## ASSP

## CMOS

## 3 V Single Power Supply Audio Interface Unit (AIU)

## MB86435

## ■ DESCRIPTION

The FUJITSU MB86435 is an AIU (audio interface unit) LSI for +3 V single-power source digital telephone devices, manufactured using CMOS process technology. The codec transmission filter characteristics meet G. 712 standards, and can handle input and output in A-Law, $\mu$-Law and linear conversion modes. The MB86435 also contains the necessary DTMF, microphone and receiver amps for telephone devices.

■ FEATURES

- +3 V single power supply
- Low power consumption: muting settings for each operating mode

Normal operation : 6.0 mA TYp (speaker amp mute)
Tone generation : 1.8 mA TYP (speaker amp mute)
Standby mode $\quad: 0.5 \mu \mathrm{~A}$ TYP

- On-chip codec filter meets G. 712 standards
- Selection of codec conversion methods (A-law, $\mu$-law, linear)
- On-chip low-noise microphone amp (2-channel) ( 0 to 35 dB amplification)
- On-chip receiver speaker amps ( $32 \Omega$ BTL type: 6.4 mW мі)
- On-chip tone speaker amp ( $25 \Omega$ BTL type: 10 mW мі)
- On-chip earphone speaker amps ( $32 \Omega$ single type: 2 mW міл)


## PACKAGE

64 pin, Plastic LQFP
(FPT-64P-M03)

## MB86435

(Continued)

- On-chip electronic volume gain adjustments (sending, receiving, tone)
- On-chip accessory input/output circuits
- DTMF generator function
- Service tone generation
- CMOS compatible input/output
- PIN ASSIGNMENT
$\square$


## PIN DESCRIPTION

| Pin No. | Symbol | I/O | A/D | Description |
| :---: | :---: | :---: | :---: | :---: |
| 1 | VRH | O | A | Bypass capacitor connector pin for the A/D D/A reference voltage generator circuit. Place capacitor between VRH and CAG pins. |
| 2 | SGC | O | A | Bypass capacitor connector pin for the signal ground potential generator circuit. Place capacitor between SGC and CAG pins. |
| 3 | VDDAC | P | A | Analog power supply pin for codec block. To be set within range 2.7 to 3.6 V . |
| 6 | SYNC | I | D | PCM codec send/receive synchronization signal input pin. Operating clock frequency 8 kHz . CMOS interface. Constant H/L level signal will cause part of codec block to power-down. |
| 7 | CLK | I | D | Send/receive PCM signal series bit rate setting input pin. Data rate for $\mu$-law, A-law modes may be set to any level in the range 64 k to 3.152 MHz , and for linear mode in the range 256 k to 3.152 MHz . Constant H or L level signal will cause part of codec block to power-down. CMOS interface. |
| 8 | DIN | I | D | PCM signal input pin. This signal is picked up internally at the fall of the CLK signal. CMOS interface. |
| 9 | DOUT | O | D | PCM signal output pin. Data is output in sync with the rise of the CLK signal. After data output, loses PLL synchronization, and at power-down this signal is fixed at H level. CMOS interface. |
| 10 | VDD | P | D | Digital power supply pin. To be set within range 2.7 to 3.6 V. |
| 11 | DG | G | D | Digital ground pin. To be set to 0V. |
| 12 | PSC0 | 1 | D | Power-down control signal input pin. CMOS interface. Used with PSC1,2 pins for power-down settings. |
| 13 | PSC1 | I | D | Power-down control signal input pin. 0 0 0 Full power-down <br> CMOS interface. Used with PSC0,2 0 0 VREF Operating <br> pins for power-down settings. -1 0 Tone operating -1 - All operations available |
| 14 | PSC2 | I | D | Power-down control signal input pin. <br> CMOS interface. Used with PSC 0,1 <br> pins for power-down settings.  |
| 15 | SRD | I | D | 9-bit serial data input pin. CMOS interface. Data is written at the rise of the signal from this pin. |
| 16 | SRC | I | D | Clock input pin for 9-bit serial data writing. CMOS interface. Data is written at the rise of this pin. |
| 17 | STB | I | D | Serial data latch strobe signal. Data is latched by the L level signal. CMOS interface. |
| 18 | XPRST | I | D | Digital reset signal input pin. CMOS interface. L level: internal latch initialization H level: normal operation |
| 19 | LOO | O | D | External control latch output pin. Outputs value $\mathrm{D}_{0}$ of address 1000. CMOS interface. |
| 20 | LO1 | O | D | External control latch output pin. Outputs value $\mathrm{D}_{1}$ of address 1000. CMOS interface. |


| Pin No. | Symbol | I/O | A/D | Description |
| :---: | :---: | :---: | :---: | :--- |
| 21 | LO2 | O | D | External control latch output pin. Outputs value D2 of address 1000. CMOS <br> interface. |
| 22 | LO3 | O | D | External control latch output pin. Outputs value D3 of address 1000. CMOS <br> interface. |
| 23 | TCLK | I | D | Tone generator clock input pin. Can be used as a tone CLK signal by using <br> address 1110 D4D3 to subdivide the internal clock signal by factors of 1/1, <br> $1 / 2,1 / 4 . ~ C M O S ~ i n t e r f a c e . ~$ |
| 24 | TONC | I | D | Tone generator cycle control input pin. CMOS interface. Hlevel signal <br> outputs tone. |
| 25 | LED | O | D | Ring LED control output pin. CMOS interface. |
| 26 | DSCK | I/O | A | Can be connected to EXSD or TAUD by switching bus. |
| 27 | EXSD | I/O | A | Can be connected to DSCK or TAUD by switching bus. |
| 28 | TAUD | I/O | A | Can be connected to EXSD or DSCK by switching bus. |
| 29 | DSDT | I | A | Can be connected to RAUD by switching bus. |
| 30 | TONEO | O | A | Tone signal output pin. |
| 31 | RAUD | O | A | Output pin for external speaker, or audio test signal. Can be connected to <br> DSDT by switching paths. |
| 32 | VDDSP1 | P | A | Speaker amp power supply pin. To be set within range 2.7 to 3.6 V . |

(Continued)
(Continued)

| Pin No. | Symbol | I/O | A/D | Description |
| :---: | :---: | :---: | :---: | :--- |
| 45 | OP2 | O | A | AMP2 output pin. If AMP2 is not used, IM2 should be shorted to OP2. |
| 46 | IM2 | I | A | AMP2 inverted (-) signal input pin. Can form a circuit with OP2 to add <br> sidetone or tone. Melody circuits, if used, can alsobe connected here. |
| 47 | OP1 | O | A | AMP1 output pin. Can form a circuit with IM1 to include LPF or HPF in <br> receiving block. If AMP1 is not used, IM1 should be shorted to OP1. |
| 48 | IM1 | I | A | AMP1 inverted (-) signal input pin. |
| 49 | PTBO | O | A | PCM receiver output pin. |
| 50 | BAG | G | A | Analog ground pin for sending, receiving blocks. To be set to 0 V. |
| 51 | VDDAB | P | A | Analog power supply pin for sending, receiving blocks. To be set within <br> range 2.7 to 3.6 V. |
| 52 | XJMIC | I | A | Microphone amp (2) non-inverted (+) signal input pin. |
| 53 | JMIC | I | A | Microphone amp (2) inverted (-) signal input pin. |
| 54 | JMICO | O | A | Microphone amp (2) output pin. |
| 55 | XMICI | I | A | Microphone amp (1) non-inverted (+) signal input pin. |
| 56 | MIC | I | A | Microphone amp (1) inverted (-) signal input pin. |
| 57 | MICO | O | A | Microphone amp (1) output pin. |
| 58 | SGO | O | A | Sending block signal ground potential output pin. Buffers SGC voltage. |
| 59 | BBO | O | A | Sending analog signal output pin. |
| 62 | BTPI | I | A | PCM ENCODE block input OP amp negative input pin. |
| 63 | BTPO | O | A | PCM ENCODE block input OP amp output pin. |
| 64 | CAG | G | A | Analog ground pin for codec block. To be set to 0 V. |
| 4,5, | NC | - | - | Not connected. To be left open. |
| 60,61 |  |  |  |  |

## MB86435

## BLOCK DIAGRAM



## FUNCTIONAL DESCRIPTION

## 1. Register Settings

The MB86435 IC chip controls all electronic volume, switching, tone generator circuits and power-down control circuits by means of the SRD, STB and SRC data input signals.
The MB86435 uses a 9-bit serial data format consisting of a 4-bit address followed by 5 data bits. Data is picked up at the rise of the SRC signal, and latched by the STB L-level signal. The 9 -bits of serial data preceding the STB signal are considered valid. These register settings are not reset at power-down. They can be reset when data is initialized by an XPRST L-level signal.

