
AN1106
APPLICATION NOTE

TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7
by Microcontroller Division Application Team
1 INTRODUCTION

This application note has been written to help users translate their HC05 assembly source
code into ST7 source code.

Even if both assembly languages are quite similar, the philosophy and program structure are
quite different.

A software translator (“migr2st7”) has been developed by STMicroelectronics and is available
on the MCU ON CD.

For more information on the ST7 Assembly Tool Chain, please refer to the application note
“Starting with ST7 Assembly Tool Chain” (AN988) and the software library available on In-
ternet (www.st.com/product/support) or the ST7 CD ROM.

2 QUICK PROCEDURE

Follow these steps to use the conversion software:

1. Install the “migr2st7” software translator by double-clicking on migr2st7.exe (in the CD
ROM)

2. Click on migr2st7.exe and enter the name and the path of the source file (HC05) and the
target file (ST7). The input filename default extension is “.asm”.

3.Click on “Convert”: a message box titled “Finished-Trans” is displayed with the translation
result “Translation 6805 to ST7 succeeded” or an error message.

5.Remember to rename all your.st7 translated sources files into .asm files before assembling
with the ST7 assembler (you can directly call your translated files *.asm).

6. In order to use the HC05 to ST7 translator, you should have a source file with HC05 assem-
bly code written for use with the 2500AD assembler. Otherwise, you will have to modify the
software by hand. Refer to the ST7 assembler documentation and application notes for
details using the ST7 instructions. See also Section 3.2 (RECOMMENDATIONS AND
ADVICE).
AN1106/0200
 1/9

1

TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7
3 DETAILED PROCEDURE

3.1 MIGRATING CODE

The first step in migrating HC05 code to ST7 is to use the code translator described in the pre-
vious section.

This free software has been designed to help convert HC05 assembly code into ST7 source
code. Basically, it converts all mnemonics and it adapts some directives fit the ST7 assembler
requirements.

This tool will not adapt the software routines for ST7 specific peripherals or use the specific
features of the ST7 core (addressing modes, Y register...).

Therefore, further modification of the software have to be done by the user; refer to the ST7
assembler documentation and application notes for details on using of the ST7 instructions.

3.2 RECOMMENDATIONS AND ADVICE

The following gives some advice to help you in translate your code more quickly:

– Bear in mind that comment lines in ST7 assembly language begin with a semicolon “;”.

– Remember to include the “2500adcb.h” file (this is a file included at the beginning of your
source file during the translation). It contains definitions and macros for defining the Motorola
code directives correctly if the assembler you use is not the 2500AD one. For example

#define EXPORT PUBLIC or #define IMPORT EXTERN.

After using the translator, read all your files to make any corrections.
2/9

2

TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7
4 RECOMMENDED FILE STRUCTURE

The file structure described in the paragraphs below is the one recommended by ST.

The following diagram summarizes this structure:

This structure is composed of some source files (*.asm) and some include files (*.inc). It can
be compared to a C structure with *.c and *.h files.

Remember to rename your include files as *.inc files after the code translation.

In the following ST7 code examples, some directives are shown followed by several possible
Motorola directives in bold to allow the two codes to be easily compared.
3/9

TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7
4.1 VARIABLES

It’s recommended to write all your variables in a file (called variable.asm for example) and to
declare those you want to be public in a file called variable.inc as shown in the following ex-
ample:

variable.asm:
st7/

TITLE “variable.asm”

MOTOROLA ; Motorola format (default), other formats are

also available:

; Intel, Zilog or Texas.

BYTES ; this directive means that the addresses of the

following

; variables are bytes and not that the variables are bytes.

segment ‘ram0’; this directive means that the following variables are going

to be

; ORG RAM0 ; placed in ram0 from $00 to $FF .

; section .ram0 ; (segment byte ‘ram0’ at 00-FF : this line is in the map

file)

var1 DS.B 1 ; 1 byte space is reserved in ram0 for var1 which

is local.

; DEFS ; corresponding MOTOROLA directive.

.var2 DS.W 1 ; 1 word space is reserved in ram0 for var 2 which

is

; public (a dot is placed just before the variable

name)

WORDS ; this directive means that the addresses of the follow-

ing

; variables are words.

segment ‘ram1’ ; this directive means that following variables are

going to be

; ORG RAM1 ; placed in RAM1 from $100 to $13F (for the ST72251)

; section .ram1

.var3 DS.B 1 ; 1 byte space reserved in RAM1 for this public

variable.

; DS or RMB

segment ‘rom’ ; this directive means that the following variables are

going to be

; ORG ROM ; placed in ROM.

; section .rom

.table DC.B $10,$AA,50,%11111010 ;table of values defined in ROM.

