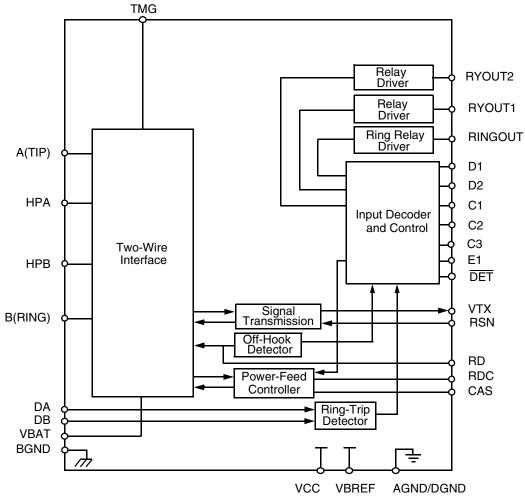
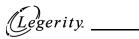
Am7922 Subscriber Line Interface Circuit

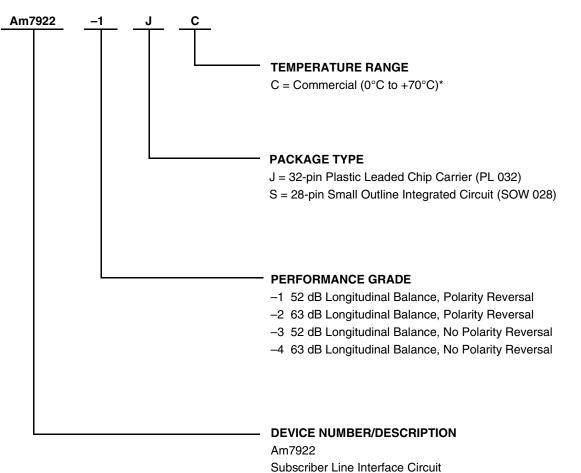

The Am7922 Subscriber Line Interface Circuit implements the basic telephone line interface functions, and enables the design of low cost, high performance, POTS line interface cards.


DISTINCTIVE CHARACTERISTICS

- Control states: Active, Reverse Polarity, Tip Open, Ringing, Standby, and Open Circuit
- Low standby power (35 mW)
- -19 V to -58 V battery operation
- On-hook transmission
- Two-wire impedance set by single external impedance
- Available in PLCC and SOIC
- Programmable constant-current feed

BLOCK DIAGRAM

- Programmable loop-detect threshold
- Ground-key detector
- Programmable ring-trip detect threshold
- No –5 V supply required
- Current Gain = 500
- On-chip Thermal Management (TMG) feature
- Three on-chip relay drivers and relay snubbers,
 1 ringing and 2 general purpose
- Tip Open state for ground-start lines



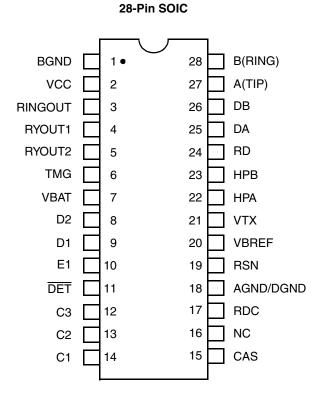
ORDERING INFORMATION

Standard Products

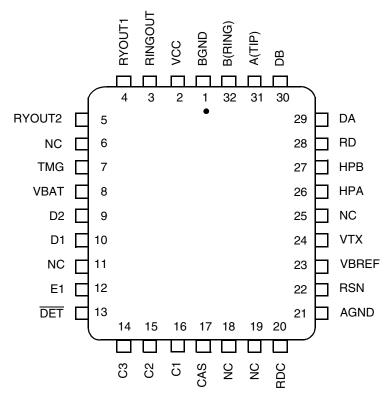
Legerity standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.

Valio	d Combinat	ions
Am7922	-1	
	-2	JC
	-3	SC
	-4	

Valid Combinations

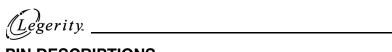

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local Legerity sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on Legerity's standard military grade products.