## (1) Mode Settings

| Control segment | Address | Data bit | Setting description | Initial data bit setting (at reset) | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$ | $\mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ |  | $\mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ |  |
| EV0 | 0001 | $\mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ | Sending audio level adjustment. Adjusts EVO gain. | $\begin{array}{llllll}0 & 1 & 1 & 1\end{array}$ | *1 |
| EV1 | 0010 | $\mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ | Sending audio level adjustment. Adjusts EV1 gain. | $\begin{array}{llllll}0 & 1 & 1 & 1 & 1\end{array}$ |  |
| EV2 | 0011 | * * $\mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ | Sending audio level adjustment. Adjusts EV2 gain. | * * 100 |  |
| TX-MUTE | 0100 | $\mathrm{D}_{4}$ * * * $\mathrm{D}_{0}$ | Do: Sending audio mute SW 3, 4, 5 on/off control. <br> Mute: 1, Unmute: 0 | 0 * * * 0 | *2, *3 |
| RX-MUTE |  |  | D4: Sending audio mute SW 6, 7, 8, 9 on/ off control. <br> Mute: 1, Unmute: 0 |  | *3, *4 |
| SW5 | 0101 | $\mathrm{D}_{4}{ }^{*} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ | Do: TAUD mute SW 5 on/off control. Mute: 1, Unmute: 0 | 0 * 000 | *2, *5 |
| SW4 |  |  | $\mathrm{D}_{1}$ : JMIC mute SW 4 on/off control. Mute: 1, Unmute: 0 |  | *2 |
| SW3 |  |  | $\mathrm{D}_{2}$ : MIC mute SW 3 on/off control. Mute: 1, Unmute: 0 |  | 2 |
| SW8 |  |  | D4: RAUD mute SW 8 on/off control. Mute: 1, Unmute: 0 |  | *3, *4, *6 |
| SW6 | 0110 | $\mathrm{D}_{4}{ }^{*} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ | Do: EAR, XEAR mute SW 6 on/off control. Mute: 1, Unmute: 0 | 0 * 000 | *4 |
| SW9 |  |  | $D_{1}$ : TONE, XTONE mute SW 9 on/off control. <br> Mute: 1, Unmute: 0 |  |  |
| SW7 |  |  | $\mathrm{D}_{2}$ : JEAR mute SW 7 on/off control. Mute: 1, Unmute: 0 |  |  |
| ATT |  |  | D4: JEAR attenuation level switch. $0:-2.5 \mathrm{~dB}, 1:-8.5 \mathrm{~dB} .$ |  |  |

## MB86435

(Continued)

| Control segment | Address | Data bit | Setting description | Initial data bit setting (at reset) | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$ | $\mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ |  | $\mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ |  |
| SW10 | 0111 | $\mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ | Do: EXSD pin selection SW 10 on/off control. <br> On: 1, Off: 0 | 00000 | *3, *5 |
| SW12 |  |  | D1: DSDT pin selection SW 12 on/off control. <br> On: 1, Off: 0 |  | *3, *6 |
| SW11 |  |  | D2: DSCK pin selection SW 12 on/off On: 1, Off: 0 |  | *3, *5 |
| SW2 |  |  | $\mathrm{D}_{3}$ : TONEO mute SW 2 on/off control. Mute: 1, Unmute: 0 |  | *7 |
| SW14 |  |  | D4: TONE sending add SW 14 on/off control. <br> On: 1, Off: 0 |  |  |
| Serial/ parallel converter | 1000 | ${ }^{*} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ | Parallel output $D_{3}=\mathrm{LO} 3, \mathrm{D}_{2}=\mathrm{LO} 2$, $\mathrm{D}_{1}=\mathrm{LO} 1, \mathrm{D}_{0}=\mathrm{LO} 0$ | * 0000 | *8 |
| EV3 | 1001 | $\mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ | Tone level adjustment. Adjusts EV3 gain. | $\begin{array}{llllll}0 & 1 & 1 & 1 & 1\end{array}$ | *1 |
|  | 1010 | $\mathrm{X}_{8} \mathrm{X}_{7} \mathrm{X}_{6} \mathrm{X}_{5} \mathrm{X}_{4}$ | Tone (1) frequency control, set by 8-bit value $X_{7}$ to $X_{0}$. <br> $X_{8}=1$ to output trapezoidal wave, $X_{8}=0$ to output sine wave. | 00000 | 9, *10 |
|  | 1011 | ${ }^{*} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$ |  | * 0010 |  |
| quency | 1100 | $Y_{8} Y_{7} Y_{6} Y_{5} Y_{4}$ | Tone (2) frequency control, set by 8 -bit value $Y_{7}$ to $Y_{0}$. $Y_{8}=1$ to output trapezoidal wave, $Y_{8}=0$ to output sine wave. | 00000 |  |
|  | 1101 | ${ }^{*} Y_{3} Y_{2} Y_{1} Y_{0}$ |  | * 0010 |  |
|  | 1110 | $\mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ | Tone generator control <br> Do: tone (2) on/off control. On: 1, off: 0 <br> D1: tone (1) on/off control. On: 1, off: 0 <br> D2: LED output on/off control. On: 1, off: 0 | 00111 | $\begin{gathered} * 7,{ }_{*}^{*} 11, \\ { }^{2} 12 \end{gathered}$ |
| Master clock control |  |  | Tone CLK  <br> $D_{4}$, $D_{3}$ <br> 0 0$:$ TCLK $1 / 1$ frequency selected 1 |  | *9 |
| PCM | 1111 | * * * $\mathrm{D}_{1} \mathrm{D}_{0}$ | $\|$PCM control   <br> $D_{1}$, $D_{0}$  <br> 0 0 $: \mu$-law mode selected <br> 1 0 $: A$-law mode selected <br> 0 1 $:$ linear mode selected | * * * 00 | *13, *14 |
| TEST | 0000 | $\mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$ | Do not write in test mode. | 00000 |  |

*1: See (4) Electronic Volume Controls
*2: See (2) Sending Audio Mute Setting
*3: See 5. Power Saving Modes
*4: See (3) Receiving Audio Mute Settings
*5: See 2. Analog Input (2) Accessory Input
*6: See 3. Analog Output (2) Accessory Output
*7: See (5) Tone Generator Circuit • Tone Generator Control Output Level
*8: See (8) Parallel Output
*9: See (5) Tone Generator Circuit • Tone Frequency Control Registers
*10: See (5) Tone Generator Circuit • Tone Output Waveforms
*11: See (5) Tone Generator Circuit • Tone Output Controls
*12: See (5) Tone Generator Circuit • LED Output Controls
*13: See (6) Codec Input/Output
*14: See (7) The Codec SYNC Pin

## MB86435

## (2) Sending Audio Mute Settings

Switches SW 3 to SW 5 have the following functions. Address 0100 signals have priority.

$\bigcirc:$ muted, $\times$ : unmuted, $-:$ not determined

## (3) Receiving Audio Mute Settings

Switches SW 6 to SW 9 have the following functions. Address 0100 signals have priority.

| Setting |  |  |  | Switching setting |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address | $\mathbf{A}_{3}$ $\mathbf{A}_{2}$ $\mathbf{A}_{1}$ $\mathbf{A}_{0}$ | A3 $\mathrm{A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$ | $\begin{array}{lllll}\mathbf{A}_{3} & A_{2} & A_{1} & A_{0}\end{array}$ |  |  |  |  |
|  | 0 0 1 0 0 0 | $\begin{array}{llll}0 & 1 & 0 & 1\end{array}$ | $\begin{array}{llll}0 & 1 & 1 & 0\end{array}$ |  |  |  |  |
| Data bit | $D_{4} D_{3} D_{2} D_{1} D_{0}$ | $D_{4} D_{3} D_{2} D_{1} D_{0}$ | $D_{4} D_{3} D_{2} D_{1} D_{0}$ | SW8 | SW7 | SW9 | SW6 |
|  | 1 * * * - | - * - - | - * - - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | 0 * * *- | - * - - | - * -1 | - | - | - | $\bigcirc$ |
|  | 0 * * *- | - * - - - | - * $-1-$ | - | - | $\bigcirc$ | - |
|  | 0 * * * - | - * - - - | - * 1 - - | - | $\bigcirc$ | - | - |
|  | 0 * * * - | $1{ }^{*}$ * - - | - * - - | $\bigcirc$ | - | - | - |
|  | 0 * * * - | - * - - - | - * - - 0 | - | - | - | $\times$ |
|  | 0 * * * - | - * ${ }^{*}$ - - | - * $-0-$ | - | - | $\times$ | - |
|  | 0 * * * - | - * - - | - * 0 - - | - | $\times$ | - | - |
|  | 0 * * * - | $0{ }^{*}---$ | - ${ }^{*}---$ | $\times$ | - | - | - |

$\bigcirc:$ muted, $\times$ : unmuted, - : not determined

## MB86435

## (4) Electronic Volume Controls

There are four different electronic volume controls, EV0 through EV3, with the following specifications. Electronic volume control settings are made by the SRD, SRC and STB signals, and setting values are reset by the XPRST signal. However, settings are not reset by PSC0, PSC1, PSC2 power-down mode operations.

