

ISOPRO LOW POWER SIX-CHANNEL DIGITAL ISOLATOR

Features

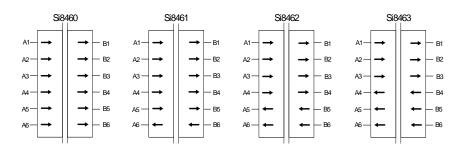
- High-speed operation: DC to 150 Mbps
- Low propagation delay: <10 ns worst case
- Wide Operating Supply Voltage: 2.70-5.5 V
- Ultra low power (typical) 5 V Operation:
 - <1.6 mA per channel at 1 Mbps
 - <1.9 mA per channel at 10 Mbps =
 - <6 mA per channel at 100 Mbps 2.70 V Operation:
 - <1.4 mA per channel at 1 Mbps
 - <1.7 mA per channel at 10 Mbps
 - <4 mA per channel at 100 Mbps

- Precise timing (typical):
 - 1.5 ns pulse width distortion
 - 0.5 ns channel-channel skew
 - · 2 ns propagation delay skew
- Up to 2500 V_{RMS} isolation
- Transient Immunity: 25 kV/µs
- DC correct
- No start-up initialization required
- 15 µs startup time
- High temperature operation: 125 °C at 150 Mbps
- Narrow body SOIC-16 package
- RoHS-compliant

Patents pending

Applications

- Isolated switch mode supplies
- Isolated ADC, DAC
- Motor control
- Power factor correction systems


Safety Regulatory Approvals

- UL 1577 recognized
 - 2500 V_{RMS} for 1 minute
- CSA component notice 5A approval
 - IEC 60950, 61010 approved
- VDE certification conformity
 - IEC 60747-5-2 (VDE0884 Part 2)

Description

Silicon Lab's family of ultra low power digital isolators are CMOS devices that employ an RF coupler to transmit digital information across an isolation barrier. Very high speed operation at low power levels is achieved. These devices are available in a 16-pin narrow-body SOIC package. Two speed grade options (1 and 150 Mbps) are available and achieve worst-case propagation delays of less than 10 ns.

Block Diagram

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
1. Electrical Specifications	4
2. Typical Performance Characteristics	
3. Application Information	
3.1. Theory of Operation	
3.2. Eye Diagram	
3.3. Layout Recommendations	
4. Errata and Design Migration Guidelines (Revision A Only)	
4.1. Power Supply Bypass Capacitors (Revision A Only)	
4.2. Latch Up Immunity (Revision A Only)	
5. Pin Descriptions	
6. Ordering Guide	28
7. Package Outline: 16-Pin Narrow Body SOIC	30
8. Landing Pattern: 16-Pin Narrow Body SOIC	
9. Top Marking: 16-Pin Narrow Body SOIC	
Document Change List	
Contact Information	

1. Electrical Specifications

Table 1. Electrical Characteristics

 $(V_{DD1} = 5 V \pm 10\%, V_{DD2} = 5 V \pm 10\%, T_A = -40 \text{ to } 125 \,^{\circ}\text{C};$ applies to narrow-body SOIC package)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
High Level Input Voltage	V _{IH}		2.0	_	_	V
Low Level Input Voltage	V _{IL}		_	_	0.8	V
High Level Output Voltage	V _{OH}	loh = −4 mA	V _{DD1} ,V _{DD2} – 0.4	4.8	_	V
Low Level Output Voltage	V _{OL}	lol = 4 mA	_	0.2	0.4	V
Input Leakage Current	IL		_	_	±10	μA
Output Impedance ¹	Z _O		_	85	_	Ω
	DC Supply	Current (All inputs	0 V or at Supply)		1	1
Si8460Ax, Bx						
V_{DD1}		All inputs 0 DC	_	1.7	2.6	
V_{DD2}		All inputs 0 DC	_	3.3	5.0	mA
V_{DD1}		All inputs 1 DC		7.7	11.6	
V_{DD2}		All inputs 1 DC	_	3.5	5.3	
Si8461Ax, Bx						
V_{DD1}		All inputs 0 DC	_	2.1	3.2	
V_{DD2}		All inputs 0 DC	_	3.4	5.1	mA
V_{DD1}		All inputs 1 DC	_	7.1	10.7	
V_{DD2}		All inputs 1 DC	_	4.5	6.8	
Si8462Ax, Bx						
V_{DD1}		All inputs 0 DC	_	2.5	3.8	
V_{DD2}		All inputs 0 DC	_	3.0	4.5	mA
V_{DD1}		All inputs 1 DC	_	6.5	9.8	
V_{DD2}		All inputs 1 DC	_	5.0	8.3	
Si8463Ax, Bx						
V_{DD1}		All inputs 0 DC	_	2.8	4.2	
V_{DD2}		All inputs 0 DC	_	2.8	4.2	mA
V_{DD1}		All inputs 1 DC	_	6.0	9.0	
V_{DD2}		All inputs 1 DC	_	6.0	9.0	

Notes:

- 1. The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
- 2. t_{PSK(P-P)} is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.
- 3. Start-up time is the time period from the application of power to valid data at the output.

Table 1. Electrical Characteristics (Continued)

 $(V_{DD1} = 5 V \pm 10\%, V_{DD2} = 5 V \pm 10\%, T_A = -40 \text{ to } 125 \,^{\circ}\text{C}$; applies to narrow-body SOIC package)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)								
Si8460Ax, Bx								
V_{DD1}			_	4.7	7.1	mA		
V_{DD2}			_	4.0	6.0			
Si8461Ax, Bx								
V_{DD1}			_	4.7	7.1	mA		
V_{DD2}			_	4.5	6.8			
Si8462Ax, Bx								
V_{DD1}			_	4.7	7.1	mA		
V_{DD2}			_	4.3	6.5			
Si8463Ax, Bx								
V_{DD1}			_	4.7	7.1	mA		
V_{DD2}			_	4.7	7.1			
10 Mbps Supply (Current (All	inputs = 5 MHz squa	are wave, CI = 15 pF	on all outp	outs)			
Si8460Bx								
V_{DD1}			_	4.7	7.1	mA		
V_{DD2}			_	5.5	7.7			
Si8461Bx								
V_{DD1}			_	5.0	7.2	mA		
V_{DD2}			_	5.7	8			
Si8462Bx								
V_{DD1}			_	5.2	7.3	mA		
V_{DD2}				5.4	7.6			
Si8463Bx					<u></u>			
V_{DD1}			_	5.5	7.7	mA		
V_{DD2}				5.5	7.7			
Notes:	·	·	·					

Notes:

- 1. The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
- 2. t_{PSK(P-P)} is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.
- 3. Start-up time is the time period from the application of power to valid data at the output.

