**User's Manual** 



# V850E/MS1<sup>™</sup>

# **32-/16-Bit Single-Chip Microcontrollers**

Hardware

μPD703100 μPD703100A μPD703101 μPD703101A μPD703102 μPD703102A μPD70F3102 μPD70F3102A

Document No. U12688EJ4V0UM00 (4th edition) Date Published January 2000 N CP(K)

© NEC Corporation 1997 Printed in Japan

2

#### **①** PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

#### Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

#### **②** HANDLING OF UNUSED INPUT PINS FOR CMOS

#### Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

#### **③** STATUS BEFORE INITIALIZATION OF MOS DEVICES

#### Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

V850E/MS1 and V850 Family are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

> License not needed: The customer must judge the need for license:  $\mu$ PD703101, 703101A, 703102, 703102A

# μPD703100, 703100A, 70F3102, 70F3102A

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- · Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
  - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
  - Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster Special: systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
  - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

# **Regional Information**

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

| NEC Electronics Inc. (U.S.)<br>Santa Clara. California | NEC Electronics (Germany) GmbH<br>Benelux Office | NEC Electronics Hong Kong Ltd.<br>Hong Kong |
|--------------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Tel: 408-588-6000                                      | Findhoven. The Netherlands                       | Tel: 2886-9318                              |
| 800-366-9782                                           | Tel: 040-2445845                                 | Fax: 2886-9022/9044                         |
| Fax: 408-588-6130                                      | Fax: 040-2444580                                 |                                             |
| 800-729-9288                                           |                                                  | NEC Electronics Hong Kong Ltd.              |
| 000 120 0200                                           | NEC Electronics (France) S.A.                    | Seoul Branch                                |
| NEC Electronics (Germany) GmbH                         | Velizy-Villacoublay France                       | Seoul. Korea                                |
| Duesseldorf Germany                                    | Tel: 01-30-67 58 00                              | Tel: 02-528-0303                            |
| Tel: 0211-65 03 02                                     | Fax: 01-30-67 58 99                              | Fax: 02-528-4411                            |
| Fax: 0211-65 03 490                                    | 1 dx. 01 00 07 00 00                             |                                             |
|                                                        | NEC Electronics (France) S A                     | NEC Electronics Singapore Pte. Ltd.         |
| NFC Electronics (UK) Ltd.                              | Spain Office                                     | United Square, Singapore 1130               |
| Milton Keynes LIK                                      | Madrid Spain                                     | Tel: 65-253-8311                            |
| Tel: 01908-691-133                                     | Tal: 01 504 2787                                 | Fax: 65-250-3583                            |
| Eav: 01008-670-290                                     | Tel. 91-504-2767                                 |                                             |
| Tax. 01300-070-230                                     | Fax. 91-504-2660                                 | NEC Electronics Taiwan I td                 |
| NEC Electronics Italiana e r l                         |                                                  | Taipei Taiwan                               |
| NEC Electronics italiana S.I.I.                        | NEC Electronics (Germany) GmbH                   | Tel: 02-2719-2377                           |
| $\frac{1}{1000}$                                       | Scandinavia Office                               | Fax: 02-2710-5051                           |
| Tel. 02-00 75 41                                       | Taeby, Sweden                                    | T dx. 02-2713-3331                          |
| Fax: 02-66 75 42 99                                    | Tel: 08-63 80 820                                | NEC de Precil S A                           |
|                                                        | Fax: 08-63 80 388                                | NEC UO BIASII S.A.                          |
|                                                        |                                                  | Electron Devices Division                   |
|                                                        |                                                  | Rodovia Presidente Dutra, Km 214            |
|                                                        |                                                  | 07210-902-Guarulhos-SP Brasil               |
|                                                        |                                                  | l el: 55-11-6465-6810                       |

