

1200V thinQ![™] SiC Schottky Diode

Features:

- Revolutionary Semiconductor Material -Silicon Carbide
- Switching Behaviour Benchmark
- No Reverse Recovery / No Forward Recovery
- Temperature Independent Switching Behaviour
- Qualified According to JEDEC¹⁾ Based on Target Applications

Applications:

- Motor Drives / Solar Inverters
- High Voltage CCM PFC
- Switch Mode Power Supplies
- High Voltage Multipliers

Chip Type	V _{BR}	I _F	Die Size	Package
IDC05S120E	1200V	5A	1.692 x 1.692 mm ²	sawn on foil

Mechanical parameters Raster size 1.692 x 1.692 mm^2 Anode pad size 1.156 x 1.156 Area total 2.86 **Thickness** 362 μm Wafer size 100 mm Max. possible chips per wafer 2360 Passivation frontside Photoimide Pad metal 3200 nm Al Ni Ag -system Backside metal suitable for epoxy and soft solder die bonding Die bond Electrically conductive glue or solder Wire bond AI, $\leq 350 \mu m$ Reject ink dot size $\emptyset \ge 0.3 \text{ mm}$ Store in original container, in dry nitrogen, in dark Recommended storage environment environment, < 6 month at an ambient temperature of 23°C

Maximum Ratings

Parameter	Symbol	Condition	Value	Unit
Repetitive peak reverse voltage	V_{RRM}	T _{vj} = 25 °C	1200	V
DC blocking voltage	V _{DC}		1200	7 °
Continuous forward current,	,	T 1150°C	_	
limited by T_{vjmax}	1 _F	T _{vj} < 150°C	5	
Surge non repetitive forward current,	,	$T_{\rm C}$ =25°C, $t_{\rm P}$ =10 ms	29	
sine halfwave	I _{F,SM}	$T_{\rm C}$ =150°C, $t_{\rm P}$ =10 ms	25	- A
Repetitive peak forward current,	I _{F,RM}	$T_{\rm C} = 100^{\circ}{\rm C}, T_{\rm vi} = 150^{\circ}{\rm C},$	23	
limited by thermal resistance R_{th}		D=0.1	23	
Non-repetitive peak forward current	$I_{F,max}$	$T_{\rm C}$ =25°C, $t_{\rm P}$ =10 μ s	110	
i ² t value	$\int i^2 dt$	$T_{\rm C}$ =25°C, $t_{\rm P}$ =10 ms	4	- A ² s
i t value	Jiai	$T_{\rm C}$ =150°C, $t_{\rm P}$ =10 ms	3	7 45
Operating junction and storage temperature range	$T_{\rm vj}$, $T_{\rm stg}$		-55+175	°C

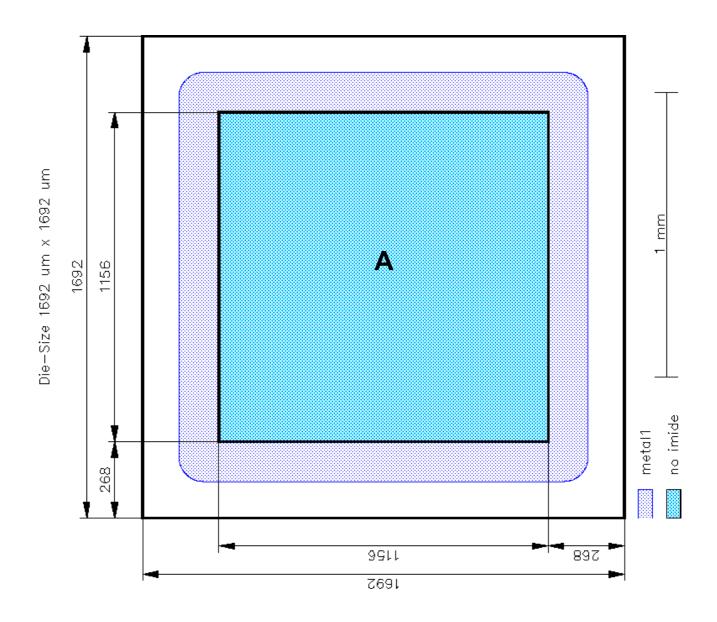
Static Characteristics (tested on wafer)

Parameter	Symbol	Conditions	Value			Unit
Farailleter	Syllibol	Conditions	min.	Тур.	max.	Offic
Reverse current	I _R	V _R =1200V, T _{vj} =25°C		5	120	μA
Diode forward voltage	V _F	I _F =5A, T _{vj} =25°C		1.6	1.8	V

Static Characteristics (not subject to production test - verified by design / characterization)

Parameter	Symbol	Conditions		Unit		
		Conditions	min.	Тур.	max.	Oille
Reverse current	I_{R}	$V_{\rm R}$ =1200V, $T_{\rm vj}$ =150°C		20	1000	μA
Diode forward voltage	V _F	I _F =5A, T _{vj} =150°C		2.5	3	V

Dynamic Characteristics (not subject to production test - verified by design / characterization)


Parameter	Symbol	Conditions		Value			Unit
- raiaillelei	Symbol			min.	Тур.	max.	Ullit
Total capacitive charge ³⁾	Qc	$I_F \le I_{F,max}$ $di/dt = 200A/\mu s$ $V_R = 1200V$	T _{vj} =150°C		18		nC
Switching time ²⁾	tc		T _{vj} =150°C			<10	ns
Total capacitance	С	f=1MHz	V _R =1V		250		
			V _R =300V		20		pF
			V _R =600V		18		

¹⁾ J-STD20 and JESD22

 $^{^{7}}$ J-STD20 and JESD22 $^{2)}$ $t_{\rm c}$ is the time constant for the capacitive displacement current waveform (independent from $T_{\rm vj}$, $I_{\rm LOAD}$ and di/dt), different from $t_{\rm rr}$, which is dependent on $T_{\rm vj}$, $I_{\rm LOAD}$, di/dt. No reverse recovery time constant $t_{\rm rr}$ due to absence of minority carrier inject. $^{3)}$ Only capacitive charge occurring, guaranteed by design (independent from $T_{\rm vj}$, $I_{\rm LOAD}$ and di/dt).

Chip drawing

A: Anode pad

Description

AQL 0,65 for visual inspection according to failure catalogue

Electrostatic Discharge Sensitive Device according to MIL-STD 883

Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.