Si8460/61/62/63

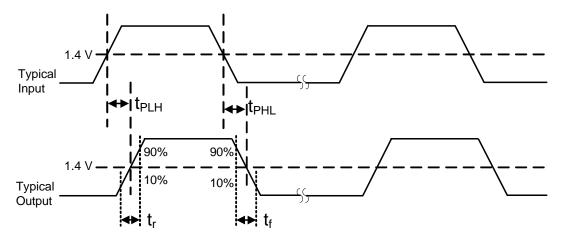
Table 1. Electrical Characteristics (Continued)

 $(V_{DD1} = 5 V \pm 10\%, V_{DD2} = 5 V \pm 10\%, T_A = -40 \text{ to } 125 \,^{\circ}\text{C}$; applies to narrow-body SOIC package)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
100 Mbps Supply	y Current (All	inputs = 50 MHz squ	uare wave, CI = 15	pF on all ou	itputs)	
Si8460Bx		·				T
V_{DD1}		I	_	5.0	7.5	mA
V_{DD2}		<u> </u>	_	28.8	36	
Si8461Bx		l			44.0	^
V _{DD1}		l		9.0 25	11.3 30	mA
V _{DD2} Si8462Bx					- 50	
V _{DD1}		l	_	13.3	16.6	mA
V _{DD1}		l	_	20.8	26	Hira
Si8463Bx	+	 I		+	 	+
V _{DD1}		l	_	17.2	21.5	mA
V_{DD2}		l	_	17.2	21.5	
		Timing Characteris	stics			
Si846xAx						
Maximum Data Rate		 I	0	T	1.0	Mbps
Minimum Pulse Width		I	_	<u> </u>	250	ns
Propagation Delay	t _{PHL} , t _{PLH}	See Figure 1	_	<u> </u>	35	ns
Pulse Width Distortion t _{PLH} - t _{PHL}	PWD	See Figure 1	_		25	ns
Propagation Delay Skew ²	t _{PSK(P-P)}	I	_	<u> </u>	40	ns
Channel-Channel Skew	t _{PSK}		_	<u> </u>	35	ns
Si846xBx						
Maximum Data Rate		 I	0	T -	150	Mbps
Minimum Pulse Width			_	+-	6.0	ns
Propagation Delay	t _{PHL} , t _{PLH}	See Figure 1	3.0	6.0	9.5	ns
Pulse Width Distortion	PWD	See Figure 1	_	1.5	2.5	ns
t _{PLH} - t _{PHL}						
Propagation Delay Skew ²	t _{PSK(P-P)}		_	2.0	3.0	ns
Channel-Channel Skew	t _{PSK}		_	0.5	1.8	ns

Notes:

- 1. The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
- 2. t_{PSK(P-P)} is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.
- 3. Start-up time is the time period from the application of power to valid data at the output.


Table 1. Electrical Characteristics (Continued)

 $(V_{DD1} = 5 V \pm 10\%, V_{DD2} = 5 V \pm 10\%, T_A = -40 \text{ to } 125 \,^{\circ}\text{C}$; applies to narrow-body SOIC package)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
All Models	- 1				l	
Output Rise Time	t _r	C _L = 15 pF See Figure 1	_	3.8	5.0	ns
Output Fall Time	t _f	C _L = 15 pF See Figure 1	_	2.8	3.7	ns
Common Mode Transient Immunity	CMTI	$V_I = V_{DD}$ or 0 V	_	25	_	kV/µs
Start-up Time ³	t _{SU}		_	15	40	μs

Notes:

- 1. The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
- 2. t_{PSK(P-P)} is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.
- 3. Start-up time is the time period from the application of power to valid data at the output.

Figure 1. Propagation Delay Timing

Table 2. Electrical Characteristics

 $(V_{DD1} = 3.3\ V \pm 10\%,\ V_{DD2} = 3.3\ V \pm 10\%,\ T_A = -40\ to\ 125\ ^{\circ}C;$ applies to narrow-body SOIC package)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
High Level Input Voltage	V _{IH}		2.0	_	_	V
Low Level Input Voltage	V _{IL}		_	_	0.8	V
High Level Output Voltage	V _{OH}	loh = -4 mA	$V_{DD1}, V_{DD2} - 0.4$	3.1	_	V
Low Level Output Voltage	V _{OL}	lol = 4 mA	_	0.2	0.4	V
Input Leakage Current	ΙL		_	_	±10	μA
Output Impedance ¹	Z _O		_	85	_	Ω
D	C Supply C	urrent (All inputs 0	V or at supply)		!	
Si8460Ax, Bx						
V_{DD1}		All inputs 0 DC	_	1.7	2.6	
V_{DD2}		All inputs 0 DC	_	3.3	5.0	mA
V_{DD1}		All inputs 1 DC	_	7.7	11.6	
V_{DD2}		All inputs 1 DC	_	3.5	5.3	
Si8461Ax, Bx						
V_{DD1}		All inputs 0 DC	_	2.1	3.2	
V_{DD2}		All inputs 0 DC	_	3.4	5.1	mA
V_{DD1}		All inputs 1 DC	_	7.1	10.7	
V_{DD2}		All inputs 1 DC	_	4.5	6.8	
Si8462Ax, Bx						
V_{DD1}		All inputs 0 DC	_	2.5	3.8	
V_{DD2}		All inputs 0 DC	_	3.0	4.5	mA
V_{DD1}		All inputs 1 DC	_	6.5	9.8	
V_{DD2}		All inputs 1 DC	_	5.0	8.3	
Si8463Ax, Bx						
V_{DD1}		All inputs 0 DC	_	2.8	4.2	
V_{DD2}		All inputs 0 DC	_	2.8	4.2	mA
V_{DD1}		All inputs 1 DC	_	6.0	9.0	
V_{DD2}		All inputs 1 DC	_	6.0	9.0	

Notes:

- 1. The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
- 2. t_{PSK(P-P)} is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.
- 3. Start-up time is the time period from the application of power to valid data at the output.

