
1/3January 2002

AN1422
APPLICATION NOTE

Designing with Flash+PSD Memory

CONTENTS

 (Introduction on next page)

3-19

Programmable Peripheral
Application Note 048
Designing with Flash Memory

Introduction

Reason for
Using Flash
Memory

Methods of
Programming

Flash Memory has gained a wide popularity as a choice of use in embedded system
solutions. Many designers, who are using Microcontrollers, are using Flash Memory for
program store and sometimes also for data store. The ability to reprogram Flash Memory in
the system has allowed designers to change the program code in production or out in the
field without a large expense of doing so. What many designers are not aware of is the
complexity of designing with Flash Memory for In-System Programming (ISP). One
important point to remember when reprogramming Flash Memory: the programming
algorithm cannot be executed out of the same Flash Memory device that is being
programmed. It must be executed out of a separate memory device such as an EPROM or
SRAM device. At the time of this publication, there are no cost effective Flash Memory
devices that can perform this dual function. This Application Note will address the issues of
designing Flash Memory into a system and show an easy solution using ST’s PSD device
as a Flash Support Chip (FSP). The next few sections discuss the design issues of using
Flash Memory. A summary of these issues are shown in Table 1.

The two main reasons why designers use Flash Memory is to have the ability to cost
effectively change the program code in the field, and to load the latest version of program
code into the system just prior to shipping the product. Other designers may also use
segmented Flash Memory to store variables or calibration data. Flash Memory is also
used in manufacturing for running test programs. This can help decrease the cost of
manufacturing a product.

The designer must determine the method of programming a Flash Memory the first time
and reprogramming the Flash Memory in-system after the first time. The technique of
performing these two functions may be very different.

The Flash Memory can be initially programmed by an EPROM programmer, or programmed
in the system using a Boot EPROM or ROM, or programmed in the system using a
Microcontroller with a JTAG Port. If the system boots up out of the boot sector of the Flash
Memory, this boot sector must be initially programmed either by an external EPROM
programmer prior to the Flash Memory being assembled on the board or by an MCU with a
JTAG Port. Since most low cost Microcontrollers do not have a JTAG Port, there is an
added cost of programming Flash Memory on an EPROM Programmer prior to being
assembled on the board.

When reprogramming the Flash Memory in-circuit, a serial port or JTAG port must be used.
If a serial port is used, the data is downloaded to SRAM prior to being programmed into the
Flash Memory. Next, the Microcontroller must execute the programming algorithms to
reprogram the Flash Memory with the data that was downloaded from the serial port. If the
system does not have a separate boot EPROM or ROM to execute the programming
algorithms, the programming algorithms must be copied from the boot sector of the Flash
Memory into the SRAM. The programming algorithms must then be executed from the
SRAM while programming the Flash Memory. A common mistake designers make is
thinking that they can execute the programming algorithms out of the same Flash Memory
they are trying to program.

3-20

Flash Memory – Application Note 048

Methods of
Programming
(cont.)

Manufacturing
Stages of
Programming

System
Programming
Issues

If a JTAG port is available on the MCU, this port can be used to reprogram the Flash
Memory in the same manner as programming the Flash Memory the first time. The boot
code can be downloaded through the JTAG port into local SRAM inside the Microcontroller
while the Microcontroller is being held in reset. The boundary scan registers on the
Microcontroller can also be used to program the Flash Memory in-circuit. Since most low
cost Microcontrollers do not have a JTAG Port, further discussions in this application note
will assume that a JTAG Port is not available.

Flash Memory can be programmed in various stages of the manufacturing process. If no
boot EPROM or ROM is used in the system, the Flash Memory must be programmed on an
EPROM Programmer prior to being assembled onto the board. As a minimum, the boot
sector must be programmed at this time. Manufacturing personnel must be careful not to
assemble the wrong programmed part on the board. This mistake may be costly as it will be
detected in Functional Test where test time and troubleshooting is expensive. The program
code may also change prior to shipping the product. If this occurs, programming at this
stage will be an unnecessary cost added to manufacturing. During in-circuit test, test code
may be loaded into Flash Memory. This may simplify the testability of the system.
Functional Test is the most expensive stage for detecting a bad or incorrectly programmed
Flash Memory. From a manufacturing point of view, the least expensive Flash solution is
having the ability to assemble a blank Flash Memory device on the board and program it
during the in-circuit test phase. This requires a separate boot EPROM or ROM.

There are various system programming issues that must be considered when designing
Flash Memory systems. The most important issue was stated previously: the system
cannot execute the programming algorithms from the same Flash Memory being
programmed. Some designers will store the programming algorithms in the boot sector of
the Flash Memory. When programming the Flash Memory, the system must copy the
algorithms from Flash to SRAM. The system will next execute the algorithms from SRAM to
program the Flash Memory.

Taking a closer look at what is involved in doing this, I will use an 80C31 for an example.
The 80C31 has a separate Program Space and Data Space. Initially the Flash Memory is in
the Program Space and the SRAM is in the Data Space. To copy the algorithms from Flash
Memory to SRAM, the Flash Memory and SRAM must be in the Data Space. The code
executing in the Flash Memory to copy the algorithms must be in the Program Space. Once
the algorithms are in the SRAM, the SRAM must be moved to the Program Space while the
Flash Memory remains in the Data Space. To work around this problem, both the Flash
Memory and SRAM must be in both the Program and Data Space at the same time. This
can be a problem if the sum of memory sizes of the Flash Memory, SRAM, and other I/O
functions exceeds the 64 Kbytes of address space. The solution to this problem requires a
lot of PLD logic for address decoding in both the Operational and Programming Modes
along with a page register to extend the addressing capabilities of the 80C31 in the
Programming Mode.

