Engineer To Engineer Note

EE-202

ANALOG Technical Notes on using Analog Devices' DSP components and development tools
DEVICES Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

Using the Expert Linker for Multiprocessor LDFs

Contributed by Maikel Kokaly-Bannourah

Introduction

This EE-Note explains the use of the Expert
Linker (EL) for creating Linker Description Files
(LDFs) for Multiprocessor (MP) systems.

Although, this concept applies to VisualDSP++™
for all SHARC® Processor families (ADSP-
21x6x and ADSP-TSxxx), the examples shown
throughout this document are for the ADSP-
TS101S TigerSHARC® Processor.

The example code used for this note is based on
EE-167 “Introduction to TigerSHARC
Multiprocessor Systems Using VisualDSP++ ™"
and it was written using VisualDSP++ 3.0
Service Pack 1 for TigerSHARC (please note
that “expertlinker fixes.zip” must be installed
prior to going through this note - see
README.txt for more details).

Expert Linker Overview

The Expert Linker is a graphical tool that
simplifies complex tasks such as memory map
manipulation, code and data placement, overlay
and shared memory creation, and C stack/heap
usage. This tool provides a visualization
capability enabling new users to take immediate
advantage of the powerful LDF format flexibility
in a very user-friendly way.

This note assumes a basic understanding of the
Linker Description File as well as the way the
linker utility (linker.exe) operates. For detailed
information on this utility as well as the LDF,
please use the VisualDSP++ on-line help. Also,

July 17, 2003

refer to the VisualDSP++™ 3.0 Linker and
Utility Manual for TigerSHARC®, FEE-69
“Understanding and Using Linker Description
Files (LDFs)” (for a general description on the
LDF), and EE-167 (for an explanation on the
different multiprocessor linker commands).

Expert Linker LDF Wizard

The Expert Linker (EL) wizard is used to
generate an LDF for new VisualDSP++ projects.
However, the Expert Linker can also be used to
view or modify an already existing LDF.

Open the project (MP TS101.dpj) attached to this
note. The source code comes with no LDF,
which will be created, step-by-step, through this
note.

Please note that an MPTSI0] orig ldf.ixt
containing an already created LDF file is
available as a reference.

Let’s now get started with the creation of the
LDF. First of all, to invoke the Expert Linker
wizard choose from the pull-down menu as
shown in Figure 1.

|T-:u:n|5 Window Help

o e w2

Limear Profiling »
Expert Linker Create LDF. ..
Flash Programmet. .. Save

WCSE r I

Figure 1 Invoking the Expert Linker Wizard

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Figure 2 shows the start up window when first
invoking the EL wizard.

2lx|

Welcome to the Create LDF
Wizard

Thig wizard will guide vou through the creation of a new LDF
file.

To continue, click Next.

< Back

Cancel | Help |

Figure 2 Expert Linker Wizard Start-up Window
Click Next.

Project type

At this stage, the user needs to specify the project
information corresponding to the project type for
which the LDF is being generated. As shown in
Figure 3, the type can be C, C++, Assembly or
VDK.

Note that in case a mix of assembly and C files,
or any other combination, is used, the most
abstract programming language should be
selected. For example, for a project with C and
assembly files, a C LDF should be selected.
Similarly, for a C++ and C project the C++ LDF
should be selected.

In this particular example, the files source code
is assembly, and therefore the selected project
type is also Assembly.

The LDF name is specified here as well, which
by default uses the same as the project name.

Note that if an LDF file already exists, the user
will be prompted whether to replace the existing
file.

ANALOG
DEVICES

Create LDF - Step 1 of 3 21 x|

Project Information
Chooze the LDF file name and the project type.

LDF filenamne:
iects\Expert Linker\EExx_Expert LinkersMP T5101 CodeMP TS101 ASMAMP TS101. I |

Froject type

& Assembly
€ YisualD 5P+ kemel [VDE)

< Back I Mest > I Cancel Help

Figure 3 Project Type
Click Next.

Selecting an MP LDF

By default, the LDF is for single processors.
Choose the Multiprocessor box for MP support
(Figure 4).

Create LDF - Step 2 of 3 2xl

System Information
Configure the DSP spstem by choosing the proceszors in your system and the processor type.