Table 1 Relation of Volume Control Data bit Values to Gain

| Step | Data bit value |  |  |  |  | EVO sending gain adjustment | EV1 sending gain adjustment | EV2 sending gain adjustment | EV3 sending gain adjustment | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D4 | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | D1 | D | Typ. | Typ. | Typ. | Typ. |  |
| 0 | 0 | 0 | 0 | 0 | 0 | -7.5 | -7.5 | -16 | -7.5 |  |
| 1 | 0 | 0 | 0 | 0 | 1 | -7.0 | -7.0 | -12 | -7.0 |  |
| 2 | 0 | 0 | 0 | 1 | 0 | -6.5 | -6.5 | -8 | -6.5 |  |
| 3 | 0 | 0 | 0 | 1 | 1 | -6.0 | -6.0 | -4 | -6.0 |  |
| 4 | 0 | 0 | 1 | 0 | 0 | -5.5 | -5.5 | 0 | -5.5 |  |
| 5 | 0 | 0 | 1 | 0 | 1 | -5.0 | -5.0 | 4 | -5.0 |  |
| 6 | 0 | 0 | 1 | 1 | 0 | -4.5 | -4.5 | 8 | -4.5 |  |
| 7 | 0 | 0 | 1 | 1 | 1 | -4.0 | -4.0 | 12 | -4.0 |  |
| 8 | 0 | 1 | 0 | 0 | 0 | -3.5 | -3.5 |  | -3.5 |  |
| 9 | 0 | 1 | 0 | 0 | 1 | -3.0 | -3.0 |  | -3.0 |  |
| 10 | 0 | 1 | 0 | 1 | 0 | -2.5 | -2.5 |  | -2.5 |  |
| 11 | 0 | 1 | 0 | 1 | 1 | -2.0 | -2.0 |  | -2.0 |  |
| 12 | 0 | 1 | 1 | 0 | 0 | -1.5 | -1.5 |  | -1.5 |  |
| 13 | 0 | 1 | 1 | 0 | 1 | -1.0 | -1.0 |  | -1.0 |  |
| 14 | 0 | 1 | 1 | 1 | 0 | -0.5 | -0.5 |  | -0.5 |  |
| 15 | 0 | 1 | 1 | 1 | 1 | 0.0 | 0.0 |  | 0.0 | dB |
| 16 | 1 | 0 | 0 | 0 | 0 | 0.5 | 0.5 |  | 0.5 | dB |
| 17 | 1 | 0 | 0 | 0 | 1 | 1.0 | 1.0 |  | 1.0 |  |
| 18 | 1 | 0 | 0 | 1 | 0 | 1.5 | 1.5 |  | 1.5 |  |
| 19 | 1 | 0 | 0 | 1 | 1 | 2.0 | 2.0 |  | 2.0 |  |
| 20 | 1 | 0 | 1 | 0 | 0 | 2.5 | 2.5 |  | 2.5 |  |
| 21 | 1 | 0 | 1 | 0 | 1 | 3.0 | 3.0 |  | 3.0 |  |
| 22 | 1 | 0 | 1 | 1 | 0 | 3.5 | 3.5 |  | 3.5 |  |
| 23 | 1 | 0 | 1 | 1 | 1 | 4.0 | 4.0 |  | 4.0 |  |
| 24 | 1 | 1 | 0 | 0 | 0 | 4.5 | 4.5 |  | 4.5 |  |
| 25 | 1 | 1 | 0 | 0 | 1 | 5.0 | 5.0 |  | 5.0 |  |
| 26 | 1 | 1 | 0 | 1 | 0 | 5.5 | 5.5 |  | 5.5 |  |
| 27 | 1 | 1 | 0 | 1 | 1 | 6.0 | 6.0 |  | 6.0 |  |
| 28 | 1 | 1 | 1 | 0 | 0 | 6.5 | 6.5 |  | 6.5 |  |
| 29 | 1 | 1 | 1 | 0 | 1 | 7.0 | 7.0 |  | 7.0 |  |
| 30 | 1 | 1 | 1 | 1 | 0 | 7.5 | 7.5 |  | 7.5 |  |
| 31 | 1 | 1 | 1 | 1 |  | 8.0 | 8.0 |  | 8.0 |  |

Note: Each setting value is determined in relation to the initial setting value.
Returns to initial value at reset (——parts)
EV2 data bits $\mathrm{D}_{4}, \mathrm{D}_{3}$ are *.
Table 2 Volume Gain Deviation

| Volume control No. | Condition | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l\|} \hline \text { EV0 } \\ \text { EV1 } \\ \text { EV3 } \end{array}$ | Gain deviation, with respect to reference value shown in Table1$\text { Input frequency }=1020 \mathrm{~Hz}$$\text { Input level }=-20 \mathrm{dBv}$ | Reference value <br> $-0.5 \mathrm{~dB}$ | Reference value | Reference value $+0.5 \mathrm{~dB}$ | dB |
| EV2 |  | $\begin{aligned} & \text { Reference } \\ & \text { value } \\ & -1.0 \mathrm{~dB} \end{aligned}$ | Reference value | $\begin{aligned} & \text { Reference } \\ & \text { value } \\ & +1.0 \mathrm{~dB} \end{aligned}$ |  |

## MB86435

## (5) Tone Generator Circuit

## - Tone Frequency Control Registers

The tone generator uses a clock signal obtained by subdividing the TCLK clock signal input by $1 / 1,1 / 2$ or $1 / 4$ according to the data bit in address 1110.

Table 3 Tone Clock Frequency Register Control

| Address $\mathbf{1 1 1 0}$ |  | Tone generator clock signal (fin) |
| :---: | :---: | :--- |
| $\mathbf{D}_{4}$ | $\mathbf{D}_{3}$ |  |
| 0 | 0 | TCLK input clock signal |
| 0 | 1 | TCLK input clock signal subdivided by $1 / 2$ |
| 1 | 0 | TCLK input clock signal subdivided by $1 / 4$ |
| 1 | 1 | Prohibited |

Frequency settings available through the tone frequency control register are determined by the following formula. Frequency setting $f=$ fin/( $\left.12^{*}(1+n)\right), n=1,2,3, \ldots, 255$. (where fin: tone generator clock signal frequency).
Therefore the available frequency setting range when $f_{\mathrm{in}}=512 \mathrm{kHz}$ is between $f_{\text {min }}=167 \mathrm{~Hz}$ and $f_{\max }=21333 \mathrm{~Hz}$.
Frequency settings corresponding to each DTMF rated reference frequency are shown in the following table.

Table 4 Tone Frequency Register Control
(Condition: 512 kHz)

| Tone type |  | Rated reference frequency (generator frequency) | Frequency setting | Address 1010/1100 |  |  |  |  | Address 1011/1101 |  |  |  |  | n | Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | a bit |  | Data bit |  |  |  |  |  |  |
|  |  | D4 |  |  |  |  | D | D |  |  |  | D |  |  |
| Service tone (single tone) |  |  | 262 Hz | 261.7 Hz | - | 1 | 0 | 1 | 0 | * | 0 | 0 | 1 | 0 | 162 | -0.11\% |
|  |  | 384 Hz | 384.4 Hz | - | 0 | 1 | 1 | 0 | * | 1 | 1 | 1 | 0 | 110 | 0.10\% |
|  |  | 400 Hz | 398.7 Hz | - | 0 | 1 | 1 | 0 | * | 1 | 0 | 1 | 0 | 106 | -0.32\% |
|  |  | 2000 Hz | 2031.7 Hz | - | 0 | 0 | 0 | 1 | * | 0 | 1 | 0 | 0 | 20 | 1.56\% |
|  |  | 2600 Hz | 2666.7 Hz | - | 0 | 0 | 0 | 0 | * | 1 | 1 | 1 | 1 | 15 | 2.50\% |
|  Low tone <br> D  |  |  | 697 Hz | 699.4 Hz | - | 0 | 0 | 1 | 1 | * | 1 | 1 | 0 | 0 | 60 | 0.34\% |
|  |  | 770 Hz | 775.7 Hz | - | 0 | 0 | 1 | 1 | * | 0 | 1 | 1 | 0 | 54 | 0.74\% |
|  |  | 852 Hz | 853.3 Hz | - | 0 | 0 | 1 | 1 | * | 0 | 0 | 0 | 1 | 49 | 0.15\% |
|  |  | 941 Hz | 948.1 Hz | - | 0 | 0 | 1 | 0 | * | 1 | 1 | 0 | 0 | 44 | 0.75\% |
| M | High tone | 1209 Hz | 1219.0 Hz | - | 0 | 0 | 1 | 0 | * | 0 | 0 | 1 | 0 | 34 | 0.82\% |
|  |  | 1336 Hz | 1333.3 Hz | - | 0 | 0 | 0 | 1 | * | 1 | 1 | 1 | 1 | 31 | -0.20\% |
|  |  | 1477 Hz | 1471.3 Hz | - | 0 | 0 | 0 | 1 | * | 1 | 1 | 0 | 0 | 28 | -0.38\% |
|  |  | 1633 Hz | 1641.0 Hz | - | 0 | 0 | 0 | 1 | * | 1 | 0 | 0 | 1 | 25 | 0.48\% |

Note: • Setting values are BIN display values

- Error represents frequency setting error with respect to rated reference frequency.


