

Application Note

1 of 14www.xicor.comOctober, 2000

AN 105

Interfacing the 400KHz X24129 Serial EEPROM to the
Motorola 68HC11 Microcontroller

by Applications Staff

This application note demonstrates how the Xicor
X24129 Serial EEPROM can be interfaced to the
68HC11 microcontroller family when connected as
shown in Figure 1. The interface uses two general

purpose port D pins to interface to the serial memory.
The 68HC11 assembly code listing for this application
note can be obtained from the Xicor website at http://
www.xicor.com

Figure 1. Typical hardware connection for interfacing an X24129EEPROM to the 68HC11 microcontroller.

2 of 14

Application Note

www.xicor.comOctober, 2000

**
** DESCRIPTION:
**
** This file contains general utility routines written in 68HC11 assembly
** language used to interface the M68HC11 to the XICOR Two-wire X24129
** Serial E2PROM. The interface between the 68HC11 and X24129 device
** consists of a clock (SCL) and a bidirectional data line (SDA). The
** communication interface uses 2 pins from Port D(PD3 = SCL and PD2 = SDA).
** Other components may reside on this bus provided that they do not have the
** same device identifier byte as the Serial E2PROM.
** The following table lists all the subroutines in this file with a brief
** description:
**
** START: Generate the start condition
** STOP: Generate the stop condition
** RESET: Issues the appropriate commands to force device reset
** ProgPage: Transfer from RAM buffer to serial memory page
** ProgByte: Transfer from RAM buffer to serial memory byte
** SeqRead: Read multiple bytes, starting from current address pointer
** RandomRead: Read a byte from a specific memory location
** ACKPoll: Return when the write cycle completes.
** OutACK: Process the acknowledge output cycle
** GetACK: process the acknowledge from the slave device
**
** The Main program loop programs a test string into the Serial E2PROM. After
** entire string is programmed, the content of the programmed page is read.
** The read data is stored in the internal RAM. A utility program can be
** written to verify that the buffer content matches the test string.
**

* INTERNAL RAM

RAMBASE EQU $0000 THE INTERNAL RAM BASE ADDRESS(Default)
RAMBuff EQU RAMBASE RAM BUFFER ADDRESS
STACK EQU RAMBASE+$FF

* PROGRAM CONSTANTS

DWOM EQU $20 PORT D WOM CONTROL BIT
SDAbit EQU $04 PORT D BITS FUNCTIONING AS BIDIRECTIONAL
SCLbit EQU $08 SERIAL DATA (SDA) AND SERIAL CLOCK (SCL)
PageNO EQU $00 PAGE NUMBER OF THE SERIAL MEMORY
BLX EQU $18 BLX BITs POSITION IN WPR
WEL EQU $02 WEL BIT POSITION IN WPR
RWEL EQU $04 RWEL BIT POSITION IN WPR
WPEN EQU $80 WPEN BIT POSITION IN WPR
WELon EQU 00000010b WEL CONTROL BYTE
RWELon EQU 00000110b RWEL CONTROL BYTE

3 of 14

Application Note

www.xicor.comOctober, 2000

MaxDelay EQU $1000 NUMBER OF TIMES TO CHECK ACKNOWLEDGE POLLING
SeqReadSize EQU 16 BYTE COUNTS TO SHIFT OUT USING SEQ READ

DeviceID EQU $50 DEVICE SELECT SHIFTED ONE BIT TO THE RIGHT
HiADDRmask EQU $3F MASK FOR UPPER ADDRESS BYTE
WPR_ADDR EQU $FFFF WPR PHYSICAL ADDRESS LOCATION (BYTE ACCESS)
PageSize EQU 32 BYTES PER PAGE