Note:


* Functionality of the device from $0^{\circ}C$ to $+70^{\circ}C$ is guaranteed by production testing. Performance from $-40^{\circ}C$ to $+85^{\circ}C$ is guaranteed by characterization and periodic sampling of production units.

CONNECTION DIAGRAMS

Top View



Notes:

1. Pin 1 is marked for orientation.

2. NC = No Connect

Legerity.

PIN DESCRIPTIONS

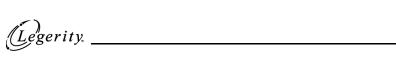
Pin Name	Туре	Description
AGND/DGND	Gnd	Analog and digital ground.
A(TIP)	Output	Output of A(TIP) power amplifier.
BGND	Gnd	Battery (power) ground.
B(RING)	Output	Output of B(RING) power amplifier.
C3–C1	Input	Decoder. SLIC control pins. C3 is MSB and C1 is LSB.
CAS	Capacitor	Anti-saturation capacitor. Pin for capacitor to filter reference voltage when operating in anti-saturation region.
D2-D1	Input	Relay driver control. D1 and D2 control the relay drivers RYOUT1 and RYOUT2. Logic Low on D1 activates the RYOUT1 relay driver. Logic Low on D2 activates the RYOUT2 relay driver.
DA	Input	Ring-trip negative. Negative input to ring-trip comparator.
DB	Input	Ring-trip positive. Positive input to ring-trip comparator.
DET	Output	Switchhook detector. A logic Low indicates that selected condition is detected. The detect condition is selected by the logic inputs (C3–C1). The output is open-collector with a built-in 15 k Ω pull-up resistor.
E1	Input	E1 = 1 selects the switchhook detector. E1 = 0 selects the ground-key detector. Note : In the Tip Open state, the ground-key detector is active irrespective of E1.
HPA	Capacitor	High-pass filter capacitor. A(TIP) side of high-pass filter capacitor.
HPB	Capacitor	High-pass filter capacitor. B(RING) side of high-pass filter capacitor.
NC	_	No connect. This pin is not internally connected.
RD	Resistor	Detect resistor. Detector threshold set and filter pin.
RDC	Resistor	DC feed resistor. Connection point for the DC feed current programming network. The other end of the network connects to the receiver summing node (RSN).
RINGOUT	Output	Ring relay driver. Open-collector driver with emitter internally connected to BGND.
RSN	Input	Receive summing node. The metallic current (both AC and DC) between A(TIP) and B(RING) is equal to 500 times the current into this pin. The networks which program receive gain, two-wire impedance, and feed resistance all connect to this node.
RYOUT1	Output	Relay/switch driver. Open-collector driver with emitter internally connected to BGND.
RYOUT2	Output	Relay/switch driver. Open-collector driver with emitter internally connected to BGND.
TMG	Thermal	Thermal management. External resistor connects between this pin and VBAT to offload power from SLIC.
VBAT	Battery	Battery supply and connection to substrate.
VBREF	_	This is a Legerity reserved pin and must always be connected to the VBAT pin.
VCC	Power	+5 V power supply.
VTX	Output	Transmit audio. This output is a 0.50 gain version of the A(TIP) and B(RING) metallic voltage. VTX also sources the two-wire input impedance programming network.