J99.1

Fax: 55-11-6465-6829

# [MEMO]

6

### Major Revisions in This Edition

| Page   | Description                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------|
| p. 98  | Change of R/W and bit units for manipulation for PMX and PMCX in 3.4.8 Peripheral I/O registers            |
| p. 108 | Addition of Caution to 4.5.2 (1) Bus size configuration register (BSC)                                     |
| p. 151 | Modification of WAIT signal in Figure 5-10 DRAM Access Timing During DMA Flyby Transfer                    |
| p. 172 | Addition of interrupt factor (INTAD) to 6.3.6 DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)         |
| p. 235 | Deletion of part of explanation from 8.5.1 (3) (a) When in the PLL mode                                    |
| p. 235 | Deletion of 8.5.1 (3) (b) When in the Direct mode                                                          |
| p. 326 | Modification of Figure 11-3 Select Mode Operation Timing: 1-Buffer Mode (ANI1)                             |
| p. 349 | Change of block type of Port 2 in 12.2 (1) Function of each port                                           |
| p. 355 | Modification of Figure 12-3 Type C Block Diagram                                                           |
| p. 367 | Addition of Figure 12-17 Type Q Block Diagram                                                              |
| p. 374 | Change of block types of P22 and P25 in 12.3.3 (1) Operation in control mode                               |
| p. 375 | Modification of Caution in 12.3.3 (2) (a) Port 2 mode register (PM2)                                       |
| p. 378 | Deletion of Caution from 12.3.4 (2) (a) Port 3 mode register (PM3)                                         |
| p. 398 | Deletion of Caution from 12.3.12 (2) (a) Port 11 mode register (PM11)                                      |
| p. 407 | Addition of Caution and modification of explanation in 12.3.16 (2) (a) Port X mode register (PMX)          |
| p. 408 | Addition of Caution and modification of explanation in 12.3.16 (2) (b) Port X mode control register (PMCX) |

The mark  $\star$  shows major revised points.

# [MEMO]

8

#### INTRODUCTION

ReadersThis manual is intended for users who wish to understand the functions of the<br/>V850E/MS1 ( $\mu$ PD703100, 703100A, 703101, 703101A, 703102, 703102A, 70F3102,<br/>70F3102A) to design application systems using the V850E/MS1.

Purpose This manual is designed to help users understand the hardware functions of the V850E/MS1.

Organization The V850E/MS1 User's Manual consists of two manuals: Hardware (this manual) and Architecture (V850E/MS1 User's Manual Architecture). The organization of each manual is as follows:

|                         | Hardware                                                                                                                         | Architecture                                                                                                                                                       |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | <ul> <li>Pin functions</li> <li>CPU function</li> <li>Internal peripheral functions</li> <li>Flash memory programming</li> </ul> | <ul> <li>Data type</li> <li>Register set</li> <li>Instruction format and instruction set</li> <li>Interrupts and exceptions</li> <li>Pipeline operation</li> </ul> |
| How to Read This Manual | It is assumed that the readers of the<br>engineering, logic circuits, and microc                                                 | nis manual have general knowledge of electrical controllers.                                                                                                       |
|                         | <ul> <li>To find the details of a register wher</li> <li>→ Refer to APPENDIX A REGIST</li> </ul>                                 | re the name is known<br><b>ER INDEX</b> .                                                                                                                          |
|                         | <ul> <li>To find the details of a function, etc.</li> <li>→ Refer to APPENDIX C INDEX.</li> </ul>                                | where the name is known                                                                                                                                            |
|                         | <ul> <li>To understand the details of an instr<br/>→ Refer to the V850E/MS1 User's</li> </ul>                                    | ruction function<br><b>Manual Architecture</b> .                                                                                                                   |

- To understand the overall functions of the V850E/MS1
  - $\rightarrow~$  Read this manual in the order of the CONTENTS.

#### Conventions

| Data significance:           | Higher digits on the left and lower digits on the right   |
|------------------------------|-----------------------------------------------------------|
| Active low representation:   | xxx (overscore over pin or signal name)                   |
| Memory map address:          | Higher address on the top and lower address on the bottom |
| Note:                        | Footnote for item marked with Note in the text            |
| Caution:                     | Information requiring particular attention                |
| Remark:                      | Supplementary information                                 |
| Numerical representation:    | Binary xxxx or xxxxB                                      |
|                              | Decimal xxxx                                              |
|                              | Hexadecimal xxxxH                                         |
| Prefix indicating power of 2 |                                                           |
| (address space, memory       | K (kilo) 2 <sup>10</sup> = 1,024                          |
| capacity):                   | M (mega) 2 <sup>20</sup> = 1,024 <sup>2</sup>             |
|                              | G (giga) 2 <sup>30</sup> = 1,024 <sup>3</sup>             |
| Data type:                   | Word 32 bits                                              |
|                              | Halfword 16 bits                                          |
|                              | Byte 8 bits                                               |

