Glass Bulb Types & Assembly Types ## FOR FLAME MONITORS | Type No. | Out-
line | Absolute Maximum Ratings | | | Characteristics *5 (at 25°C) | | | | | | | |----------------|--------------|-------------------------------|--|------------------------------|--|--|--------------|--------------|---|--------------------------|-------------------| | | | Applied
Voltage
at 25°C | Allowable
Power
Dissipation
at 25°C | Ambient
Temperature
Ta | Peak
Response
Wavelength
λρ
Τύρ. | Cell Resistance *1 | | | γ ₁₀ 0 *3 | Response Time at 10/x *4 | | | | | | | | | - 1-philips 1 - 1 - 1 - 1 | 2856 K) | 0lx *2 | 100 to 10 <i>lx</i> | Rise Time
Typ, | Fall Time
Typ. | | 180 | | (Vdc) | (mW) | (°C) | (nm) | Min.
(kΩ) | Max.
(kΩ) | Min.
(MΩ) | Тур. | (ms) | (ms) | | Glass Bulb | Тур | es | | | | 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | elle control | | P586 | 0 | 300 | 50 | -30 to +60 | 520 | 180 | 520 | 10 | 0.85 | 45 | 30 | | P587 | | 200 | 50 | -30 to +60 | 520 | 44 | 130 | 5.0 | 0.80 | 45 | 30 | | Assembly Types | | | | | | | | | | | | | P628 | • | 150 | 300 | -30 to +60 | 570 | 1.3 | 3.7 | 0.3 | 0.75 | 80 | 40 | | P628 Assy | ® | 150 | 300 | -30 to +60 | 570 | 1.3 | 3.7 | 0.3 | 0.75 | 80 | 40 | | P930-05 | • | 150 | 50 | -30 to +70 | 560 | 7 | 23 | 0.5 | 0.68 | 60 | 90 | | P930-06 | 6 | 150 | 50 | -30 to +70 | 560 | 7 | 23 | 0.5 | 0.68 | 60 | 90 | | P1465-01 | • | 100 | 50 | -30 to +70 | 520 | 27 | 81 | 10 | 0.85 | 60 | 20 | | P1465-02 | • | 100 | 50 | -30 to +70 | 520 | 27 | 81 | 10 | 0.85 | 60 | 20 | - *1 Measured with the light source of a tungsten lamp operated at a color temperature of 2856K. - *2 Measured 10 seconds after removal of incident illuminance of 10 lux. - *3 Gamma characteristic between 10 lux and 100 lux and given by $$\gamma_{10}^{100} = \frac{\log(R_{100}) - \log(R_{10})}{\log(E_{100}) - \log(E_{10})}$$ Where R₁₀₀, R₁₀: cell resistances at 100 lux and 10 lux respectively E₁₀₀, E₁₀: illuminances of 100 lux and 10 lux respectively - * 4 The rise time is the time required for the cell conductance to rise to 63% of the saturated level. The fall time is the time required for the cell conductance to decay from the saturated level to 37%. - *5 All characteristics are measured with the light history conditions: the CdS cell is exposed to light of 100 to 500 lux for one to two hours.