir: } 7, \text { rel } \end{array}\right.$	$\operatorname{Mow}_{\mathrm{A}, @ \mathrm{CP}}$	$\underset{@ \in P, A}{\text { Mown }}$		$\mathrm{A}_{\mathrm{A}, \mathrm{EP}}$
8	$\mathrm{V}_{\mathrm{A}, \mathrm{RO}}$	${ }_{\mathrm{CMP}, \mathrm{RO}}$	$\underset{A, R O}{A D D C}$	$\begin{array}{\|l\|} \hline \text { SUBC } \\ \hline \text { SO } \\ \hline \end{array}$	$\underset{\text { Ro, A }}{ }$	${ }_{\mathrm{AORO}}^{\mathrm{XO}}$	${ }_{A, R O}$	$\mathrm{OR}_{\mathrm{A}, \mathrm{RO}}$	$\begin{gathered} \text { MOV } \\ \text { Ro, } \mathrm{Ad} 8 \end{gathered}$	\mathbb{P}	$\begin{gathered} \text { SETB } \\ \text { dir: } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { BBS } \\ & \text { dir: } 0, \text { rel } \end{aligned}\right.$	INC ${ }^{\text {Ro }}$	DEC ${ }_{\text {RO }}$	\#0	${ }^{\text {BNC }}{ }_{\text {rel }}$
9	A,R1	A,R1	$\underset{A, R 1}{D D C}$		$\left\lvert\, \begin{array}{c\|c\|} \operatorname{MOV} \\ \text { R1, } \end{array}\right.$	$\mathrm{XOR}_{\mathrm{A}, \mathrm{R1}}$	${ }^{\mathrm{AND} D}{ }_{\mathrm{A}, \mathrm{R1}}$	${ }^{O R} \quad{ }_{\mathrm{A}, \mathrm{R} 1}$	$\left\lvert\, \begin{gathered} \text { R1, } 10 \mathrm{de8} \end{gathered}\right.$	R1,\#d	$\underset{\text { dir: } 1}{\text { SETB }}$	$\left\|\begin{array}{\|l\|} \text { BBS } \\ \text { dir: } 1, \text { rel } \end{array}\right\|$	R1	R1	\#1	$\mathrm{BC}^{\text {rel }}$
A	A,R2	${ }_{A, R 2}{ }_{A, R 2}$	$\underset{A, R 2}{A D D C}$	$\underset{A, R 2}{S U B C}$	$\mathrm{MOV}_{\mathrm{R} 2, \mathrm{~A}}$	$\mathrm{XOR}_{\mathrm{A}, \mathrm{R} 2}$	${ }^{N N D}{ }_{A, R 2}$	${ }^{O R}{ }_{A, R 2}$	$\left\lvert\, \begin{gathered} \text { Mov } 2, \pm 88 \end{gathered}\right.$	$\underset{\text { R2 } \# \pm 88}{\text { CMP }}$	SETB	$\mid \mathrm{BBS}$	${ }^{\text {NC }}$ R2	R2	\#2	BP ${ }^{\text {rel }}$
B	A,R3	$\mathrm{CMP}_{\mathrm{A}, \mathrm{R3}}$	$\left\lvert\, \begin{array}{\|c\|c\|} \hline A D C D \\ \hline \end{array}\right.$	$\underset{\mathrm{A}, \mathrm{Ra}}{ } \mathrm{suBC}^{\text {sic }} \mid$	$\underset{\mathrm{R} 3, \mathrm{~A}}{\mathrm{MOV}}$	$\stackrel{\mathrm{XOR}}{\mathrm{~A}, \mathrm{~B} 3}$	${ }^{\text {NND }} \mathrm{A}, \mathrm{B3}$	${ }^{O R} \quad{ }_{A, R 3}$	$\operatorname{mov}_{\mathrm{R}, \mathrm{Ad8}}^{\mathrm{Mov}}$	$\underset{\text { RMP } \#+188}{\text { CMP }}$	$\begin{array}{\|c\|} \hline \text { Sir: } 3 \end{array}$	$\left\lvert\, \begin{aligned} & \text { BBS } \\ & \text { dir: } 3, \text { rel } \end{aligned}\right.$	INC \quad R3	R3	\#3	$\mathrm{BN}^{\text {Brel }}$
c	A,R4	$\mathbb{P P}_{A, R 4}$	$\left\lvert\, \begin{array}{\|c} \mathrm{ADDC} \\ \hline \end{array}\right.$	$\left\lvert\, \begin{array}{\|c\|c\|} \hline \text { subc } \\ \hline, 84 \end{array}\right.$	$\mid \mathrm{MOV}_{\mathrm{R} 4, \mathrm{~A}}$	$\stackrel{\mathrm{XOR}}{\mathrm{~A}, \mathrm{BA}}$	${ }^{N D}{ }_{A, R 4}$	${ }^{O R}$	$\operatorname{MOV}_{\text {R4, } \mathrm{A} 88}$	CMP $\mathrm{R}_{\mathrm{R}, \mathrm{ftd8}}$	$\text { Eiri: }{ }_{\text {dir }}$	$\left\lvert\, \begin{aligned} & \text { difif } 4, \text { ere } \end{aligned}\right.$	${ }^{\text {INC }}$ R4	R4	${ }_{\# 4}$	BNZ rel
D	$A, R 5$	A, R5	A,R5	$\underset{\mathrm{A}, \mathrm{R5}}{\mathrm{SUBC}}$	$\mid \mathrm{MOV}_{\mathrm{R} 5, \mathrm{~A}}$	$\begin{aligned} R_{A, R 5} \\ \hline \end{aligned}$	A,R5	${ }^{\circ \mathrm{OR}} \mathrm{~A}, \mathrm{R5}$	$\mathbf{M O V}_{\text {R5, td8 }}^{\text {Mov }}$	CMP ${ }_{\text {R } 5, \text { \#d }}$	SETB	$\left\lvert\, \begin{array}{c\|} \text { BBS } \\ \text { dir: } 5, \text { rel } \end{array}\right.$	${ }^{\text {NC }}$ R5	R5	$v_{\# 5}$	Bz
E	A, R6	$\mathrm{MP}_{\mathrm{A}, \mathrm{RG}}$	A,R6	$\underset{\mathrm{A}, \mathrm{BG}}{ } \mathrm{SUBC}^{\prime} \mid$	$\underset{\mathrm{R}, \mathrm{~A}}{ }$	$\begin{gathered} \mathrm{DR}, \mathrm{R} 6 \\ \hline \end{gathered}$	${ }_{\text {ND,R }}{ }^{2}$	$A, R 6$	$\begin{aligned} & \text { nov } \\ & \text { R6,\#d8 } \end{aligned}$	$\underset{\substack{\text { CMP } \\ \hline, \pm 88}}{ }$	SETB	$\left\lvert\, \begin{aligned} & \text { BBS } \\ & \text { dir: } 6, \text { rel } \end{aligned}\right.$	${ }^{\text {NC }}$ R6	R6	$\mid \text { CALLV }_{\# 6} \mid$	rel
F	${ }_{\mathrm{M}, \mathrm{B7}}$	$\begin{array}{\|c\|} \hline \mathrm{CMP} \\ \mathrm{~A}, \mathrm{R} 7 \\ \hline \end{array}$	$\underset{A, R 7}{A D D C}$	$\left\|\begin{array}{\|c\|c\|} \hline \text { SUBC } \\ \hline, R 7 \end{array}\right\|$	$\left\|\begin{array}{c\|} \text { MOV } \\ \text { RT,A } \end{array}\right\|$		${ }_{4 N D}^{A N B}$	$\begin{array}{ll} \mathrm{OR}^{\prime 2} & \mathrm{~A}, \mathrm{R} \end{array}$	$\mathrm{MOV}_{\mathrm{R}, \mathrm{fd8}}$	$\underset{\mathrm{RT}, \neq \mathrm{AdP}}{\mathrm{CMP}}$	$\begin{array}{\|c\|c\|c\|} \text { SETif: } 7 \mid \end{array}$	$\mid \text { dir: } \mid \text { drel } \mid$	R7	DEC ${ }_{\text {R7 }}$	${ }_{\text {CALL }}^{\# 7}$	BLT ${ }_{\text {rel }}$