## - Tone Output Waveform

The D4 data bit at address 1010, 1100 may be used to select either sine-wave or trapezoidal waveforms for tone output.


## - Tone Output Control

Tone output may be controlled by address and through the external tone control input pin TONC. In addition, the tone control offers a choice of sine or trapezoidal waveforms.


## - LED Output Controls

Output from the LED output pins can be controlled by the TONC signal and the address 1110 data bit $\mathrm{D}_{2}$. When the TONC signal is H -level, and the address 1110 data bit $\mathrm{D}_{2}$ value is L-level, the output level will be high. Output levels are CMOS levels.


## MB86435

- Tone Generator Control Output Level
(Condition: EV3 $=0 \mathrm{~dB}$ )

| External pins |  |  |  | Address 1110 data bits |  |  | Address 0111 data bits <br> $\mathrm{D}_{3}$ (SW2) | Tone generator circuit operating mode |  | Output pin mode |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PSC2 | PSC1 | PSCO | TONC | $\mathrm{D}_{2}$ | D 1 | D0 |  | Tone <br> (1) | Tone (2) | LED | TONEO |  |
| 0 | 0 | 0 | - | - | - | - | - | $\times$ | $\times$ | L | H-Z |  |
| 1 | 0 | 0 | - | - | - | - | - | $\times$ | $\times$ | L | H-Z |  |
| - |  | or 1 | 0 | - | - | - | 0 | SGC | SGC | L | SGC |  |
| - |  | or 1 | 0 | - | - | - | 1 | SGC | SGC | L | H-Z |  |
| - |  | or 1 | 1 | 1 | - | - | - | - | - | L | - |  |
| - |  | or 1 | 1 | 0 | - | - | - | - | - | $\bigcirc$ | - |  |
| - |  | or 1 | 1 | - | 1 | 1 | 0 | SGC | SGC | - | SGC |  |
| - |  | or 1 | 1 | - | 1 | 0 | 0 | SGC | $\bigcirc$ | - | -14 dBv | Single tone output |
| - |  | or 1 | 1 | - | 0 | 1 | 0 | $\bigcirc$ | SGC | - | -14 dBv | Single tone output |
| - |  | or 1 | 1 | - | 0 | 0 | 0 | $\bigcirc$ | $\bigcirc$ | - | -14 dBv | Dual tone output |

$\bigcirc$ : Operational, $\times$ : Power down, H-Z : High-impedance, L: L-level fixed, SGC: SGC fixed
Note: When the TONC pin signal is L-level, the tone generator circuit counters will be reset. When a dual tone is generated at the time of reset, the initial phase settings for tone (1) and tone (2) will be in phase.

- Example: When Tone (1), Tone (2) are at the same frequency:



## (6) Codec Input/Output

Both the $\mu$-law and A-law coding/decoding conversion processes used by the MB86435 codec are compatible with CCITT Recommendation G.711. In addition, linear coding in the form of 14-bit two's complement code can be output starting with MSB values.


| MSB | Code | PTBO reference voltage (V) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.7354 |  |
| to |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1.4991 |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.5000 |  |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.5009 |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | to | 2.2647 |

## (7) The Codec SYNC Pin

The codec block requires the input of an 8 kHz sampling clock signal at the SYNC pin, as well as a data transfer clock at the CLK pin. In order to conserve power consumption, whenever the SYNC pin or CLK pin signal is inactive, the system goes into SYNC power-down mode and stops code conversion.

Also, if either the SYNC or CLK pins encounters jitter of $5 \mu$ s or greater, the system may go into power-down mode. Table 1.10 shows the status of output pins in SYNC power-down mode.

| Pin symbol | Operation |
| :--- | :--- |
| SGC | Normal operation $(1.5 \mathrm{~V})$ |
| SGO | Normal operation $(1.5 \mathrm{~V})$ |
| VRH | Normal operation $(2.5 \mathrm{~V})$ |
| DOUT | H-level fixed |
| PTBO | SGC |
| BTPO | High impedance |

## MB86435

## (8) Parallel Output

The LO0 to 3 pins carry latched output for external controls. The data written to address 1000 can be output through these pins. Output is CMOS output.


## 2. Analog Input

Analog input signals in the MB86435 include the two microphone inputs and the three accessory input.

## (1) Microphone Amps

The microphone amps take the incoming signal from the microphones and amplify it to any desired level of gain. The microphone lines are low-noise types for use with piezoelectric-ceramic or capacitor microphones, and are capable of a wide range of amplification. All microphones and amps must be coupled with capacitors to prevent amplification of offset signals.


Table 5 Microphone Amp Characteristics

| Parameter | Characteristics (typ) |
| :--- | :---: |
| Gain measurement range | 0 to 35 dB |
| Minimum load level | $50 \mathrm{k} \Omega$ |
| Maximum output level | 0.75 Vop |

## (2) Accessory Input

Direct input from the TAUD to the codec unit is possible through SW5, without passing through the microphone amp. Care must be taken with the input signal in this case, however, because input resistance is not at highimpedance level.
Microphone amp output may be added to the signal by using switching controls.
In this case, the result will be at the additional output level.
In addition, SW10 and SW11 may be used to transmit digital data from the TAUD to EXSD and DSCK, allowing the sending of fax or PC data without modification.


## 3. Analog Output

The MB86435 has a total of four analog output circuits, including the three speaker drive circuits (receiver, earphone and tone) and the accessory output.

## (1) Speaker Drive Amp

The speaker drive amps include two circuits (receiver and tone) with BTL output and one system (earphone) with single output. Because the speaker amp requires relatively high levels of power, it is connected to speaker selection switches (sw6-sw9) for power-down mode selection.
Two systems (receiver and earphone) have fixed gain levels, while the other system (tone) allows gain adjustment by means of external resistors.

Table 6 Speaker Drive Amp Output Standards

| Parameter | Receiver speaker amps (EAR, XEAR) | Earphone speaker amp <br> (JEAR) | Tone speaker amps (TONE, XTONE) |
| :---: | :---: | :---: | :---: |
| Output type | BTL | Single | BTL |
| Load resistance *1 | $32 \Omega$ (typ) | $32 \Omega$ (typ) | $25 \Omega$ (typ) |
| Load resistance *2 | 2.8 k ( (typ) | 2.8 k ( typ) | 2.8 kW (typ) |
| Load capacity *2 | 70 nF | 70 nF | 70 nF |
| Final stage gain | $-4.3 \mathrm{~dB}$ | $-2.5 \mathrm{~dB} /-8.5 \mathrm{~dB}$ | -5 to 20 dB |
|  | (between EAR-XEAR) | (JEAR) | (between TONE-XTONE) |
| Maximum output power | 6.4 mW (min) | 2 mW (min) | 10 mW (min) |

*1: Dynamic-type speaker
*2: Piezoelectric-ceramic type speaker

## MB86435

- Analog Output Connection Example


Note: - $\mathrm{R}_{3}, \mathrm{C}_{3}$ should be given the respective values $80 \Omega, 0.01 \mu \mathrm{~F}$ in order to prevent unwanted oscillation.

- If a piezoelectric-ceramic type microphone is used, R4, R5 should be given the respective values $20 \Omega, 10 \Omega$ in order to prevent unwanted oscillation.
- Tone Speaker Amp Not Used


Note: When no tone speaker amp is used, the amp input IMTON and output TONE should be shorted together.

## (2) Accessory Output

The accessory output (RAUD pin) can carry either digital or analog output signals, and is controlled by address 0101 data bit $\mathrm{D}_{4}$ (SW 8), and address 0111 data bit $\mathrm{D}_{1}$ (SW 12).
When both SW 8 and SW 12 are in off position, the accessory outputline is in $\mathrm{H}-\mathrm{Z}$ (high impedance) state. Caution: never place both SW 8 and SW 12 in on position at the same time. This may cause the MB86435 to function improperly.

## - SW12 in On Position



| Address |  |  |  | Data bit |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{4}$ | $\mathrm{A}_{3}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{1}$ | D ${ }_{0}$ |
| 0 | 1 | 1 | 1 | - | - | - | 1 | - |

## - SW8 in On Position



| Address |  |  |  | Data bit |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{4}$ | $\mathrm{A}_{3}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | D4 | $\mathrm{D}_{3}$ | $\mathrm{D}_{2}$ | D 1 | D |
| 0 | 1 | 0 | 0 | 0 | * | * | * | - |
| 0 | 1 | 0 | 1 | 0 | * | - | - | - |

## MB86435

## 4. Receiver Connections

It is possible to add tones and adjust sidetones by using amp 1,2 and 3 and the electronic volume control. When using amp 3, however, it is necessary to include HPF to avoid interference from the speaker amp DC.

- Tone and Sidetone Addition by Inclusion of Secondary LPF and Primary HPF.

