

60.0H 9616SM1

Actual Size

Side View

DESCRIPTION

The CX-1H quartz crystal is a high quality tuning fork resonator for use in series (two cascaded inverters) oscillators. The CX-1H is hermetically sealed in a rugged, miniature ceramic package. The CX-1H crystal is manufactured using the Statek-developed photolithographic process, and was designed utilizing the experience acquired by producing millions of crystals for industrial, commercial and military applications. Maximum process temperature should not exceed 260°C.

FEATURES

- Miniature tuning fork design
- ☐ High shock resistance
- ☐ Designed for low power applications
- ☐ Compatible with hybrid or PC board packaging
- ☐ Low aging
- ☐ Full military testing available
- ☐ Ideal for battery operated applications
- ☐ Designed and manufactured in the USA

FIGURE 1. Equivalent Circuit

R₁ Motional Resistance

L₁ Motional Inductance C₁ Motional Capacitance C₀ Shunt Capacitance

PACKAGING

CX-1 -16mm Tape, 7" or 13" Reels,

Per EIA 481A (See data sheet 10109)

- -Tray Pack
- -Bulk Pack

TERMINATIONS

Designation

Termination

SM1 SM2

Gold Plated Nickel, Solder Plated

SM3

Nickel, Solder Plated and Solder Dipped

STATE

CX-1H-SM CRYSTAL 10 kHz to 600 kHz

MINIATURE SURFACE MOUNT **QUARTZ CRYSTAL** FOR SERIES OSCILLATORS

	TYP.		MAX.	
DIM	INCHES	mm	INCHES	mm
Α	.315	8.00	.335	8.51
В	.140	3.56	.160	4.06
С			SEE BELOW	
D	.045	1.14		
Е	.060	1.52		
	1 1		1	

DIM "C"	GLASS	LID	CERAM	IC LID
MAX.	INCHES	mm	INCHES	mm
SM1	.065	1.65	.070	1.78
SM2	.067	1.70	.072	1.83
SM3	.070	1.78	.075	1.91

SUGGESTED LAND PATTERN

STATEK CORPORATION

512 North Main Street, Orange, California 92868 (714) 639-7810 FAX (714) 997-1256

INCHES[mm]

SPECIFICATIONS

Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice.

Frequency

10 to 600 kHz

Calibration Tolerance*

A, B, or C

(see Table 1)

Motional Resistance (R1)

Figure 2

MAX.: 10-169.9 kHz, 2x Typ.

170-600 kHz, 2.5x Typ.

Motional Capacitance (C₁)

Figure 3

Quality Factor (Q)

Figure 4

Min. is 0.25x Typ.

Shunt Capacitance (C_0)

1.6 pF

Drive Level

10-24.9 kHz 1.5 μW MAX. 25-600 kHz 3.0 μW MAX.

Turning Point (T₀)**

Figure 5

Temperature Coefficient (k) -0.035 ppm/°C²

Aging, first year

5ppm MAX.

Shock, survival***

1,000g 1msec., ½ sine

Vibration, survival***

20g rms 10-2,000 Hz

Operating Temperature

-10°C to +70°C

-40°C to +85°C

Commercial Industrial

-55°C to +125°C

Military

Storage Temperature

-55°C to +125°C

Maximum Process

260°C for 20 sec.

Temperature

- *Tighter frequency calibration available.
- **Other turning point available.
- ***Higher shock and vibration available.

TABLE 1. CX-1H Crystal Calibration Tolerance at 25°C Frequency Range (kHz)

Calibration	10-74.9	75-169.9	170-249.9	250-600
A	<u>+</u> 0.003%	±0.005%	±0.01%	±0.02%
В	±0.01%	±0.01%	<u>+</u> 0.02%	±0.05%
C	+0.1%	+0.1%	+0.2%	+0.5%

HOW TO ORDER CX-1H CRYSTALS

FIGURE 2. CX-1H Typical Motional Resistance (R1)

FIGURE 3. CX-1H Typical Motional Capacitance (C₁)

FIGURE 4. CX-1H Typical Quality Factor (Q)

FIGURE 5. CX-1H Typical Turning Point Temperature

Note: Frequency deviation from frequency @ turning point

temp.

 $\frac{\mathbf{f} \cdot \mathbf{f_0}}{\mathbf{f_0}} = \mathbf{k} (\mathbf{T} \cdot \mathbf{T_0})^2$