; BYTE or DB or DEFB or FCB

END
4/9

TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7
There are two ways to define a variable as public (which means visible from another module,
the C equivalent directive is “extern”). The first one is the one used in the above example (the
dot before the variable). The second one is to write the PUBLIC directive at the beginning of
the variable.asm file followed by the name of the variables you want to be public.

variable.inc: (file to include in all .asm source files)
TITLE “variable.inc”

EXTERN var2.b ; the ad-

dress of var2 is a byte.

EXTERN var3.w; the address of var3 is a word.

EXTERN table.w; the address of table is a word.

In this .inc file, only the variables which have been defined as public in the corresponding .asm
file have to appear. That’s the reason why var1 doesn’t appear (it’s a local variable).

Instead of writing a “.b” or “.w” after the variable to specify that its address is a byte, you can
also write the BYTES or WORDS directives directly before the corresponding variables.

4.2 CONSTANTS

The best way to define all your constants is to declare them in a file (called constant.inc for ex-
ample) with the directive “#define constant_name value”. Constants defined in this way
don’t take any space in memory. All you have to do is include this .inc file in all your source
files (in all files where you use the constants):

constant.inc:
#define const125 ; const1 = 25 (decimal)

#define const2 $1F ; const2 = 1F (hexadecimal)

#define const3%11100001 ; const3=11100001 (binary)

........

You can define as many constants as you want. Just make sure that the “#” symbol is always
the first character of the line but not in the first column.
5/9

TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7
4.3 LABELS

In order to be able to see all the labels from the emulator (in the disassembler window, a label
name is more significant than an address), it’s better to declare them all as public (a simple dot
placed before the label name).

For labels which are called from another module, create a .inc file to declare them as “EX-
TERN”:

appli.asm:
st7/

TITLE “appli.asm”

MOTOROLA ; Motorola format (default), other formats are

also available:

; Intel, Zilog or Texas.

#include “appli.inc”

; lib appli.s05

#include “variable.inc”

#include “constant.inc”

#include “ST72251.inc”; this is the map file (see below).

WORDS

segment ‘rom’ ; the source code is written in the ROM segment.

; ORG ROM

.main

LD A,#$10

LD var2,A

.again DEC var2

JRNE again

CLR X

.go LD A,(table,X)

ADD A,#1

LD (table,X),A

INC X

CP X,#4

JRNE go

........

.loop

JRA loop

; Don’t forget to put the interrupt sub-routine library section here even if you

don’t use any interrupts.

END
6/9

TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7
4.4 MACROS

You can define your macros directly in the source file where they are used or if there are too
many and/or if you use one macro in several source files, you can define them in a macro.inc
file that you will have to include in all the source files (where the macros are used):

appli.asm:

Let’s consider the same appli.asm source file given above. Let’s imagine that instead of the
missing source code in this file (......., see above) we call a macro:

MACRO1

Remember that a macro is a faster way than a functions for executing the same code several
times. However program size is bigger when you use macros instead of subroutines; each
time you invoke a macro to do a particular job, the whole macro assembly code is inserted into
your source code. Macros are very useful when a small section of code must be used repeat-
edly.

The macro syntax is the following:
macro_name MACRO [parameter_1] [,parameter_2...]

[LOCAL label_name]

[Body_of_the_macro]

MEND

; ENDM

macro.inc:
.MACRO1MACRO

LOCAL loop1

loop1 LD A,$C000; A loaded with the value at the address $C000

JRNE loop1 ; loop until this value equals 0 (after an inter-

rupt for

; example).

MEND

The “LOCAL” directive avoids getting duplicate label errors for labels inside the macro (be-
cause the same macro can be called several times in the same module).

4.5 MAP FILE

Don’t forget you also have to include the map file of the device you use, for example in your
source files, you can have among the included files:

#include “ST72251.inc”

The corresponding ST72251.asm file will have to appear in the batch file.
7/9

TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7
5 THE BATCH FILE

Let’s create the batch file corresponding to the example we have used in this note:

appli.bat:
del cbe.err ; to have an error file cleaned at each batch.

asm -li st72251.asm

asm -li variable.asm

asm -li appli.asm

pause ; pause just before the link (possibility).

lyn st72251.obj+variable.obj+appli.obj,appli.cod;

asm st72251 -sym -fi=appli.map

asm variable -sym -fi=appli.map

asm appli -sym -fi=appli.map

obsend appli.cod,f,appli.s19,s; creation of the executable file (formatter).

Here is a list of the different options used in this batch file and their meaning:

* -li : enable the listing generation

* -sym: enable the symbol table generation

* -fi: updates the symbol table in the listing files
8/9

TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7
"THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS."

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

2000 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain

Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com
9/9