#### **Related Documents**

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

#### Document related to device

| Document Name                                                | Document No. |
|--------------------------------------------------------------|--------------|
| μPD703100-33, 703100-40, 703101-33, 703102-33 Data Sheet     | U13995E      |
| μPD703100A-33, 703100A-40, 703101A-33, 703102A-33 Data Sheet | U14168E      |
| μPD70F3102-33 Data Sheet                                     | U13844E      |
| μPD70F3102A-33 Data Sheet                                    | U13845E      |
| V850E/MS1 User's Manual Hardware                             | This manual  |
| V850E/MS1 User's Manual Architecture                         | U12197E      |
| V850E/MS1 Application Note Hardware                          | U14214E      |

#### Documents related to development tools (User's Manuals)

| Document Na                                        | me                            | Document No. |
|----------------------------------------------------|-------------------------------|--------------|
| IE-703102-MC (In-circuit Emulator)                 |                               | U13875E      |
| IE-703102-MC-EM1, IE-703102-MC-EM1-<br>Board)      | A (In-circuit Emulator Option | U13876E      |
| CA850 (C Compiler Package)                         | Operation                     | U13998E      |
|                                                    | C Language                    | U13997E      |
|                                                    | Assembly Language             | U13828E      |
|                                                    | Project Manager               | U13996E      |
| RX850 (Real-Time OS)                               | Basics                        | U13430E      |
|                                                    | Installation                  | U13410E      |
| RX850 Pro (Real-Time OS)                           | Fundamental                   | U13773E      |
|                                                    | Installation                  | U13774E      |
| ID850 (Integrated Debugger)<br>(Ver.1.31)          | Operation Windows™ Based      | U13716E      |
| ID850 (Integrated Debugger)<br>(Ver.2.00 or later) | Operation Windows Based       | U14217E      |
| SM850 (System Simulator)<br>(Ver.2.00 or later)    | Operation Windows Based       | U13759E      |
| RD850 <sup>Note</sup> (Task Debugger)              |                               | U11158E      |
| RD850 (Ver.3.0) (Task Debugger)                    |                               | U13737E      |
| RD850 Pro (Ver.3.0) (Task Debugger)                |                               | U13916E      |
| AZ850 (System Performance Analyzer)                |                               | U14410E      |
| PG-FP3 (Flash Memory Programmer)                   |                               | U13502E      |

Note Supporting ID850 (Ver.1.32)

[MEMO]

#### CONTENTS

| CHAPT | ER 1 INTRODUCTION                                           |             |
|-------|-------------------------------------------------------------|-------------|
| 1.1   | Outline                                                     |             |
| 1.2   | Features                                                    |             |
| 1.3   | Applications                                                |             |
| 1.4   | Ordering Information                                        |             |
| 1.5   | Pin Configuration (Top View)                                |             |
| 1.6   | Function Block                                              |             |
|       | 1.6.1 Internal block diagram                                |             |
|       | 1.6.2 Internal units                                        |             |
| СНАРТ | ER 2 PIN FUNCTIONS                                          |             |
| 2.1   | List of Pin Functions                                       |             |
| 2.2   | Pin Status                                                  |             |
| 2.3   | Description of Pin Functions                                |             |
| 2.4   | Pin Input/Output Circuits and Recommended Connection of Unu | sed Pins 65 |
| 2.5   | Pin Input/Output Circuits                                   |             |
| СНАРТ | ER 3 CPU FUNCTION                                           |             |
| 3.1   | Features                                                    | 69          |
| 3.2   | CPU Register Set                                            |             |
|       | 3.2.1 Program register set                                  | 71          |
|       | 3.2.2 System register set                                   | 72          |
| 3.3   | Operation Modes                                             | 74          |
|       | 3.3.1 Operation modes                                       | 74          |
|       | 3.3.2 Operation mode specification                          | 75          |
| 3.4   | Address Space                                               |             |
|       | 3.4.1 CPU address space                                     |             |
|       | 3.4.2 Image                                                 | 77          |
|       | 3.4.3 Wrap-around of CPU address space                      |             |
|       | 3.4.4 Memory map                                            |             |
|       | 3.4.5 Area                                                  |             |
|       | 3.4.6 External expansion mode                               |             |
|       | 3.4.7 Recommended use of address space                      |             |
|       | 3.4.8 Peripheral I/O registers                              |             |
|       | 3.4.9 Specific registers                                    |             |
| СНАРТ | ER 4 BUS CONTROL FUNCTION                                   |             |
| 4.1   | Features                                                    | 103         |
| 4.2   | Bus Control Pins                                            | 103         |
| 4.3   | Memory Block Function                                       |             |
| 4.4   | Bus Cycle Type Control Function                             | 105         |
|       | 4.4.1 Bus cycle type configuration register (BCT)           |             |
| 4.5   | Bus Access                                                  | 107         |
|       | 4.5.1 Number of access clocks                               |             |

