

- Plug-in replacement for Static RAM chips
- · Retains data for up to 10 years
- No erasure required
- Functions as Data or Proram RAM
- No limit to number of programming cycles
- Fits standard 28-pin socket
- Write Protectable

NVR8 is a 8 kilobyte non-volatile memory module which is pincompatible with normal Static RAM chips, and offers immediate conversion to non-volatile memory of all or part of a system, able to retain data and survive power-downs for up to 10 years.

REPLACES: HM 6264 - TC 5565

MAXIMUM RATINGS

Symbol	Min	Max	Unit
V _{dd}	-0.3	7.0	Volts
V _{i/o}	-0.3	V_{dd} + 0.3 Volts	
Тетр.	-10	+60	deg. C

OPERATING CONDITIONS

Symbol	Min	Тур	Max	Unit
V_{dd}	4.5	5.0	5.5	V
V _{in} (1)	2.2		$V_{dd} + 3$	٧
V _{in} (0)	3		8.0	V
l _{in} (any pin)*	-1		+ 1	uA
V_{out} (1) ($I_{out} = -1mA$)	2.4			V
V_{out} (0) ($I_{out} = -2mA$)			0.4	٧
I _{dd} (Active)		30		mA
I _{dd} (Standby)		5		uA
T _{cycle}			150	nS
C _{in} (any pin)		7		pF

*INH: 1 Mohm pull-up to V_{dd}

FUNCTION MODE

INI X X	I CE	OE WR X X H H	MODE Unsel. Unsel.	OUTPUT Hi-Z Hi-Z	I _{dd} Standby Active	
X	L	LH	Read	D _{out}	Active	- 1
н	L	ΧL	Write	D _{in}	Active	
L	L	ΧL	WRITE	INHIBIT	Active	

REPRESENTATIVE/IMPORTER

3401 MONROE RD. • CHARLOTTE, NC 28205 (704) 376-7805, TELEX 358 905

8K x 8 NON-VOLATILE RAM **NVR8**

PIN DESIGNATIONS

Pin	Function
A0-A12	Address I/Ps
D0-D7	Data in/out
OE	Output Enable
CE	Chip Enable
WR	Write Input
V_{dd}	+5V power
GND	Ground
ĪNH	Extra I/P

PIN CONNECTIONS

TIMING DIAGRAMS (units — nano-seconds)

READ CYCLE

Characteristic	Label	Min	Max
Read cycle time	T _{rc}	200	
Address to O/P valid	Taa		200
CE to O/P valid	Tacs		200
OE to O/P valid	T _{oe}		100
Output hold time	Toh	20	
CE to O/P enable	T _{clz}	10	
OE to O/P enable	Tolz	10	
CE to O/P disable	T _{chz}	100	
OE to O/P disable	Tohz	100	

(EOW = End of Write)

• READ CYCLE (2) Notes 1. 2. 4. 5

• READ CYCLE (3) Notes 1, 3, 4, 5

NOTES — READ CYCLE

- 1. WE is high for read cycle.
- 2. Device is continuously selected, $CE = V_{il}$.
- 3. Address valid prior to or coincident with CE transition low.
- 4. OE = V_{il} .
- 5. When \overline{CE} is low, address inputs must not be in the high impedace state.

WRITE CYCLE

Characteristic	Label	Min	Max
Write cycle time	T _{wc}	200	!
CE to EOW	T _{cw}	170	
Addr valid to EOW	Taw	170	
Addr set-up time	Tas	0	
Write pulse width	Twp	170	
WR recovery time	Twr	0	
Data valid to EOW	T _{dw}	100	
Data hold time	T _{dh}	0	
WR to O/P disable	T _{whz}		100
OE from EOW	Tow	20	
OE to O/P disable	Tohz	0	

NOTES — WRITE CYCLE

- 1. WE must be high during address transitions.
- 2. A Write occurs during the overlap of a low CE and a low WF
- 3. T_{wr} measured from the earlier of CE or WE going high to end of write cycle.
- 4. During this period, I/O pins are in the O/P state.
- 5. If a CE low transition occurs simultaneously with or after a WE transition, O/Ps remain in a high impedance state.
- 6. \overline{OE} is continuously low $(\overline{OE} = V_{il})$.
- 7. Dout is the same phase of write data of this write cycle.
- 8. Dout is the read data of next address.
- 9. If CE is low during this period, I/O pins are in the output state.

2