* INTERNAL REGISTERS AND CONTROL BLOCK

PORTD EQU $08 PORT D DATA REGISTER
DDRD EQU $09 DATA DIRECTION REGISTER FOR PORT D
SPCR EQU $28 SPI CONTROL REGISTER

* RESET VECTOR ENTRY POINT

 ORG $FFFE RESET VECTOR ADDRESS TO PROGRAM ENTRY
 FDB $E000 JUMP TO BEGINNING OF EXECUTABLE CODE

* ASSEMBLER REQUIREMENT- CPU TYPE

 P68H11

* START OF USER CODE *

 ORG $E000
MAIN:
 lds #STACK * LOAD STACK POINTER

* INITIALIZE THE BUFFER BEFORE PROGRAMMING THE CONTENT TO A PAGE

 ldy #RAMBuff * IY = RAM BUFFER ADDRESS
 ldx #TestString * IX = TEST STRING ADDRESS
InitRAM:
 ldaa 0,x * COPY THE TEST STRING TO
 staa 0,y * RAM BUFFER
 iny
 inx
 tsta
 bne InitRAM
 ldx #$1000 * SET REGISTER BASE
 bset SPCR,X,#DWOM * CONFIG. PORT-D AS OPEN DRAIN
 ldaa #$0C * PD2 = SCL
 staa DDRD,X * PD3 = SDA
 ldaa #$FF * CONFIGURE PORT D

4 of 14

Application Note

www.xicor.comOctober, 2000

 staa PORTD,X
 jsr Reset * RESET THE INTERFACE STATE MACHINE

 ldd #WPR_ADDR * READ THE WPR CONTENT AND FIND THE
 jsr RandomRead * BLOCKS THAT ARE LOCKED. IF BOTH
 bita #WPEN * WPEN BIT AND WP PIN ARE HIGH THEN
 bne WPEN_OFF * BLx BITS ARE PROTECTED (WRITES ARE
* ... WARNING ... * PERMITTED WHEN WP IS BROUGHT LOW).
* MAKE SURE THAT WP PIN IS LOW BEFORE ATTEMPTING TO WRITE NEW VALUE TO
* THE WPR WHEN WPEN BIT IS SET.
WPEN_OFF:
 bita #BLX * SKIP IF THE BLx BITS ARE
 beq NO_BLX * CLEAR (NO BLOCKS ARE PROTECTED)
 clra * CLEAR THE BLOCK LOCK BITS (UNPROTECT
 jsr ProgBL * THE ENTIRE DEVICE), WAIT FOR
 jsr ACKPoll * WRITE OPERATION TO COMPLETE
 NO_BLX:
 jsr SetWEL * SET THE WRITE ENABLE BIT
 ldd #WPR_ADDR * READ THE WPR CONTENT AND
 jsr RandomRead * CHECK THAT WEL BIT
 bita #WEL * IS SET HIGH
 bne WRITES_EN * ELSE ITS A FAILURE
 bra * * CHECK THE DEVICE/CONNECTIONS*STOP*
WRITES_EN:
 ldd #PageNO * D = PAGE NUMBER OF THE SERIAL MEMORY
 ldy #RAMBuff * IY = RAM BUFFER ADDRESS
 jsr ProgPage * TRANSFER BUFFER CONTENT TO THE PAGE
 jsr ACKPoll * WAIT TILL COMPLETION OF PAGE PROG.
 ldy #RAMBuff * IY = RAM BUFFER ADDRESS
 ldaa #$58 * LOAD THE DATE TO BE WRITTEN IN THE Y
 staa 0,Y * REGISTER, ASCII 'X'
 ldd #PageNO * LOAD THE ADDRESS TO THE ACCUM
 jsr ProgByte * TRANSFER BUFFER CONTENT TO THE BYTE
 jsr ACKPoll * WAIT TILL COMPLETION OF BYTE PROG.
 jsr ClrWEL * RESET THE WRITE ENABLE BIT
 ldd #PageNO * D = PAGE NUMBER OF THE SERIAL MEMORY
 ldy #RAMBuff * IY = RAM BUFFER ADDRESS
 jsr RandomRead * SETUP THE ADDRESS POINTER AND READ
 staa 0,Y * FIRST BYTE, SAVE IT TO THE BUFFER
 iny * ADJUST THE RAM BUFFER POINTER
 ldaa #.HIGH.PageNO * LOAD THE UPPER BYTE OF ADDRESS
 ldab #$20 * SPECIFY BYTE COUNT FOR SEQ. READ OP
 jsr SeqRead * READ/STORE THE REMAINING DATA
 bra * * END OF MAIN

*** Name: SeqRead
*** Description: Read sequentially from the serial memory
*** Function: This subroutine extracts contents of the serial memory and stores
*** them into the specified RAM buffer. The total number of bytes to
*** read should be provided along with the buffer address. This
*** routine assumes that the address pointer has already been
*** initialized using the InByte routine.
*** Calls: Start, SlavAddr, InByte, OutACK, StopRead
*** Input: IY = RAM Buffer Base Address, A = High Order Address