|            | 4.5.2   | Bus sizing function                                       |     |
|------------|---------|-----------------------------------------------------------|-----|
|            | 4.5.3   | Bus width                                                 | 109 |
| 4.6        | Wait F  | Function                                                  |     |
|            | 4.6.1   | Programmable wait function                                | 113 |
|            | 4.6.2   | External wait function                                    | 114 |
|            | 4.6.3   | Relationship between programmable wait and external wait  | 114 |
|            | 4.6.4   | Bus cycles in which the wait function is valid            |     |
| 4.7        | Idle St | tate Insertion Function                                   |     |
| 4.8        | Bus H   | old Function                                              |     |
|            | 4.8.1   | Outline of function                                       | 119 |
|            | 4.8.2   | Bus hold procedure                                        | 120 |
|            | 4.8.3   | Operation in power save mode                              | 120 |
|            | 4.8.4   | Bus hold timing                                           | 121 |
| 4.9        | Bus P   | riority Order                                             |     |
| 4.10       | Bound   | dary Operation Conditions                                 |     |
|            | 4.10.1  | Program space                                             | 122 |
|            | 4.10.2  | Data space                                                | 123 |
|            |         |                                                           |     |
| CHAPTE     | ER 5 M  | MEMORY ACCESS CONTROL FUNCTION                            |     |
| 5.1        | SRAM    | I, External ROM, External I/O Interface                   |     |
|            | 5.1.1   | SRAM connections                                          |     |
|            | 5.1.2   | SRAM, external ROM, external I/O access                   | 126 |
| 5.2        | Page I  | ROM Controller (ROMC)                                     |     |
|            | 5.2.1   | Features                                                  | 130 |
|            | 5.2.2   | Page ROM connections                                      | 130 |
|            | 5.2.3   | On-page/off-page judgment                                 | 132 |
|            | 5.2.4   | Page ROM configuration register (PRC)                     | 134 |
|            | 5.2.5   | Page ROM access                                           |     |
| 5.3        | DRAM    | I Controller                                              |     |
|            | 5.3.1   | Features                                                  | 136 |
|            | 5.3.2   | DRAM connections                                          | 137 |
|            | 5.3.3   | Address multiplex function                                |     |
|            | 5.3.4   | DRAM configuration registers 0 to 3 (DRC0 to DRC3)        | 139 |
|            | 5.3.5   | DRAM type configuration register (DTC)                    |     |
|            | 5.3.6   |                                                           |     |
|            | 5.3.7   | DRAM access during DMA flyby transfer                     |     |
|            | 5.3.8   | Refresh control function                                  |     |
|            | 5.3.9   | Self-refresh functions                                    |     |
| СЦАРТ      |         | MA FUNCTIONS (DMA CONTROLLED)                             | 464 |
| 6 1        | Ecotu   | The Functions (DMA CONTROLLER)                            | 101 |
| 0.1<br>6.2 | Confid  | res                                                       |     |
| 0.Z        | Contra  | gurauvir<br>ol Pogistors                                  |     |
| 0.3        | 6.2.4   | DMA source address registers 0 to 2 (DSA0 to DSA2)        |     |
|            | 0.3.1   | DIVIA Source duriness registers 0 to 3 (DOAU to DDA3)     |     |
|            | 0.J.Z   | Divia destination address registers 0 to 3 (DDA0 to DDA3) |     |
|            | 0.3.3   | DMA addressing control registers 0 to 3 (DADC0 to DADC2)  |     |
|            | 0.3.4   | DMA channel control registers 0 to 3 (DADC0 to DADC3)     |     |
|            | 0.0.0   |                                                           |     |

