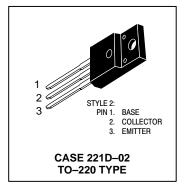


Complementary Power Darlingtons

For Isolated Package Applications

Designed for general-purpose amplifiers and switching applications, where the mounting surface of the device is required to be electrically isolated from the heatsink or chassis.


- Electrically Similar to the Popular TIP122 and TIP127
- 100 VCEO(sus)
- 5 A Rated Collector Current
- No Isolating Washers Required
- Reduced System Cost
- High DC Current Gain 2000 (Min) @ I_C = 3 Adc
- UL Recognized, File #E69369, to 3500 V_{RMS} Isolation

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	100	Vdc
Collector–Base Voltage	V _{CB}	100	Vdc
Emitter–Base Voltage	VEB	5	Vdc
RMS Isolation Voltage (1) Test No. 1 Per Fig. 1 (for 1 sec, R.H. < 30%,	15	4500 3500 1500	V _{RM} S
Collector Current — Continuous Peak	IC	5 8	Adc
Base Current	lΒ	0.12	Adc
Total Power Dissipation* @ T _C = 25°C Derate above 25°C	PD	30 0.24	Watt s W/° C
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	2 0.016	Watt s W/° C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	lC

MJF122 PNP MJF127

COMPLEMENTARY
SILICON
POWER DARLINGTONS
5 AMPERES
100 VOLTS
30 WATTS

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	62.5	°C/W
Thermal Resistance, Junction to Case*	$R_{\theta JC}$	4.1	°C/W
Lead Temperature for Soldering Purpose	TL	260	°C

^{*}Measurement made with thermocouple contacting the bottom insulated mounting surface (in a location beneath the die), the device mounted on a heatsink with thermal grease and a mounting torque of ≥ 6 in. lbs.

⁽¹⁾ Proper strike and creepage distance must be provided.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic			Min	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (1) (I _C = 100 mAdc, I _B = 0)		V _{CEO(sus)}	100	_	Vdc
Collector Cutoff Current (V _{CE} = 50 Vdc, I _B = 0)				10	μAdc
Collector Cutoff Current (V _{CB} = 100 Vdc, I _E = 0)		ICBO	_	10	μAdc
Emitter Cutoff Current (V _{BE} = 5 Vdc, I _C = 0)		I _{EBO}	_	2	mAdc
ON CHARACTERISTICS (1)					
DC Current Gain ($I_C = 0.5 \text{ Adc}$, $V_{CE} = 3 \text{ Vdc}$) ($I_C = 3 \text{ Adc}$, $V_{CE} = 3 \text{ Vdc}$)		hFE	1000 2000		_
Collector–Emitter Saturation Voltage ($I_C = 3$ Adc, $I_B = 12$ mAdc) ($I_C = 5$ Adc, $I_B = 20$ mAdc)		VCE(sat)	_	2 3.5	Vdc
Base–Emitter On Voltage (I _C = 3 Adc, V _{CE} = 3 Vdc)		V _{BE(on)}	_	2.5	Vdc
DYNAMIC CHARACTERISTICS					
Small–Signal Current Gain (I _C = 3 Adc, V _{CE} = 4 Vdc, f = 1 MHz)		h _{fe}	4	_	_
Output Capacitance MJF127 $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ MHz})$ MJF122			_ _	300 200	pF

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

Figure 1. Switching Times Test Circuit

Figure 2. Typical Switching Times

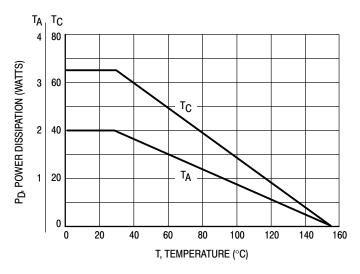


Figure 3. Maximum Power Derating

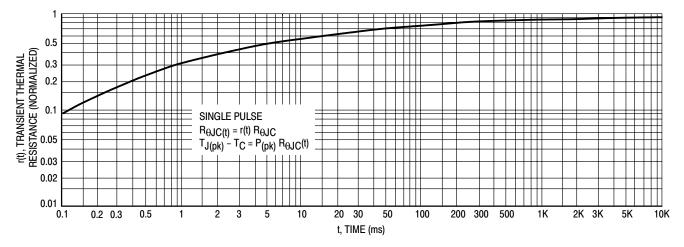


Figure 4. Thermal Response

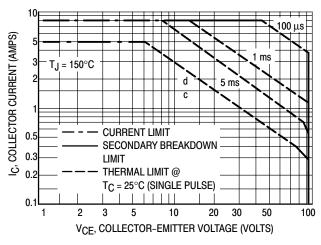


Figure 5. Maximum Forward Bias Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{\hbox{\scriptsize C}}-V_{\hbox{\scriptsize CE}}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ}C$; T_{C} is variable depending on conditions. Secondary breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} < 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.

