

HIGH RELIABILITY HYBRID DC-DC CONVERTERS

DESCRIPTION

The DVHV series of high reliability DC-DC converters is operable over the full military (-55 °C to +125 °C) temperature range with no power derating. Unique to the DVHV series is a magnetic feedback circuit that is radiation immune. Operating at a nominal fixed frequency of 475 kHz, these regulated, isolated units utilize well controlled undervoltage lockout circuitry to eliminate slow start-up problems. The output voltage is trimmable up to +10% or down -20%.

These converters are designed and manufactured in a facility qualified to ISO9001 and certified to MIL-PRF-38534 and MIL-STD-883.

This product may incorporate one or more of the following U.S. patents:

5,784,266 5,790,389 5,963,438 5,999,433 6,005,780 6,084,792 6,118,673

FEATURES

- High Reliability
- Very Low Output Noise
- Output Voltage Trim Up +10% or Down –20%
- Wide Input Voltage Range: 15 to 50 Volts per MIL-STD-704
- Up to 15 Watts Output Power
- Radiation Immune Magnetic Feedback Circuit
- NO Use of Optoisolators
- Undervoltage Lockout
- Indefinite Short Circuit Protection
- Current Limit Protection
- Industry Standard Pinout
- High Input Transient Voltage: 80 Volts for 1 sec per MIL-STD-704A
- Radiation Hardened Version Available
- Precision Seam Seal or Solder Seal Hermetic Package
- Custom Versions Available
- Additional Environmental Screening Available
- Meets MIL-STD-461C and MIL-STD-461D EMC Requirements When Used With a DVMC28 EMI Filter
- Flanged and Non-flanged Versions Available.
- MIL-PRF-38534 Element Evaluated Components

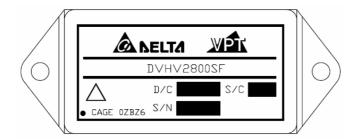


Figure 1 – DVHV2800S / DVHV2800SF DC-DC Converter (Not To Scale)

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS

Input Voltage (Continuous) $50 V_{DC}$ +15°C Junction Temperature Rise to Case

Input Voltage (Transient, 1 second) 80 Volts Storage Temperature -65°C to +150°C

270°C Output Power¹ 15 Watts Lead Solder Temperature (10 seconds) Power Dissipation (Full Load, T_{CASE} = +125°C) 11 Watts Weight (Maximum) (Un-Flanged / Flanged) (49 / 52) Grams