|        | 6.3.6   | DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3) | 171 |
|--------|---------|------------------------------------------------------|-----|
|        | 6.3.7   | DMA disable status register (DDIS)                   | 173 |
|        | 6.3.8   | DMA restart register (DRST)                          |     |
|        | 6.3.9   | Flyby transfer data wait control register (FDW)      |     |
| 6.4    | DMA I   | Bus States                                           | 175 |
|        | 6.4.1   | Types of bus states                                  |     |
|        | 6.4.2   | DMAC state transition                                | 178 |
| 6.5    | Trans   | fer Mode                                             | 179 |
|        | 6.5.1   | Single transfer mode                                 | 179 |
|        | 6.5.2   | Single-step transfer mode                            |     |
|        | 6.5.3   | Block transfer mode                                  |     |
| 6.6    | Trans   | fer Types                                            | 181 |
|        | 6.6.1   | Two-cycle transfer                                   |     |
|        | 6.6.2   | Flyby transfer                                       |     |
| 6.7    | Trans   | fer Objects                                          | 189 |
|        | 6.7.1   | Transfer type and transfer objects                   |     |
|        | 6.7.2   | External bus cycle during DMA transfer               |     |
| 6.8    | DMA (   | Channel Priorities                                   | 190 |
| 6.9    | Next A  | Address Setting Function                             | 190 |
| 6.10   | DMA     | Transfer Start Factors                               | 191 |
| 6.11   | Interru | upting DMA Transfer                                  | 192 |
|        | 6.11.1  | Interruption factors                                 |     |
|        | 6.11.2  | Forcible interruption                                |     |
| 6.12   | Termi   | nating DMA Transfer                                  | 192 |
|        | 6.12.1  | DMA transfer end interrupt                           |     |
|        | 6.12.2  | Terminal count output                                |     |
|        | 6.12.3  | Forcible termination                                 |     |
| 6.13   | Bound   | dary of Memory Area                                  | 194 |
| 6.14   | Trans   | fer of Misalign Data                                 |     |
| 6.15   | Clock   | s of DMA Transfer                                    |     |
| 6.16   | Maxin   | num Response Time to DMA Request                     | 194 |
| 6.17   | One T   | ime Single Transfer with DMARQ0 to DMARQ3            | 196 |
| 6.18   | Bus A   | rbitration for CPU                                   | 197 |
| 6.19   | Preca   | ution                                                | 197 |
|        |         |                                                      |     |
| CHAPTE | ER 7 I  | NTERRUPT/EXCEPTION PROCESSING FUNCTION               | 199 |
| 7.1    | Featu   | res                                                  | 199 |
| 7.2    | Non-M   | laskable Interrupt                                   | 204 |
|        | 7.2.1   | Operation                                            |     |
|        | 7.2.2   | Restore                                              |     |
|        | 7.2.3   | Non-maskable interrupt status flag (NP)              |     |
|        | 7.2.4   | Noise elimination                                    |     |
|        | 7.2.5   | Edge detection function                              |     |
| 7.3    | Maska   | able Interrupts                                      | 209 |
|        | 7.3.1   | Operation                                            |     |
|        | 7.3.2   | Restore                                              | 211 |
|        | 7.3.3   | Priorities of maskable interrupts                    | 212 |
|        | 7.3.4   | Interrupt control register (xxICn)                   | 216 |
|        |         |                                                      |     |

