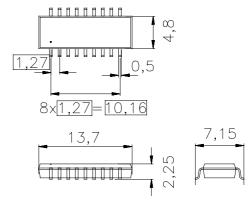


### **Siemens Matsushita Components**

# **SAW Components Bandpass Filter**

B8100 110,59 MHz

duroplast package DIP18D


#### **Data Sheet**

#### **Features**

- IF filter for cordless application
- Channel selection in DECT system
- Low group delay ripple
- Surface Mounted Technology (SMT)
- Standard IC small outline (SO) package
- Balanced and unbalanced operation possible

#### **Terminals**

Tinned CuFe alloy

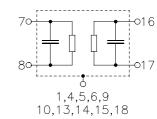


Dimensions in mm, approx. weight 0,4 g

### Pin configuration

7 Input

8 Input ground or balanced input


16 Output

17 Output ground or balanced output

1,4,5,6,9,10 Chip carrier – ground

13,14,15,18

2,3,11,12 not connected



| Туре  | Ordering code     | Marking and Package according to | Packing according to |  |  |
|-------|-------------------|----------------------------------|----------------------|--|--|
| B8100 | B39111-B8100-L100 | C61157-A2-A4                     | F61074-V8058-Z000    |  |  |

DataSheet4U.com

Electrostatic Sensitive Device (ESD)

### **Maximum ratings**

| Operable temperature range | Τ                     | - 25/+ 65 | °C  |
|----------------------------|-----------------------|-----------|-----|
|                            | _                     |           |     |
| Storage temperature range  | l <sub>stg</sub>      | - 40/+ 85 | °C  |
| DC voltage                 | $V_{\rm DC}^{\rm ag}$ | 5         | V   |
| Source power               | $P_{\rm s}$           | 10        | dBm |

Preliminary format of data sheet. Terms of delivery and rights to change design reserved. Page 1 of 5

OFW EM CP Jun 30, 1997 www.DataSheet4U.com

DataShe

DataSheet4U.com

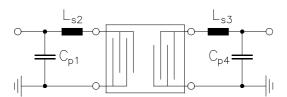


## **Siemens Matsushita Components**

# SAW Components Bandpass Filter

B8100 110,59 MHz

**Data Sheet** 


**Characteristics** 

Operating temperature range:  $T = +25 \,^{\circ}\text{C}$ 

Terminating source impedance:  $Z_{\rm S} = 50 \,\Omega \,(\,600 \,\Omega \,||\,240 \,{\rm nH^*})$ Terminating load impedance:  $Z_{\rm L} = 50 \,\Omega \,(\,140 \,\Omega \,||\,110 \,{\rm nH^*})$ 

|                                                                       |                 | min.     | typ.       | max.    |                       |
|-----------------------------------------------------------------------|-----------------|----------|------------|---------|-----------------------|
| Nominal frequency                                                     | f <sub>N</sub>  | _        | 110,59     | _       | MHz                   |
| Center frequency                                                      | $f_{C}$         | 110,48   | 110,59     | 110,70  | MHz                   |
| (center frequency between 10 dB points)                               | 'C              | 110,10   | 110,00     | 110,70  | 1411 12               |
| Insertion attenuation at $f_N$                                        | α               |          | 20,9       | 22,4    | dB                    |
| (including losses in matching network)                                | $\alpha_{N}$    | _        | (13,5*)    | (15,0*) | dB                    |
| Passband width                                                        | $B_{3dB}$       | _        | 1,28       | (10,0 ) | MHz                   |
| r doosand width                                                       | $B_{30dB}$      | _        | 2,40       | _       | MHz                   |
|                                                                       | 2300B           |          | 2, .0      |         |                       |
| Group delay ripple (p-p)                                              | Δτ              |          |            |         |                       |
| $f_{\rm N}$ - 600 kHz $f_{\rm N}$ + 600 kHz                           |                 | _        | 180        | 250     | ns                    |
| · ·                                                                   |                 | _        | (300*)     | (400*)  | ns                    |
| Relative attenuation (relative to $\alpha_N$ ) DataShe                |                 | con      | , ,        | , ,     |                       |
| $f_{\rm N}$ - 576 kHz $f_{\rm N}$ + 576 kHz                           |                 | _        | 2,0        | 4,0     | dB                    |
| $f_{\text{N}} \pm 576 \text{ kHz}$ $f_{\text{N}} \pm 700 \text{ kHz}$ |                 | _        | _          | 10,0    | dB                    |
| $f_{\rm N} \pm 1,6 {\rm MHz}   f_{\rm N} \pm 3,1 {\rm MHz}$           |                 | 32       | 38         | _       | dB                    |
| $f_{N} \pm 3.1 \text{ MHz}$ $f_{N} \pm 4.6 \text{ MHz}$               |                 | 40       | 44         | _       | dB                    |
| $f_{\text{N}} \pm 4,6 \text{ MHz}$ $f_{\text{N}} \pm 20 \text{ MHz}$  |                 | 45       | 50         | _       | dB                    |
|                                                                       |                 |          |            |         |                       |
| $f_{\rm N} \pm 1,728  {\rm MHz}$                                      |                 | 32       | 38         | _       | dB                    |
| $f_{\rm N} \pm 2 \times 1,728  {\rm MHz}$                             |                 | 42       | 47         | _       | dB                    |
| $f_{N} \pm 3 \times 1,728 \; MHz$                                     |                 | 48       | 53         | _       | dB                    |
| Impedance at $f_N$                                                    |                 |          |            |         |                       |
| Input: $Z_{IN} = R_{IN}    C_{IN}$                                    |                 | _        | 600    8,5 | _       | $\Omega \parallel pF$ |
| Output: $Z_{OUT} = R_{OUT}    C_{OUT}$                                |                 | <u> </u> | 140   19,0 | _       | Ω    pF               |
| Temperature coefficient of frequency                                  | TC <sub>f</sub> | _        | - 18       |         | ppm/K                 |