MB89601R Series

MASK OPTIONS

No.	Part number	MB89601R MB89603	MB89P601	MB89PV620
	Specifying procedure	Specify when ordering masking	Setting not possible	Setting not possible
1	$\begin{aligned} & \text { Pull-up resistors } \\ & \quad\left[\begin{array}{l} \text { P00 to P07, P10 to P17, } \\ \text { P40 to P47 } 2, ~ P 60^{22} \end{array}\right. \end{aligned}$	Selectable by pin	Fixed to without pullup resistor	Fixed to without pull-up resistor
	P30 to P33*1	Selectable by pin (Software pull-up resistor)	Can be set per pin (Software pull-up resistor)	
	P33 to P37**	Selectable by 4 pins (Software pull-up resistor)	Can be set per 4 pins (Software pull-up resistor)	
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	Fixed to with power-on reset	Fixed to with power-on reset
3	Selection of the oscillation stabilization time Crystal oscillator: $\left(2^{18} / \mathrm{Fc}\right)$ Ceramic oscillator: ($2^{12} / \mathrm{Fc}$)	Selectable	Fixed to crystal oscillator ($2^{18} / \mathrm{Fc}$)	Fixed to crystal oscillator ($2^{18} / \mathrm{Fc}$)
4	Reset pin output With reset output Without reset output	Selectable	Fixed to with reset output	Fixed to with reset output

*1: A pull-up resistor for P30 to P37 is not set when ordering masking. It is set by software.
*2: When a pull-up resistor for P40 to P 47 and P 60 is selected, the input signal exceeding V cc voltage is not possible.

ORDERING INFORMATION

Part number	Package	Remarks
MB89601RPFV MB89603PFV MB89P601PFV	48-pin Plastic SQFP (FPT-48P-M05)	
MB89PV620C-SH	64-pin Ceramic MDIP (MDP-64C-P02)	
MB89PV620CF	64-pin Ceramic MQFP (MQP-64C-P01)	

MB89601R Series

PACKAGE DIMENSIONS

```
48 pin, Plastic LQFP
    (FPT-48P-M05)
```


© 1994 FUUITSU LIMITED F48003S-2C-4

64-pin Ceramic MDIP
 (MDP-64C-P02)

© 1994 FUJITSU LIMITED M64002SC-1-4

MB89601R Series

64-pin Ceramic MQFP
 (MQP-64C-P01)

© 1994 FUJITSU LIMITED M64004SC-1-3
Dimensions in mm (inches).

MB89601R Series

MB89601R Series

MEMO

MB89601R Series

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: *1: MDP-64C-P02
 *2: MQP-64C-P01

[^1]: *: For information on tinst, see "(4) Instruction Cycle."