STATIC	Parameter		Conditions	D'	VHV283R	3S		VHV2805	s	Units
INPUT			Conditions	Min	Тур	Max	Min	Тур	Max	Ullits
Transient, 1 sec	STATIC									
Current Inhibited -			Continuous	15	28	50	15	28	50	V
No Load 90 90 mA	Voltage⁴		Transient, 1 sec	-	-	80	-	-	80	V
No Load	Current		Inhibited	-	-	6	-	-	6	mA
Inhibit Pin Input ⁴	Current		No Load	-	-	90	-	-	90	mA
Inhibit Pin Open Circuit Voltage ⁴	Ripple Current		Full Load, 20Hz to 10MHz	-	-	50	-	-	50	mA_{p-p}
UVLO Turn On	Inhibit Pin Input⁴			0	-	1.5	0	-	1.5	V
UVLO Turn Off ^d	Inhibit Pin Open Circuit Volta	age ⁴		9.0	11.0	13.0	9.0	11.0	13.0	V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	UVLO Turn On			12.0	-	14.8	12.0	-	14.8	V
Voltage Vout Vou	UVLO Turn Off⁴			11.0	-	14.5	11.0	-	14.5	V
Power ³ 0	OUTPUT	V _{OUT}	T _{CASE} = 25°C	3.26	3.30	3.34	4.95	5.00	5.05	V
Current ³	Voltage	V_{OUT}	T _{CASE} = -55°C to +125°C	3.25	3.30	3.35	4.925	5.00	5.075	V
Ripple Voltage	Power ³			0	-	10	0	-	15	W
Line Regulation V _{OUT} V _{IN} = 15V to 50V - - 20 - - 20 mV Load Regulation V _{OUT} No Load to Full Load - - 50 - - 50 mV EFFICIENCY 68 - - 73 - - % LOAD FAULT POWER DISSIPATION Overload ⁴ - - 11 - - 11 W Short Circuit - - 111 - - 11 W CAPACITIVE LOAD ⁴ - - 1000 - - 11 W SWITCHING FREQUENCY 400 475 550 400 475 550 kHz SYNC FREQUENCY RANGE V _H - V _L = 5V Duty Cycle = 20% - 80% 500 - 600 500 - 600 kHz ISOLATION 500 V _{DC} 100 - - 100 - - 413 - - 413 - - <td>Current³</td> <td>V_{OUT}</td> <td></td> <td>0</td> <td>-</td> <td>3.03</td> <td>0</td> <td>-</td> <td>3.0</td> <td>Α</td>	Current ³	V _{OUT}		0	-	3.03	0	-	3.0	Α
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ripple Voltage	V_{OUT}	Full Load, 20Hz to 10MHz	-	-	30	-	-	30	mV_{p-p}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Line Regulation	V_{OUT}	V _{IN} = 15V to 50V	-	-	20	-	-	20	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Load Regulation	V_{OUT}	No Load to Full Load	-	-	50	-	-	50	mV
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EFFICIENCY			68	-	-	73	-	-	%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LOAD FALILT BOWER DISSIDA	TION	Overload ⁴	-	-	11	-	-	11	W
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LOAD FAULT POWER DISSIPA	ATION	Short Circuit	-	-	11	-	-	11	W
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CAPACITIVE LOAD⁴			-	-	1000	-	-	1000	μF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING FREQUENCY			400	475	550	400	475	550	kHz
MTBF (MIL-HDBK-217F) AIF @ T _C = 55°C - 413 - - 413 - kHrs DYNAMIC Load Step Output Transient V _{OUT} Half Load to Full Load - - 200 - - 300 mV _{PK}	SYNC FREQUENCY RANGE		V _H – V _L = 5V Duty Cycle = 20% - 80%	500	-	600	500	-	600	kHz
DYNAMIC Load Step Output Transient V _{OUT} Half Load to Full Load - - 200 - - 300 mV _{PK}	ISOLATION		500 V _{DC}	100	-	-	100	-	-	ΜΩ
Load Step Output Transient V _{OUT} Half Load to Full Load	MTBF (MIL-HDBK-217F)		AIF @ T _C = 55°C	-	413	-	-	413	-	kHrs
Half Load to FUILLoad	DYNAMIC									
Load Stop Pacayary ² Fall Load to Full Load F50 F50 F50	Load Step Output Transient	V_{OUT}	Holf Lood to Full Lood	-	-	200	-	-	300	mV_{PK}
Luau Step Necovery 500 μSeC	Load Step Recovery ²		Hall Load to Full Load	-	-	550	-	-	500	μSec
Line Step Output Transient ⁴ V _{OUT} - 300 600 - 300 600 mV _{PK}	Line Step Output Transient ⁴	V _{OUT}	V 40V/1- (0V/	-	300	600	-	300	600	mV_{PK}
Line Step Recovery ^{2, 4} V _{IN} = 16V to 40V - 300 500 - 300 500 μSec	Line Step Recovery ^{2, 4}		$V_{IN} = 16V \text{ to } 40V$	-	300	500	-	300	500	μSec
Turn On Delay Vour 20 20 mSec	Turn On Delay	V_{OUT}	V 0V 05::	-	-	20	-	-	20	
Turn On Overshoot	*		$V_{IN} = 0V \text{ to } 28V$	-	-	15	-	-	25	mV_{PK}

Notes:

- 1. Dependant on output voltage. 2. Time for output voltage to settle within 1% of its nominal value.
- 3. Derate linearly to 0 at 135°C. 4. Verified by qualification testing.

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS

Input Voltage (Continuous) $50 V_{DC}$ +15°C Junction Temperature Rise to Case Input Voltage (Transient, 1 second) 80 Volts Storage Temperature -65°C to +150°C

270°C Output Power¹ 15 Watts Lead Solder Temperature (10 seconds)

Power Dissipation (Full Load, T_{CASE} = +125°C) 11 Watts Weight (Maximum) (Un-Flanged / Flanged) (49 / 52) Grams