ABSOLUTE MAXIMUM RATINGS

Storage temperature55°C to +150°C
V_{CC} with respect to AGND/DGND –0.4 V to +7.0 V
V _{BAT} with respect to AGND/DGND:
Continuous +0.4 V to -70 V 10 ms
BGND with respect to AGND/DGND +3 V to –3 V
$ \begin{array}{l} \mbox{A(TIP) or B(RING) to BGND:} \\ \mbox{Continuous} & & \mbox{V}_{BAT} \ to +1 \ V \\ \mbox{10 ms} \ (f = 0.1 \ Hz) \ \ -70 \ V \ to +5 \ V \\ \mbox{1 } \ \mu s \ (f = 0.1 \ Hz) \ \ -80 \ V \ to +8 \ V \\ \mbox{250 ns} \ (f = 0.1 \ Hz) \ \ -90 \ V \ to +12 \ V \\ \end{array} $
Current from A(TIP) or B(RING)±150 mA
RINGOUT/RYOUT1,2 current
RINGOUT/RYOUT1,2 voltage BGND to +7 V
RINGOUT/RYOUT1,2 transient BGND to +10 V
DA and DB inputs
Voltage on ring-trip inputsV _{BAT} to 0 V
Current into ring-trip inputs±10 mA
C3–C1, D2–D1, and E1 Input voltage–0.4 V to V _{CC} + 0.4 V
Maximum power dissipation, continuous, $T_A = 70^{\circ}$ C, No heat sink (See note)
In 32-pin PLCC package1.7 W In 28-pin SOIC package1.4 W
Thermal Data: θ_{JA}
In 32-pin PLCC package 43°C/W typ In 28-pin SOIC package 60°C/W typ
ESD immunity/pin (HBM)
//P (/

Note: Thermal limiting circuitry on-chip will shut down the circuit at a junction temperature of about 165°C. The device should never see this temperature and operation above 145°C junction temperature may degrade device reliability.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.


OPERATING RANGES

Commercial (C) Devices

Ambient temperature	0°C to +70°C*
V _{CC}	4.75 V to 5.25 V
V _{BAT}	–19 V to –58 V
AGND/DGND	0 V
BGND with respect to AGND/DGND	. –100 mV to +100 mV
Load resistance on VTX to group	nd20 k Ω min

The operating ranges define those limits between which the functionality of the device is guaranteed.

* Functionality of the device from $0^{\circ}C$ to $+70^{\circ}C$ is guaranteed by production testing. Performance from $-40^{\circ}C$ to $+85^{\circ}C$ is guaranteed by characterization and periodic sampling of production units.

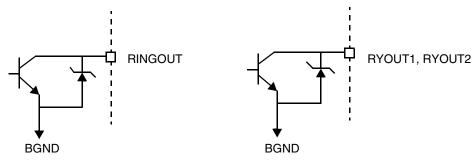
ELECTRICAL CHARACTERISTICS

Description	Test Conditions (see	Note 1)	Min	Тур	Max	Unit	Note
Transmission Performance							
2-wire return loss	200 Hz to 3.4 kHz		26			dB	1, 4
Analog output (VTX) impedance				3	20	Ω	4
Analog (VTX) output offset voltage					+50	mV	
Overload level, 2-wire	Active state	2.5			Vpk	2a	
Overload level	On hook, $R_{LAC} = 600 \Omega$		0.77			Vrms	2b
THD, Total Harmonic Distortion	0 dBm		••••	-64	-50		_~
	+7 dBm			-55	-40	dB	5
THD, On hook	0 dBm, R _{LAC} = 600 Ω			-36		Ū	
Longitudinal Capability (See Test Ci							
Longitudinal to metallic L-T, L-4	Normal Polarity						
	0°C to +70°C	-2,-4	63				
	-40°C to +85°C	-2,-4	58				4
	0°C to +70°C	-1,-3	52				•
200 Hz to 1 kHz	-40°C to +85°C	-1,-3	50				4
	Reverse Polarity	., .					_
	-40°C to +85°C	-2	54				4
	0°C to +70°C	-1	52				
	-40°C to +85°C	-1	50				4
Longitudinal to metallic L-T, L-4	Normal Polarity					dB	
	0°C to +70°C	-2,-4	58			-	
	-40°C to +85°C	-2,-4	53				4
	0°C to +70°C	-1,-3	52				
1 kHz to 3.4 kHz	-40°C to +85°C	-1,-3	50				4
	Reverse Polarity						
	-40°C to +85°C	-2	53				4
	0°C to +70°C	-1	52				
	-40°C to +85°C	-1	50				4
Longitudinal signal generation 4-L	200 Hz to 3.4 kHz		40				
Longitudinal current per pin (A or B)	Active state		17	27		mArms	8
Longitudinal impedance at A or B	0 to 100 Hz			25		Ω/pin	4
Idle Channel Noise							
C-message weighted noise	$R_{I} = 600 \Omega$ 0°C to	o +70°C		7	+10		
	$R_L = 600 \Omega$ $-40^{\circ}C t$				+12	dBrnc	
Psophometric weighted noise	$R_{I} = 600 \Omega$ 0°C to	o +70°C		-83	-80		4
		o +85°C			-78	dBmp	
Insertion Loss and Balance Return	Signal (See Test Circuits A	A and B)					1
Gain accuracy	0 dBm, 1 kHz	,	-0.20	0	+0.20		
4- to 2-wire	• • • • • • • • •		0.20	· ·			
Gain accuracy	0 dBm, 1 kHz		-6.22	-6.02	-5.82		
2- to 4-wire, 4- to 4-wire							
Gain accuracy, 4- to 2-wire	On hook		-0.35		+0.35		
Gain accuracy, 2- to 4-wire, 4- to 4-wire	On hook		-6.37	-6.02	-5.67		4
Gain accuracy over frequency	300 to 3.4 kHz		-0.15		+0.15	dB	
	relative to 1 kHz		0.10		10.10		
Gain tracking	+3 dBm to -55 dBm		-0.15		+0.15		
relative to 0 dBm							
Gain tracking	0 dBm to -37 dBm		-0.15		+0.15	1	
On hook	+3 dBm to 0 dBm	-0.35		+0.35			
Group delay	0 dBm, 1 kHz		4		μs	4, 7	