There are other concerns the designer must consider. What if power fails while the
Microcontroller is executing the programming algorithm from SRAM? The programming
state machine built into Flash Memories must reset itself and allow access to the boot
sector when powering the system back up. The system then must have the ability to
reprogram the corrupted Flash Memory. The boot block in the system must be write
protected. If this boot block is corrupted for any reason, the system will be inoperative. The
best protection for the boot block and programming algorithms is to store them in EPROM
or ROM technology. If there is a way to reprogram the boot block, there is a way to corrupt
it. Some sector protect techniques cannot guarantee that the sector will not be corrupted
when the Microcontroller malfunctions and executes the wrong code (maybe unlocking and
corrupting a sector).

Flash Memory – Application Note 048

3-21

Using SRAM for Executing Using the PSDXXX for Executing
Programming Algorithms Programming Algorithms and

Integrating Other Support Logic

Need to program Flash Memory the first Program one PSD device vs.
time on a PROM Programmer. programming Flash Memory and PLDs

on PROM Programmer. Blank Flash
Memory can be assembled on board.

Requires MCU to down load the Execute programming algorithm from
programming algorithms from Flash Memory PSD’s internal EPROM. There is no
to SRAM and execute from SRAM to requirement to down load the
program the Flash Memory. The MCU must programming algorithm to SRAM
execute code from a memory device
while down loading the programming
algorithms to SRAM

Must re-map the SRAM from Data Space No need to reconfigure SRAM.
to Code Space to execute the
Programming Algorithms. May require
additional PLD Logic (when using
an 80C31).

Need PLD Logic for changing the Required PLD Logic is built into the
memory map to access Flash Memory PSD device.
in both Program and Data Space
(when using an 80C31).

Need PLD Logic for Address Decoding. Built-in PLD Logic for Address Decoding.

Need PLD Logic for Paging (if exceeding Built-in Page Register.
addressing capability of MCU).

Need Address Latch (for multiplexed MCUs). Integrates Address Latch.

Boot block in Flash Memory is at risk of EPROM based boot block cannot be
being corrupted. corrupted.

Longer development time. More complex Partitioned design (MCU+PSD+Flash),
design for defining Address Map and PLD easy to develop and debug. One PSD
PLD Logic functions to handle both device integrates all logic functions and
Flash Memory and SRAM in different modes Boot EPROM. Simple Abel design entry
of Operation. for defining memory map and PLD logic.

The PSD device is reprogrammable.

Larger size PCB required. Integrated solution requiring smaller
PCB and less traces. ZPSD device is a
lower overall power solution with higher
reliability.

Table 1. Pr ogramming Flash MemorySystem
Programming
Issues(cont.)

3-22

Flash Memory – Application Note 048

As shown in Figure 1, the basic blocks of a simple partitioned design consists of a ROMless
Microcontroller, a PSD device, and a Flash Memory. The Microcontroller interfaces directly
to the PSD device. The Flash Memory interfaces to the PSD device through the PSD’s I/O
ports. The system boots up out of the PSD’s EPROM. This boot code should be able to
bring the system up to a mode of operation that includes the ability to program the Flash
Memory. This includes operation of a serial port to download data into local SRAM. The
boot code will also interrogate the Flash Memory to determine which Flash Memory vendor
is being used. Since each Flash Memory vendor uses a different programming algorithm,
all algorithms will be stored in the PSD’s EPROM. This will allow the designer to use the
least expensive pin compatible Flash Memory.

The PSD’s EPROM will store the boot code along with the Flash Memory programming
algorithms for all types of Flash Memories being used in production. The PSD’s General
PLD (GPLD) will be used for address decoding to generate the Flash Memory Chip Selects,
to generate upper Flash Memory address lines needed for paging, and serve as additional
PLD logic required in the system. The PSD’s I/O Ports will be used to latch the address
lines when a Microcontroller is used with a multiplexed address/data bus. These I/O Ports
will also be used for other port expansion required in the system. The built-in Page
Register (not available on the PSD3X1 so use the I/O ports instead) will be used to extend
the addressing capabilities of the Microcontroller. When using an 80C31, one bit of the
Page Register will be used to change the address map from an Operational Mode to a
Programming Mode.

The PSD Flash
Solution

ROMless
MCU PSDXXX FLASH

MEMORY

DATA BUS

ADDRESS/DATA BUS

CONTROL SIGNALS

ADDRESS LINES

CONTROL SIGNALS

Figure 1. Flash Suppor t Chip Solution

Examples of implementing a Flash Memory with an 80C31 will be shown with both a
PSD311 and a PSD411A1. In these examples, an 80C31 is being used with 128 Kbytes of
external Flash Memory and 32 Kbytes of SRAM. The memory map during the normal
Operational Mode is show in Figure 2. In the Program Space, the PSD’s EPROM containing
the boot code and programming algorithms along with a portion of Flash Memory are
common to all pages of memory. The rest of the Flash Memory is spread over three pages
(or banks) of memory. The Data Space is the same for all pages of memory. When
programming the Flash Memory, a bit is set in the Page Register to switch the memory map
from an Operational Mode to a Programming Mode as shown in Figure 3. The PSD’s
EPROM that is executing the programming algorithms is still located into the Program
Space while the Flash Memory has moved into the Data Space. The 32 Kbytes of SRAM is
disabled since the Flash Memory is mapped over it. The external chip selects and the
PSD’s SRAM and I/O Ports are unaffected and can be accessed on any memory page.
While executing from the PSD’s EPROM, the system downloads the data from an external
Serial Port to the PSD’s SRAM. The data is then programmed into the Flash Memory. Note
that the chip select to the Flash Memory should cover the programming command
addresses (for example, the AMD29010 programming command addresses are 2AAAH and
5555H with A15 = Don’t Care). See the Flash Memory vendor’s data book for more details.