Parameter		Conditions	DVHV2812S			DVHV2815S			Units
		Conditions	Min	Тур	Max	Min	Тур	Max	Ullits
STATIC									
INPUT		Continuous	15	28	50	15	28	50	V
Voltage ⁴		Transient, 1 sec	-	-	80	-	-	80	V
Current		Inhibited	-	-	6	-	-	6	mA
Current		No Load	-	1	90	-	-	90	mA
Ripple Current		Full Load, 20Hz to 10MHz	-	-	50	-	-	50	mA _{p-p}
Inhibit Pin Input⁴			0	1	1.5	0	-	1.5	V
Inhibit Pin Open Circuit Voltage	e ⁴		9.0	11.0	13.0	9.0	11.0	13.0	V
UVLO Turn On			12.0	ı	14.8	12.0	-	14.8	V
UVLO Turn Off⁴			11.0	ı	14.5	11.0	-	14.5	V
OUTPUT	V_{OUT}	T _{CASE} = 25°C	11.88	12.0	12.12	14.85	15.0	15.15	V
Voltage	V_{OUT}	T_{CASE} = -55°C to +125°C	11.82	12.0	12.18	14.775	15.0	15.225	V
Power ³			0	1	15	0	-	15	W
Current ³	V_{OUT}		0	-	1.25	0	-	1.0	Α
Ripple Voltage	V_{OUT}	Full Load, 20Hz to 10MHz	-	-	40	-	-	40	mV_{p-p}
Line Regulation	V_{OUT}	$V_{IN} = 15V \text{ to } 50V$	-	-	20	-	-	20	mV
Load Regulation	V_{OUT}	No Load to Full Load	-	-	50	-	-	50	mV
EFFICIENCY			77	1	-	77	-	-	%
LOAD FAULT POWER DISSIPATI	ON	Overload ⁴	-	-	11	-	-	11	W
EOAD I AOEI FOWER DISSIFATI	ON	Short Circuit	-	ı	11	-	-	11	W
CAPACITIVE LOAD ⁴			-	ı	500	-	-	500	μF
SWITCHING FREQUENCY			400	475	550	400	475	550	kHz
SYNC FREQUENCY RANGE		$V_H - V_L = 5V$ Duty Cycle = 20% - 80%	500	ı	600	500	-	600	KHz
ISOLATION		500 V _{DC}	100	1	-	100	-	-	ΜΩ
MTBF (MIL-HDBK-217F)		AIF @ T _C = 55°C	-	413	-	-	413	-	kHrs
DYNAMIC									
Load Step Output Transient	V_{OUT}	Half Load to Full Load	-	-	300	-	-	350	mV_{PK}
Load Step Recovery ²		Tiali Load to Full Load	-	-	550	-	-	450	μSec
Line Step Output Transient ⁴	V _{OUT}	\/ = 46\/ to 40\/	-	500	900	-	500	900	mV_{PK}
Line Step Recovery ^{2, 4}		V_{IN} = 16V to 40V	-	300	500	-	300	500	μSec
Turn On Delay	V _{OUT}		-	-	20	-	-	20	mSec
Turn On Overshoot		$V_{IN} = 0V$ to 28V	_	-	50	_	_	50	mV_{PK}

Notes:

- 1. Dependant on output voltage. 2. Time for output voltage to settle within 1% of its nominal value.
- 3. Derate linearly to 0 at 135°C. 4. Verified by qualification testing.

SPECIFICATIONS (T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5%, Full Load, Unless Otherwise Specified)

ABSOLUTE MAXIMUM RATINGS			
Input Voltage (Continuous)	50 V _{DC}	Junction Temperature Rise to Case	+15°C
Input Voltage (Transient, 1 second)	80 Volts	Storage Temperature	-65°C to +150°C
Output Power ¹	15 Watts	Lead Solder Temperature (10 seconds)	270°C
Power Dissipation (Full Load, T _{CASE} = +125°C)	11 Watts	Weight (Maximum) (Un-Flanged / Flanged)	(49 / 52) Grams

Parameter	Conditions	D	VHV285R	2S	Units
Parameter	Conditions	Min	Тур	Max	Units
STATIC					
INPUT .	Continuous	15	28	50	V
Voltage⁴	Transient, 1 sec	-	-	80	V
Current	Inhibited	-	-	6	mA
Current	No Load	-	-	90	mA
Ripple Current	Full Load, 20Hz to 10MHz	-	-	50	mA_{p-p}
Inhibit Pin Input ⁴		0	-	1.5	V
Inhibit Pin Open Circuit Voltage⁴		9.0	11.0	13.0	V
UVLO Turn On		12.0	-	14.8	V
UVLO Turn Off⁴		11.0	-	14.5	V
OUTPUT V _o	JT T _{CASE} = 25°C	5.148	5.20	5.252	V
Voltage $_{ m V_{ m O}}$	$T_{CASE} = -55^{\circ}C \text{ to } +125^{\circ}C$	5.122	5.20	5.278	V
Power ³		0	-	15	W
Current ³ V _O	ΤL	0	-	3.0	Α
Ripple Voltage V _o	Full Load, 20Hz to 10MHz	-	-	30	mV_{p-p}
Line Regulation V₀	_{JT} V _{IN} = 15V to 50V	-	-	20	mV
Load Regulation V _o	אַד No Load to Full Load	-	-	50	mV
EFFICIENCY		73	-	-	%
LOAD FALL T DOWED DIGGIDATION	. Overload ⁴	-	-	11	W
LOAD FAULT POWER DISSIPATION	Short Circuit	-	-	11	W
CAPACITIVE LOAD ⁴		-	-	1000	μF
SWITCHING FREQUENCY		400	475	550	kHz
SYNC FREQUENCY RANGE	$V_H - V_L = 5V$ Duty Cycle = 20% - 80%	500	-	600	kHz
ISOLATION	500 V _{DC}	100	-	-	ΜΩ
MTBF (MIL-HDBK-217F)	AIF @ T _C = 55°C	-	413	-	kHrs
DYNAMIC					
Load Step Output Transient Vo	Half Load to Full Load	-	-	300	mV_{PK}
Load Step Recovery ²	11ali Luau lu Fuli Luau	-	-	500	μSec
Line Step Output Transient⁴ V _o	JT	-	300	600	mV_{PK}
Line Step Recovery ^{2, 4}	V _{IN} = 16V to 40V	-	300	500	μSec
Turn On Delay V₀	JT	-	-	20	mSec
Turn On Overshoot	$V_{IN} = 0V \text{ to } 28V$	-	-	25	mV_{PK}