Table 2. Electrical Characteristics (Continued)

 $(V_{DD1} = 3.3 \text{ V} \pm 10\%, V_{DD2} = 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 125 \,^{\circ}\text{C}$; applies to narrow-body SOIC package)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
1 Mbps Supply	Current (All inpu	ts = 500 kHz square	e wave, CI = 15 pl	on all outp	outs)	
Si8460Ax, Bx						
/ _{DD1}			_	4.7	7.1	mA
I_{DD2}			_	4.0	6.0	
Si8461Ax, Bx						
/ _{DD1}			_	4.7	7.1	mA
I_{DD2}			_	4.5	6.8	
Si8462Ax, Bx						
/ _{DD1}			_	4.7	7.1	mA
I_{DD2}			_	4.3	6.5	
Si8463Ax, Bx						
/ _{DD1}			_	4.7	7.1	mA
I_{DD2}			_	4.7	7.1	
	y Current (All inp	uts = 5 MHz square	wave, CI = 15 pF	on all outp	outs)	
Si8460Bx						
/ _{DD1}			_	4.7	7.1	mA
I_{DD2}			_	5.5	7.7	
Si8461Bx						
/ _{DD1}			_	5.0	7.2	mA
I_{DD2}			_	5.7	8.0	
Si8462Bx						
I_{DD1}			_	5.2	7.3	mA
I_{DD2}			_	5.4	7.6	
Si8463Bx						
/ _{DD1}			_	5.5	7.7	mA
I_{DD2}			_	5.5	7.7	

Notes:

- 1. The nominal output impedance of an isolator driver channel is approximately 85 Ω , $\pm 40\%$, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
- 2. t_{PSK(P-P)} is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.
- 3. Start-up time is the time period from the application of power to valid data at the output.

Table 2. Electrical Characteristics (Continued)

 $(V_{DD1} = 3.3 \text{ V} \pm 10\%, V_{DD2} = 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 125 \,^{\circ}\text{C}$; applies to narrow-body SOIC package)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
100 Mbps Supply	Current (All inp	uts = 50 MHz squa	re wave, CI = 15 r	oF on all ou	tputs)	
Si8460Bx		 				
V_{DD1}		ĺ	_	4.8	7.2	mA
V _{DD2}		<u> </u>		20	25	
Si8461Bx		ĺ		7.4		^
V_{DD1} V_{DD2}		ĺ		7.4 17.7	9.3 22.1	mA
Si8462Bx		<u> </u>	 	17		
V _{DD1}		ĺ	_	10.2	12.8	mA
V _{DD2}		ĺ	_	15	18.8	
Si8463Bx		 				
V_{DD1}		ĺ	_	12.7	15.9	mA
V_{DD2}		<u> </u>		12.7	15.9	
	Tin	ming Characteristi	ics			
Si846xAx						
Maximum Data Rate			0		1.0	Mbps
Minimum Pulse Width		 	_	_	250	ns
Propagation Delay	t _{PHL} ,t _{PLH}	See Figure 1	_	<u> </u>	35	ns
Pulse Width Distortion t _{PLH} - t _{PHL}	PWD	See Figure 1	_		25	ns
Propagation Delay Skew ²	t _{PSK(P-P)}	<u> </u>	_	_	40	ns
Channel-Channel Skew	t _{PSK}		_	<u> </u>	35	ns
Si846xBx						
Maximum Data Rate			0	T —	150	Mbps
Minimum Pulse Width			_	<u> </u>	6.0	ns
Propagation Delay	t _{PHL} , t _{PLH}	See Figure 1	3.0	6.0	9.5	ns
Pulse Width Distortion	PWD	See Figure 1	_	1.5	2.5	ns
Propagation Delay Skew ²	t _{PSK(P-P)}		_	2.0	3.0	ns
Channel-Channel Skew	t _{PSK}	 	-	0.5	1.8	ns
Notes:			<u> </u>			1

Notes:

- 1. The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
- 2. t_{PSK(P-P)} is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.
- 3. Start-up time is the time period from the application of power to valid data at the output.

Table 2. Electrical Characteristics (Continued)

 $(V_{DD1} = 3.3 \text{ V} \pm 10\%, V_{DD2} = 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 125 \text{ }^{\circ}\text{C};$ applies to narrow-body SOIC package)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
All Models		1	1	I.	I.	
Output Rise Time	t _r	C _L = 15 pF See Figure 1	_	4.3	6.1	ns
Output Fall Time	t _f	C _L = 15 pF See Figure 1	_	3.0	4.3	ns
Common Mode Transient Immunity at Logic Low Output	CMTI	$V_I = V_{DD}$ or 0 V	_	25	_	kV/µs
Start-up Time ³	t _{SU}		_	15	40	μs

Notes:

- 1. The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
- 2. t_{PSK(P-P)} is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.
- 3. Start-up time is the time period from the application of power to valid data at the output.

Si8460/61/62/63

Table 3. Electrical Characteristics¹

 $(V_{DD1} = 2.70 \text{ V}, V_{DD2} = 2.70 \text{ V}, T_A = -40 \text{ to } 125 \,^{\circ}\text{C};$ applies to narrow-body SOIC package)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
High Level Input Voltage	V _{IH}		2.0	_	_	V
Low Level Input Voltage	V _{IL}		_	_	0.8	V
High Level Output Voltage	V _{OH}	loh = -4 mA	$V_{DD1}, V_{DD2} - 0.4$	2.3	_	V
Low Level Output Voltage	V _{OL}	lol = 4 mA	_	0.2	0.4	V
Input Leakage Current	ΙL		_	_	±10	μA
Output Impedance ²	Z _O		_	85	_	Ω
	DC Supply C	urrent (All inputs 0	V or at supply)			1
Si8460Ax, Bx						
V_{DD1}		All inputs 0 DC	_	1.7	2.6	
V_{DD2}		All inputs 0 DC	_	3.3	5.0	mA
V_{DD1}		All inputs 1 DC	_	7.7	11.6	
V_{DD2}		All inputs 1 DC	_	3.5	5.3	
Si8461Ax, Bx						
V_{DD1}		All inputs 0 DC	_	2.1	3.2	
V_{DD2}		All inputs 0 DC	_	3.4	5.1	mA
V_{DD1}		All inputs 1 DC	_	7.1	10.7	
V_{DD2}		All inputs 1 DC	_	4.5	6.8	
Si8462Ax, Bx						
V_{DD1}		All inputs 0 DC	_	2.5	3.8	
V_{DD2}		All inputs 0 DC	_	3.0	4.5	mA
V_{DD1}		All inputs 1 DC	_	6.5	9.8	
V_{DD2}		All inputs 1 DC	_	5.0	8.3	
Si8463Ax, Bx						
V_{DD1}		All inputs 0 DC	_	2.8	4.2	
V_{DD2}		All inputs 0 DC	_	2.8	4.2	mA
V_{DD1}		All inputs 1 DC	_	6.0	9.0	
V_{DD2}		All inputs 1 DC	_	6.0	9.0	

Notes:

- 1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is constrained to $T_A = 0$ to 85 °C.
- 2. The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
- 3. t_{PSK(P-P)} is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.
- 4. Start-up time is the time period from the application of power to valid data at the output.