5 of 14

Application Note

www.xicor.comOctober, 2000

*** B = Number of bytes to read
*** Output: None
*** Register Usage: A, B, IY

SeqRead:
 jsr Start * START
 sec * [C=1] READ OPERATION BIT
 jsr SlavAddr * SEND THE SLAVE ADDRESS BYTE
SeqReadNxt:
 jsr InByte * START READING FROM THE CURRENT ADDRESS
 staa 0,Y * TOTAL NUMBER OF BYTES TO READ OUT OF
 iny * SERIAL MEMORY
 decb *
 beq SeqReadEnd *
 jsr OutACK * SEND AN ACKNOWLEDGE TO THE DEVICE
 bra SeqReadNxt
SeqReadEnd:
 jmp StopRead * END OF READ OPERATION

*** Name: RandomRead
*** Description: Reads content of the serial memory at a specific location.
*** Function: This subroutine sends out the command to read the content of a
*** memory location specified in the (D) register.
*** Calls: Start, InByte, SlavAddr, OutByte, StopRead
*** Input: D = Address of the byte
*** Output: A = Read value
*** Register Usage: A

RandomRead:
 psha * SAVE ADDRESS TO STACK
 jsr Start * START
 clc * [C=0] WRITE OPERATION BIT
 jsr SlavAddr * SEND THE SLAVE ADDRESS BYTE
 pula * RETRIEVE ADDRESS FROM STACK
 jsr OutByte * LOAD THE UPPER BYTE OF THE PAGE
 tba * LOAD THE LOWER BYTE OF THE PAGE
 jsr OutByte * ADDRESS AND SHIFT OUT TO THE DEVICE
 jsr Start * START
 sec * [C=1] READ OPERATION BIT
 jsr SlavAddr * SEND THE SLAVE ADDRESS BYTE
 jsr InByte * SHIFT IN A BYTE FROM THE DEVICE
 jmp StopRead * END OPERATION

*** Name: StopRead
*** Description: Terminate read operation
*** Function: This subroutine is called at the end of a read operation. The
*** routine generates the last ACK clock cycle followed by a stop
*** command. The last ACK bit clock cycle differs from the normal
*** ACK bit in that the SDA line is held high. This action notifies
*** the serial memory that it should suspend operation.
*** Calls: ClockPulse, Stop
*** Input: None
*** Output: None

6 of 14

Application Note

www.xicor.comOctober, 2000

*** Register Usage: None

StopRead:
 bset PORTD,X,#SDAbit * MAKE SURE THAT THE DATA LINE IS HIGH
 bset DDRD,X,#SDAbit * CHANGE THE PDx DIRECTION TO OUTPUT
 jsr ClockPulse *
 jmp Stop * END OPERATION

*** Name: ProgPage
*** Description: Update a page of the serial memory
*** Function: This subroutine transfers the contents of the given buffer to the
*** serial memory. The caller program must supply the page
*** number of the serial memory to update and the base address
*** of the RAM buffer.
*** Calls: Start, SlavAddr, OutByte, Stop
*** Input: IY = RAM Buffer Base Address, D(AB) = Page Number
*** Output: None
*** Register Usage: A,B

ProgPage:
 psha * SAVE ADDRESS TO THE STACK
 jsr Start * START
 clc * [C=0] WRITE OPERATION BIT
 jsr SlavAddr * SEND THE SLAVE ADDRESS BYTE
 pula * RETRIEVE ADDRESS FROM STACK
 jsr OutByte * LOAD THE UPPER BYTE OF THE PAGE ADDRESS
 tba * LOAD THE LOWER BYTE OF THE PAGE ADDRESS
 anda #$0E0 * MASK OUT THE UNWANTED LOWER BITS
 jsr OutByte * AND SHIFT OUT TO THE DEVICE
 ldab #PageSize * TRANSFER CONTENT OF THE RAM BUFFER
ProgPageNxt:
 ldaa 0,Y * TO THE SERIAL MEMORY MEMORY
 jsr OutByte * IY SHOULD BE POINTING TO THE BUFFER
 ldaa #$0FF * COVER UP YOUR TRACKS AS BUFFER IS
 staa 0,Y * READ AND STORED TO THE SERIAL MEMORY
 iny * TOTAL NUMBER OF BYTES TRANSFERED
 decb * TO THE SERIAL MEMORY SHOULD NOT EXCEED
 bne ProgPageNxt * THE PAGE SIZE
 jmp Stop * END OF THE OPERATION