- Notes: 1. Dependant on output voltage. 2. Time for output voltage to settle within 1% of its nominal value. 3. Derate linearly to 0 at 135°C. 4. Verified by qualification testing.

BLOCK DIAGRAM

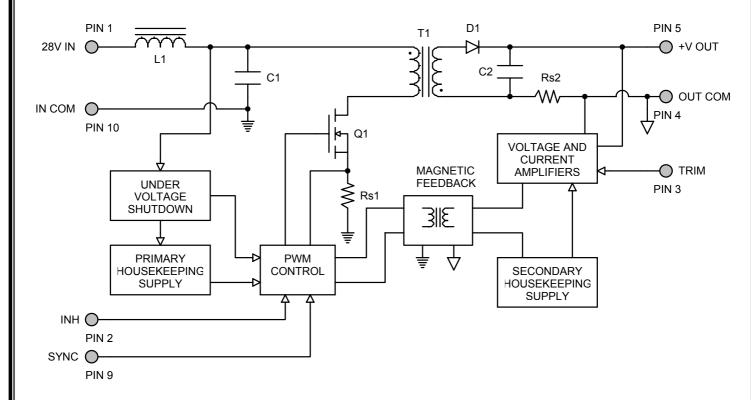


Figure 2

CONNECTION DIAGRAM

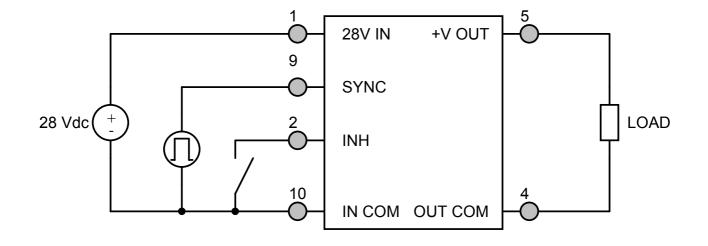
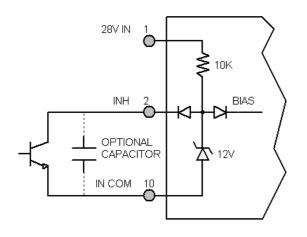
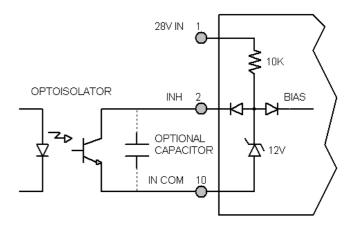




Figure 3

INHIBIT DRIVE CONNECTION DIAGRAMS

Figure 4 – Internal Inhibit Circuit and Recommended Drive (Shown with optional capacitor for turn-on delay)

Figure 5 – Isolated Inhibit Drive (Shown with optional capacitor for turn-on delay)