(Legerity.

ELECTRICAL CHARACTERISTICS (continued)

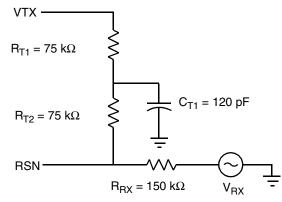
Description	Test Conditions (See Note 1)	Min	Тур	Max	Unit	Note
Line Characteristics						
I _L , Short Loops, Active state	$R_{LDC} = 600 \Omega$	26.4	30	33.6		
I_L , Long Loops, Active state	R_{LDC} = 1930 Ω, BAT = -42.75 V, T _A = 25°C	18	19			
I_L , Accuracy, Standby state	$I_{L} = \frac{ BAT - 3 V}{R_{L} + 400}$ $T_{A} = 25^{\circ}C$	0.71 _L	ΙL	1.3I _L	mA	
	Constant-current region	18	30			
I _L , Loop current, Disconnect state	R _L = 0			100	μA	
ILLIM	Active, A and B to ground		75	120	mA	
VAB, Open Circuit voltage		38.3	40.3		V	
I _A , Leakage, Tip Open state	$R_L = 0$			100	μA	
I _B , Current, Tip Open state	B to GND	15	30	56	mA	
V _A , Active	RA to BAT = 7 k Ω , RB to GND = 100 Ω	-7.5	-5		V	4
Power Supply Rejection Ratio						
V _{CC}	50 Hz to 3.4 kHz (V _{RIPPLE} = 100 mVrms)	30	40		dB	5
V _{BAT}	50 Hz to 3.4 kHz (V _{RIPPLE} = 500 mVpp)	28	50		uв	5
Effective internal resistance	CAS pin to V _{BAT}	85	170	255	kΩ	4
Power Dissipation					11	
On hook, Disconnect state			25	70		
On hook, Standby state			35	100		
On hook, Active state			130	210	mW	
Off hook, Standby state	$R_L = 600 \Omega$		860	1200		
Off hook, Active state	$R_{L} = 300 \Omega$		700	1000	-	
Supply Currents						
I _{CC} , On-hook V _{CC} supply current	Disconnect state Standby state Active state		1.7 2.2 5.0	4.0 4.0 7.0		
I _{BAT} ,	Disconnect state		0.25	1.0	mA	
On-hook V _{BAT} supply current	Standby state		0.55	1.5		
	Active state		2.2	4.0		
RFI Rejection						
RFI rejection	100 kHz to 30 MHz, (See Figure F)			1.0	mVrms	4
Receive Summing Node (RSN)						
RSN DC voltage	I _{RSN} = 0 mA		0		V	4
RSN impedance	200 Hz to 3.4 kHz		10	20	Ω	4
Logic Inputs (C3–C1, D2–D1, and E	1)					
V _{IH} , Input High voltage (except C3)		2.0				
V _{IH} , C3		2.5			V	
V _{IL} , Input Low voltage				0.8		
IH, Input High current		-75		40		
I _{IL} , Input Low current		-400			μA	
Logic Output (DET)						
V _{OL} , Output Low voltage	I_{OUT} = 0.3 mA, 15 k Ω to V _{CC}			0.40		
V _{OH} , Output High voltage	$I_{OUT} = -0.1 \text{ mA}, 15 \text{ k}\Omega \text{ to } V_{CC}$	2.4			- V	