Table 3. Electrical Characteristics¹ (Continued)

 $(V_{DD1} = 2.70 \text{ V}, V_{DD2} = 2.70 \text{ V}, T_A = -40 \text{ to } 125 \text{ °C}; \text{ applies to narrow-body SOIC package})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
1 Mbps Supply Cur	rent (All inp	uts = 500 kHz square	wave, CI = 15 pF	on all outp	outs)	
Si8460Ax, Bx						
V_{DD1}			_	4.7	7.1	mA
V_{DD2}			_	4.0	6.0	
Si8461Ax, Bx						
V_{DD1}			_	4.7	7.1	mA
V_{DD2}			_	4.5	6.8	
Si8462Ax, Bx						
V_{DD1}			_	4.7	7.1	mA
V_{DD2}			_	4.3	6.5	
Si8463Ax, Bx						
V_{DD1}			_	4.7	7.1	mA
V_{DD2}			_	4.7	7.1	
10 Mbps Supply Cu	irrent (All in	puts = 5 MHz square	wave, CI = 15 pF	on all outp	uts)	
Si8460Bx						
V_{DD1}			_	4.7	7.1	mA
V_{DD2}			_	5.5	7.7	
Si8461Bx						
V_{DD1}			_	5.0	7.2	mA
V_{DD2}			_	5.7	8.0	
Si8462Bx						
V_{DD1}			_	5.2	7.3	mA
V_{DD2}			_	5.4	7.6	
Si8463Bx						
V_{DD1}			_	5.5	7.7	mA
V_{DD2}				5.5	7.7	

Notes:

- 1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is constrained to $T_A = 0$ to 85 °C.
- 2. The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
- **3.** t_{PSK(P-P)} is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.
- 4. Start-up time is the time period from the application of power to valid data at the output.

Table 3. Electrical Characteristics¹ (Continued)

 $(V_{DD1} = 2.70 \text{ V}, V_{DD2} = 2.70 \text{ V}, T_A = -40 \text{ to } 125 \,^{\circ}\text{C};$ applies to narrow-body SOIC package)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
100 Mbps Supply	/ Current (All in	puts = 50 MHz squa	re wave, CI = 15 p	F on all out	tputs)	
Si8460Bx						
V_{DD1}			_	4.8	7.2	mA
V_{DD2}			_	15.8	19.8	
Si8461Bx						
V _{DD1}			_	6.7 14.2	8.4 17.8	mA
V _{DD2}			_	14.2	17.0	
Si8462Bx			_	8.7	10.9	mA
$V_{DD1} \ V_{DD2}$				12.2	15.3	111/4
Si8463Bx				· -		
V _{DD1}			_	10.5	13.1	mA
V _{DD2}			_	10.5	13.1	
	Ti	ming Characteristi	ics	1		
Si846xAx						
Maximum Data Rate			0	_	1.0	Mbps
Minimum Pulse Width			_	_	250	ns
Propagation Delay	t _{PHL} ,t _{PLH}	See Figure 1	_	_	35	ns
Pulse Width Distortion t _{PLH} - t _{PHL}	PWD	See Figure 1	_	_	25	ns
Propagation Delay Skew ³	t _{PSK(P-P)}		_	_	40	ns
Channel-Channel Skew	t _{PSK}		_	_	35	ns
Si846xBx						
Maximum Data Rate			0	_	150	Mbps
Minimum Pulse Width			_	_	6.0	ns
Propagation Delay	t _{PHL} , t _{PLH}	See Figure 1	3.0	6.0	9.5	ns
Pulse Width Distortion t _{PLH} - t _{PHL}	PWD	See Figure 1	_	1.5	2.5	ns
Propagation Delay Skew ³	t _{PSK(P-P)}		_	2.0	3.0	ns
Channel-Channel Skew	t _{PSK}		_	0.5	1.8	ns
Notes:			1		1	•

Notes:

- 1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is constrained to $T_A = 0$ to 85 °C.
- 2. The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
- **3.** t_{PSK(P-P)} is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.
- 4. Start-up time is the time period from the application of power to valid data at the output.

Table 3. Electrical Characteristics¹ (Continued)

 $(V_{DD1} = 2.70 \text{ V}, V_{DD2} = 2.70 \text{ V}, T_A = -40 \text{ to } 125 \text{ °C}; \text{ applies to narrow-body SOIC package})$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
All Models		I	1	I .		1
Output Rise Time	t _r	$C_L = 15 \text{ pF}$ See Figure 1	_	4.8	6.5	ns
Output Fall Time	t _f	$C_L = 15 \text{ pF}$ See Figure 1	_	3.2	4.6	ns
Common Mode Transient Immunity at Logic Low Output	CMTI	$V_I = V_{DD}$ or 0 V	_	25	_	kV/μs
Start-up Time ⁴	t _{SU}		_	15	40	μs

Notes:

- 1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is constrained to $T_A = 0$ to 85 °C.
- 2. The nominal output impedance of an isolator driver channel is approximately 85 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
- **3.** t_{PSK(P-P)} is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature.
- 4. Start-up time is the time period from the application of power to valid data at the output.

Table 4. Absolute Maximum Ratings¹

Parameter	Symbol	Min	Тур	Max	Unit
Storage Temperature ²	T _{STG}	-65	_	150	°C
Ambient Temperature Under Bias	T _A	-40	_	125	°C
Supply Voltage (Revision A) ³	V _{DD1} , V _{DD2}	-0.5	_	5.75	V
Supply Voltage (Revision B) ³	V _{DD1} , V _{DD2}	-0.5	_	6.0	V
Input Voltage	V _I	-0.5	_	V _{DD} + 0.5	V
Output Voltage	V _O	-0.5	_	V _{DD} + 0.5	V
Output Current Drive Channel	I _O	_	_	10	mA
Lead Solder Temperature (10 s)		_	_	260	°C
Maximum Isolation Voltage (1 s)		_	_	3600	V_{RMS}

Notes:

- 1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to conditions as specified in the operational sections of this data sheet.
- 2. VDE certifies storage temperature from -40 to 150 °C.
- 3. See "6. Ordering Guide" on page 28 for more information.

Table 5. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Ambient Operating Temperature*	T _A	150 Mbps, 15 pF, 5 V	-40	25	125	°C
Supply Voltage	V _{DD1}		2.70	_	5.5	V
	V _{DD2}		2.70	_	5.5	V

*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels, and supply voltage.