|       | 7.3.5          | In-service priority register (ISPR)                   |     |
|-------|----------------|-------------------------------------------------------|-----|
|       | 7.3.6          | Maskable interrupt status flag (ID)                   | 218 |
|       | 7.3.7          | Noise elimination                                     | 219 |
|       | 7.3.8          | Edge detection function                               |     |
| 7.4   | Softw          | are Exception                                         |     |
|       | 7.4.1          | Operation                                             |     |
|       | 7.4.2          | Restore                                               |     |
|       | 7.4.3          | Exception status flag (EP)                            |     |
| 7.5   | Excep          | otion Trap                                            |     |
|       | 7.5.1          | Illegal op code definition                            |     |
|       | 7.5.2          | Operation                                             |     |
|       | 7.5.3          | Restore                                               |     |
| 7.6   | Multin         | ble Interrupt Processing Control                      |     |
| 7.7   | Interr         | upt Latency Time                                      |     |
| 7.8   | Perio          | ds in Which Interrupt Is Not Acknowledged             | 229 |
|       |                |                                                       |     |
| CHAPT | ER 8 (         | CLOCK GENERATOR FUNCTIONS                             |     |
| 8.1   | Featu          | res                                                   |     |
| 8.2   | Confi          | guration                                              |     |
| 8.3   | Input          | Clock Selection                                       |     |
|       | 8.3.1          | Direct mode                                           |     |
|       | 832            | PII mode                                              | 232 |
|       | 833            | Clock control register (CKC)                          | 233 |
| 84    | PIII           | ockup                                                 | 234 |
| 8.5   | Powe           | r Saving Control                                      | 235 |
| 0.0   | 851            | Outline                                               | 235 |
|       | 852            | Control registers                                     | 237 |
|       | 853            |                                                       | 238 |
|       | 854            |                                                       | 240 |
|       | 0.5.4<br>9.5.5 | Software STOP mode                                    |     |
|       | 0.5.5          | Clock output inhibit mode                             |     |
| 96    | 0.0.0<br>Socur | Clock output Inhibit hode                             |     |
| 0.0   |                | Specifying equiving of equilation stabilization time  |     |
|       | 8.6.1          | Specifying securing of oscillation stabilization time |     |
|       | 8.6.2          | Time base counter (TBC)                               |     |
| CUADT | ED 0 -         |                                                       | 247 |
| 0.4   | En 9           | TIME TO CONTER FUNCTION (REAL-TIME FULSE UNIT)        |     |
| 9.1   | Pealu          | Configuration                                         |     |
| 9.2   | Dasic          | Times 4                                               |     |
|       | 9.2.1          |                                                       |     |
| • •   | 9.2.2          | I Imer 4                                              |     |
| 9.3   | Contr          | OI REGISTERS                                          |     |
| 9.4   | Ilmer          |                                                       |     |
|       | 9.4.1          |                                                       |     |
|       | 9.4.2          | Count clock selection                                 |     |
|       | 9.4.3          | Overflow                                              |     |
|       | 9.4.4          | Clearing/starting timer by TCLR1n signal input        |     |
|       | 9.4.5          | Capture operation                                     |     |
|       | 946            | Compare operation                                     | 269 |

| 9.5    | Timer 4 Operation                                                           | 271 |
|--------|-----------------------------------------------------------------------------|-----|
|        | 9.5.1 Count operation                                                       |     |
|        | 9.5.2 Count clock selection                                                 | 271 |
|        | 9.5.3 Overflow                                                              |     |
|        | 9.5.4 Compare operation                                                     |     |
| 9.6    | Application Example                                                         |     |
| 9.7    | Precaution                                                                  | 281 |
| СНАРТЕ | R 10 SERIAL INTERFACE FUNCTION                                              |     |
| 10.1   | Features                                                                    |     |
| 10.2   | Asynchronous Serial Interfaces 0, 1 (UART0, UART1)                          |     |
|        | 10.2.1 Features                                                             |     |
|        | 10.2.2 Configuration                                                        |     |
|        | 10.2.3 Control registers                                                    |     |
|        | 10.2.4 Interrupt request                                                    |     |
|        | 10.2.5 Operation                                                            |     |
| 10.3   | Clocked Serial Interfaces 0 to 3 (CSI0 to CSI3)                             |     |
|        | 10.3.1 Features                                                             |     |
|        | 10.3.2 Configuration                                                        |     |
|        | 10.3.3 Control registers                                                    |     |
|        | 10.3.4 Basic operation                                                      |     |
|        | 10.3.5 Transmission by CSI0 to CSI3                                         |     |
|        | 10.3.6 Reception by CSI0 to CSI3                                            |     |
|        | 10.3.7 Transmission and reception by CSI0 to CSI3                           |     |
|        | 10.3.8 Example of system configuration                                      |     |
| 10.4   | Dedicated Baud Rate Generators 0 to 2 (BRG0 to BRG2)                        | 310 |
|        | 10.4.1 Configuration and function                                           |     |
|        | 10.4.2 Baud rate generator compare registers 0 to 2 (BRGC0 to BRGC2)        |     |
|        | 10.4.3 Baud rate generator prescaler mode registers 0 to 2 (BPRM0 to BPRM2) |     |
| СНАРТЕ | R 11 A/D CONVERTER                                                          |     |
| 11.1   | Features                                                                    |     |
| 11.2   | Configuration                                                               |     |
| 11.3   | Control Registers                                                           |     |
| 11.4   | A/D Converter Operation                                                     | 323 |
|        | 11.4.1 Basic operation of A/D converter                                     |     |
|        | 11.4.2 Operation mode and trigger mode                                      |     |
| 11.5   | Operation in A/D Trigger Mode                                               | 329 |
|        | 11.5.1 Select mode operations                                               |     |
|        | 11.5.2 Scan mode operations                                                 |     |
| 11.6   | Operation in Timer Trigger Mode                                             |     |
|        | 11.6.1 Select mode operations                                               |     |
|        | 11.6.2 Scan mode operations                                                 |     |
| 11.7   | Operation in External Trigger Mode                                          |     |
|        | 11.7.1 Select mode operations (external trigger select)                     |     |
|        | 11.7.2 Scan mode operations (external trigger scan)                         |     |
| 11.8   | Operating Precautions                                                       |     |
|        | 11.8.1 Stopping conversion operation                                        |     |