80C31 Example

Flash Memory – Application Note 048

3-23

80C31 Example
(cont.)

Page 0
64K

32K

16K

Ext. Flash
32K– 64K

Ext. Flash
16K– 32K

PSD EPROM

Page 1
64K

32K

16K

Ext. Flash
64K– 96K

Ext. Flash
16K – 32K

PSD EPROM

Page 2
64K

32K

16K

Ext. Flash
96K–128K

Ext. Flash
16K – 32K

PSD EPROM

Page 0
64K

32K

2K

4K

16K

0

Ext. SRAM

PSD I/O Ports

PSD SRAM

Ext. Chip Selects

Page 1 Page 2

PROGRAM
SPACE

DATA
SPACE

64K

32K

2K

4K

16K

0

Ext. SRAM

PSD I/O Ports

PSD SRAM

Ext. Chip Selects

64K

32K

2K

4K

16K

0

0 0 0

Ext. SRAM

PSD I/O Ports

PSD SRAM

Ext. Chip Selects

Figure 2. Memory Map in Operational Mode with 1 Mbit Flash Memory

Ext. Flash
32K–64K

Ext. Flash
64K–96K

Ext. Flash
96K–128K

Ext. Flash
16K– 32K

Ext. Flash
16K–32K

Ext. Flash
16K –32K

Page 0
64K

16K

0
PSD EPROM

Page 1
64K

16K

0
PSD EPROM

Page 2
64K

16K

0
PSD EPROM

PROGRAM
SPACE

DATA
SPACE

Page 0
64K

32K

2K
4K

16K

0 PSD I/O Ports

PSD SRAM

Ext. Chip Selects

Page 1 Page 2
64K

32K

2K
4K

16K

0 PSD I/O Ports

PSD SRAM

Ext. Chip Selects

64K

32K

2K
4K

16K

0 PSD I/O Ports

PSD SRAM

Ext. Chip Selects

Figure 3. Memory Map in Programming Mode with 1 Mbit Flash Memory

3-24

Flash Memory – Application Note 048

80C31 Example
(cont.)

The detailed solution using a PSD311 is shown in Figure 4. The required logic equations
are shown in Table 2. When the 80C31 writes a logical “1” to the Program Bit (Port 1, bit 0
on the 80C31), the memory map is switched from the Operational Mode to the
Programming Mode as show in Figures 2 and 3. The latched address (A0–7) appears on
Port A. Port B provides the control signals along with the upper address lines for the Flash
Memory. Controlling the upper two address lines of the Flash Memory allows the PSD to
map each 16 Kbytes of Flash Memory anywhere in the 64 Kbyte address space and on any
page of the memory map. Since the PSD311 does not have a built-in page register (the
PSD312 device has a 4-bit page register), three I/O port pins on the 80C31 are used as a 3-
bit page register. These signals are routed into the PLD inside the PSD311. Another way to
implement the page register in the PSD311 is to use PB0–2 as output pins instead of using
the I/O pins on the 80C31. These pins are routed back to the PSD311 through Port C and
A19 in the same manner as shown in Figure 4. Note that the PSEN signal is connected to
PC2. This will route the PSEN signal into PAD B (or GPLD) for external chip selects. The
PSDabel file along with the Fitter Report are shown in Appendix A.

EA/VP

X1
X2

INT0
INT1
T0
T1

P1 1– 7

TXD
RXD

P0 0–7 AD0 –7/A0 –7

AD8 –15/A8 –15

RD

PC2

A16
A15
A8 –A14
A0 –7

FLASH_OE
FLASH_WR
FLASH_CS

WR
PSEN
ALE

RESET

A19/CSI
PC0

PB7

D0 –7

PB6
PB5

PA0 –7

PB4
PB3

PB0 – 2

PC1

P2 0–7

RD
WR

PSEN
ALE/P

RESET

PROGRAM
MCU PGR0
MCU PGR1

RESET *

P1 0
P1 1
P1 2

80C31/51 PSD311

EXT. FLASH
MEMORY

ADDRESS

ADDRESS /
DATA

Figure 4. PSD311 with External Flash Memory

DPLD Equations
rs0 = (address > = ^h0800) & (address < = ^h0FFF);
es0 = (address > = ^h0000) & (address < = ^h0FFF);
es1 = (address > = ^h1000) & (address < = ^h1FFF);
es2 = (address > = ^h2000) & (address < = ^h2FFF);
es3 = (address > = ^h3000) & (address < = ^h3FFF);
csiop = (address > = ^h0000) & (address < = ^h07FF);

GPLD Equations
Flash_A16 = a15 & ((page = = 1) # (page = = 2));
Flash_A15 = a15 & ((page = = 0) # (page = = 2));
Flash_OE = !((!program & !psen) # (program & !rd));
Flash_WR = !(program & !wr);
Flash_CS = !((address > = ^h4000) & (address < = ^hFFFF));

Table 2. Logic Equations for the PSD311

*RESET Signal. The external reset must have a fast rise time from a logic gate, not a slow rise time generated
from an RC circuit.

Flash Memory – Application Note 048

3-25

The detailed solution using a PSD411A1 is shown in Figure 5. The PSD411A2 or
PSD511B1 can also be used in this example. The required logic equations are shown in
Table 3. When the Microcontroller writes a logical “1” to the Page Register Bit 3 at address
location ^h0018 (CSIOP + ^h18), the memory map is switched from the Operational
Mode to the Programming Mode as shown in Figures 2 and 3. This Page Register is
reset to zero when a Reset occurs on the PSD. The latched address (A0–7) appears on
Port D. This must be initialized by writing a ^hFF to the Directional Register on Port D
(CSIOP + ^h16). Port A provides the control signals along with the upper address lines for
the Flash Memory. The PSDabel file along with the Fitter Report are shown in Appendix B.
Note that CSIOP = ^h00 in the above two examples (see the definition of CSIOP in the
PSDabel file shown in corresponding appendixes).