— System type Processor type:
' Single processor J IADSF‘-TS‘ID‘I j

[~ Set up system from debug session settings

— Processor propertie:

Processors: Dutput file
Processor | MPStat... [MPEndA =] [$COMMAND_LINE_OLTFUT_DIRECTOR'
FO 02000000 O=2 36
0%2400000 O=27ffF —J Executables tolink against:

0x2800000 Ow2bffif I

0x2c00000 O<26fFFFF
. i - I_>l_|

< Back I Mest > I Cancel | Help

Figure 4 Multiprocessor LDF selection

Determining the Number of Processors and MP
Memory Offset Values

Right click on the Processor Properties box to
add the desired number of processors to be
included in the LDF. For this particular example,
a dual processor system is selected. Therefore, a

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 2 of 11

second processor (PI) needs to be added to the
list.

Create LDF - Step 2 of 3 ed |

System Information
Configure the DSP system by choosing the processors in your system and the processor type.

— System type Processor tupe:
" Single processor |ADSP-TS1 0 j

% Muliprocessor

[~ Setup system from debug session settings

4ocessor propertie:

Proceszors: LOutput file
Processor | MP Start .. | MPEnda - |$EDMMAND_LINE_DUTPUT_DIHECTDH‘
FO 02000000 D236

Executables to link against:

02400000 Owx27Fr

0x2800000 Dx2hiEttf

0x2c00000 Ow26Ff(E
« B . I;IJI

< Back I Mext > I Cancel | Help

Figure 5 Processors and MMS Offset

As it can be seen in the Processor window
(Figure 5), the multiprocessor memory space
(MMS) offset value is automatically added in by
the EL. This helps the user to avoid having to
worry about specific MP addresses and memory
offsets, making the use of MP commands much
easier. This is an automatic replacement for the
linker command MPMEMORY used in the LDF
source file.

Linking Processors Executables

In the Output File box, the user can specify the
name of the executable file for each processor in
the system. By default, the EL selects the same
name for the .dxe file as for the processor name.

In this case, PO.dxe and Pl.dxe are selected as
the names for the DSP executable files and are
placed in the Debug folder within the project
folder.

ANALOG
DEVICES

Create LDF - Step 2 of 3 ed e

System Information
Configure the DSP spstem by choosing the proceszors in your system and the processor type.

— System type Processor type:

' Single processor IADSP-TS‘ID‘I j
' Multiprocessor

[~ Set up system from debug session settings

— Processor propertie:

Processors: Dutput file
Processor I WP Start ... I MP End & « I$CDMMAND_LINE_DUTPUT_DIHEETDH‘

PO [t
=51 0+2400000 Ow27ffF —d Executables tolink against
0x2800000 Ow2bffif IF"I .dxe

0x2c00000 O<26fFFFF
. i - I_>l_|

< Back I Mest > I Cancel | Help

Figure 6 Executables to Link Against

As it would be done in the LDF source file with
the LINK AGAINST command, the EL allows
the user to resolve symbols declared within MP
space. This is done by simply specifying for each
processor to which DSP to /ink against.

In this particular example, symbols referenced in
PO but declared in P1 can be resolved by the
linker by adding P/.dxe to the Executable to Link
Against box (Figure 6) for PO. Similarly, P0.dxe
is added in for P1. In cases where more than one
.dxe is added to this box, commas or spaces can
be used as separators.

Now that an MP LDF has been selected, the
processors have been added to the list, and the
relevant linker commands have been specified,
the LDF is ready for completion.

Click Next.

Note that in the case where shared external
memory is used (shared.sm), this would also
need to be added to the link against command
box. This is automatically handled by the EL and
will be explained later on.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 3 of 11

MP LDF Wizard Completion

Create LDF - Step 3 of 3 2=

Wizard Completed

The Create LDF “Wizard now has enough information to create

your LDF file.
................................ ; j

F0

Output file name: $COMMAND_LINE_OUTPUT_DIRE

Link againzt: F1.dxe hd
< | »

Summary of choices:

LOF file: name;
Project type: Assembly
Spstem tppe: Multiprocessor
Processor type: ADSP-TS101
Processors:

Click Finish to close this wizard, create the new LDF file, and
view the LDF file with Expert Linker.

< Back I Finizh I

Cancel | Help

Figure 7 Expert Linker Wizard Completion
Click Finish.