- Amp1, Amp2 not used


Note: When amps are not used, the amp input and output should be shorted together.

## MB86435

- Tone and Sidetone Addition by Inclusion of Third-Order HPF



## MB86435

## 5．Power Saving Modes

## （1）Mode Selection

The MB86435 power saving modes can be controlled by using the external control signal lines（3 lines）．It is also possible to apply power saving modes to the speaker amps with high power consumption levels by writing changes to register settings．Whenever the MB86435 changes directly from a power－down mode to normal operating mode， there is a possibility that speaker tones may be produced．The recommended sequence of coding changes to go into normal mode is（VREF mode）$\rightarrow$（Tone mode）$\rightarrow$（Normal mode）．

Power Saving Modes

| Mode | External pins |  |  | Ad－ dress |  | Ad－ <br> dress <br> D | Address 0110 |  |  | Output pin status |  |  |  |  |  |  |  |  |  |  | Operating circuit status |  |  |  |  |  |  |  |  | Power supply current （mA） （typ） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | － | $\begin{array}{\|l\|} \hline \frac{b}{\sigma} \end{array}$ | $$ |  |  |  |  |  | $\underset{\sim}{2}$ |  |
|  | PSPSPS C2C1C0 |  |  |  |  |  | 4 Do | D | D | D | D ${ }^{\text {D }}$ | ¢ ${ }_{\text {W }} \times$ | 岂 | －${ }_{\text {－}}$ |  | O | ¢ | O¢ | え¢ | \％ | $\begin{aligned} & \infty> \\ & 0 . \\ & 0.0 \\ & U_{1}^{2} \\ & \sum_{1}^{2} \end{aligned}$ | ${ }_{\sim}^{\circ}$ | O | $\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{\omega}} \\ & \stackrel{\rightharpoonup}{む} \\ & \stackrel{\rightharpoonup}{u} \\ & \stackrel{\rightharpoonup}{\boldsymbol{u}} \end{aligned}\right.$ |  |  |  | $\begin{array}{\|l\|} \hline \overline{\bar{\phi}} \\ \mathbf{0} \\ \text { 区 } \\ \hline \text { SW6 } \\ \hline \end{array}$ | $\begin{array}{\|c} \text { 든 } \\ \text { 페 } \end{array}$ SW7 |  | 厄̄ | $\begin{array}{\|c\|} \hline \stackrel{0}{0} \\ \stackrel{\ddot{4}}{ } \\ \hline \text { SW8 } \\ \hline \end{array}$ |
| $\begin{array}{\|c\|} \hline \text { All } \\ \text { Power- } \\ \text { down } \end{array}$ | 0 | 0 | 0 | － | － | － | － | － | － | ZA | H－Z | ZB | H－Z | H | H－Z | ZC | H－Z | H－Z | H－Z | ＊ | $\times$ | 0.0005 |
| VREF | 1 | 0 | 0 | － | － | － | － | － | － | ZA | H－Z | ZB | H－Z | H | $\bigcirc$ | ZC | H－Z | H－Z | H－Z | ＊ | $\times$ | $\bigcirc$ | $\times$ | 0.41 |
| Tone |  | 1 | 0 | 1 | 1 | － | － | － | － | ZA | H－Z | ZB | H－Z | H | $\bigcirc$ | $\bigcirc$ | H－Z | H－Z | H－Z | $\bigcirc$ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\bigcirc$ | $\times$ | $\times$ | $\times$ | $\times$ | 1.8 |
|  |  | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | ZA | H－Z | ZB | $\bigcirc$ | H | $\bigcirc$ | $\bigcirc$ | H－Z | H－Z | H－Z | $\bigcirc$ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\bigcirc$ | $\times$ | $\times$ | $\times$ | $\bigcirc$ | 2.4 |
|  |  | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | ZA | $\bigcirc$ | ZB | H－Z | H | $\bigcirc$ | $\bigcirc$ | H－Z | H－Z | H－Z | $\bigcirc$ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\bigcirc$ | $\times$ | $\bigcirc$ | $\times$ | $\times$ | 4.4 |
|  |  | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | ZA | H－Z | $\bigcirc$ | H－Z | H | $\bigcirc$ | $\bigcirc$ | H－Z | H－Z | H－Z | $\bigcirc$ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\times$ | 6.6 |
|  |  | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | $\bigcirc$ | H－Z | ZB | H－Z | H | $\bigcirc$ | $\bigcirc$ | H－Z | H－Z | H－Z | $\bigcirc$ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\bigcirc$ | $\bigcirc$ | $\times$ | $\times$ | $\times$ | 6.6 |
| Normal |  |  | 1 | 0 | 0 | 0 | 1 | 1 | 1 | ZA | H－Z | ZB | $\bigcirc$ | $\times$ | $\times$ | $\times$ | $\bigcirc$ | 6.0 |
|  |  | － | 1 | 0 | 0 | 1 | 0 | 1 | 1 | ZA | $\bigcirc$ | ZB | H－Z | $\bigcirc$ | $\times$ | $\bigcirc$ | $\times$ | $\times$ | 8.0 |
|  |  |  | 1 | 0 | 0 | 1 | 1 | 0 | 1 | ZA | H－Z | $\bigcirc$ | H－Z | $\bigcirc$ | $\times$ | $\times$ | $\bigcirc$ | $\times$ | 10.2 |
|  |  | － | 1 | 0 | 0 | 1 | 1 | 1 | 0 | $\bigcirc$ | H－Z | ZB | H－Z | $\bigcirc$ | O | $\bigcirc$ | $\times$ | $\times$ | $\times$ | 10.2 |
|  |  | － | 1 | 0 | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | 18.2 |

Note：• $\bigcirc$ ：Operational，$\times$ ：Power－down，H－Z：High impedance，H：H－level fixed
：High impedance may not be applied，depending on status of SW6，SW7，SW8．
ZA ：EAR and XEAR are floating，however high resistance connection between EAR and XEAR．
ZB ：TONE and XTONE are floating，however，high resistance connection between TONE and XTONE，and between SGO and XTONE．
ZC ：Floating，however high resistance connection between OP2 and BTO．Codec in［Normal］mode operates with SYNC $=8 \mathrm{kHz}, \mathrm{CLK}=2048 \mathrm{kHz}$ ．
－When RAUD is operating，address 0111 data bit D1 value should be＂0＂（SW12 off）．
－In tone mode，address 0111 data bit D3 should be＂0＂（SW2 on），and address 0111 data bit D4 should be ＂0＂（SW14 off）．
－When the SYNC and CLK pin signals are fixed at either L－level or H－level，part of the codec unit will go into power－down mode．At this time the PTBO signal will be SGC level，BTPO will be $\mathrm{H}-\mathrm{Z}$ ，and VRH output will be approximately 4.0 V ．

## TIMING CHART

- Codec-Related Signals

[Enlarged view]

${ }^{*}$ From first CLK Down to second CLK Down, SYNC $=\mathrm{H}$.


## MB86435

- Microcomputer Data-Related Signals



## ABSOLUTE MAXIMUM RATINGS (See WARNING)

| Parameter |  | Symbol | Rating |  |
| :--- | :---: | :---: | :---: | :---: |
| Unit |  |  |  |  |
|  |  | Min. | Max. |  |
| Power supply voltage | $\mathrm{V}_{\mathrm{s}}$ | -0.3 | 7.0 | V |
| Analog input voltage | $\mathrm{V}_{\text {AIN }}$ | -0.3 | $+\mathrm{V}_{\mathrm{s}}+0.3$ | V |
| Digital input voltage | $\mathrm{V}_{\text {DIN }}$ | -0.3 | $+\mathrm{V}_{\mathrm{s}}+0.3$ | V |
| Storage temperature | Vstg | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |

WARNING: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ■ RECOMMENDED OPERATING CONDITIONS

| Parameter | Symbol | Pin name | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| Operating temperature | Ta | - | -20 | +25 | +80 | ${ }^{\circ} \mathrm{C}$ |
| Power supply voltage | Vs | VDD, VDDAB, VDDAC, VDDSP1, VDDSP2 | 2.7 | 3.0 | 3.6 | V |
| Digital input voltage | VL | All digital input pins | 0.0 | - | Vs | V |
| Analog output load resistance | Rlb | BBO, PTBO, TONEO, BTO, BTPO | 75 | - | - | k $\Omega$ |
| Analog output load capacity | Clb |  | - | - | 20 | pF |
| Analog output load resistance*1 | RLE | Between EAR-XEAR | - | 32 | - | $\Omega$ |
| Analog output load capacity*2 | Cle |  | - | - | 70 | nF |
| Analog output load resistance*1 | RLJ | JEAR | - | 32 | - | $\Omega$ |
| Analog output load capacity*2 | CLJ |  | - | - | 70 | nF |
| Analog output load resistance*1 | RLt | Between TONE-XTONE | - | 25 | - | $\Omega$ |
| Analog output load capacity*2 | Clt |  | - | - | 70 | nF |
| Analog output load resistance | Rım | MICO, JMICO, SGO, BBI, OP1, OP2 | 50 | - | - | $\mathrm{k} \Omega$ |
| Analog output load capacity | Clm |  | - | - | 20 | pF |
| Analog output load resistance ${ }^{* 3}$ | RLm | RAUD | 5 | - | - | k $\Omega$ |
| Analog output load capacity*3 | Cım |  | - | - | 20 | pF |
| Analog output voltage | $V_{\text {AOUT }}$ | All analog output pins | 0.45 | - | VDD-0.45 | V |
| Analog input voltage | Vain | All analog input pins | 1.2 | - | 1.8 | V |