80C31 Example
(cont.)

EA/VP

X1
X2

INT0
INT1
T0
T1

P1 0–7

TXD
RXD

P0 0– 7 AD0 –7/A0 –7

AD8 –15/A8 –15

RD

A16
A15
A8 –A14
A0 –7

FLASH_OE
FLASH_WR
FLASH_CS

WR
PE0/PSEN
PE1/ALE

PE2
RESET
CLKIN
CSI

PA4

D0 –7

PA3
PA2

PD0 –7

PA1
PA0

PA5 –7

VSTDBY

P2 0–7

RD
WR

PSEN
ALE/ P

RESET
RESET OUT

RESET

80C31/51 PSD411/511

EXT. FLASH
MEMORY

PB0 –7
PC0 –7
PE3 –7

CLOCK

ADDRESS

DATA

ADDRESS

ADDRESS /
DATA

*

Figure 5. PSD411/511 with External Flash Memory

*RESET OUT Signal is optional. An external reset can be used to make Port Pin PE2 available for other use.

3-26

Flash Memory – Application Note 048

DPLD Equations
rs0 = (address > = ^h0800) & (address < = ^h0FFF);
es0 = (address > = ^h0000) & (address < = ^h1FFF);
es1 = (address > = ^h2000) & (address < = ^h3FFF);
csiop = (address > = ^h0000) & (address < = ^h00FF);

GPLD Equations
Flash_A16 = a15 & ((page = = 1) # (page = = 2));
Flash_A15 = a15 & ((page = = 0) # (page = = 2));
Flash_OE = !((!program & !psen) # (program & !rd));
Flash_WR = !(program & !wr);
Flash_CS = !((address > = ^h4000) & (address < = ^hFFFF));

Table 3. Logic Equations for the PSD411/51180C31 Example
(cont.)

By using the PSD device as a Flash Memory support chip, the design is simplified into three
chips. This solution does not require the programming algorithms to be moved into SRAM
and executed from there. By having a separate Boot EPROM, the design is easier to
complete and debug. The boot code and programming algorithms are in a secure EPROM
technology thus preventing any possibility of the boot sector being corrupted. Any pin
compatible Flash Memory can be used without any design change or impact to production.
This solution allows a blank Flash Memory to be assembled on the board. By integrating the
boot EPROM, PLD logic, and Address Latch into one device, the overall system cost
including the impacts on production can be dramatically reduced.

Conclusion

Flash Memory – Application Note 048

3-27

W S I - PSDsoft Version 2.12
PSDabel Design Entry File

module flash311
title ST PSD311 design for External Flash Memory’;

“PIN DECLARATIONS

“Declare all the pins that are used in the PSD3XX except Port A.
“Port A function (latched address out, I/O etc) are defined in the PSD Configuration.
“Pin numbers in this design are for the 44 pin PLCC package.

“*************************** Bus Interface signals declaration ***************************

“The following are multiplexed latched address inputs that are available
“as inputs to the PAD.

a15,a14,a13,a12,a11 pin 39,38,37,36,35;

“The following are bus control input signals from the 80C31
“In PSD Configuration, you need to select: 8-bit data, mux bus, and
“rd, wr, psen signal with active high ale signal

rd pin 22; “read line
wr pin 2; “write line
psen pin 1; “program space enable
ale pin 13; “address latch enable

“********************************* Port B pin declaration *********************************

“Port B pins (PB0–PB7) can be configured as:
“ 1. Input or Output pin. No need to enter equations here for I/O pins. Declare the pin
“ such that the Fitter will not assign it for PAD output.
“ 2. PAD output (chip select output). You need to write a logic equation for each of the
“ PAD output in the .abl file.

“Replace the reserved port pin name with your own signal name

pb0 pin 11 ; “Port B pin pb0
pb1 pin 10 ; “Port B pin pb1
pb2 pin 9 ; “Port B pin pb2
Flash_A16 pin 8 ; “Port B pin pb3
Flash_A15 pin 7 ; “Port B pin pb4
Flash_OE pin 6 ; “Port B pin pb5
Flash_WR pin 5 ; “Port B pin pb6
Flash_CS pin 4 ; “Port B pin pb7

Appendix A

3-28

Flash Memory – Application Note 048

“************************************* Port C pin declaration *************************************

“Port C pins (PC0-2) pin can be configured as:
“ 1.Address input (a0-a9), which can be latched by ALE. Input is considered as
“ address input if it is included in the es0–7 equations.
“ 2.Logic input to PAD. A logic input participates in PAD output equations only.
“ 3.PAD output (chip select output). You need to write a logic equation for each of the
“ PAD outputs in the .abl file.

“Replace the reserved port pin name with your own signal name

“The following two signals are from the 80C31 I/O ports. These signals indicate what
“ page of memory is being accessed. This is needed to address the full range
“of the 1Mbit Flash Memory.
MCU_pgr0 pin 40; “Port C pin pc0
MCU_pgr1 pin 41; “Port C pin pc1

“Connect the external psen signal to PC2. This will route the psen into PAD B
“for external chip selects.
ext_psen pin 42; “Port C pin pc2

“*********************************** A19/CSI pin declaration ***********************************

“The A19/CSI pin can be configured as A19 (address or logic) input or as CSI
“(power down). Select the CSI function in the PSD Configuration. Declare A19 here if it is
“configured as an address or logic input to the PAD.

“Replace the reserved port pin name with your own signal name.
“Delete the next line if CSI function is selected.