*** Name: ProgByte
*** Description: Update a byte of the serial memory
*** Function: This subroutine transfers a byte located in the Y register to the
*** serial memory.
*** Calls: Start, SlavAddr, OutByte, Stop
*** Input: IY = RAM Buffer Base Address,
*** Output: None
*** Register Usage: A,B

ProgByte:

7 of 14

Application Note

www.xicor.comOctober, 2000

 psha * SAVE ADDRESS TO THE STACK
 jsr Start * START
 clc * [C=0] WRITE OPERATION BIT
 jsr SlavAddr * SEND THE SLAVE ADDRESS BYTE
 pula * RETRIEVE ADDRESS FROM STACK
 jsr OutByte * LOAD THE UPPER BYTE OF THE PAGE ADDRESS
 tba * LOAD THE LOWER BYTE OF THE PAGE ADDRESS
 jsr OutByte * AND SHIFT OUT TO THE DEVICE
 ldaa 0,Y * TO THE SERIAL MEMORY MEMORY
 jsr OutByte * IY SHOULD BE POINTING TO THE BYTE DATA
 jmp Stop * END OF THE OPERATION

*** Name: EnProgWPR
*** Description: Enable updates to Write Protect Register (WPR)
*** Function: This subroutine writes the appropriate sequence to the serial memory
*** to enable updating of the WPR. The ProgWPEN and ProgBL routines
*** must call this subroutine before writes to the WPR are allowed.
*** Once this sequence is activated, the only way to exit this mode
*** is by writing to the WPR or resetting the serial memory.
*** Calls: RandomRead, SetWEL, SetRWEL
*** Input: None
*** Output: A = INITIAL WPR VALUE
*** Register Usage: A, B

EnProgWPR:
 ldd #WPR_ADDR * READ THE WPR CONTENT AND
 jsr RandomRead * TEST THE STATUS OF
 bita #WEL * THE WEL BIT AND
 bne ProgWPR_1 * SKIP IF ITS SET
 psha * ALL WRITES TO THE WPR ARE DISALLOWED
 jsr SetWEL * WHEN THE WEL IS CLEAR, SEND SET WEL
 pula * COMMAND
ProgWPR_1:
 bita #RWEL * CHECK THE RWEL BIT AND
 bne ProgWPR_2 * SKIP IF ITS SET
 psha * WRITING TO BLOCK-LOCK BITS OR WPEN
 jsr SetRWEL * BIT REQUIRE THAT RWEL TO BE SET,
 pula * SEND SET RWEL COMMAND
ProgWPR_2:
 rts

*** Name: ProgBL
*** Description: Update Block Lock bits in WPR of the serial memory
*** Function: This subroutine writes to the WPR of the serial memory and
*** changes the BL1:0. The caller program must supply the new values
*** for the BL1:0 bits. This routine retains the original state of
*** the WPEN bit.
*** Calls: AddrWPR, EnProgWPR, OutByte, Stop
*** Input: A[1:0] = BL[1:0]
*** Output: None
*** Register Usage: A, IY

8 of 14

Application Note

www.xicor.comOctober, 2000

ProgBL:
 anda #$03 * MASK OUT THE UNWANTED BITS
 asla * SHIFT THE BLx BITS TO THE
 asla * BIT POSITIONS 4:3
 asla
 psha * SAVE THE BLx NEW VALUES AND
 jsr EnProgWPR * ENABLE WRITING TO THE WPR
 anda #$9A * CREATE THE DATA PATTERN BY MASKING
 oraa #$02 * IN THE DESIRED BIT PATTERN AND
 tsy * SAVING STATUS OF WPEN BIT
 oraa 0,y * SET THE BLx BITS PER REQUESTED PATTERN
 staa 0,y * SAVE THE WPR VALUE ONTO THE STACK
 jsr AddrWPR * GENERATE WPR WRITE COMMAND
 pula * SHIFT OUT WPR PATTERN
 jsr OutByte * TO THE DEVICE
 jmp Stop

*** Name: ProgWPEN
*** Description: Update Write Protect Enable bit in WPR of the serial memory
*** Function: This subroutine writes to the WPR of the serial memory and
*** changes the WPEN bit. The caller program must supply the new
*** value of the WPEN bit. The state of the BL1:0 bits are preserved.
*** Calls: AddrWPR, EnProgWPR, OutByte, Stop
*** Input: C
*** Output: None
*** Register Usage: A, IY