EMI FILTER HOOKUP DIAGRAM

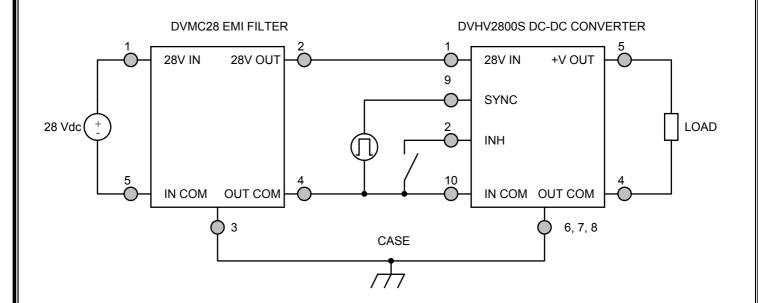


Figure 6 – Converter with EMI Filter

PARALLEL CONNECTION DIAGRAM

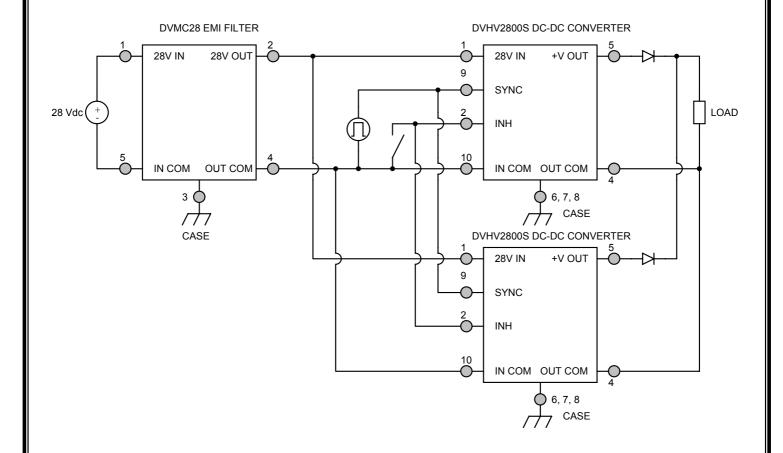
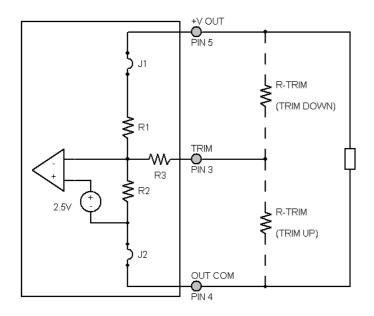



Figure 7

OUTPUT VOLTAGE TRIM

The output voltage can be trimmed down by connecting a resistor between the TRIM pin (PIN 3) and the +V OUT pin (PIN 5), or can be trimmed up by connecting a resistor between the TRIM pin (PIN 3) and the OUT COM pin (PIN 4). The maximum trim range is +10% up and -20% down. The appropriate resistor values versus the output voltage are given in the trim table below.

Figure 8 – Output Voltage Trim

DVHV2	283R3S	DVHV	2805S	DVHV2	85R2S	DVHV	DVHV2812S		2815S
+V _{OUT} (V)	R _{TRIM} (Ω)								
3.75	25.4k	5.5	19k	5.7	23k	13.2	5.93k	16.75	0
3.70	32.5k	5.4	31.5k	5.6	36.5k	13.0	10.1k	16.50	1.67k
3.65	41.8k	5.3	52.3k	5.5	59k	12.8	16.5k	16.25	5k
3.60	54.2k	5.2	94k	5.4	104k	12.6	27.1k	16.00	10k
3.55	71.6k	5.1	219k	5.3	239k	12.4	48.4k	15.75	18.3k
3.50	98.2k	5.0	-	5.2	-	12.2	113.7k	15.50	35k
3.45	143.2k	4.9	209k	5.1	249.8k	12.0	-	15.25	85k
3.40	236k	4.8	84k	5.0	104k	11.8	437k	15.00	-
3.35	543k	4.7	42.3k	4.9	55.4k	11.6	209k	14.75	475k
3.30	-	4.6	21.5k	4.8	31.1k	11.4	132k	14.50	225k
3.25	102k	4.5	9k	4.7	16.5k	11.2	93k	14.25	142k
3.20	34.8k	4.4	0	4.6	6.8k	11.0	69.5k	14.00	100k
3.15	10.5k					10.8	53.8k	13.75	75k
3.10	0					10.6	42.6k	13.50	58.3k
						10.4	34.2k	13.25	46.4k
						10.2	27.6k	13.00	37.5k
						10.0	22.4k	12.75	30.6k
						9.8	18.1k	12.50	25k
						9.6	14.5k	12.25	20.5k
						9.4	11.5k	12.00	16.7k
						9.2	8.88k		
						9.0	6.63k		

EFFICIENCY PERFORMANCE CURVES (T_{CASE} = 25°C, Full Load, Unless Otherwise Specified)

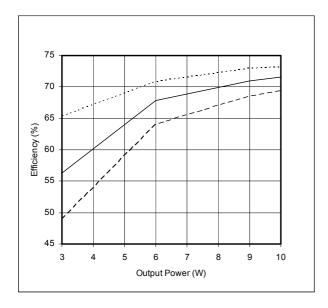


Figure 9 – DVHV283R3S Efficiency (%) vs. Output Power (W)