“This is a signal from the 80C31 I/O Port indicating, when high, that the
“Flash Memory is in the program mode.
program pin 43;

“******************* PAD A Outputs and other internal node declaration *******************

“The following are chip selects for EPROM, SRAM and I/O Port

rs0,csiop,es0,es1,es2,es3,es4,es5,es6,es7 node;

“The following are Page Register outputs (for PSD3X2, PSD3X3 only).
“pgr3, pgr2, pgr1, pgr0 node;

“***

Appendix A
(cont.)

Flash Memory – Application Note 048

3-29

“DEFINITIONS

X = .x.; “Don’t care
page = [MCU_pgr1,MCU_pgr0];

“address a10-a0 are not available as inputs to the PAD unless it has been assigned
“to Port C pins
address = [a15,a14,a13,a12, a11,X,X,X, X,X,X,X, X,X,X,X];

EQUATIONS

“For addresses that are assigned to Port C, they need to be latched by ALE
“ in the logic equations that follow:

“a10.le = ale; a9.le = ale;

“************************************* PAD A equations *************************************

“The PAD A acts as the address decoder and generates chip select signals
“that select the internal PSD resources. The address is latched
“internally by the ALE. The PSD drives the 8031 data bus only if one of
“the select lines and rd or psen are active.

“The following equations are examples only. Change the address space to fit
“the selected PSD device.

“rs0 is the internal PSD SRAM chip select that is active high.
“The read and write lines are connected to the SRAM in the PSD so only the address
“is necessary in the equation. The SRAM occupies 2KB of memory space and is defined
“in 2KB boundaries.

rs0 = ((address >= ^h0800) & (address <= ^h0FFF));

“es0-es7 are internal PSD EPROM block chip selects that are active high.
“es0-es7 are defined in 4KB, 8KB or 16KB boundaries, depending on the PSD device.
“The psen signal is used internally in the PSD to qualify the chip selects
“(read can also be used to access the EPROM, see ‘PSD Configuration’.

es0 = ((address >= ^h0000) & (address <= ^h0FFF)) ;
es1 = ((address >= ^h1000) & (address <= ^h1FFF)) ;
es2 = ((address >= ^h2000) & (address <= ^h2FFF)) ;
es3 = ((address >= ^h3000) & (address <= ^h3FFF)) ;

“csiop is the internal PSD chip select for the PSD I/O Port registers and is active high.
“csiop takes up 2KB bytes of memory space. Refer to the PSD Data Book
“for the address offsets of the registers.

csiop = ((address >= ^h0000) & (address <= ^h07FF));

Appendix A
(cont.)

3-30

Flash Memory – Application Note 048

“*************************************** PAD B equations ***************************************

“The PAD B can implement up to 9 combinatorial logic outputs.

“The number of product terms for the PAD outputs are:
“Port B pins pb0–pb3 -- 4
“Port B pins pb4–pb7 -- 2
“Port C pins pc0–pc2 -- 1

“Please VIEW the optimized equation file to find out the number of product terms
“used for each output signal definition.
“PAD outputs are always enabled by default.

Flash_A16 = a15 & ((page == 1) # (page == 2));
Flash_A15 = a15 & ((page == 0) # (page == 2));

Flash_OE = !((!program & !ext_psen) # (program & !rd));
Flash_WR = !(program & !wr);
Flash_CS = !((address >= ^h4000) & (address <= ^hFFFF));

end

Appendix A
(cont.)

Flash Memory – Application Note 048

3-31

W S I - PSDsoft Version 2.12

Output of PSD Fitter

TITLE : ST PSD3XX design for External Flash Memory
PROJECT : flash3xx DATE: 10/18/1996
DEVICE : PSD311 TIME : 15:06:57
FIT OPTION : Keep Current
DESCRIPTION : Interfacing Ext Flash Memory to the PSD311

==== Pin Layout for PLDCC/CLDCC Package Type ====

Address/Data Bus ADIO_0
Address/Data Bus ADIO_1
Address/Data Bus ADIO_2
Address/Data Bus ADIO_3
Address/Data Bus ADIO_4
Address/Data Bus ADIO_5
Address/Data Bus ADIO_6
Address/Data Bus ADIO_7
Address Bus ADIO_8
Address Bus ADIO_9
Address Bus ADIO_10

Address Bus ADIO_11 (a11)
Address Bus ADIO_12 (a12)
Address Bus ADIO_13 (a13)
Address Bus ADIO_14 (a14)
Address Bus ADIO_15 (a15)
MCU_pgr2
MCU_pgr1
ext_psen
program

[23
[24
[25
[26
[27
[28
[29
[30
[31
[32
[33
[34
[35
[36
[37
[38
[39
[40
[41
[42
[43
[44

adio0
adio1
adio2
adio3
adio4
adio5
adio6
adio7
adio8
adio9

adio10
GND

adio11
adio12
adio13
adio14
adio15

pc0
pc1
pc2

a19/csi
VCC

psen
wr
reset
pb7
pb6
pb5
pb4
pb3
pb2
pb1
pb0
GND
ale
pa7
pa6
pa5
pa4
pa3
pa2
pa1
pa0
rd

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]
11]
12]
13]
14]
15]
16]
17]
18]
19]
20]
21]
22]

psen
wr

reset
Flash_CS
Flash_WR
Flash_OE

Flash_A15
Flash_A16

pb2
pb1
pb0

ale
Address Line A7
Address Line A6
Address Line A5
Address Line A4
Address Line A3
Address Line A2
Address Line A1
Address Line A0

rd

Appendix A
(cont.)