ELECTRICAL CHARACTERISTICS (continued)

Description	Test Conditions (See Note 1)	Min	Тур	Max	Unit	Note
Ring-Trip Detector Input (DA, DB)		•	•		•	•
Bias current		-500	-50		nA	
Offset voltage	Source resistance = 2 M Ω	-50	0	+50	mV	6
Loop Detector						
On threshold	R _D = 35.4 kΩ	9.4	11.7	14.0		
Off threshold	R _D = 35.4 kΩ	8.8	10.4	12.0	mA	
Hysteresis	R _D = 35.4 kΩ		1.3			
IGK, Ground-key detector threshold	R _L from BX to GND Active, Standby, and Tip open	5	9	13	mA	
Relay Driver Output (RINGOUT, RY	OUT1, RYOUT2)					
On voltage	I _{OL} = 40 mA		+0.3	+0.7	V	
Off leakage	V _{OH} = +5 V			100	μA	
Zener breakover	I _Z = 100 μA	6	7.2		V	
Zener On voltage	$I_Z = 30 \text{ mA}$ 10			v		

Note:

* Performance Grade

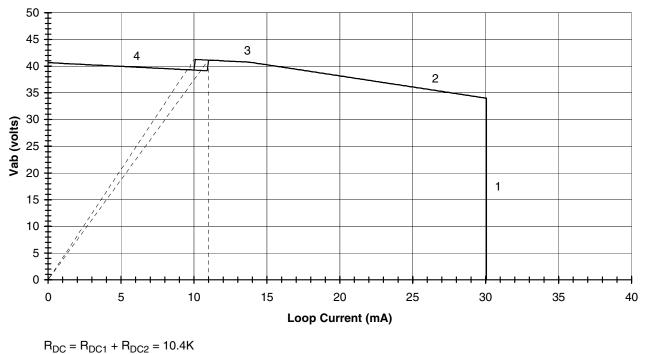

RELAY DRIVER SCHEMATICS

Notes:

Unless otherwise noted, test conditions are BAT = -48 V, V_{CC} = +5 V, R_L = 600 Ω, R_{DC1} = R_{DC2} = 10.4K, R_{TMG} = 1600 Ω, R_D = 35.4 kΩ, no fuse resistors, C_{HP} = 0.22 µF, C_{DC} = 0.33 µF, C_{CAS} = 0.33 µF, D1 = 1N400x, two-wire AC input impedance is a 600 Ω resistance synthesized by the programming network shown below.

- 2. a. Overload level is defined when THD = 1%.
 b. Overload level is defined when THD = 1.5%.
- 3. Balance return signal is the signal generated at V_{TX} by V_{RX} . This specification assumes that the two-wire, AC-load impedance matches the programmed impedance.
- 4. Not tested in production. This parameter is guaranteed by characterization or correlation to other tests.
- 5. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.
- 6. Tested with 0 Ω source impedance. 2 M Ω is specified for system design only.
- 7. Group delay can be greatly reduced by using a Z_T network such as that shown in Note 1. The network reduces the group delay to less than 2 µs and increases 2WRL. The effect of group delay on linecard performance also may be compensated for by synthesizing complex impedance with the QSLAC[™] or DSLAC[™] device.
- 8. Minimum current level guaranteed not to cause a false loop detect.