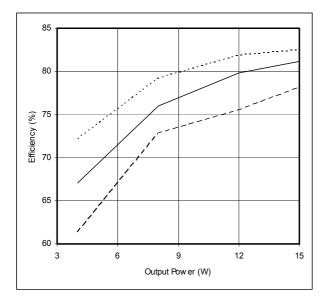


Figure 11 – DVHV2812S Efficiency (%) vs. Output Power (W)

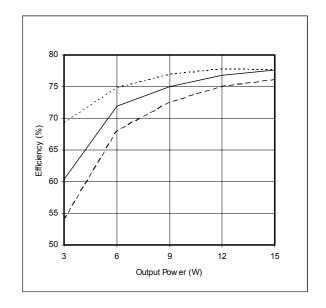


Figure 10 – DVHV2805S / DVHV285R2S Efficiency (%) vs. Output Power (W)

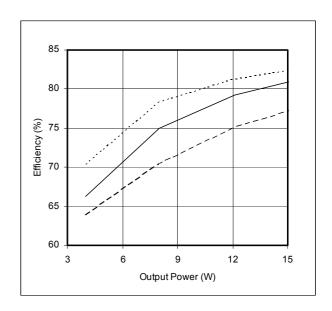


Figure 12 – DVHV2815S Efficiency (%) vs. Output Power (W)

EMI PERFORMANCE CURVES

 $(T_{CASE} = 25^{\circ}C, V_{IN} = +28V \pm 5\%, Full Load, Unless Otherwise Specified)$

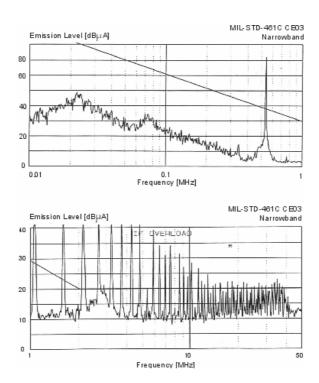
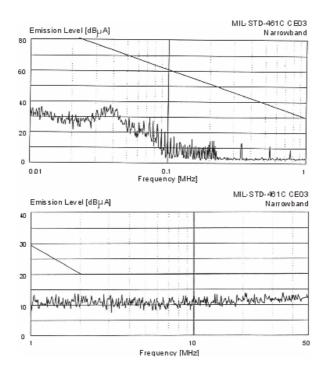
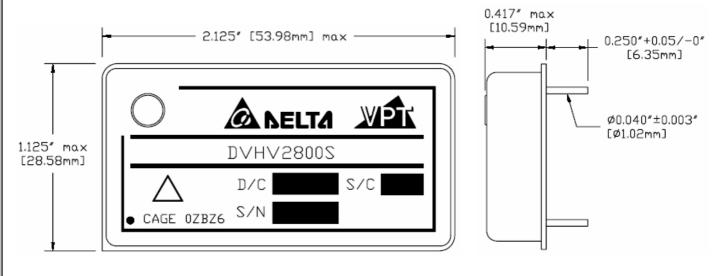
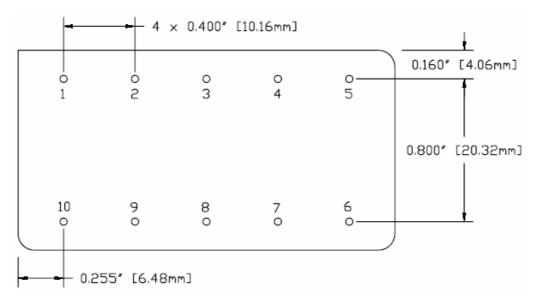


Figure 13 – DVHV2800S without EMI Filter

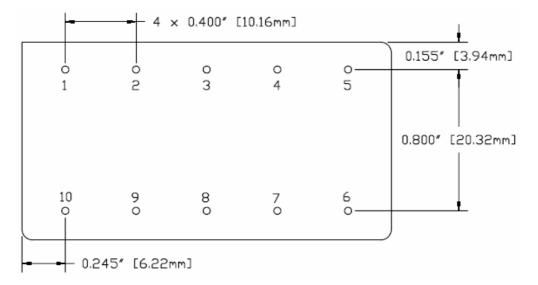

Figure 14 - DVHV2800S with EMI Filter

PACKAGE SPECIFICATIONS (NON-FLANGED, SOLDER SEAL)