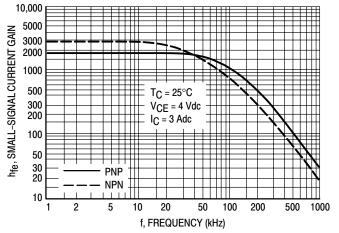
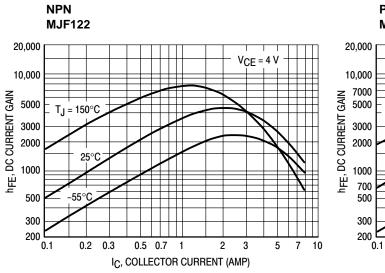



Figure 6. Typical Small-Signal Current Gain

Figure 7. Typical Capacitance

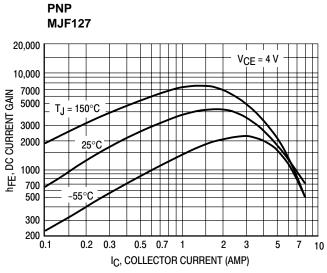
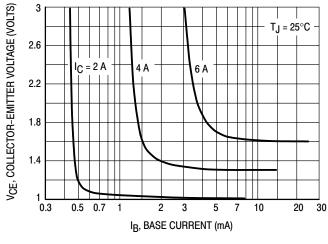



Figure 8. Typical DC Current Gain

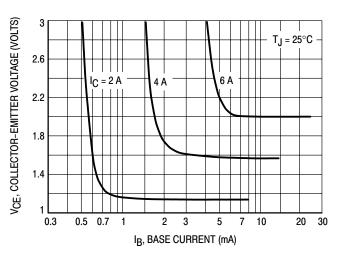


Figure 9. Typical Collector Saturation Region

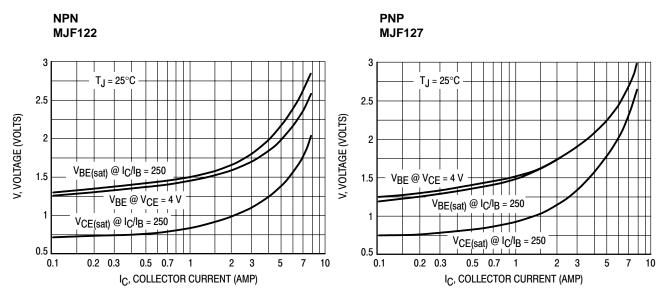
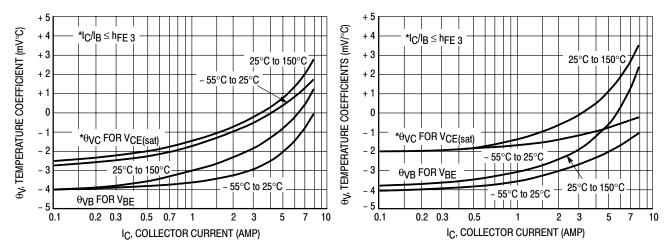



Figure 10. Typical "On" Voltages

Figure 11. Typical Temperature Coefficients

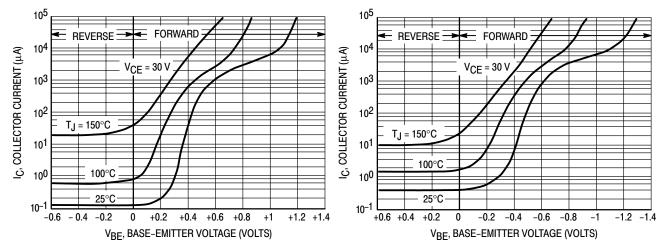


Figure 12. Typical Collector Cut-Off Region

NPN PNP MJF122 MJF127

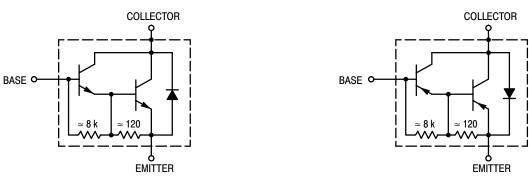


Figure 13. Darlington Schematic

TEST CONDITIONS FOR ISOLATION TESTS*

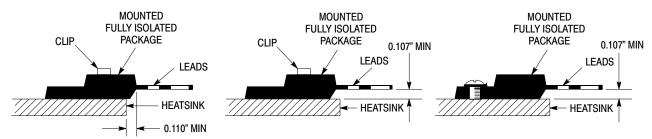


Figure 14. Clip Mounting Position for Isolation Test Number 1

Figure 15. Clip Mounting Position for Isolation Test Number 2

Figure 16. Screw Mounting Position for Isolation Test Number 3

MOUNTING INFORMATION

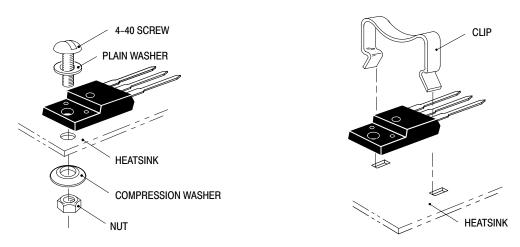
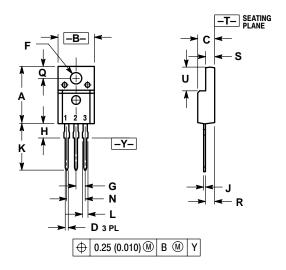


Figure 17. Typical Mounting Techniques*

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in · lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in · lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.


Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in · lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in · lbs of mounting torque under any mounting conditions.

^{*}Measurement made between leads and heatsink with all leads shorted together

^{**} For more information about mounting power semiconductors see Application Note AN1040.

PACKAGE DIMENSIONS

CASE 221D-02 TO-220 TYPE ISSUE D

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.621	0.629	15.78	15.97	
В	0.394	0.402	10.01	10.21	
С	0.181	0.189	4.60	4.80	
D	0.026	0.034	0.67	0.86	
F	0.121	0.129	3.08	3.27	
G	0.100 BSC		2.54 BSC		
Н	0.123	0.129	3.13	3.27	
J	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.14	1.52	
N	0.200 BSC		5.08 BSC		
Q	0.126	0.134	3.21	3.40	
R	0.107	0.111	2.72	2.81	
S	0.096	0.104	2.44	2.64	
U	0.259	0.267	6.58	6.78	

STYLE 2:

PIN 1. BASE 2. COLLECTOR 3. EMITTER

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.