*1: Dynamic typ speakers
*2: Piezoelectric type speakers
*3: $\quad$ When SW8 = on, SW12 = off

## MB86435

## ELECTRICAL CHARACTERISTICS

1. DC Characteristics

| Parameter |  | Symbol | Pin | Conditions | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. |  |  | Typ. | Max. |  |
| Power supply current at full power-down mode |  |  | Ivsst1 | All Vod pins | $\begin{aligned} & \text { PSC0 = 0 : PSC1 = 0: } \\ & \text { PSC2 =0, } \\ & \text { Ain =AG, Din = L } \end{aligned}$ | - | 0.5 | 50 | $\mu \mathrm{A}$ |
| Power supply current with VREF operating |  | Ivsst2 | $\begin{aligned} & \text { PSC0 = 0 : PSC1 = 0 : } \\ & \text { PSC2 = 1, Ain = SGC } \\ & \operatorname{Din}=L \end{aligned}$ |  | - | 410 | 800 | $\mu \mathrm{A}$ |
| Power supply current with TONE operating |  | Ivsstз | $\begin{aligned} & \text { PSC0 = 0: PSC1 = 1, } \\ & \text { Ain = SGC, Din = ICN } \\ & \text { SW6 = SW7 = SW8 = } \\ & \text { SW9 = off } \end{aligned}$ |  | - | 1.8 | 3.0 | mA |
| Power su normal op (only spe | ply current for eration <br> ker ampmute) | Ivsst4 | $\begin{aligned} & \text { PSC0 = 1, Ain = SGC, } \\ & \text { Din = ICN } \\ & \text { SW6 = SW7 = SW9 = off } \end{aligned}$ |  | - | 6.0 | 8.5 | mA |
| Speaker amp power supply voltage | Receiver amps EAR, XEAR | Ivsst5 | $\mathrm{PSC} 0=0, \mathrm{PSC} 1=1,$ <br> Ain = SGC, Din = ICN, <br> Power supply current differential when SW6 is on/off. |  | - | 4.8 | 7.0 | mA |
|  | Earphone amp JEAR | Ivsst6 | $\mathrm{PSC} 0=0, \mathrm{PSC} 1=1,$ <br> Ain = SGC, Din =ICN, <br> Power supply current differential when SW7 is on/off. |  | - | 2.6 | 4.0 | mA |
|  | Tone amps TONE, XTONE | Ivsst8 | $\mathrm{PSC} 0=0, \mathrm{PSC} 1=1,$ <br> Ain = SGC, Din =ICN, <br> Power supply current differential when SW9 is on/off. |  | - | 4.8 | 7.0 | mA |
| Digital input voltage |  | $\mathrm{V}_{\text {IH }}$ | All digital input pins | - | Vs $\times 0.7$ | - | Vs | V |
|  |  | VIL |  | - | 0 | - | Vs $\times 0.3$ | V |
| Digital input current |  | ІІн |  | - | - | - | 10 | $\mu \mathrm{A}$ |
|  |  | IIL |  | - | - | - | 10 | $\mu \mathrm{A}$ |
| Input offset voltage |  | VFM | Between MIC-XMIC, between JMIC-XJMIC | - | -10 | - | 10 | mA |

(Continued)
(Continued)

| Parameter | Symbol | Pin | Conditions | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| Output offset voltage | Vfr | RAUD | $\begin{aligned} & \text { BBI = SGC } \\ & \text { SW8 = on, SW6 = SW7 } \\ & =\text { SW9 = SW12 = off } \end{aligned}$ | -15 | - | 15 | mV |
|  | Vfe | Between EAR-XEAR | $\begin{aligned} & \text { BBI = SGC } \\ & \text { SW6 = on, SW7 = SW8 } \\ & =\text { SW9 = SW12 = off } \end{aligned}$ | -20 | - | 20 | mV |
|  | $V_{\text {ft }}$ | Between TONE-XTONE | $\begin{aligned} & \text { IMTON = SGC } \\ & \text { SW9 = on, SW6 = SW7 } \\ & =\text { SW } 8=\text { SW12 }=\text { off } \end{aligned}$ | -20 | - | 20 | mV |
|  | $V_{\text {FP }}$ | PTBO | Din $=\mathrm{ICN}, \mathrm{EV} 2=0 \mathrm{~dB}$ | -100 | - | 100 | mV |
|  | Vон | Between MIC0-BBO | $E V 0=0 \mathrm{~dB}$ | -100 | - | 100 | mV |
|  | Vol | Between JMIC0-BBO |  |  |  |  |  |
| SGC output voltage | Vsgc | SGC | - | 1.40 | 1.50 | 1.60 | V |
| SGO output voltage | Vsgo | SGO | - | 1.40 | 1.50 | 1.60 | V |
| VRH output voltage | Ivrh | VRH | - | - | 2.5 | - | V |
| Digital output voltage | Vон | All digital output pins | Іон $=-0.5 \mathrm{~mA}$ | Vs×0.8 | - | Vs | V |
| Digital output voltage | Vob | All digital output pins | $\mathrm{loL}=0.5 \mathrm{~mA}$ | 0.0 | - | Vs $\times 0.2$ | V |
| Resistance between pins TAUD and DSCK | Ror | Between DSTD-RAUD | SW12 = on, SW8 = off | - | - | 2 | k $\Omega$ |
| Resistance between pins TAUD and EXSD | Rte | Between TAUD-EXSD | SW10 = on, SW11 = off | - | - | 2 | $\mathrm{k} \Omega$ |
| Resistance between pins DSTD and RAUD | Rde | Between <br> TAUD-DSCK | SW11 = on, SW10 = off | - | - | 2 | k $\Omega$ |

Note: Measurement conditions: $\square$ Standard Test Circuit

## 2. AC Characteristics

## (1) Codec-Related Signals

| Parameter | Symbol | Conditions | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| Digital input rise time | tR | $\mathrm{Vs} \times 0.3 \rightarrow \mathrm{Vs} \times 0.7$ | - | - | 50 | ns |
| Digital input fall time | $\mathrm{tF}_{\text {F }}$ |  | - | - | 50 | ns |
| Shift clock frequency | $f \mathrm{c}$ | $\mu$-law, A-law | 64 | - | 3152 | kHz |
|  |  | Linear | 256 | - | 3152 | kHz |
| Shift clock pulse width (H) | twch | $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{s} \times} \times 0.7$ | 1/fc $\times 0.3$ | - | 1/fox0.7 | ns |
| Shift clock pulse width (L) | twcL | $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{s}} \times 0.3$ | 1/f $\mathrm{c} \times 0.3$ | - | 1/fo $\times 0.3$ | ns |
| Sync frequency | fs | - | - | 8 | - | kHz |
| Sync pulse width | tws | - | 1/fc | - | 62 | $\mu \mathrm{s}$ |
| SYNC to CLK setup time | tsx | - | 100 | - | - | ns |
| CLK to SYNC hold time | txs | - | 50 | - | - | ns |
| CLK to DIN hold time | tro | - | 50 | - | - | ns |
| DIN to CLK setup time | tor | - | 50 | - | - | ns |
| SYNC to DOUT delay time | tzo | BIT 1 | - | - | 200 | ns |
| CLK to DOUT delay time | too | BIT 2 to 8 | - | - | 200 | ns |
| CLK to DOUT disable time | toz | "H" | - | - | 200 | ns |
| DOUT fall time | tof | - | 10 | - | 100 | ns |

## (2) Microcomputer Data-Related Signals

| Parameter | Symbol | Pin | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| SRC to SRD data setup time | tssc | SRD, SRC | 50 | - | - | ns |
| SRC to SRD data hold time | thsc |  | 50 | - | - | ns |
| SRC to STB setup time | tscb | SRC, STB | 50 | - | - | ns |
| SRC pulse width (H) | twh | SRC | 200 | - | - | ns |
| SRC pulse width (L) | twL |  | 200 | - | - | ns |
| STB pulse width | tos | STB | 50 | - | - | ns |
| STB to SRC hold time | tнсв | STB, SRC | 50 | - | - | ns |
| LOO to 3 delay time | tıo | LOO to 3 | - | - | 200 | ns |
| Shift clock frequency | fsclk | SRC | - | - | 2048 | kHz |
| Reset pulse width | twre | XPRST | 1 | - | - | $\mu \mathrm{s}$ |