ProgWPEN:
 clra * LOAD THE STATUS FLAGS
 rora * MASK OUT THE UNWANTED BITS
 psha * SAVE THE WPEN BIT NEW VALUE AND
 jsr EnProgWPR * ENABLE WRITING TO THE WPR
 anda #$9A * CREATE THE DATA PATTERN BY MASKING
 oraa #$02 * IN THE DESIRED BIT PATTERN AND
 tsy * SAVING STATUS OF WPEN BIT
 oraa 0,y * SET THE WPEN BIT PER AS REQUESTED
 staa 0,y * SAVE THE WPR VALUE ONTO THE STACK
 jsr AddrWPR * GENERATE WPR WRITE COMMAND
 pula * SHIFT OUT WPR PATTERN
 jsr OutByte * TO THE DEVICE
 jmp Stop

*** Name: SetWEL
*** Description: Set the Write Enable Latch (WEL) bit in the WPR of the serial memory.
*** Function: This subroutine writes to the WPR of the serial memory and
*** sets the WEL bit.
*** Calls: AddrWPR, OutByte, Stop
*** Input: NONE
*** Output: NONE
*** Register Usage: A

9 of 14

Application Note

www.xicor.comOctober, 2000

SetWEL:
 jsr AddrWPR * GENERATE WPR WRITE COMMAND
 ldaa #WELon * SHIFT OUT WEL-ON PATTERN
 jsr OutByte * TO THE DEVICE
 jmp Stop

*** Name: ClrWEL
*** Description: Reset the Write Enable Latch (WEL) bit in the WPR of the serial memory.
*** Function: This subroutine writes to the WPR of the serial memory and
*** resets the WEL bit.
*** Calls: AddrWPR, OutByte, Stop
*** Input: NONE
*** Output: NONE
*** Register Usage: A

ClrWEL:
 jsr AddrWPR * GENERATE WPR WRITE COMMAND
 clra * SHIFT OUT WEL-OFF PATTERN
 jsr OutByte * TO THE DEVICE
 jmp Stop

*** Name: SetRWEL
*** Description: Set Register Write Enable Latch bit in the WPR of the serial memory.
*** Function: This subroutine writes to the WPR of the serial memory and
*** sets the RWEL bit.
*** Calls: AddrWPR, OutByte, Stop
*** Input: NONE
*** Output: NONE
*** Register Usage: A

SetRWEL:
 jsr AddrWPR * GENERATE WPR WRITE COMMAND
 ldaa #RWELon * SHIFT OUT RWEL-ON PATTERN
 jsr OutByte * TO THE DEVICE
 jmp Stop

*** Name: AddrWPR
*** Description: Initiate write operation to the WPR of the serial memory.
*** Function: This subroutine issues the WPR address and write instruction
*** to the serial memory.
*** Calls: Start, SlavAddr, OutByte
*** Input: NONE
*** Output: NONE
*** Register Usage: A,B

AddrWPR:
 ldd #WPR_ADDR
 psha * SAVE ADDRESS TO STACK

10 of 14

Application Note

www.xicor.comOctober, 2000

 jsr Start * START [C = OPERATION BIT]
 clc * [C=0] WRITE OPERATION BIT
 jsr SlavAddr * SEND THE SLAVE ADDRESS BYTE
 pula * RETRIEVE ADDRESS FROM STACK
 jsr OutByte * LOAD THE UPPER BYTE OF ADDRESS
 tba * LOAD THE LOWER BYTE OF ADDRESS
 jmp OutByte * AND SHIFT OUT TO THE DEVICE

*** Name: SlavAddr
*** Description: Build the slave address for the serial memory.
*** Function: This subroutine concatenates the bit fields for Device ID,
*** the high address bits and the command bit. The resultant
*** byte is then transmitted to the serial memory.
*** Calls: OutByte
*** Input: D(AB) = Page number
*** C = COMMAND BIT (=0 WRITE, =1 READ)
*** Output: None
*** Register Usage: A

SlavAddr:
 ldaa #$50 * LOAD DEVICEID INTO ACCUM
 rola * MERGE THE COMMAND BIT
 jmp OutByte * SEND THE SLAVE ADDRESS