3-32

Flash Memory – Application Note 048

==== Global Configuration ====

Data Bus : 8-bit Multiplexed
Reset Polarity : HIGH

ALE/AS Signal : ACTIVE HIGH
Security Protection : OFF

Power-down capability (/CSI) : Not Used
EPROM low power mode (CMISER) : DISABLE

Track Mode : OFF

==== Other Configuration ===

Port A :

Pin IO/Address CMOS/OD Output

PA0 Address CMOS
PA1 Address CMOS
PA2 Address CMOS
PA3 Address CMOS
PA4 Address CMOS
PA5 Address CMOS
PA6 Address CMOS
PA7 Address CMOS

Port B :

Pin IO/Chip Select Output CMOS/OD Output

PB0 IO CMOS
PB1 IO CMOS
PB2 IO CMOS
PB3 Chip Select Output CMOS
PB4 Chip Select Output CMOS
PB5 Chip Select Output CMOS
PB6 Chip Select Output CMOS
PB7 Chip Select Output CMOS

Port C :

Pin Input/Output Address/Logic

PC0 Input Logic Input
PC1 Input Logic Input
PC2 Input Logic Input

Appendix A
(cont.)

Flash Memory – Application Note 048

3-33

==== Address & Data Bus Assignment ====

Stimulus Bus Name Signal Description

‘adiol = adio[7:0] = Address/Data Bus ADIO_7 - ADIO_0
‘adioh = adio[15:8] = Address Bus ADIO_15 - ADIO_8
adio = adio[15:0] = Address/Data Bus ADIO_15 - ADIO_0

===== Resource Usage Summary =====

Device Resources used / total Percentage

Port A: (pin 14 - pin 21)
I/O Pins 8 / 8 100 %

MCU I/O 0 / 8 0 %
Address Out 8 / 8 100 %
Data Port (Non-Mux Bus) 0 / 8 0 %
Track Mode 0 / 8 0 %

Port B: (pin 4 - pin 11)
I/O Pins 8 / 8 100 %

MCU I/O 3 / 8 37 %
PLD Output 5 / 8 62 %
Data Port (16 bit Non-Mux Bus) 0 / 8 0 %

Port C: (pin 40 - pin 42)
I/O Pins 3 / 3 100 %

PLD Input 3 / 3 100 %
PLD Output 0 / 3 0 %

Appendix A
(cont.)

3-34

Flash Memory – Application Note 048

========= Equations =========

DPLD EQUATIONS :
===========================
es0 = !a15 & !a14 & !a13 & !a12;
es1 = !a15 & !a14 & !a13 & a12;
es2 = !a15 & !a14 & a13 & !a12;
es3 = !a15 & !a14 & a13 & a12;
es4 = 0;
es5 = 0;
es6 = 0;
es7 = 0;
rs0 = !a15 & !a14 & !a13 & !a12 & a11;
csiop = !a15 & !a14 & !a13 & !a12 & !a11;

PORT B EQUATIONS :
===================
!Flash_A16 = !a15

MCU_pgr0 & MCU_pgr1
!MCU_pgr0 & !MCU_pgr1;

!Flash_A15 = !a15
MCU_pgr0;

!Flash_OE = !rd & program
!ext_psen & !program;

!Flash_WR = !wr & program;

!Flash_CS = a15
a14;

PORT C EQUATIONS :
===================

Appendix A
(cont.)

Flash Memory – Application Note 048

3-35

W S I - PSDsoft Version 2.12
PSDabel Design Entry File

module flash411A1
title ST PSD4XX/5XX design for External Flash’;

“PIN DECLARATIONS

“Declare all the pins that are used in the PSD4XX/5XX.

“********************* Bus Interface signals declaration *********************

“The following are multiplexed latched address inputs that are available as inputs
“to the ZPLD.

a9,a8,a1,a0 pin 67,68,8,9;
a15,a14,a13,a12,a11,a10 pin 61,62,63,64,65,66;

“The following are bus control input signals from the 80C31
“In PSDConfiguration, you need to select:8-bit data, mux bus, and
“rd, wr, psen signal with active high ale.

rd pin 41; “read line
wr pin 29; “write line
psen pin 38; “program space enable
ale pin 37; “address latch enable
reset pin 40; “reset input, active low
csi pin 39; “PSD chip select, grounded if pin is not used
clkin pin 42; “clock input, optional

“**************************** Port A, B, C, D, E pin declaration ****************************

“The following are I/O Port pin assignments. Port functions that need
“to be declared here are:
“ 1. latched address output a0-a7 (Port C or D)
“ 2. other address inputs: a2-a7 (Port A)
“ 3. MCU inputs/outputs
“ 4. GPLD inputs/outputs
“Your software needs to set up the appropriate registers to enable Port functions such as
“the latched address and MCU I/O (see I/O section in the PSD Data Book for instructions).
“No equations are required if the pins are declared for non-GPLD function.

“If GPLD output is an internal feedback, you can assign it as a ‘node’, where the node
“number is the same as the pin number.
“For PLD pins: you may want the PSD Fitter to assign the pins for you for complex logic
“functions. In that case you need only to declare the PLD signal as ‘pin’ and omit
“the pin number.

Appendix B

3-36

Flash Memory – Application Note 048

“psd4xxa1: Port A and B pins can be defined as PLD input or output
“psd4xxa2/psd5xxb1: Port A, B and E pins can be defined as PLD input or output
“ Port C and D pins are PLD input only

“Replace the reserved port pin name with your own signal name

“Port A pin assignments

Flash_A16 pin 27; “Port A pin pa0
Flash_A15 pin 26; “Port A pin pa1
Flash_OE pin 25; “Port A pin pa2
Flash_WR pin 24; “Port A pin pa3
Flash_CS pin 23; “Port A pin pa4
pa5 pin 22; “Port A pin pa5
pa6 pin 21; “Port A pin pa6
pa7 pin 20; “Port A pin pa7

“Port B pin assignments

pb0 pin 50; “Port B pin pb0
pb1 pin 49; “Port B pin pb1
pb2 pin 48; “Port B pin pb2
pb3 pin 47; “Port B pin pb3
pb4 pin 46; “Port B pin pb4
pb5 pin 45; “Port B pin pb5
pb6 pin 44; “Port B pin pb6
pb7 pin 43; “Port B pin pb7