Table 6. Regulatory Information*

CSA

The Si846x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.

VDE

The Si846x is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.

UL

The Si846x is certified under UL1577 component recognition program. For more details, see File E257455.

*Note: Regulatory Certifications apply to 2.5 kV_{RMS} rated devices which are production tested to 3.0 kV_{RMS} for 1 sec. For more information, see "6. Ordering Guide" on page 28.

Table 7. Insulation and Safety-Related Specifications

Parameter	Symbol	Test Condition	Value	Unit
r ai ailietei	Symbol	rest condition	NB SOIC-16	Offic
Nominal Air Gap (Clearance) ¹	L(IO1)		3.9 min	mm
Nominal External Tracking (Creepage) ¹	L(IO2)		3.9 min	mm
Minimum Internal Gap (Internal Clearance)			0.008	mm
Tracking Resistance (Comparative Tracking Index)	CTI	DIN IEC 60112/VDE 0303 Part 1	>175	V
Resistance (Input-Output) ²	R _{IO}		10 ¹²	Ω
Capacitance (Input-Output) ²	C _{IO}	f = 1 MHz	2.0	pF
Input Capacitance ³	C _I		4.0	pF

Notes:

- 1. The values in this table correspond to the nominal creepage and clearance values as detailed in "7. Package Outline: 16-Pin Narrow Body SOIC". VDE certifies the clearance and creepage limits as 4.7 mm minimum for the NB SOIC-16 package. UL does not impose a clearance and creepage minimum for component level certifications. CSA certifies the clearance and creepage limits as 3.9 mm minimum for the NB SOIC-16 package.
- 2. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–8 are shorted together to form the first terminal and pins 9–16 are shorted together to form the second terminal. The parameters are then measured between these two terminals.
- 3. Measured from input pin to ground.

Table 8. IEC 60664-1 (VDE 0884 Part 2) Ratings

Parameter	Test Conditions	Specification
Basic isolation group	Material Group	Illa
	Rated Mains Voltages ≤ 150 V _{RMS}	I-IV
Installation Classification	Rated Mains Voltages ≤ 300 V _{RMS}	1-111
	Rated Mains Voltages ≤ 400 V _{RMS}	I-II

Table 9. IEC 60747-5-2 Insulation Characteristics for Si846xxB*

Parameter	Symbol	Test Condition	Characteristic	Unit
Maximum Working Insulation Voltage	V _{IORM}		560	V peak
		Method a After Environmental Tests Subgroup 1 (V _{IORM} x 1.6 = V _{PR} , t _m = 60 sec, Partial Discharge < 5 pC)	896	
Input to Output Test Voltage	V _{PR}	Method b1 $(V_{IORM} \times 1.875 = V_{PR}, 100\%$ Production Test, $t_m = 1$ sec, Partial Discharge < 5 pC)	1050	V peak
		After Input and/or Safety Test Subgroup 2/3 (V _{IORM} x 1.2 = V _{PR} , t _m = 60 sec, Partial Discharge < 5 pC)	672	
Highest Allowable Overvoltage (Transient Overvoltage, t _{TR} = 10 sec)	V _{TR}		4000	V peak
Pollution Degree (DIN VDE 0110, Table 1)			2	
Insulation Resistance at T_S , $V_{IO} = 500 \text{ V}$	R _S		>10 ⁹	Ω

*Note: This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of 40/125/21.

Table 10. IEC Safety Limiting Values¹

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit	
r ai ailletei	Symbol	rest condition	IVIIII	Тур	NB SOIC-16	Oilit	
Case Temperature	T _S		_	_	150	°C	
Safety input, output, or supply current	I _S	$\theta_{JA} = 105 \text{ °C/W (NB SOIC-16)},$ $V_{I} = 5.5 \text{ V}, T_{J} = 150 \text{ °C}, T_{A} = 25 \text{ °C}$	_	_	215	mA	
Device Power Dissipation ²	P _D		_	_	415	mW	

Notes:

- 1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 2.
- 2. The Si846x is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 °C, CL = 15 pF, input a 150 Mbps 50% duty cycle square

Table 11. Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
i didilicici	Gyiliboi	rest Condition	IVIIII	NB SOIC-16	IVIAA	Oilit
IC Junction-to-Air Thermal Resistance	$\theta_{\sf JA}$		_	105		°C/W

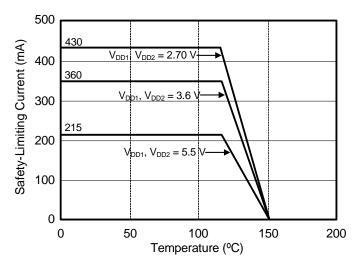


Figure 2. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-2

Table 12. Si846x Logic Operation Table

V _I Input ^{1,2}	VDDI State ^{1,3,4}	VDDO State ^{1,3,4}	V _O Output ^{1,2}	Comments
Н	Р	Р	Н	Normal operation.
L	Р	Р	L	Normal operation.
Х	UP	Р	L	Upon transition of VDDI from unpowered to powered, V_{O} returns to the same state as V_{I} in less than 1 μ s.
Х	Р	UP	Undetermined	Upon transition of VDDO from unpowered to powered, V_{O} returns to the same state as V_{I} within 1 μs .

Notes:

- 1. VDDI and VDDO are the input and output power supplies. V_I and V_O are the respective input and output terminals.
- 2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.
- 3. "Powered" state (P) is defined as 2.70 V < VDD < 5.5 V.
- **4.** "Unpowered" state (UP) is defined as VDD = 0 V.

2. Typical Performance Characteristics

The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer to Tables 1, 2, and 3 for actual specification limits.

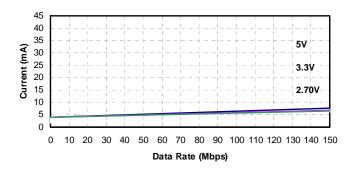


Figure 3. Si8460 Typical V_{DD1} Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation

Figure 6. Si8460 Typical V_{DD2} Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load)

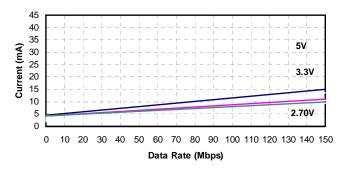


Figure 4. Si8461 Typical V_{DD1} Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load)

Figure 7. Si8461 Typical V_{DD2} Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load)

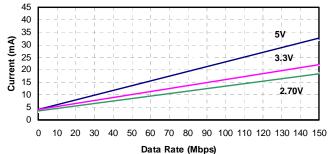
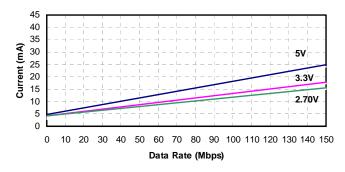



Figure 5. Si8462 Typical V_{DD1} Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load)

20

Figure 8. Si8462 Typical V_{DD2} Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load)

10 Falling Edge 9 Delay (ns) 8 7 Rising Edge 6 5 -40 -20 20 40 60 80 100 120 Temperature (Degrees C)

Figure 9. Si8463 Typical V_{DD1} or V_{DD2} Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load)

Figure 10. Propagation Delay vs. Temperature

3. Application Information

3.1. Theory of Operation

The operation of an Si846x channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single Si846x channel is shown in Figure 11.