<sup>\*)</sup> with matching network to 50  $\Omega$  (element values depend on PCB layout):



 $\begin{array}{lll} C_{p1} & = & 0 & pF \\ L_{s2} & = 220 & nH \\ L_{s3} & = 120 & nH \\ C_{p4} & = & 22 & pF \end{array}$ 

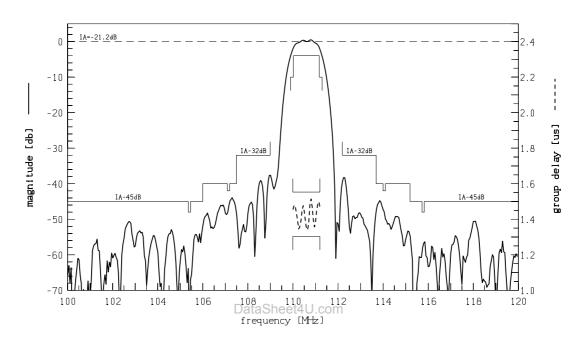
Preliminary format of data sheet.
Terms of delivery and rights to change design reserved.
Page 2 of 5

DataSheet4U.con

OFW EM CP Jun 30, 1997 www.DataSheet4U.com

eet4U.con

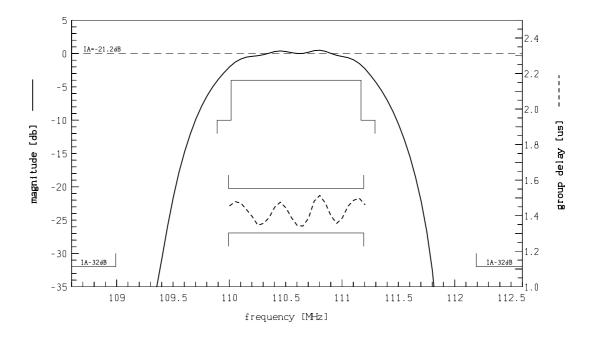
DataSh




SAW Components Bandpass Filter

B8100 110,59 MHz

**Data Sheet** 


Transfer function:



et4U.com

### DataShe

### Transfer function (pass band):



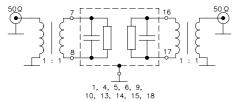
Preliminary format of data sheet. Terms of delivery and rights to change design reserved. Page 3 of 5

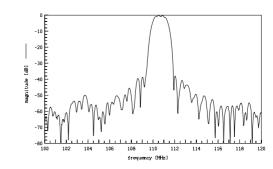
OFW EM CP Jun 30, 1997 www.DataSheet4U.com

DataSheet4U.com

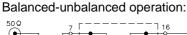


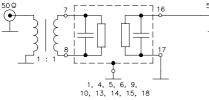
# SAW Components Bandpass Filter

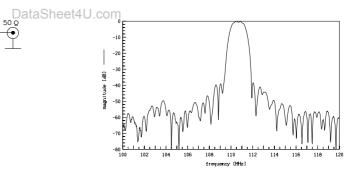

B8100 110,59 MHz


**Application Note** 

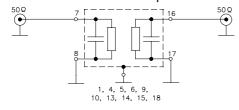
### **Recommended Pin Configurations:**

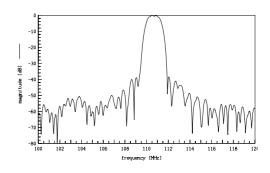

For optimum performance use the following pin configurations.


## Balanced-balanced operation:







et4U.com








## Unbalanced-unbalanced operation





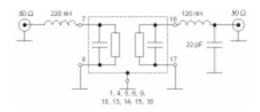
Preliminary format of data sheet. Terms of delivery and rights to change design reserved. Page 4 of 5

OFW EM CP Jun 30, 1997 www.DataSheet4U.com

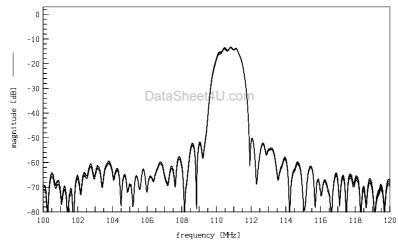
DataShe

DataSheet4U.com

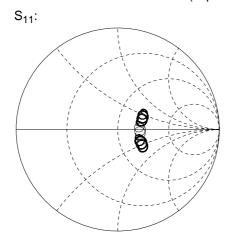



SAW Components Bandpass Filter

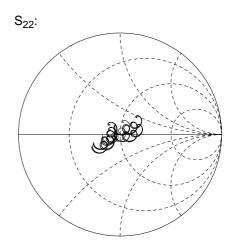
B8100 110,59 MHz


**Application Note** 

### Matching Stability / Variation of the Matching Network:


All matching-elements changed by ±10% (simulation).




Transfer function of matched filter (S<sub>21</sub>):



Impedance variation of matched filter (in passband):



Preliminary format of data sheet. Terms of delivery and rights to change design reserved. Page 5 of 5



OFW EM CP Jun 30, 1997 www.DataSheet4U.com

DataSheet4U.com

et4U.com