“Port C pin assignments

“If Port C is assigned for latched address output, use signal names
“such as addr0-addr7 (a0, a1 etc. are reserved names). You need
“to set up the Control and Direction registers during run time
“to enable this function.

pc0 pin 17; “Port C pin pc0
pc1 pin 16; “Port C pin pc1
pc2 pin 15; “Port C pin pc2
pc3 pin 14; “Port C pin pc3
pc4 pin 13; “Port C pin pc4
pc5 pin 12; “Port C pin pc5
pc6 pin 11; “Port C pin pc6
pc7 pin 10; “Port C pin pc7

“Port D pin assignments

pd0 pin 60; “Port D pin pd0
pd1 pin 59; “Port D pin pd1
pd2 pin 58; “Port D pin pd2
pd3 pin 57; “Port D pin pd3
pd4 pin 56; “Port D pin pd4
pd5 pin 55; “Port D pin pd5
pd6 pin 54; “Port D pin pd6
pd7 pin 53; “Port D pin pd7

Appendix B
(cont.)

Flash Memory – Application Note 048

3-37

“Port E pin assignments; pe0-1 are used as psen and ale inputs, respectively

pe2 pin 36; “Port E pin pe2
pe3 pin 34; “Port E pin pe3
pe4 pin 33; “Port E pin pe4
pe5 pin 32; “Port E pin pe5
pe6 pin 31; “Port E pin pe6
pe7 pin 30; “Port E pin pe7

“**************** DPLD Outputs and other internal node declaration ****************

“The following are DPLD outputs (chip selects) for EPROM, SRAM & I/O Port

rs0,es0,es1,es2,es3,csiop node;

“The following are Page Register outputs; they can be used as a data
“latch for GPLD input if paging is not needed

pgr3, pgr2, pgr1, pgr0 node;

“Use the pgr3 bit to determine if the system is in the flash program mode or the
“operational mode. When this bit is a one, the system is in the flash program mode.

“DEFINITIONS

X = .x.; “Don’t care
clk = .c.; “Clock pulse
page = [pgr1,pgr0];
program = pgr3;

“address a7-a2 are not available as inputs to the GPLD unless
“it has been assigned to Port A pins
address = [a15,a14,a13,a12,a11,a10,a9,a8,X,X,X,X,X,X,a1,a0];

EQUATIONS

“If a7-a2 are assigned to Port A, they need to be latched by ALE in the
“logic equations that follow:

“a7.le = ale; a6.le = ale;

Appendix B
(cont.)

3-38

Flash Memory – Application Note 048

“*** DPLD equations ***

“The DPLD acts as the address decoder and generates chip select signals
“that select the internal PSD resources. The address is latched internally by the ALE.
“The PSD drives the data bus only if one of the select lines and rd or psen are active.

“The following DPLD equations are examples only. Change the address space
“to fit the selected PSD device.

“rs0 is the internal PSD SRAM chip select that is active high.
“The read and write lines are connected to the SRAM in the PSD
“so only the address is necessary in the equation. The SRAM
“occupies 2KB of memory space and is defined in 2KB boundaries.

rs0 = ((address >= ^h0800) & (address <= ^h0FFF));

“es0-es3 are internal PSD EPROM block chip selects that are active high.
“The psen signal is used internally in the PSD to qualify these chip selects.

es0 = ((address >= ^h0000) & (address <= ^h1FFF)) ;
es1 = ((address >= ^h2000) & (address <= ^h3FFF)) ;

“csiop is the internal PSD chip select for all of the PSD configuration
“and I/O registers. csiop takes up 256 bytes of memory space and is active
“high. See ‘System Configuration Section’ in the PSD Data Book for the
“address offsets of the registers.

csiop = ((address >= ^h0000) & (address <= ^h00FF));

“************************************** GPLD equations **************************************

Flash_A16 = a15 & ((page == 1) # (page == 2));
Flash_A15 = a15 & ((page == 0) # (page == 2));

Flash_OE = !((!program & !psen) # (program & !rd));
Flash_WR = !(program & !wr);
Flash_CS = !((address >= ^h4000) & (address <= ^hFFFF));

end

Appendix B
(cont.)

Flash Memory – Application Note 048

3-39

**
W S I - PSDsoft Version 2.12

Output of PSD Fitter

TITLE : ST PSD4XX/5XX design for External Flash
PROJECT : Flash4xx DATE : 10/18/1996
DEVICE : PSD411A1 TIME : 15:08:44
FIT OPTION : Keep Current
DESCRIPTION: Interfacing Flash Memory to the PSD411A1

==== Pin Layout for PLDCC/CLDCC Package Type ====

pe2
ale
psen
csi
reset
rd
clkin
pb7
pb6
pb5
pb4
pb3
pb2
pb1
pb0

pd7
pd6
pd5
pd4
pd3
pd2
pd1
pd0
Address Bus ADIO_15 (a15)
Address Bus ADIO_14 (a14)
Address Bus ADIO_13 (a13)
Address Bus ADIO_12 (a12)
Address Bus ADIO_11 (a11)
Address Bus ADIO_10 (a10)
Address Bus ADIO_9 (a9)
Address Bus ADIO_8 (a8)

[35
[36
[37
[38
[39
[40
[41
[42
[43
[44
[45
[46
[47
[48
[49
[50
[51
[52
[53
[54
[55
[56
[57
[58
[59
[60
[61
[62
[63
[64
[65
[66
[67
[68