Expert Linker Window

After completion of the Expert Linker wizard,
the LDF graphical interface will open up (Figure

Expert Linker : |
Input Sections: Memary Map; ﬂl Ql Q
[0 datal
(] dataz 0 q
[program 10000
80000 80000
3000 d
100000 100000
110000 d

180000
180800
400000

1000000
2000000
2400000
2800000
2000000
3000000
3400000
3800000
3000000
4000000
8000000
000000 []
10000000

4000000
soooono
c000000

T O [Te

Figure 8 Expert Linker Window

The EL window has two panes: Input sections
(displays a tree of all the projects input sections)

ANALOG
DEVICES

and Memory Map (tree or graphical

representation of each memory map).

For more details on the Expert Linker window
and display options, please use the on-line help
in VisualDSP++.

Adding Shared Memory Segments

In many DSP applications where large amounts
of memory for multiprocessing tasks and sharing
of data are required, an external resource in the
form of shared memory may be desired.

To add a shared memory section to the LDF
using the EL, the following steps should be
followed:

1. Right click on the Memory Map pane
2. Select New/Shared Memory

3. Specify a name for the shared memory
segment (.SM)

4. Select the DSPs that have access to this
shared memory segment.

Click OK.

As shown in Figure 9, a new shared memory
segment, visible to Processors PO and P1, has
been successfully added to the system.

Note that variables declared in the shared
memory segment will be accessed by both
processors in the system. In order for the linker
to be able to correctly resolve these variables, the
link against command should be used once again
(see Linking Processors Executables).

The EL automatically does this, and therefore the
user does not need to perform any additional
modifications to the LDF.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 4 of 11

ANALOG
DEVICES

Shared Memory Properties 2l

Shared Memory | Elimination |

Output file |
shared zm Expert Linker* a2

Iriput Sections:

1

Dl i | - Er—
@] data? 0
-] program 10000

goooo [I MiData | 80000

0000

100000 [[M2Dsts] 100000
110000
180000
180800
400000
l=00000
2000000
2400000
2800000
2c00000
2000000
3400000
3800000

3c00000
4000000 4000000
agooooon

8000000 Ei]
000000 000000
10000000

Pl P1 | ©9 shared.sm

Meman Map:

alga

F

Figure 9 Shared Memory Segment

The user can confirm that the EL has correctly
added the .sm file to the link against command
line by simply viewing the Memory Map pane

— System type Processor type:
. . " Single processor ADSP-TS107 j
roperties: |

p p & Multiprocessar

1. Right CliCk on the Memo”y Map pal’le — Processor propertie:
Proceszors: LOutput file

2. Select View Global Propemes Processor | MP Start... | MPEnds = |$EDMMAND_L\NE_DUTPUT_DIHEETDH‘
PO 0x2000000 O=23fff - -
p-| 0%2400000 Ox27ffF —JJ Executables ta link against: .

3. Click on the Processor tab

Shared.sm should now be contained in the
Executables to Link Against box for each
processor as illustrated in Figure 10.

Global Properties 2=

General Processor | PLIT | Elimination |

0x2800000 Ox2hfif

0x2c00000 Ow26fFfFE
" i ILI_I

IF"I RePEY shared. sm

1] | Cancel I

Figure 10 Adding “shared.sm” to the “Executables to
link against” box.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 5 of 11

Detection of Non-Linked
sections
By default, the LDF contains datal, data? and

program input sections for each processor as
well as for the shared memory segment.

input

Expert Linker

[nput Sections: b emary bap:

ANALOG
DEVICES

In the scenario where the user declares in his
code an input section different to any of the three
mentioned above, the EL will detect it and it will
mark it with a red cross as a “non-linked” input
section (Figure 11).

+ . datal
+ data?
- ext_data
¥ ji[SCOMMAND_LINE_OBJECTS
+ @l SOBJECTS
* data.doj
+ program

n

10000
aoooo
20000
1a0aan
110aan
1z00an
10800
400000
lc0000a
2000000
2400000
2800000
2c00000
3000000
3400000
ago0ooa
Jc00ooa
4000000
goo00ooa
coooaan
10000000

Or Oet | 99 shared.sm

[TWiDaa 1 50000
M 100000

MOCode 1]

4000000
50 g0o00oa
F51 coaoaan

Figure 11 Detection of non-linked input sections

An example of “non-linked” section is provided
in the source code (ext data). Press the Rebuild
All button and update the contents of the EL
window (double click on the LDF file in the
project window).

Figure 11 shows how the linker has detected this
“non-linked” input section. In this case, it
corresponds to a variable declared in external
SDRAM memory, which belongs to the shared
memory segment.