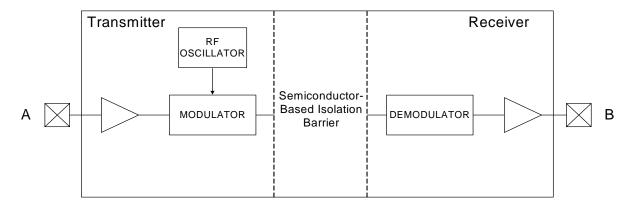
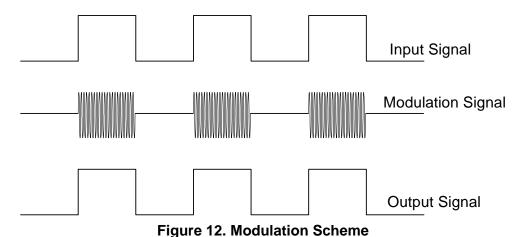



Figure 11. Simplified Channel Diagram

A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See Figure 12 for more details.

3.2. Eye Diagram

Figure 13 illustrates an eye-diagram taken on an Si8460. For the data source, the test used an Anritsu (MP1763C) Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8460 were captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The results also show that 2 ns pulse width distortion and 250 ps peak jitter were exhibited.

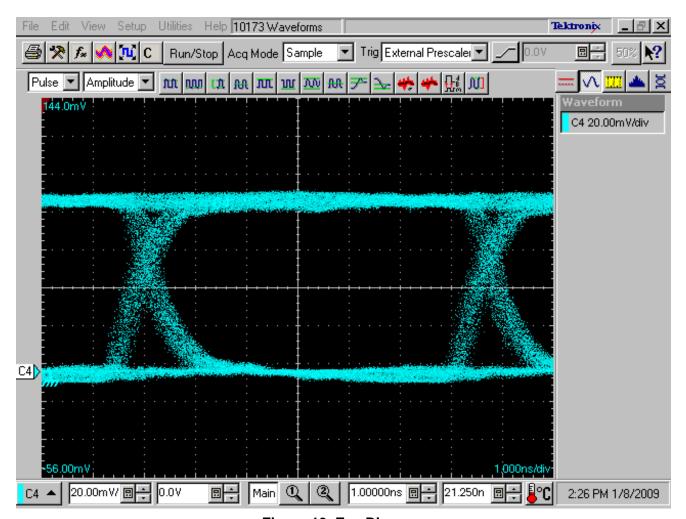


Figure 13. Eye Diagram

3.3. Layout Recommendations

Dielectric isolation is a set of specifications produced by the safety regulatory agencies from around the world that describes the physical construction of electrical equipment that derives power from a high-voltage power system such as $100-240~V_{AC}$ systems or industrial power systems. The dielectric test (or HIPOT test) given in the safety specifications places a very high voltage between the input power pins of a product and the user circuits and the user touchable surfaces of the product. For the IEC relating to products deriving their power from the $100-240~V_{AC}$ power grids, the minimum test voltage is $2500~V_{AC}$ (or $3750~V_{DC}$ —the peak equivalent voltage).

There are two terms described in the safety specifications:

- Creepage—the distance along the insulating surface an arc may travel.
- Clearance—the distance through the shortest path through air that an arc may travel.

Figure 14 illustrates the accepted method of providing the proper creepage distance along the surface. For a 120 V_{AC} application, this distance is 3.2 mm, and the narrow-body SOIC package can be used. For a 220–240 V_{AC} application, this distance is 6.4 mm, and a wide-body SOIC package must be used. There must be no copper traces within this 3.2 or 6.4 mm exclusion area, and the surface should have a conformal coating, such as solder resist. The digital isolator chip must straddle this exclusion area.

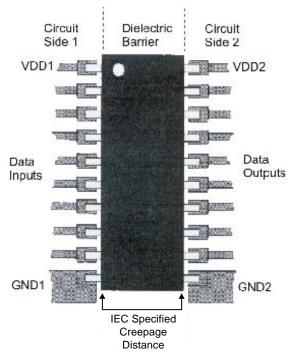


Figure 14. Creepage Distance

3.3.1. Supply Bypass

The Si846x requires a 1 μ F bypass capacitor between V_{DD1} and GND1 and V_{DD2} and GND2. The capacitor should be placed as close as possible to the package. See "4. Errata and Design Migration Guidelines (Revision A Only)" on page 26.

3.3.2. Output Pin Termination

The nominal output impedance of an isolator driver channel is approximately 85 Ω , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.

3.3.3. RF Radiated Emissions

The Si846x family uses a RF carrier frequency of approximately 700 MHz. This results in a small amount of radiated emissions at this frequency and its harmonics. The radiation is not from the IC but, rather, is due to a small amount of RF energy driving the isolated ground planes, which can act as a dipole antenna.

The unshielded Si846x evaluation board passes FCC Class B (Part 15) requirements. Table 13 shows measured emissions compared to FCC requirements. Note that the data reflects worst-case conditions where all inputs are tied to logic 1 and the RF transmitters are fully active.

Radiated emissions can be reduced if the circuit board is enclosed in a shielded enclosure or if the PCB is a less efficient antenna.

Frequency (MHz)	Measured (dBµV/m)	FCC Spec (dBµV/m)	Compared to Spec (dB)
712	29	37	-8
1424	39	54	–15
2136	42	54	-12
2848	43	54	-11
4272	44	54	-10
4984	44	54	-10
5696	44	54	-10

Table 13. Radiated Emissions

3.3.4. RF, Magnetic, and Common Mode Transient Immunity

The Si84xx families have very high common mode transient immunity while transmitting data. This is typically measured by applying a square pulse with very fast rise/fall times between the isolated grounds. Measurements show no failures at 25 kV/µs (typical). During a high surge event, the output may glitch low for up to 20–30 ns, but the output corrects immediately after the surge event.