*** Name: OutByte
*** Description: Sends a byte to the serial memory
*** Function: This subroutine shifts out a byte, MSB first, through the
*** assigned SDA/SCL lines on port D.
*** Calls: ClockPulse, GetACK
*** Input: A = Byte to be sent
*** Return Value: None
*** Register Usage: A

OutByte:
 bset DDRD,X,#SDAbit * CHANGE THE PDx DIRECTION TO OUTPUT
 sec
OutByteNxt:
 rola * SHIFT OUT THE BYTE, MSB FIRST
 bcc OutByte0
 bset PORTD,X,#SDAbit
 bra OutByte1
OutByte0:
 bclr PORTD,X,#SDAbit
OutByte1:
 jsR ClockPulse * CLOCK THE DATA INTO THE SERIAL MEMORY
 cmpa #10000000b * MEMORY
 clc * LOOP IF ALL THE BITS HAVE
 bne OutByteNxt * NOT BEEN SHIFTED OUT
 jmp GetACK * CHECK FOR AN ACK FROM THE DEVICE

11 of 14

Application Note

www.xicor.comOctober, 2000

*** Name: InByte
*** Description: Shifts in a byte from the serial memory
*** Function: This subroutine shifts in a byte, MSB first, through the
*** assigned SDA/SCL lines on port D. After the byte is received
*** this subroutine does not send out an ACK bit to the serial memory.
*** Calls: ClockPulse
*** Input: None
*** Return Value: A = Received byte
*** Register Usage: A

InByte:
 ldaa #00000001b
 bclr DDRD,X,#SDAbit * CHANGE THE PDx DIRECTION TO INPUT
InByteNxt:
 jsr ClockPulse * CLOCK THE SERIAL MEMORY MEMORY AND SHIFT
 rola * INTO ACC. THE LOGIC LEVEL ON THE SDA
 bcc InByteNxt * LINE. THE DEVICE OUTPUTS DATA ON SDA,
 rts * MSB FIRST

*** Name: ClockPulse
*** Description: Generate a clock pulse
*** Function: This subroutine forces a high-low transition on the
*** assigned SCL line on port D. It also samples the SDA
*** line state during high clock period.
*** Calls: None
*** Input: None
*** Return Value: C = SDA line status
*** Register Usage: None

ClockPulse:
 bset PORTD,X,#SCLbit * FORCE SCL LINE HIGH. BASED
 nop * ON AN 8MHz CRYSTAL FREQ. THE SYSTEM
 nop
 clc * BUS CYCLE TIME IS 0.5 MICROSEC.
 brclr PORTD,X,#SDAbit,ClockPulseLo *
 sec
 ClockPulseLo:
 bclr PORTD,X,#SCLbit * LOWER THE CLOCK LINE
 rts

*** Name: OutACK
*** Description: Send out an ACK bit to the serial memory
*** Function: This subroutine changes the direction of the SDA pin on port D
*** and then clocks an ACK bit to the serial memory. The ACK
*** cycle acknowledges a properly received data by lowering the
*** SDA line during this period (9th clock cycle of a received
*** byte). The direction of the SDA pin is programmed as input
*** prior to returning to the caller.
*** Calls: ClockPulse
*** Input: None

12 of 14

Application Note

www.xicor.comOctober, 2000

*** Return Value: None
*** Register Usage: None

OutACK:
 bclr PORTD,X,#SDAbit * MAKE SURE THAT THE DATA LINE IS LOW
 bset DDRD,X,#SDAbit * CHANGE THE PDx DIRECTION TO OUTPUT
 jmp ClockPulse *

*** Name: GetACK
*** Description: Clock the serial memory for an ACK cycle
*** Function: This subroutine changes the direction of the SDA pin on port D
*** and then clocks the serial memory. It returnes the sampled
*** logic level on the SDA during high clock cycle. The serial memory
*** acknowledges a properly received command/data by lowering the
*** SDA line during this period (9th clock cycle of a transmitted
*** byte). If the SDA state is HIGH, it signifies that either it
*** did not receive the correct number of clocks or it's stuck in
*** previously initiated write command,
*** Calls: ClockPulse
*** Input: None
*** Return Value: C = ACKnowledge bit
*** Register Usage: None