TOP VIEW SIDE VIEW

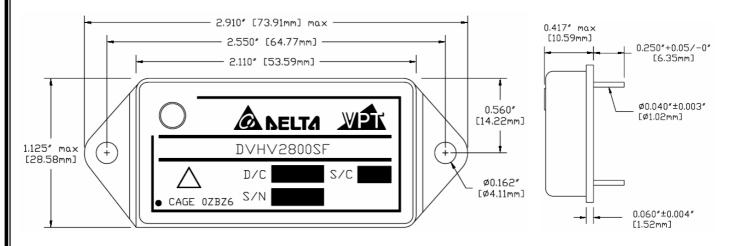
PIN	FUNCTION
1	28V IN
2	INHIBIT
3	TRIM
4	OUT COM
5	+V OUT
6	CASE
7	CASE
8	CASE
9	SYNC
10	IN COM

BOTTOM VIEW

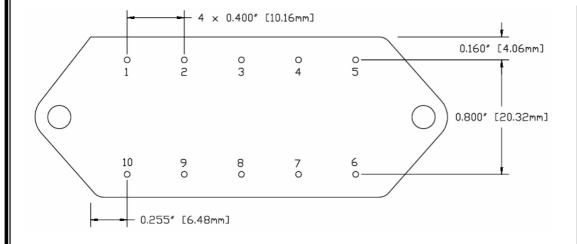

Figure 15 – Non-Flanged, Solder Seal Tin Plated Package and Pinout (Not Used for /HB or Higher Screened Products) (Dimensional Limits are ±0.005" Unless Otherwise Stated)

PACKAGE SPECIFICATIONS (NON-FLANGED, SEAM SEAL)

TOP VIEW SIDE VIEW

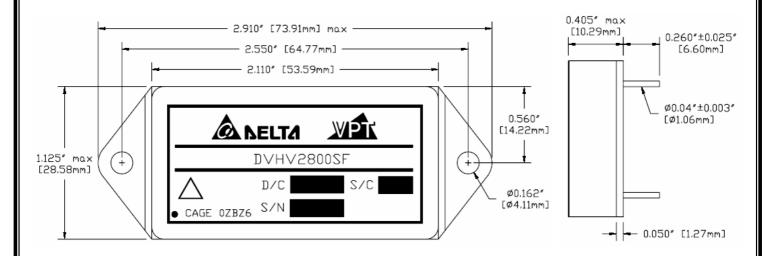

PIN	FUNCTION
1	28V IN
2	INHIBIT
3	TRIM
4	OUT COM
5	+V OUT
6	CASE
7	CASE
8	CASE
9	SYNC
10	IN COM

BOTTOM VIEW

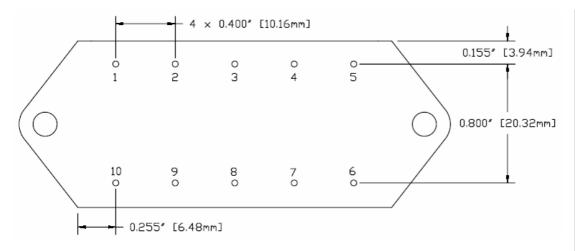

Figure 16 – Non-Flanged, Seam Seal Package and Pinout (Dimensional Limits are ±0.005" Unless Otherwise Stated)

PACKAGE SPECIFICATIONS (FLANGED, SOLDER SEAL)

TOP VIEW SIDE VIEW


PIN	FUNCTION
1	28V IN
2	INHIBIT
3	TRIM
4	OUT COM
5	+V OUT
6	CASE
7	CASE
8	CASE
9	SYNC
10	IN COM

BOTTOM VIEW


Figure 17 – Flanged, Solder Seal Tin Plated Package and Pinout (Not Used for /HB or Higher Screened Products) (Dimensional Limits are ±0.005" Unless Otherwise Stated)

PACKAGE SPECIFICATIONS (FLANGED, SEAM SEAL)

TOP VIEW SIDE VIEW

FUNCTION
28V IN
INHIBIT
TRIM
OUT COM
+V OUT
CASE
CASE
CASE
SYNC
IN COM

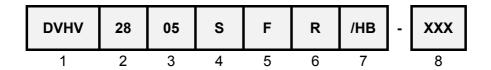
BOTTOM VIEW

Figure 18 – Flanged, Seam Seal Package and Pinout (Dimensional Limits are ±0.005" Unless Otherwise Stated)

PACKAGE PIN DESCRIPTION

Pin	Function	Description
1	28V IN	Positive Input Voltage Connection
2	INHIBIT	Logic Low = Disabled Output. Connecting the inhibit pin to input common causes converter shutdown. Logic High = Enabled Output. Unconnected or open collector TTL.
3	TRIM	Trim Output Voltage to +10%, -20% of Nominal Value
4	OUT COM	Output Common Connection
5	+V OUT	Positive Output Voltage Connection
6	CASE	Case Connection
7	CASE	Case Connection
8	CASE	Case Connection
9	SYNC	Synchronization Signal
10	IN COM	Input Common Connection