## 3. Transmission Characteristics

## (1) Microphone Amp System

| Parameter | Symbol | Conditions | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| Gain <br> (between MIC0 and BBO) | Gмв | $\begin{aligned} & \mathrm{MICO}=-20 \mathrm{dBv}, 1020 \mathrm{~Hz} \\ & \mathrm{SW} 3=0, \mathrm{SW} 4=\mathrm{SW} 5=\mathrm{SW} 14=\mathrm{off} \\ & \mathrm{EV} 0=0 \mathrm{~dB} \end{aligned}$ | -1.5 | - | 1.5 | dB |
| Gain (between JMIC0 and BBO) | $\mathrm{G}_{\text {в }}$ | $\begin{aligned} & \mathrm{JMICO}=-20 \mathrm{dBv}, 1020 \mathrm{~Hz} \\ & \mathrm{SW} 4=\mathrm{on}, \mathrm{SW} 3=\mathrm{SW} 5=\mathrm{SW} 14=\mathrm{off} \\ & \mathrm{EV} 0=0 \mathrm{~dB} \end{aligned}$ | -1.5 | - | 1.5 | dB |
| Signal to noise ratio (between MIC and BBO) (between XMIC and BBO) | Smв | $\begin{aligned} & \text { Ain } 1=-40 \mathrm{dBv}(+20 \mathrm{dBgain}) \\ & \text { SW3 }=0 \text {, SW4 }=\mathrm{SW} 5=S W 14=\text { off } \\ & \mathrm{EV} 0=0 \mathrm{~dB}, 1020 \mathrm{~Hz} \mathrm{C} \mathrm{message} \end{aligned}$ | 40 | - | - | dB |
| Signal to noise ratio (between JMIC and BBO) (between XJMIC and BBO) | Sıв | Ain2 $=-40 \mathrm{dBv}(+20 \mathrm{dBgain})$ <br> SW4 = on, SW3 = SW5 = SW14 = off <br> EV0 $=0 \mathrm{~dB}, 1020 \mathrm{~Hz}$ C message | 40 | - | - | dB |

Note: Measurement conditions: $\square$ Standard Test Circuit
(2) Speaker Amp System

| Parameter | Symbol | Conditions | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| Gain (between EAR and XEAR) | Gbe | $\mathrm{BBI}=-20 \mathrm{dBv}, 1020 \mathrm{~Hz}$ | - | -4.3 | - | dB |
| Gain (between BBI and JEAR) | Gbı | $\mathrm{BBI}=-20 \mathrm{dBv}, 1020 \mathrm{~Hz}$, ATT $=-2.5 \mathrm{~dB}$ | - | -2.5 | - | dB |
|  | Gbug | $\mathrm{BBI}=-20 \mathrm{dBv}, 1020 \mathrm{~Hz}, \mathrm{ATT}=-8.5 \mathrm{~dB}$ | - | -8.5 | - | dB |
| Gain (between BBI and RAUD) | Gbr | $\begin{aligned} & \mathrm{BBI}=-20 \mathrm{dBv}, 1020 \mathrm{~Hz} \\ & \text { SW8 }=\text { on, SW6 }=\text { SW } 7=\mathrm{SW} 12=\text { off } \end{aligned}$ | - | 0.0 | - | dB |
| Output power | WE | $\begin{aligned} & \mathrm{R}=32 \Omega \text {, between EAR-XEAR } \\ & \mathrm{THD}=10 \% \end{aligned}$ | 6.4 | - | - | mW |
|  | $W_{\text {T }}$ | R $=25 \Omega$, between TONE-XTONE gain $=0 \mathrm{~dB}$, THD $=10 \%$ | 10.0 | - | - | mW |
|  | W | $\begin{aligned} & \mathrm{R}=32 \Omega, \mathrm{JEAR}, \mathrm{ATT}=-2.5 \mathrm{~dB} \\ & \mathrm{THD}=10 \% \end{aligned}$ | 2.0 | - | - | mW |

Note: Measurement conditions: $\square$ Standard Test Circuit
(3) TONE System

| Parameter | Symbol | Conditions | Value |  |  | Unit |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| TONE output level <br> (TONE0) | $\mathrm{G}_{\mathrm{T} 1}$ | 1 tone generated, SW2 $=$ on <br> $\mathrm{f}_{1}=948.1 \mathrm{kHz}$ | - | -14.0 | - | dBv |
|  | $\mathrm{G}_{\mathrm{T} 2}$ | 2 tone generated, SW2 $=$ on <br> $\mathrm{f}_{1}=948.1 \mathrm{kHz}, \mathrm{f}_{2}=1219.1 \mathrm{kHz}$ | - | -14.0 | - | dBv |

Note: Measurement conditions: $\square$ Standard Test Circuit

## MB86435

(4) Electric Volume System

| Parameter | Symbol | Conditions | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| Volume gain error EVO <br> (between TAUD-BBO) | GEo | $\begin{aligned} & \text { SW5 }=\text { on, SW3 }=\text { SW } 4=\text { SW } 14=\text { off } \\ & \text { TAUD }=-20 \mathrm{dBv}, 1020 \mathrm{~Hz} \end{aligned}$ | -0.7 | - | 0.7 | dB |
| Volume gain error EV1 (between DIN-PTBO) | GE1 | Din $=-20 \mathrm{dBm0}, 1020 \mathrm{~Hz}$ | -0.8 | - | 0.8 | dB |
| Volume gain error EV2 <br> (between IM 2-BTO) | SE2 | $\mathrm{IM} 2=-20 \mathrm{dBv}, 1020 \mathrm{~Hz}$ | -1.0 | - | 1.0 | dB |
| Volume gain error EV3 (TONEO) | Ses | $\begin{aligned} & \text { SW2 = on } \\ & 1 \text { tone generated } \\ & \mathrm{f}_{1}=948.1 \mathrm{kHz} \end{aligned}$ | -0.5 | - | 0.5 | dB |

Note: Measurement conditions: $\square$ Standard test circuit
(5) Sending/Receiving System (Codec, Analog Block)

| Parameter | Symbol | Conditions | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |
| Crosstalk (send $\rightarrow$ receive) | CTX | $\begin{aligned} & \text { Ain } 1=1020 \mathrm{~Hz},-40 \mathrm{dBv}(20 \mathrm{dBgain}) \\ & \text { Din }=\text { ICN } \\ & \text { Measured at RAUD pin } \end{aligned}$ | - | - | -50 | dB |
| Crosstalk (send $\rightarrow$ receive) | CTR | $\begin{aligned} & \text { Din }=1020 \mathrm{~Hz}, 0 \mathrm{dBm0} \\ & \text { AIN }=\text { SGC } \\ & \text { Measured at DOUT pin } \end{aligned}$ | - | - | -50 | dB |
| Power supply noise reduction ratio | PSRR | $\begin{aligned} & 0<\mathrm{f}<50 \mathrm{kHz}, \mathrm{~V}_{\mathrm{DD}}+30 \mathrm{mVop} \\ & \mathrm{C} \text { message } \\ & \text { AIN }^{2}=\text { SGC, } \mathrm{DIN}_{\mathrm{ol}}=\mathrm{ICN} \end{aligned}$ | - | 22 | - | dB |

