Model 23 Low Pressure

PC Board Mountable Pressure Sensor 0-1 PSI

0-100 mV Output

Low Cost

Temperature Compensated

FEATURES

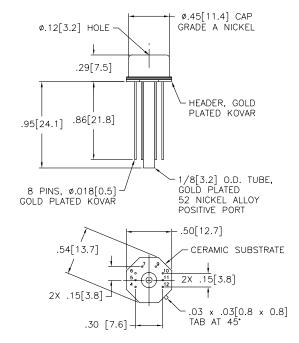
- ▶ Solid State Reliability
- ▶ 100mv Output Span
- ▶ Interchangeable
- ▶ Temperature Compensated
- Low Power

STANDARD RANGES

Range	psi
0 to 1	•

- Medical Instrumentation
- HVAC
- Factory Automation
- Process Control
- Avionics
- Air Flow Management

DESCRIPTION


The Model 23 is a temperature compensated, piezoresistive silicon pressure sensor packaged in TO-8 configurations. It provides excellent performance and long-term stability.

Integral temperature compensation is provided over a range of 0-50°C using a laser-trimmed ceramic compensation board. An additional laser-trimmed resistor is included which can be used to adjust the gain of an external differential amplifier and provide sensitivity interchangeability of $\pm 1\%$.

The sensing element used in low pressure Model 23 has a double bossed design that produces a high sensor output of 100 mV (typical) at 1 PSI.

The Model 13 is also available in ranges up to 0-250 PSI. For sensors in a dual-in-line package please refer to the Models 1210 and 1220. For additional information regarding uncompensated sensors, please contact the factory.

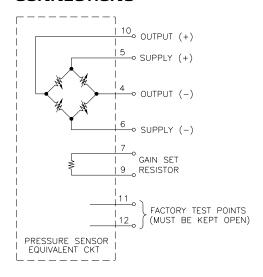
DIMENSIONS

DIMENSIONS ARE IN INCHES [mm]

1-24 TO-8 – Low Pressure

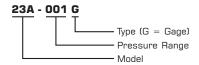
PERFORMANCE SPECIFICATIONS

Supply Current: 1.5mA

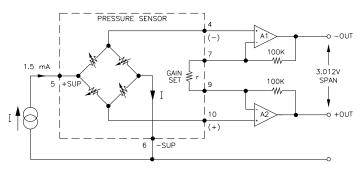

Ambient Temperature: 25°C (Unless otherwise specified)

	PRESSURE RANGE 0 - 1 psi				
PARAMETERS	MIN	TYP	MAX	UNITS	NOTES
Full Scale Output Span	65	100	150	mV	1
Zero Pressure Output			2	±mV	2
Pressure Non-linearity		0.2	0.3	±% Span	3
Pressure Hysteresis		0.01	0.05	±% Span	
Input & Output Resistance	2500	4400	6000	Ω	
Temperature Error – Span		0.5	1.0	±% Span	4, 5
Temperature Error – Zero		0.5	1.0	±% Span	4, 5
Thermal Hysteresis – Zero		0.1		±% Span	4
Supply Current		1.5	2.0	mA	
Response Time (10% to 90%)		1.0		mS	5
Output Noise		1.0		μV p-p	6
Output Load Resistance	2			ΜΩ	
Insulation Resistance (50 VDC)	50			ΜΩ	7
Long Term Stability		0.2		±% Span/yr	
Pressure Overload			10	psi	
Operating Temperature	-40°C to +125°C				
Storage Temperature	-50°C to +150°C				
Media	Non-corrosive Gas	8			
Weight	3 Grams				

Notes


- 1. Output span of unamplified sensor.
- For most models, compensation resistors are in an integral part of the sensor package; no additional external resistors are required. Test pins must be kept open.
- 3. Best Fit Straight Line.
- 4. Temperature range: 0-50°C in reference to 25°C.

CONNECTIONS



- 5. For a zero-to-full scale pressure step change.
- 6. 10 Hz to 1 kHz.
- 7. Between case and sensing element.
- Wetted materials are glass, ceramic, silicon, RTV, nickel, gold, and aluminum.

ORDERING INFORMATION

APPLICATION SCHEMATIC

June 2001