					E1 = 1	E1 = 0
State	C3	C2	C1	Two-Wire Status	DET Output	DET Output
0	0	0	0	Reserved	Х	Х
1	0	0	1	Reserved	Х	Х
2	0	1	0	Active Polarity Reversal	Loop detector	Ground Key
3	0	1	1	Tip Open	Ground Key	Ground Key
4	1	0	0	Open Circuit	Ring trip	Ring Trip
5	1	0	1	Ringing	Ring trip	Ring Trip
6	1	1	0	Active	Loop detector	Ground Key
7	1	1	1	Standby	Loop detector	Ground Key

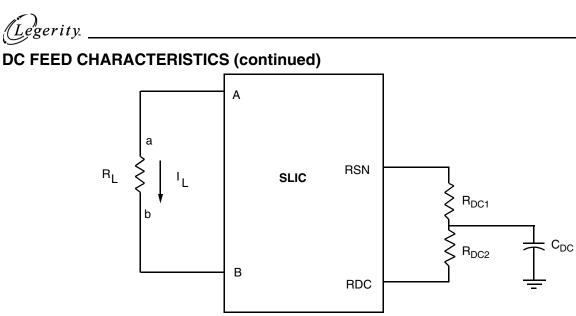

Table	1.	SLIC	Decoding
labio	••	0210	Doodanig

(Legerity_____

$Z_{\rm T} = 250(Z_{\rm 2WIN} - 2R_{\rm F})$	$Z_{\rm T}$ is connected between the VTX and RSN pins. The fuse resistors are ${\rm R}_{\rm F},$ and $Z_{\rm 2WIN}$ is the desired 2-wire AC input impedance. When computing $Z_{\rm T},$ the internal current amplifier pole and any external stray capacitance between VTX and RSN must be taken into account.
$Z_{RX} = \frac{Z_L}{G_{42L}} \bullet \frac{500Z_T}{Z_T + 250(Z_L + 2R_F)}$	Z_{RX} is connected from VRX to RSN. Z_{T} is defined above, and G_{42L} is the desired receive gain.
$R_{DC1} + R_{DC2} = \frac{625}{I_{LOOP}}$	$R_{DC1},R_{DC2},\text{and}C_{DC}$ form the network connected to the R_{DC} pin. R_{DC1} and R_{DC2} are approximately equal. I_{LOOP} is the desired loop current in the constant-current region.
$C_{DC} = 1.5 \text{ ms} \bullet \frac{R_{DC1} + R_{DC2}}{R_{DC1} \bullet R_{DC2}}$	
$RD_{ON} = \frac{390}{I_T}$, $RD_{OFF} = \frac{355}{I_T}$, $C_D = \frac{0.5 \text{ ms}}{R_D}$	R_D and C_D form the network connected from R_D to AGND/ DGND and I_T is the threshold current between on hook and off hook.
$C_{CAS} = \frac{1}{3.4 \bullet 10^5 \pi f_c}$	$C_{\mbox{CAS}}$ is the regulator filter capacitor and $f_{\mbox{c}}$ is the desired filter cut-off frequency.
$I_{\text{STANDBY}} = \frac{ V_{\text{BAT}} - 3 V}{400 \Omega + R_{\text{L}}}$	Standby loop current (resistive region).
Thermal Management Equations (Normal Active and Tip (Dpen States)
$R_{TMG} \ge \left(\frac{ V_{BAT} - 6 V}{I_{LOOP}} - 70 \Omega\right)$	R _{TMG} is connected from TMG to VBAT and saves power within the SLIC in Active and Polarity Reversal states only.
$P_{RTMG} = \frac{\left(\left V_{BAT}\right - 6 V - (I_{L} \bullet R_{L})\right)^{2}}{\left(R_{TMG} + 70 \Omega\right)^{2}} \bullet R_{TMG}$	Power dissipated in the TMG resistor, R _{TMG} , during Active and Polarity Reversal states.
$P_{SLIC} = V_{BAT} \bullet I_L - P_{RTMG} - R_L(I_L)^2 + 0.13 W$	Power dissipated in the SLIC while in Active and Polarity Reversal states.