The Si84xx families pass the industrial requirements of CISPR24 for RF immunity of 10 V/m using an unshielded evaluation board. As shown in Figure 15, the isolated ground planes form a parasitic dipole antenna. The PCB should be laid-out to not act as an efficient antenna for the RF frequency of interest. RF susceptibility is also significantly reduced when the end system is housed in a metal enclosure, or otherwise shielded.

The Si846x digital isolator can be used in close proximity to large motors and various other magnetic-field producing equipment. In theory, data transmission errors can occur if the magnetic field is too large and the field is too close to the isolator. However, in actual use, the Si84xx devices provide extremely high immunity to external magnetic fields and have been independently evaluated to withstand magnetic fields of at least 1000 A/m according to the IEC 61000-4-8 and IEC 61000-4-9 specifications.

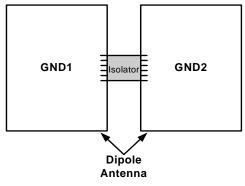


Figure 15. Dipole Antenna

4. Errata and Design Migration Guidelines (Revision A Only)

When using the new ISOpro products, or when migrating from Silicon Labs' legacy isolators, designers must consider and adhere to the following requirements.

4.1. Power Supply Bypass Capacitors (Revision A Only)

When using the ISOpro isolators with power supplies \geq 4.5 V, sufficient VDD bypass capacitors must be present on both the VDD1 and VDD2 pins to ensure the VDD rise time is less than 0.5 V/ μ s (which is > 9 μ s for a \geq 4.5 V supply). Although rise time is power supply dependent, \geq 1 μ F capacitors are required on both power supply pins (VDD1, VDD2) of the isolator device.

4.1.1. Resolution

This issue has been corrected with Revision B of the device. Refer to the Ordering Guide for more information.

4.2. Latch Up Immunity (Revision A Only)

ISOpro latch up immunity generally exceeds \pm 200 mA per pin. Exceptions: Certain pins provide < 100 mA of latch-up immunity. To increase latch-up immunity on these pins, 100 Ω of equivalent resistance must be included in series with *all* of the pins listed in Table 14. The 100 Ω equivalent resistance can be comprised of the source driver's output resistance and a series termination resistor.

4.2.1. Resolution

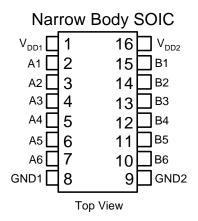

This issue has been corrected with Revision B of the device. Refer to "6. Ordering Guide" on page 28 for more information.

Table 14. Affected Ordering Part Numbers (Revision A Only)

Affected Ordering Part Numbers*	Device Revision	Pin#	Name	Pin Type	
SI8460SV-A-IS/IS1, SI8461SV-A-IS/IS1, SI8462SV-A-IS/IS1, SI8463SV-A-IS/IS1		2	A1	Input	
	А	6	A5	Input or Output	
		10	B6	Input or Output	
		14	B2	Output	
*Note: "SV" = Speed Grade/Isolation Rating (AA, AB, BA, BB).					

5. Pin Descriptions

Name	SOIC-16 Pin#	Туре	Description*
V _{DD1}	1	Supply	Side 1 power supply.
A1	2	Digital Input	Side 1 digital input.
A2	3	Digital Input	Side 1 digital input.
A3	4	Digital Input	Side 1 digital input.
A4	5	Digital I/O	Side 1 digital input or output.
A5	6	Digital I/O	Side 1 digital input or output.
A6	7	Digital I/O	Side 1 digital input or output.
GND1	8	Ground	Side 1 ground.
GND2	9	Ground	Side 2 ground.
B6	10	Digital I/O	Side 2 digital input or output.
B5	11	Digital I/O	Side 2 digital input or output.
B4	12	Digital I/O	Side 2 digital input or output.
В3	13	Digital Output	Side 2 digital output.
B2	14	Digital Output	Side 2 digital output.
B1	15	Digital Output	Side 2 digital output.
V _{DD2}	16	Supply	Side 2 power supply.

*Note: For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15 must also be connected to external ground.

6. Ordering Guide

Revision B devices are recommended for all new designs.

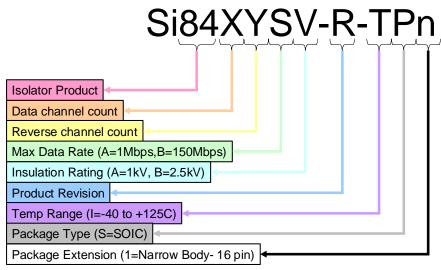


Figure 16. Ordering Part Number (OPN) Convention

Table 15.	Ordering	Guide for	Valid OPNs ¹
Table 13.	Oracinig	Guide IOI	valla Ol 143

Ordering Part Number (OPN)	Number of Inputs VDD1 Side	Number of Inputs VDD2 Side	Maximum Data Rate (Mbps)	Isolation Rating	Temp Range	Package Type
Si8460AA-B-IS1	6	0	1			
Si8460BA-B-IS1	6	0	150			
Si8461AA-B-IS1	5	1	1			
Si8461BA-B-IS1	5	1	150	1 kVrms	−40 to 125 °C	NB SOIC-16
Si8462AA-B-IS1	4	2	1	I KVIIIIS	-40 to 125 C	NB SOIC-16
Si8462BA-B-IS1	4	2	150			
Si8463AA-B-IS1	3	3	1			
Si8463BA-B-IS1	3	3	150			

Notes:

- 1. All packages are RoHS-compliant. Moisture sensitivity level is MSL2A with peak reflow temperature of 260 °C according to the JEDEC industry standard classifications and peak solder temperature.
- 2. Revision A devices are supported for existing designs, but Revision B is recommended for all new designs.