Note that at this stage, the linker will generate
some errors when building the project. This is

due to the fact that the output sections have not
been properly configured (object files not linked

yet).

Linking Object Files

Now that both processors and the shared memory
segments have been properly configured, and the
EL has detected all input sections, the next step
is to link the object files from these different
input sections to their corresponding memory
sections.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 6 of 11

First of all, sort the left pane of the Expert Linker
window by LDF Macros instead of Input
Sections (default setting). This can be done by
right clicking on the left pane and selecting Sort
by/LDF Macros.

Then, right click on the LDF Macro window and
add a new macro for PO (Add/LDF Macro). For
example, SOBJECTS P(. Repeat the same step
for PI and shared.sm (Figure 12).

Eupert Linker
Input Sections: Memat
il $COMMAND_LINE_OBJECTS | IZ“Q
= il $OBJECTS :
a SMEWMACHD il E #pett Linker*

Input Sections:

gl $COMMAND_LINE_DBJECTS
#-gll $0BJECTS

O [$0BJECTS PO
il $OBJECTS_P1
“ogfill $0BJECTS_SM

Figure 12 Creating LDF Macros

The next step is to add the object files (.doj) that
correspond to each processor as well as to the
shared memory segment. This is done by right
clicking on each recently created LDF Macro
and then selecting Add/Object/Library File.
Figure 13 shows the objects files added to each
LDF Macro.

Expert Linker™

Input Sections: Memary b

ez

gl $COMMAND_LINE_OBJECTS
il $0BJECTS

=] $0BJECTS_PD
: Q MewFile.da
-l $0BJECTS_P1
il $OBJECTS_SM

Espert Linker®

Input Sections:
e (FsCOMMAND LINE OBJECTS
= gl $0BJECTS
=il $0BJECTS_PO
=@ 1D0.doj
-1 gfill $0BJECTS_P1
- @ 1D1.doj
=gl $0BJECTS_SM
(-8 datadoj

Figure 13 Adding Object Files

The use of LDF macros becomes extremely
useful in systems where there is more than one

ANALOG
DEVICES

.doj file per processor or shared memory
segment, in which case the same step previously
explained should be followed for each .doj file.

As shown in Figure 14, the LDF macro
SCOMMAND _ LINE OBJECTS must be deleted
from the SOBJECTS macro to avoid duplicate of
object files during the linking process.

The $COMMAND LINE OBJECTS macro
contains the .doj files that correspond to every
source file used in the project (in this case
ID0.doj, ID1.doj and data.doj). If this macro is
left in, the linker will automatically map the .doj
files for both processors into each processor's
memory map, i.e. M0Code/code will contain
ID0.doj(program) and ID1.doj(program). This is
obviously wrong, since there is no need to map
any of ID1.doj code into processor P0.

Therefore, right click on the
SCOMMAND _ LINE OBJECTS macro and select
Remove.

Expert Linker*
Input Sections: Memary
&gl $COMMAND_LINE_OBJECTS CEa
=l $0BJECTS <@
R (§ 5COMMAND_LINE_DBJECTS <@
=il $0BJECTS_PO
H Q ID0.dej Euxpert Linker®
=gl $0BJECTS_P1 Input Sections:
=@ D1 # gl $COMMAND_LINE_OBJECTS
=il $0BJECTS_SM b
= @ dotado dil $0BJECTS
' =gl $0BJECTS_FOD
[+ 1D0.doj
=gl $0BJECTS_P1
-4 D1 doj
=gl $0BJECTS_SM
[+ ‘ data.doj

Figure 14 Deleting the
$COMMAND_LINE_OBJECTS LDF Macro

The next step is to map the new macros into
memory. This is done by placing each macro into
its corresponding memory section.

Before this can be done, the left pane needs to be
sorted by Input Sections instead of LDF macros.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 7 of 11

Thus, right click on the left pane and select Sort
by/Input Sections.

Additionally, change in the right pane the
Memory Map View Mode from Graphical to
Tree mode. Right click on the Memory Map
window, select View Mode and then Memory
Map Tree.

ANALOG
DEVICES

Now select one of the processors by clicking on
the processor’s name tab. In this case PO is
selected first. Then, place (drag and drop) the
recently created LDF macro, SOBJECTS PO, in
its corresponding memory segment. These steps
are shown in Figure 15.