Table 2. User-Programmable Components

DC FEED CHARACTERISTICS


BAT = 48 V

Notes:

- 1. Constant current region: $V_{AB} = I_L R_L' = \frac{625}{R_{DC}} R_L'$, where $R_L' = R_L + 2R_F$
- 2. Battery-independent anti-sat: $V_{AB} = 47 V I_L \frac{R_{DC}}{50}$
- 3. Battery tracking anti-sat (off hook):a) $V_{AB} \ge 34.5 \text{ V}$ $V_{AB} = 0.67 |V_{BAT}| + 10.5 I_L \frac{R_{DC}}{150}$ b) $V_{AB} < 34.5 \text{ V}$ $V_{AB} = |V_{BAT}| 1.7 I_L \frac{R_{DC}}{200}$ 4. Battery tracking anti-sat (on hook):a) $V_{AB} \ge 34.5 \text{ V}$ $V_{AB} = 0.67 |V_{BAT}| + 8.5 I_L \frac{R_{DC}}{150}$ b) $V_{AB} < 34.5 \text{ V}$ $V_{AB} = |V_{BAT}| 4.4 I_L \frac{R_{DC}}{200}$

a. Load Line (Typical)

, Legerity



Feed current programmed by $\mathsf{R}_{\mathsf{DC1}}$ and $\mathsf{R}_{\mathsf{DC2}}$

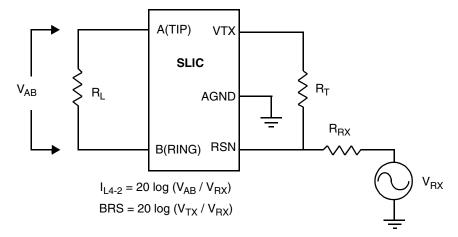
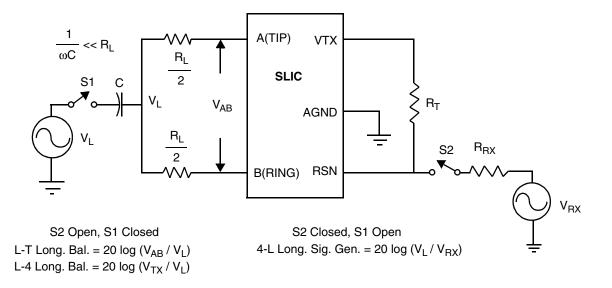
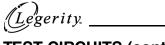
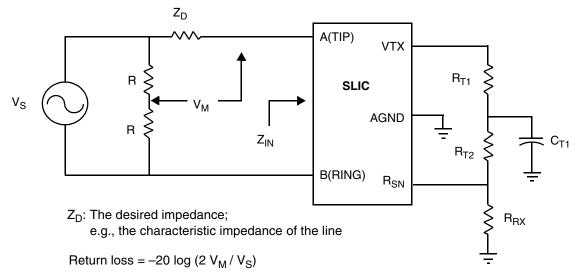
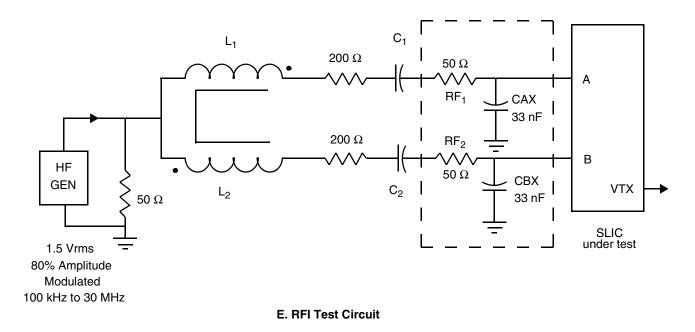