Table 15. Ordering Guide for Valid OPNs¹

Ordering Part Number (OPN)	Number of Inputs VDD1 Side	Number of Inputs VDD2 Side	Maximum Data Rate (Mbps)	Isolation Rating	Temp Range	Package Type
Si8460AB-B-IS1	6	0	1			NB SOIC-16
Si8460BB-B-IS1	6	0	150			
Si8461AB-B-IS1	5	1	1			
Si8461BB-B-IS1	5	1	150	2.5 kVrms	–40 to 125 °C	
Si8462AB-B-IS1	4	2	1	2.5 KVIIIIS	-40 to 125 C	
Si8462BB-B-IS1	4	2	150			
Si8463AB-B-IS1	3	3	1			
Si8463BB-B-IS1	3	3	150			
Revision A Devices	s ²			<u> </u>	,	
Si8460AA-A-IS1 ²	6	0	1		40 11 405 00	C NB SOIC-16
Si8460BA-A-IS1 ²	6	0	150			
Si8461AA-A-IS1 ²	5	1	1			
Si8461BA-A-IS1 ²	5	1	150	1 kVrms -40 to 12		
Si8462AA-A-IS1 ²	4	2	1		-40 to 125 °C	
Si8462BA-A-IS1 ²	4	2	150			
Si8463AA-A-IS1 ²	3	3	1			
Si8463BA-A-IS1 ²	3	3	150			
Si8460AB-A-IS1 ²	6	0	1			
Si8460BB-A-IS1 ²	6	0	150	2.5 kVrms -40 to 125 °C		42 405 90 ND 0010 40
Si8461AB-A-IS1 ²	5	1	1			
Si8461BB-A-IS1 ²	5	1	150		40 to 405 °C	
Si8462AB-A-IS1 ²	4	2	1		NB SOIC-16	
Si8462BB-A-IS1 ²	4	2	150			
Si8463AB-A-IS1 ²	3	3	1			
Si8463BB-A-IS1 ²	3	3	150			

Notes:

- 1. All packages are RoHS-compliant. Moisture sensitivity level is MSL2A with peak reflow temperature of 260 °C according to the JEDEC industry standard classifications and peak solder temperature.
- 2. Revision A devices are supported for existing designs, but Revision B is recommended for all new designs.

7. Package Outline: 16-Pin Narrow Body SOIC

Figure 17 illustrates the package details for the Si846x in a 16-pin narrow-body SOIC (SO-16). Table 16 lists the values for the dimensions shown in the illustration.

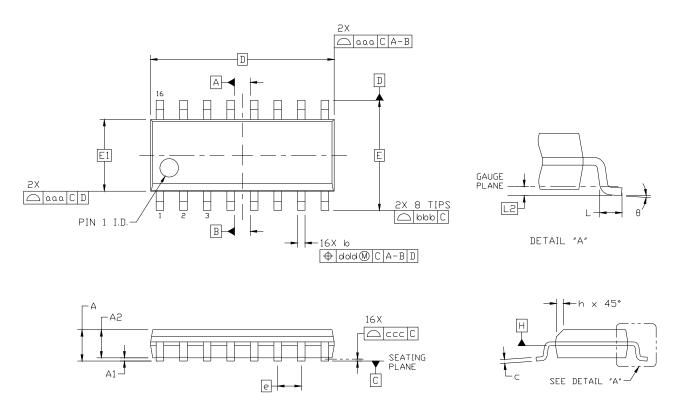


Figure 17. 16-pin Small Outline Integrated Circuit (SOIC) Package

Table 16. Package Diagram Dimensions

Dimension	Min	Max
А	_	1.75
A1	0.10	0.25
A2	1.25	_
b	0.31	0.51
С	0.17	0.25
D	9.90 BSC	
Е	6.00 BSC	
E1	3.90 BSC	
е	1.27 BSC	
L	0.40	1.27
L2	0.25 BSC	

Table 16. Package Diagram Dimensions (Continued)

h	0.25 0.50		
θ	0°	8°	
aaa	0.10		
bbb	0.20		
ccc	0.10		
ddd	0.25		

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8. Landing Pattern: 16-Pin Narrow Body SOIC

Figure 18 illustrates the recommended landing pattern details for the Si846x in a 16-pin narrow-body SOIC. Table 17 lists the values for the dimensions shown in the illustration.

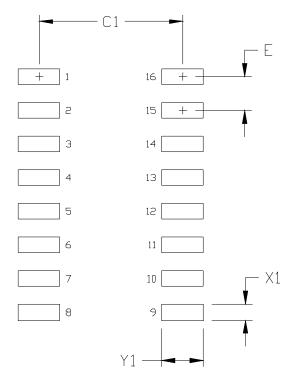


Figure 18. 16-Pin Narrow Body SOIC PCB Landing Pattern

Table 17. 16-Pin Narrow Body SOIC Landing Pattern Dimensions

Dimension	Feature	(mm)
C1	Pad Column Spacing	5.40
E	Pad Row Pitch	1.27
X1	Pad Width	0.60
Y1	Pad Length	1.55

Notes:

- **1.** This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).
- 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.

9. Top Marking: 16-Pin Narrow Body SOIC

Figure 19. 16-Pin Narrow Body SOIC Top Marking

Table 18. 16-Pin Narrow Body SOIC Top Marking Table

Line 1 Marking:	Base Part Number Ordering Options (See Ordering Guide for more information).	Si84 = Isolator product series XY = Channel Configuration X = # of data channels (6, 5, 4, 3, 2, 1) Y = # of reverse channels (3, 2, 1, 0) S = Speed Grade A = 1 Mbps; B = 150 Mbps V = Insulation rating A = 1 kV; B = 2.5 kV
Line 2 Marking:	Circle = 1.2 mm Diameter	"e3" Pb-Free Symbol
	YY = Year WW = Work Week	Assigned by the Assembly House. Corresponds to the year and work week of the mold date.
	TTTTTT = Mfg code	Manufacturing Code from Assembly Purchase Order form.
	Circle = 1.2 mm diameter	"e3" Pb-Free Symbol.

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2

- Updated all specs to reflect latest silicon.
- Added "4. Errata and Design Migration Guidelines (Revision A Only)" on page 26.
- Added "9. Top Marking: 16-Pin Narrow Body SOIC" on page 33.

Revision 0.2 to Revision 1.0

- Updated document to reflect availability of Revision B silicon.
- Updated Tables 1,2, and 3.
 - Updated all supply currents and channel-channel skew.
- Updated Table 4.
 - Updated absolute maximum supply voltage.
- Updated Table 7.
 - Updated clearance and creepage dimensions.
- Updated "4. Errata and Design Migration Guidelines (Revision A Only)" on page 26.
- Updated "6. Ordering Guide" on page 28.

Revision 1.0 to Revision 1.1

- Updated Tables 1, 2, and 3.
 - Updated notes in tables to reflect output impedance of 85 Ω .
 - Updated rise and fall time specifications.
 - · Updated CMTI value.

Revision 1.1 to Revision 1.2

- Updated document throughout to include MSL improvements to MSL2A.
- Updated "6. Ordering Guide" on page 28.
 - Updated Note 1 in ordering guide table to reflect improvement and compliance to MSL2A moisture sensitivity level.

Notes:

Si8460/61/62/63

CONTACT INFORMATION

Silicon Laboratories Inc.

400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