[StatAddess | EndAddess |

Input Sections: temon Map:
= datal Segment/S ection
= | $COMMAND_LINE_OBJECTS = MiCode
|20 '3 code
F BJEC'S—P” e [$OBJECTS (program)
+ ol 3B _F B M1Data
@ D0k = datat
101.00 [$OBJECTS (datal)
=4 data2 2@ M2Data
® [SCOMMAND_LINE_OBJECTS 563 daa?
= JEUS - > --[] $OBJECTS (data2)
[+ = CPCARE
CR | T Expert Linker*
@ 1D0.doj }
’ D1, doi Input Sections:
S ext data =¥ datal
@ gl SCOMMAND_LINE_@IBJECTS &gl $COMMAND_LINE_OBJECTS
@ o] $OBJECTS_SM il $0BJECTS
® datadoi = il $0BJECTS_PD
=9 program # gl $0BJECTS_P1
w il $TOMMAND_LI @ D0 dej
ail_s0A ® D1.doj
® BJECTS_PO =i data2
—firTT - & il $COMMAND_LINE_OBJECTS
@ 1D0.doj $0BJECTS
D1 il $0BJECTS_PD
+ gl $0BJECTS_P1
@ 1D0.doj
& 101.doj
=g est_data

[+ il $COMMAND_LINE_DBJECTS
= il $0BJECTS_SM
B datadoj
=¥ program
il $COMMAND_LINE_OBJECTS
$0BJECTS
& gl $0BJECTS_FO
gl $0BJECTS_P1

@ D0.doj
2 101.doj

040 [
(0%80000 OBt
(0100000 T 0FEE
L ACnnnn s

I emaony Map:

Segmert/Section | Start Addiess | End Addess |
B MiCode 0x0 D

= code

-] $0BJECTS_PO [program)
] |progiam

- MiData 0x30000 D:BiF

=\ datsl

=1 $0BJECTS_PO(datal)
$OBJECTS [datal]

- M2Data 0100000 e OfEf
=23 data2
FOBJELTS [dalal)
& SDRAM 0x4000000 i FHEEEFF
g M5S0 03000000 [hebifif
@ MS1 Oxe000000 CheffiEFF
<@ HOST 010000000 Cu2ifEEE
& HOST1 Ox30000000 ChedfFFeFE
@ HOSTZ2 050000000 [Chebtfiff
% HOST3 Ox7 0000000 ChBAFFEFFF
-9 HOST4 030000000 Ceadfifift
g HOSTS Oxb 0000000 [hecHFffef
& HOSTE Oxd0000000 =
L@ HOST? Oxf000M000 [heffefef

- Dr1 | 0P saredsm |

Figure 15 Linking Object Files Using LDF Macros

Repeat the same steps for processor Pl
(SOBJECTS P1) and for the shared memory
segment, shared.sm (place SOBJECTS SM in the
SDRAM section).

Press Rebuild All.

As it can be seen in Figure 16, the red crosses
denoting the “non-linked” sections have
disappeared, indicating that the input sections
have been properly mapped into memory.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 8 of 11

ANALOG

DEVICES
E=pert Linker
|nput Sections: temany kap:
c!ata‘l Segment/Sechon I Start Address I End Address I
l-ofl] $COMMAND_LINE_OBJECTS =< MOCods Ol Tt
""" dil $0BJECTS =53 code 00 0453
-l $DBJECTS_PO NN Rl eoiem] 040 Oxdb
ol $OBJECTS_P1 o< M1Data 0480000 DB
----- @ D0 = datal 080000 OxB001f
----- @ 101 doj “[E] 107, doj[datal) 080000 02001f
] data2 E-<p MZData 0x100000 01 O
-l SCOMMAND_LINE_DBJECTS E-E3 data2 0+100000 01 0000f
""" dll $0BJECTS “oE 1D doj[data2) 0100000 01 000K
- ff] $0BJECTS_PO o SDRAM 0x4000000 OwFHfi
gl $OBJECTS_P1 g M50 08000000 Dbt
----- @ D0 g MST Oxc000000 it
----- @ 0o 5 HOST 010000000 Qw2HFFFF
=L et data % HOSTT 0430000000 Ot
gl $COMMAND_LINE_DBJECTS % HOST2 0450000000 CEHFEFE
il $0BJECTS_SM % HOST3 0470000000 G
@ data.doj g HOST4 030000000 O affiff
=+ program - HOSTE 00000000 Oivcif
] SCOMMAND_LINE_OBJECTS g HOSTE Oxd0000000 Ot
il $0BJECTS g HOST? OxFO000000 D
-4 $0EJECTS_PO
-4l $0BJECTS_P1
@ 1D0.daj
@ 101 daj
Oro Tir1 | 8P sharedsm |