b. Feed Programming

Figure 1. DC Feed Characteristics

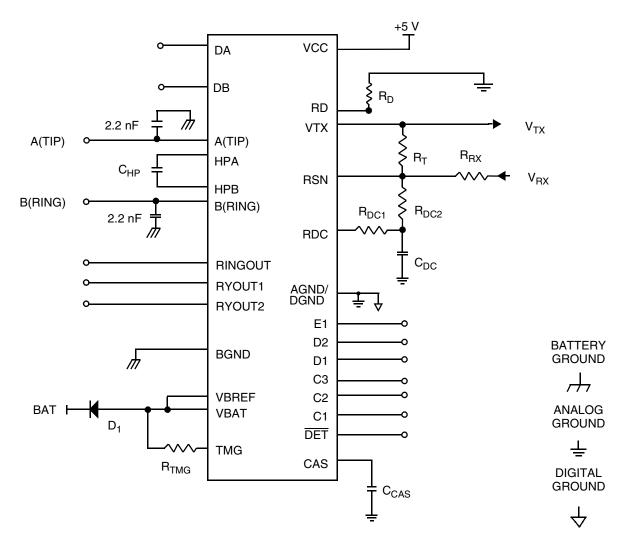

TEST CIRCUITS


A. Two- to Four-Wire Insertion Loss


B. Four- to Two-Wire Insertion Loss and Balance Return Signal


C. Longitudinal Balance

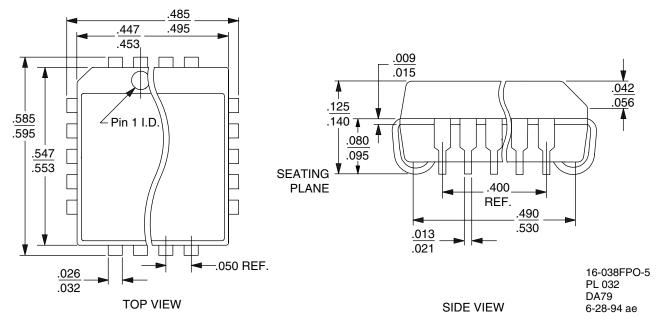
TEST CIRCUITS (continued)

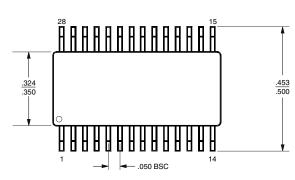


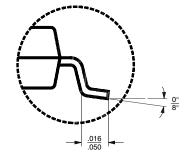
D. Two-Wire Return Loss Test Circuit

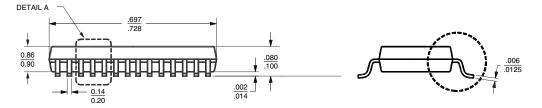
(Legerity.

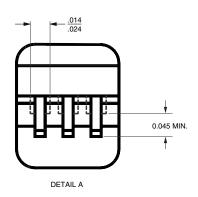
TEST CIRCUITS (continued)


F. Am7922 Test Circuit


PHYSICAL DIMENSIONS


BSC is an ANSI standard for Basic Centering. Dimensions are measured in inches.


PL032



SOW028

16-038-SO28-2_AC SOW28 DF87 9-3-97 lv Notes:

www.legerity.com

Legerity provides silicon solutions that enhance the performance, speeds time-to-market, and lowers the system cost of our customers' products. By combining process, design, systems architecture, and a complete set of software and hardware support tools with unparalleled factory and worldwide field applications support, Legerity ensures its customers enjoy a smoother design experience. It is this commitment to our customers that places Legerity in a class by itself.

The contents of this document are provided in connection with Legerity, Inc. products. Legerity makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in Legerity's Standard Terms and Conditions of Sale, Legerity assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

Legerity's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of Legerity's product could create a situation where personal injury, death, or severe property or environmental damage may occur. Legerity reserves the right to discontinue or make changes to its products at any time without notice.

© 1999 Legerity, Inc. All rights reserved.

Trademarks

Legerity, the Legerity logo, and combinations thereof, DSLAC and QSLAC are trademarks of Legerity, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

(Legerity.

P.O. Box 18200 Austin, Texas 78760-8200

Telephone: (512) 228-5400 Fax: (512) 228-5510 North America Toll Free: (800) 432-4009

To contact the Legerity Sales Office nearest you, or to download or order product literature, visit our website at **www.legerity.com.**

To order literature in North America, call: (800) 572-4859 or email: americalit@legerity.com To order literature in Europe or Asia, call: 44-0-1179-341607 or email: Europe — eurolit@legerity.com

Asia — asialit@legerity.com