GetACK:
 bclr DDRD,X,#SDAbit * CHANGE THE PDx DIRECTION TO INPUT
 jsr ClockPulse * CLOCK THE SERIAL MEMORY
 bset DDRD,X,#SDAbit * CHANGE THE PDx DIRECTION TO OUTPUT
 rts

*** Name: ACKPoll
*** Description: Wait for an ACK from the serial memory
*** Function: This subroutine sends a slave address to the serial memory and
*** monitors the SDA for an ACK signal. It returns if a low
*** logic level is detected on the SDA during high clock cycle of
*** the acknowledge cycle. The serial memory does not respond to any
*** commands with an acknowledge bit while the store operation
*** is in progress. If no ACK is received another slave address is
*** sent to the serial memory. The number of iteration is specified
*** by the MaxDelay constant.
*** Calls: Start, SlavAddr, Stop
*** Input: None
*** Return Value: C = ACKnowledge bit [=0 ACK ,=1 No ACK was received]
*** Register Usage: A, B, IY

ACKPoll:
 ldy #MaxDelay * LOAD MAX NO. OF ACK POLLING CYCLE
ACKPollnxt:
 jsr Start * START THE ACK POLL CYCLE AND
 ldd #PageNO * D = PAGE NUMBER OF THE SERIAL MEMORY
 clc * [C=0] WRITE OPERATION BIT
 jsr SlavAddr * SEND THE SLAVE ADDRESS. THEN

13 of 14

Application Note

www.xicor.comOctober, 2000

 jsr Stop * OPERATION BY A STOP CONDITION.
 bcc ACKPollExit * EXIT IF THE ACK WAS RECEIVED
 dey
 bne ACKPollnxt * LOOP WHILE THE MAXIMUM NO. OF CYCLES
ACKPollExit:
 rts

*** Name: Start
*** Description: Send a start command to the serial memory
*** Function: This subroutine generates a start condition on the bus. The start
*** condition is defined as a high-low transition on the SDA
*** line while the SCL is high. The start is used at the beginning
*** of all transactions.
*** Calls: None
*** Input: None
*** Return Value: None
*** Register Usage: None

Start:
 bset PORTD,X,#SDAbit * FORCE THE SDA LINE HIGH
 bset PORTD,X,#SCLbit * FORCE THE SCL CLOCK LINE HIGH
 bclr PORTD,X,#SDAbit * BEFORE TAKING THE SDA LOW
 nop
 nop
 nop
 nop
 bclr PORTD,X,#SCLbit * FORCE THE SCL LOW
 rts

*** Name: Stop
*** Description: Send stop command to the serial memory
*** Function: This subroutine generates a stop condition on the bus. The stop
*** condition is defined as a low-high transition on the SDA
*** line while the SCL is high. The stop is used to indicate end
*** of current transaction.
*** Calls: None
*** Input: None
*** Return Value: None
*** Register Usage: None

Stop:
 bclr PORTD,X,#SDAbit * FORCE THE SDA LOW BEFORE TAKING
 bset PORTD,X,#SCLbit * THE SCL CLOCK LINE HIGH
 nop
 nop
 nop
 nop
 bset PORTD,X,#SDAbit * FORCE THE SDA HIGH (IDLE STATE)
 rts

*** Name: Reset

14 of 14

Application Note

www.xicor.comOctober, 2000

*** Description: Resets the serial memory
*** Function: This subroutine is written for the worst case. System interruptions
*** caused by brownout or soft error conditions that reset the main
*** CPU may have no effect on the internal Vcc sensor and reset
*** circuit of the serial memory. These are unpredictable and
*** random events that may leave the serial memory interface
*** logic in an unknown state. Issuing a Stop command may not be
*** sufficient to reset the serial memory.
*** Calls: Start, Stop
*** Input: None
*** Return Value: None
*** Register Usage: B

Reset:
 ldab #$0A * APPLY 10 CLOCKS TO THE DEVICE. EACH
ResetNxt:
 jsr Start * CYCLE CONSISTS OF A START/STOP
 jsr Stop * THIS WILL TERMINATE PENDING WRITE
 decb * COMMAND AND PROVIDES ENOUGH CLOCKS
 bne ResetNxt * FOR UNSHIFTED BITS OF A READ
 rts * OPERATION

TestString: FCC 'xICOR MAKES IT MEMORABLE!'
 FCB $00

*** END OF X24320/640/128 SERIAL MEMORY INTERTERFACE SOURCE CODE

 END