GND
pe2
pe1
pe0
csi

reset
rd

clkin
pb7
pb6
pb5
pb4
pb3
pb2
pb1
pb0

adio15
GND
pd7
pd6
pd5
pd4
pd3
pd2
pd1
pd0

adio15
adio14
adio13
adio12
adio11
adio10

adio9
adio8

GND
adio7
adio6
adio5
adio4
adio3
adio2
adio1
adio0
pC7
pC6
pC5
pC4
pC3
pC2
pC1
pC0
VCC
GND
pa7
pa6
pa5
pa4
pa3
pa2
pa1
pa0
VSTBY
wr
pe7
pe6
pe5
pe4
pe3

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]
11]
12]
13]
14]
15]
16]
17]
18]
19]
20]
21]
22]
23]
24]
25]
26]
27]
28]
29]
30]
31]
32]
33]
34]

GND
Address/Data Bus ADIO_7
Address/Data Bus ADIO_6
Address/Data Bus ADIO_5
Address/Data Bus ADIO_4
Address/Data Bus ADIO_3
Address/Data Bus ADIO_2

Address/Data Bus ADIO_1 (a1)
Address/Data Bus ADIO_0 (a0)

pC7
pC6
pC5
pC4
pC3
pC2
pC1
pC0

pa7
pa6
pa6

Flash_CS
Flash_WR
Flash_OE

Flash_A15
Flash_A16

wr
pe7
pe6
pe5
pe4
pe3

Appendix B
(cont.)

3-40

Flash Memory – Application Note 048

==== Global Configuration ====

Data Bus : 8-bit Multiplexed
ALE/AS Signal : ACTIVE HIGH

Security Protection : OFF

==== Address & Data Bus Assignment ====

Stimulus Bus Name Signal Description

‘adiol = adio[7:0] = Address/Data Bus ADIO_7 - ADIO_0
‘adioh = adio[15:8] = Address Bus ADIO_15 - ADIO_8
adio = adio[15:0] = Address/Data Bus ADIO_15 - ADIO_0

===== Resource Usage Summary =====

Device Resources used / total Percentage

Port A: (pin 20 - pin 27)
I/O Pins 8 / 8 100 %

MCU I/O or Address Out 3 / 8 37 %
Peripheral I/O 0 / 8 0 %
ZPLD Inputs 0 / 8 0 %
ZPLD Combinatorial Outputs 5 / 8 62 %

Other Information
Buried Macrocells 0 / 3 0 %
Product Terms 7 / 25 28 %

Port B: (pin 43 - pin 50)
I/O Pins 8 / 8 100 %

MCU I/O or Address Out 8 / 8 100 %
ZPLD Inputs 0 / 8 0 %
ZPLD Combinatorial Outputs 0 / 8 0 %
ZPLD Registered Outputs 0 / 8 0 %

Other Information
Buried Macrocells 0 / 8 0 %
Product Terms 0 / 80 0 %

Port C: (pin 10 - pin 17)
I/O Pins 8 / 8 100 %

MCU I/O or Address Out 8 / 8 100 %
Data Port (Non-Mux Bus) 0 / 8 0 %

Port D: (pin 53 - pin 60)
I/O Pins 8 / 8 100 %

MCU I/O or Address Out 8 / 8 100 %
Data Port (16-bit Non-Mux Bus) 0 / 8 0 %

Port E: (pin 30 - pin 34, pin 36 - pin 38)
I/O Pins 8 / 8 100 %

MCU I/O or Address Out 6 / 8 75 %
ZPLD Inputs 0 / 2 0 %
Control Signal Inputs 2 / 2 100 %
APD Clock Input 0 / 1 0 %

Appendix B
(cont.)

Flash Memory – Application Note 048

3-41

==== OMC Resource Assignment ====

Resources Used User Name

Port A :
macro cell 0 Flash_A16 (mc_pa0) => Combinatorial
macro cell 1 Flash_A15 (mc_pa1) => Combinatorial
macro cell 2 Flash_OE (mc_pa2) => Combinatorial
macro cell 3 Flash_WR (mc_pa3) => Combinatorial
macro cell 4 Flash_CS (mc_pa4) => Combinatorial

Port B :

========= Equations =========

DPLD EQUATIONS :
===================

es0 = !a15 & !a14 & !a13;
es1 = !a15 & !a14 & a13;
es2 = 0;
es3 = 0;
rs0 = !a15 & !a14 & !a13 & !a12 & a11;
csiop = !a9 & !a8 & !a15 & !a14 & !a13 & !a12 & !a11 & !a10;

PORT A EQUATIONS :
===================
Flash_A16 = a15 & !pgr1 & pgr0

a15 & pgr1 & !pgr0;

Flash_A15 = a15 & !pgr0;

Flash_OE = rd & pgr3
psen & !pgr3;

!Flash_WR = !wr & pgr3;

Flash_CS = !a15 & !a14;

[Flash_A16, Flash_A15, Flash_OE, Flash_WR, Flash_CS].OE = 1;

PORT B EQUATIONS :
===================

Appendix B
(cont.)

AN1422 - APPLICATION NOTE

2/3

Table 1. Document Revision History

Date Rev. Description of Revision

1.0 AN048: Document written in the WSI format

30-Jan-2002 1.1

AN1422: Designing with Flash+PSD Memory
Front page, and back two pages, in ST format, added to the PDF file
Any references to Waferscale, WSI, EasyFLASH and PSDsoft 2000
updated to ST, ST, Flash+PSD and PSDsoft Express

3/3

AN1422 - APPLICATION NOTE

For current information on PSD products, please consult our pages on the world wide web:
www.st.com/psm

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.psd@st.com (for application support)

ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the co nsequences
of use of such information nor for any infringement of patents or other rights ofthird parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publicati on are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics prod ucts are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectro nics.

The ST logo is registered trademark of STMicroelectronics

All other names are the property of their respective owners

 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -

India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - Unit ed States.

www.st.com