Note: Measurement conditions: Standard test circuit

## (6) Codec

| Parameter | Symbol | Conditions |  | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| Gain tracking <br> (A to D) <br> BTPO $\rightarrow$ DOUT | GTX | $1020 \mathrm{~Hz},-10 \mathrm{dBm0}$ <br> Reference value | +3 to -40 dBm0 | -0.2 | - | 0.2 | dB |
|  |  |  | -40 to $-50 \mathrm{dBm0}$ | -0.4 | - | 0.4 | dB |
|  |  |  | -50 to -55 dBm0 | -0.8 | - | 0.8 | dB |
| Gain tracking ( D to A ) DIN $\rightarrow$ PTBO | GTR | $1020 \mathrm{~Hz},-10 \mathrm{dBm0}$ Reference value $E V 1=0 \mathrm{~dB}$ | +3 to $-40 \mathrm{dBm0}$ | -0.4 | - | 0.4 | dB |
|  |  |  | -40 to -50 dBm0 | -0.6 | - | 0.6 | dB |
|  |  |  | -50 to -55 dBm0 | -1.0 | - | 1.0 | dB |
| Gain tracking (A to D) (Linear) BTPO $\rightarrow$ DOUT | GTXL | 1020 Hz, AFST-3 dB Reference value | AFST to AFST-43 dB | -0.2 | - | 0.2 | dB |
|  |  |  | AFST-43 to AFST-53 dB | -0.4 | - | 0.4 | dB |
|  |  |  | AFST-53 to AFST-53 dB | -0.8 | - | 0.8 | dB |
| Gain tracking ( D to A ) (Linear) DIN $\rightarrow$ PTBO | GTRL | 1020 Hz, AFST-3 dB Reference value $E V 1=0 \mathrm{~dB}$ | AFSR to AFSR-43 dB | -0.4 | - | 0.4 | dB |
|  |  |  | AFSR-43 to AFSR-53 dB | -0.6 | - | 0.6 | dB |
|  |  |  | AFSR-53 to AFSR-53 dB | -1.0 | - | 1.0 | dB |
| Sending frequency characteristics (A to D) BTPO $\rightarrow$ DOUT | FRX | $\begin{aligned} & 0 \mathrm{dBm0} \\ & (\text { Linear : AFST-3 } \mathrm{dB}) \\ & 1020 \mathrm{~Hz} \\ & \text { Reference value } \end{aligned}$ | 0 to 60 Hz | 24.0 | - | - | dB |
|  |  |  | 60 to 300 Hz | -0.20 | - | - | dB |
|  |  |  | 300 to 3000 Hz | -0.20 | - | 0.20 | dB |
|  |  |  | 3000 to 3400 Hz | -0.20 | - | 0.8 | dB |
|  |  |  | 3400 to 4600 Hz | * | - | - | dB |
|  |  |  | 4600 to 12 kHz | 32.0 | - | - | dB |
| Receiving frequency characteristics ( D to A ) DIN $\rightarrow$ PTBO | FRR | $\begin{aligned} & 0 \mathrm{dBm0} \\ & \text { (Linear : AFSR-3 } \mathrm{dB} \text { ) } \\ & 1020 \mathrm{~Hz} \\ & \text { Reference value } \\ & \text { EV1 }=0 \mathrm{~dB} \end{aligned}$ | 0 to 300 Hz | -0.30 | - | - | dB |
|  |  |  | 300 to 3000 Hz | -0.30 | - | 0.30 | dB |
|  |  |  | 3000 to 3400 Hz | -0.30 | - | 1.10 | dB |
|  |  |  | 3400 to 4600 Hz | * | - | - | dB |
|  |  |  | 4600 to 12 kHz | 32.0 | - | - | dB |
| Sending absolute gain <br> (A to D) <br> BTPO $\rightarrow$ DOUT | GAX | $1020 \mathrm{~Hz}, 0 \mathrm{dBm0}$ (Linear : AFST-3 dB) $\mathrm{EV} 1=0 \mathrm{~dB}, \mathrm{~V}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$ |  | -1.0 | 0 | -1.0 | dB |
|  |  | Power supply variation |  | - | $\pm 0.02$ | - | dB |
|  |  | Temperature variation |  | - | $\pm 0.001$ | - | $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ |
| Receiving absolute gain ( D to A ) <br> DIN $\rightarrow$ PTBO | GAR | $\begin{aligned} & 1020 \mathrm{~Hz}, 0 \mathrm{dBm0} \text { (Linear : AFSR-3 dB) } \\ & \mathrm{Vs}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C} \end{aligned}$ |  | -1.20 | 0 | 1.20 | dB |
|  |  | Power supply variation |  | - | $\pm 0.04$ | - | dB |
|  |  | Temperature variation |  | - | $\pm 0.002$ | - | $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ |
| Absolute level | VABS | $\text { Over load level } \begin{array}{r} \mu \text {-Law } \\ \text { A-Law } \end{array}$ | $\begin{aligned} & =3.17 \mathrm{~dB} \\ & =3.14 \mathrm{~dB} \end{aligned}$ | - | 0.7647 | - | Vop |

(Continued)

## MB86435

(Continued)

| Parameter | Symbol | Conditions |  | Value |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |
| Sending signal to noise ratio BTPO $\rightarrow$ DOUT | SDX | 1020 Hz <br> C message (A to D) | 0 to $-30 \mathrm{dBm0}$ | 34.0 | - | - | dB |
|  |  |  | -40 dBm0 | 28.0 | - | - | dB |
|  |  |  | -45 dBm0 | 23.0 | - |  | dB |
| Receiving signal to noise ratio DIN $\rightarrow$ DOUT | SDR | 1020 Hz C message ( D to A ) | 0 to $-30 \mathrm{dBm0}$ | 34.0 | - | - | dB |
|  |  |  | -40 dBm0 | 28.0 | - | - | dB |
|  |  |  | -45 dBm0 | 23.0 | - | - | dB |
| Sending signal to noise ratio BTPO $\rightarrow$ DOUT (Linear) | SDXL | 1020 Hz C message ( A to D ) | AFST-3 to AFST-33 dB | 34.0 | - | - | dB |
|  |  |  | AFST-43 dB | 28.0 | - | - | dB |
|  |  |  | AFST-45 dB | 23.0 | - | - | dB |
| Recieving signal to noise ratio BTPO $\rightarrow$ DOUT (Linear) | SDRL | 1020 Hz C message ( D to A ) | AFSR-3 to AFSR-33 dB | 34.0 | - | - | dB |
|  |  |  | AFSR-43 dB | 28.0 | - | - | dB |
|  |  |  | AFSR-45 dB | 23.0 | - | - | dB |
| Sending no-talk noise BTPO $\rightarrow$ DOUT | ICNX | C message ( A to D ) |  | - | -72 | -68 | dBm0C |
| Receiving no-talk noise $\mathrm{DIN} \rightarrow \mathrm{PTBO}$ | ICNR | C message ( D to A ) |  | - | -72 | -68 | dBm0C |
| Analog input level BTPO | AILU | $\begin{array}{ll} 1020 \mathrm{~Hz}, 0 \mathrm{dBm0}, \mathrm{Ta}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}=3.0 \mathrm{~V} & \mu-\mathrm{law} \end{array}$ |  | 0.3290 | 0.3739 | 0.4195 | Vrms |
| Analog output level PTBO | AOLU | $\begin{array}{ll} 1020 \mathrm{~Hz}, 0 \mathrm{dBm0}, \mathrm{Ta}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}=3.0 \mathrm{~V} & \mu-\mathrm{law} \\ \hline \end{array}$ |  | 0.3290 | 0.3739 | 0.4195 | Vrms |
| Analog input level BTPO | AILA | $\begin{aligned} & 1020 \mathrm{~Hz}, 0 \mathrm{dBm0}, \mathrm{Ta}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}=3.0 \mathrm{~V} \quad \text { A-law } \end{aligned}$ |  | 0.3315 | 0.3767 | 0.4227 | Vrms |
| Analog output level PTBO | AOLA | $\begin{aligned} & 1020 \mathrm{~Hz}, 0 \mathrm{dBm0}, \mathrm{Ta}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}=3.0 \mathrm{~V} \quad \text { A-law } \end{aligned}$ |  | 0.3315 | 0.3767 | 0.4227 | Vrms |
| Analog input fullscale level BTPO | AFST | $\mathrm{V}_{\mathrm{s}}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$ <br> Linear |  | 0.6729 | 0.7647 | 0.8581 | Vop |
| Analog output fullscale level PTBO | AFSR | $\mathrm{V}_{\mathrm{s}}=3.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$ <br> Linear |  | 0.6729 | 0.7647 | 0.8581 | Vop |
| Overall absolute delay (BTPO $\rightarrow$ PTBO) | PDA | $\mathrm{F}_{\mathrm{c}} \geq 1544 \mathrm{kHz}$ (DOUT-DIN short) |  | - | 490 | 550 | $\mu \mathrm{S}$ |
| $\begin{aligned} & \text { Single frequency } \\ & \text { noise } \\ & \text { (BTPO } \rightarrow \text { PTBO) } \end{aligned}$ | SFNA | BTPO = SCG $0-4 \mathrm{kHz}$ <br> (DOUT-DIN short) $4.6-200 \mathrm{kHz}$ |  | - | - | $\begin{aligned} & -70 \\ & -50 \end{aligned}$ | $\begin{aligned} & \mathrm{dBm0} \\ & \mathrm{dBm0} \end{aligned}$ |
| $\begin{aligned} & \text { Discrimination } \\ & \text { (BTPO } \rightarrow \text { PTBO) } \end{aligned}$ | DISA | $\text { BTPO }=0 \mathrm{dBmO}, 4.6-200 \mathrm{kHz}$ (DOUT-DIN short) |  | 30 | - | - | dB |
| In-band spurious response (BTPO $\rightarrow$ PTBO) | IBSA | Second and third harmonic,BTPO $=0 \mathrm{dBmO}$ $700-1100 \mathrm{~Hz}$ (DOUT-DIN short) |  | 43 | - | - | dB |

*: $14.5 \times\left\{1-\operatorname{SIN} \frac{\pi(4000-f)}{1200}\right\}$

## STANDARD TEST CIRCUIT



Note: Sufficient path capacitance must be placed between VDDAB-BAG, VDDAC-CAG, VDDSP1-SPG1, VDDSP2-SPG2, VDD-AG.

## MB86435

- ORDERING INFORMATION

| Part number | Package | Remarks |
| :---: | :---: | :---: |
| MB86435PFV | 64 pins, Plastic LQFP <br> (FPT-64P-M03) |  |

## PACKAGE DIMENSION

## 64 pin Plastic LQFP

(FPT-64P-M03)


## FUJITSU LIMITED

## For further information please contact:

## Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329

## North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

## Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

## Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED \#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220

All Rights Reserved.
Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

## F9703

© FUJITSU LIMITED Printed in Japan