Figure 16 Expert Linker Multiprocessor LDF

Also, note that the LDF macros that were moved
from the Input Sections window (left pane) to
their corresponding sections in the Memory Map
window (right pane) have been automatically
replaced during linking process with the actual
object files (.doj) used by the linker.

Expert Linker
LDF Source Code

The LDF is now complete! Figure 17 illustrates
the generated LDF in the Source Code View
mode.

Multiprocessor

As shown in Figure 17, the multiprocessor linker
commands, MPMEMORY, SHARED MEMORY

and LINK AGAINST, as well as the
corresponding LDF Macros, have been
successfully generated by the Expert Linker in a
way absolutely transparent to the user.

The complete project is now ready to be built.
Once again, perform a Rebuild All and safely
start debugging with the application code.

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 9 of 11

ANALOG
DEVICES

LRCHITECTURE ADSP—TS1011
SEARCH_DIR({ $ADI_DSP~TS~lib 1

SCBJECTS =

SCBJECTS_SH = data.doj:
SOBJECTS_ Pl = IDL.doj:
S$OBJECTS_PO = IDO.doj:

[...1] S Simplified HP LDF wersion

MPMEMOREY { PO { START(0=2000000) }
Fl1 { START(O0=x=2400000) 3}

FROCESSOR FO
i

LIHE AGATHST(pl d=ze. shared.=m)
OUTPUT SCOMMAND LINE_OUTFUT_DIRECTORY-FPO . dze)
SECTIONS
code
{ FILL{O=xb3cO0000)
INPUT_SECTION_ALIGH{4)
INPUT_SECTIONS] $OBJECTS PO{program) SOBJECTS(program))
The next line adds 8 nop= to the end of the code section.
S« Thiz iz required on TS101 to prevent uninitiali=zed menory
S getting into the pipeline.
.= .+ 8: T »HOCode
datal
{ INFUT_SECTIONS] $O0BJECTS PO({datal) sO0BJECTS(datal))
T :HiData

dataz
{ INFPUT_SECTIONS($OBJECTS PO(data2) SOBJECTS(dataZ))
1 »M2Data I

FROCESSOR F14

LINE_ AGAIHST(p0. .d=x=s, shared.=m)
QUTPUT { $COMMAND LINE OUTPUT_DIRECTORY-FP1.d=ze)
SECTIONS]
code
{ FILL{O=xb3cO0O000)
INPUT_SECTION_ATIGH(4)
INFUT_SECTIONS($0BJECTS_Fl{program) $OBJECTS(program))
L= L+ B }:HO0Code
datal
i INPUT_SECTIONS(SOBJECTS _Pli{datal) SOBJECTS{datal))
1:M1Data

dataZ
i INPUT_SECTICHS(sOBJECTS Plidata?) $OBJECTS(data2))
t:xM2Data

SHARED MEMORY {

OUOTPUT { shared . =m)
SECTIONS]
SDRAM{
INPUT_SECTIONS($OBJECTS_SH{ext_data))
1} »SDRAM I

Figure 17 Expert Linker Multiprocessor LDF Source code

Using the Expert Linker for Multiprocessor LDFs (EE-202) Page 10 of 11

References

ANALOG
DEVICES

[1] ADSP-TS101 TigerSHARC® Processor Hardware Reference.

First Edition, March 2003. Analog Devices, Inc.

[2] VisualDSP++™ 3.0 Linker and Utility Manual for TigerSHARC®.

Rev. 1.0, October 2002. Analog Devices, Inc.

[3] Understanding and Using Linker Description Files (LDFs) (EE-69).

August 1999. Analog Devices, Inc.

[4] Introduction to TigerSHARC® Multiprocessor Systems Using VisualDSP++™ (EE-167).

April 2003. Analog Devices, Inc.

Document History

Version

Description

July 17th, 2003 by Maikel Kokaly-Bannourah

Initial Release

Using the Expert Linker for Multiprocessor LDFs (EE-202)

Page 11 of 11