ENVIRONMENTAL SCREENING (Per MIL-STD-883 as referenced to MIL-PRF-38534, Class H)


Screening	MIL-STD-883	Standard (No Suffix)	Extended /ES	HB /HB	Class H /H	Class K /K
Non- Destructive Bond Pull	Method 2023	•	•	•	•	•
Internal Visual	Method 2017, 2032 Internal Procedure	•	•	•	•	•
Temperature Cycling	Method 1010, Condition C Method 1010, -55°C to 125°C		•	•	•	•
Constant Acceleration	Method 2001, 3000g, Y1 Direction Method 2001, 500g, Y1 Direction		•	•	•	•
PIND	Method 2020, Condition A ²					•
Pre Burn-In Electrical	100% at 25°C					•
Burn-In	Method 1015, 320 hours at +125°C Method 1015, 160 hours at +125°C 96 hours at +125°C 24 hours at +125°C	•	•	•	•	•
Final Electrical	MIL-PRF-38534, Group A ¹ 100% at 25°C	•	•	•	•	•
Hermeticity	Method 1014, Fine Leak, Condition A Method 1014, Gross Leak, Condition C Dip (1 x 10 ⁻³)	•	•	•	•	•
Radiography	Method 2012 ³					•
External Visual	Method 2009	•	•	•	•	•

Notes:

- 100% R&R testing at -55° C, $+25^{\circ}$ C, and $+125^{\circ}$ C with all test data included in product shipment. PIND test Certificate of Compliance included in product shipment. 1.
- 2.
- Radiographic test Certificate of Compliance and film(s) included in product shipment.

ORDERING INFORMATION

(1) (2) (3)

<u> </u>			()		· ,			
Product Series	duct Series Nominal Input Vol Voltage Output Vol		Output Voltage		· I CHITCHT VAITAND I NIIN		Number o	f Outputs
DVHV	28	28 Volts	3R3 05 5R2 12 15	3.3 Volts 5 Volts 5.2 Volts 12 Volts 15 Volts	S	Single		

(5) (6) (7)

` '		· ,		` '		` '
Pack	Package Option		Rad-Hard Option ²		ıg Code ^{1,3}	Additional Screening Code
None F	Non-Flanged Flanged	None R	Standard 100 kRad	None /ES /HB /H /K	Standard Extended HB Class H Class K	Contact Sales

Notes:

- 1. Contact the VPT Inc. Sales Department for availability of Class H (/H) or Class K (/K) qualified products.
- 2. VPT Inc. is not currently qualified to a DSCC certified radiation hardness assurance program.
- 3. VPT Inc. reserves the right to ship higher screened or SMD products to meet lower screened orders at our sole discretion unless specifically forbidden by customer contract.

Please contact your sales representative or the VPT Inc. Sales Department for more information concerning additional environmental screening and testing, different input voltage, output voltage, power requirement, source inspection, and/or special element evaluation for space or other higher quality applications.

SMD (STANDARD MICROCIRCUIT DRAWING) NUMBERS

Standard Microcircuit Drawing (SMD)	DVHV2800S Series Similar Part Number
*T.B.D.	DVHV283R3S/H DVHV283R3SF/H
*T.B.D.	DVHV2805S/H DVHV2805SF/H
*T.B.D.	DVHV285R2S/H DVHV285R2SF/H
*T.B.D.	DVHV2812S/H DVHV2812SF/H
*T.B.D.	DVHV2815S/H DVHV2815SF/H

Do not use the DVHV2800S Series similar part number for SMD product acquisition. It is listed for reference only. For exact specifications for the SMD product, refer to the SMD drawing. SMD's can be downloaded from the DSCC website at http://www.dscc.dla.mil/programs/smcr/. The SMD number listed above is for MIL-PRF-38534 Class H screening, standard gold plated lead finish, and no RHA (Radiation Hardness Assurance) level. Please reference the SMD for other screening levels, lead finishes, and radiation levels.

CONTACT INFORMATION

To request a quotation or place orders please contact your sales representative or the VPT Inc. Sales Department at:

Phone: (425) 353-3010 Fax: (425) 353-4030 E-mail: vptsales@vpt-inc.com

All information contained in this datasheet is believed to be accurate, however, no responsibility is assumed for possible errors or omissions. The products or specifications contained herein are subject to change without notice.