- Plug-in replacement for Static RAM chips - · Retains data for up to 10 years - No erasure required - Functions as Data or Proram RAM - No limit to number of programming cycles - Fits standard 28-pin socket - Write Protectable NVR8 is a 8 kilobyte non-volatile memory module which is pincompatible with normal Static RAM chips, and offers immediate conversion to non-volatile memory of all or part of a system, able to retain data and survive power-downs for up to 10 years. **REPLACES:** HM 6264 - TC 5565 ### **MAXIMUM RATINGS** | Symbol | Min | Max | Unit | |------------------|------|----------------------|--------| | V _{dd} | -0.3 | 7.0 | Volts | | V _{i/o} | -0.3 | V_{dd} + 0.3 Volts | | | Тетр. | -10 | +60 | deg. C | ## **OPERATING CONDITIONS** | Symbol | Min | Тур | Max | Unit | |------------------------------------|-----|-----|--------------|------| | V_{dd} | 4.5 | 5.0 | 5.5 | V | | V _{in} (1) | 2.2 | | $V_{dd} + 3$ | ٧ | | V _{in} (0) | 3 | | 8.0 | V | | l _{in} (any pin)* | -1 | | + 1 | uA | | V_{out} (1) ($I_{out} = -1mA$) | 2.4 | | | V | | V_{out} (0) ($I_{out} = -2mA$) | | | 0.4 | ٧ | | I _{dd} (Active) | | 30 | | mA | | I _{dd} (Standby) | | 5 | | uA | | T _{cycle} | | | 150 | nS | | C _{in} (any pin) | | 7 | | pF | *INH: 1 Mohm pull-up to V_{dd} ### **FUNCTION MODE** | INI
X
X | I CE | OE WR
X X
H H | MODE
Unsel.
Unsel. | OUTPUT
Hi-Z
Hi-Z | I _{dd}
Standby
Active | | |---------------|------|---------------------|--------------------------|------------------------|--------------------------------------|-----| | X | L | LH | Read | D _{out} | Active | - 1 | | н | L | ΧL | Write | D _{in} | Active | | | L | L | ΧL | WRITE | INHIBIT | Active | | REPRESENTATIVE/IMPORTER 3401 MONROE RD. • CHARLOTTE, NC 28205 (704) 376-7805, TELEX 358 905 # 8K x 8 NON-VOLATILE RAM **NVR8** ### **PIN DESIGNATIONS** | Pin | Function | |----------|---------------| | A0-A12 | Address I/Ps | | D0-D7 | Data in/out | | OE | Output Enable | | CE | Chip Enable | | WR | Write Input | | V_{dd} | +5V power | | GND | Ground | | ĪNH | Extra I/P | ### **PIN CONNECTIONS** # **TIMING DIAGRAMS** (units — nano-seconds) ### **READ CYCLE** | Characteristic | Label | Min | Max | |----------------------|------------------|-----|-----| | Read cycle time | T _{rc} | 200 | | | Address to O/P valid | Taa | | 200 | | CE to O/P valid | Tacs | | 200 | | OE to O/P valid | T _{oe} | | 100 | | Output hold time | Toh | 20 | | | CE to O/P enable | T _{clz} | 10 | | | OE to O/P enable | Tolz | 10 | | | CE to O/P disable | T _{chz} | 100 | | | OE to O/P disable | Tohz | 100 | | (EOW = End of Write) • READ CYCLE (2) Notes 1. 2. 4. 5 • READ CYCLE (3) Notes 1, 3, 4, 5 ## **NOTES — READ CYCLE** - 1. WE is high for read cycle. - 2. Device is continuously selected, $CE = V_{il}$. - 3. Address valid prior to or coincident with CE transition low. - 4. OE = V_{il} . - 5. When \overline{CE} is low, address inputs must not be in the high impedace state. #### **WRITE CYCLE** | Characteristic | Label | Min | Max | |-------------------|------------------|-----|-----| | Write cycle time | T _{wc} | 200 | ! | | CE to EOW | T _{cw} | 170 | | | Addr valid to EOW | Taw | 170 | | | Addr set-up time | Tas | 0 | | | Write pulse width | Twp | 170 | | | WR recovery time | Twr | 0 | | | Data valid to EOW | T _{dw} | 100 | | | Data hold time | T _{dh} | 0 | | | WR to O/P disable | T _{whz} | | 100 | | OE from EOW | Tow | 20 | | | OE to O/P disable | Tohz | 0 | | ### **NOTES — WRITE CYCLE** - 1. WE must be high during address transitions. - 2. A Write occurs during the overlap of a low CE and a low WF - 3. T_{wr} measured from the earlier of CE or WE going high to end of write cycle. - 4. During this period, I/O pins are in the O/P state. - 5. If a CE low transition occurs simultaneously with or after a WE transition, O/Ps remain in a high impedance state. - 6. \overline{OE} is continuously low $(\overline{OE} = V_{il})$. - 7. Dout is the same phase of write data of this write cycle. - 8. Dout is the read data of next address. - 9. If CE is low during this period, I/O pins are in the output state. 2