|                                                                                  | 11.8.2 External/timer trigger interval                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                  | 11.8.3 Operation of standby mode                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |
|                                                                                  | 11.8.4 Compare match interrupt when in timer trigger mode                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                             |
|                                                                                  | 11.8.5 Timer 1 functions when in external trigger mode                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                             |
| CHAPTE                                                                           | R 12 PORT FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |
| 12.1                                                                             | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |
| 12.2                                                                             | Port Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |
| 12.3                                                                             | Port Pin Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |
|                                                                                  | 12.3.1 Port 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |
|                                                                                  | 12.3.2 Port 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |
|                                                                                  | 12.3.3 Port 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |
|                                                                                  | 12.3.4 Port 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |
|                                                                                  | 12.3.5 Port 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |
|                                                                                  | 12.3.6 Port 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |
|                                                                                  | 12.3.7 Port 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |
|                                                                                  | 12.3.8 Port 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |
|                                                                                  | 12.3.9 Port 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |
|                                                                                  | 12.3.10 Port 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |
|                                                                                  | 12.3.11 Port 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                             |
|                                                                                  | 12.3.12 Port 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                             |
|                                                                                  | 12.3.13 Port 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 401                                                                                                                                                                         |
|                                                                                  | 12.3.14 Port A                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |
|                                                                                  | 12.3.15 Port B                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 405                                                                                                                                                                         |
|                                                                                  | 12.3.16 Port X                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                             |
| CUADTE                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 400                                                                                                                                                                         |
| CHAPTE                                                                           | ER 13 RESET FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |
| CHAPTE<br>13.1                                                                   | ER 13 RESET FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |
| CHAPTE<br>13.1<br>13.2                                                           | ER 13 RESET FUNCTIONS<br>Features<br>Pin Functions                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |
| CHAPTE<br>13.1<br>13.2<br>13.3                                                   | ER 13 RESET FUNCTIONS<br>Features<br>Pin Functions<br>Initialization                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE                                         | ER 13 RESET FUNCTIONS<br>Features<br>Pin Functions<br>Initialization<br>ER 14 FLASH MEMORY (UPD70E3102 70E3102A)                                                                                                                                                                                                                                                                                                                                                                 | 409<br>409<br>409<br>409<br>410                                                                                                                                             |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14 1                                 | ER 13 RESET FUNCTIONS<br>Features<br>Pin Functions<br>Initialization<br>ER 14 FLASH MEMORY (μPD70F3102, 70F3102A)<br>Features                                                                                                                                                                                                                                                                                                                                                    | 409<br>409<br>409<br>410<br>410<br>413<br>413                                                                                                                               |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2                         | ER 13 RESET FUNCTIONS<br>Features<br>Pin Functions<br>Initialization<br>ER 14 FLASH MEMORY (μPD70F3102, 70F3102A)<br>Features<br>Writing by Flash Programmer                                                                                                                                                                                                                                                                                                                     | 409<br>409<br>409<br>410<br>413<br>413<br>413<br>413                                                                                                                        |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3                 | ER 13 RESET FUNCTIONS<br>Features<br>Pin Functions<br>Initialization<br>ER 14 FLASH MEMORY (μPD70F3102, 70F3102A)<br>Features<br>Writing by Flash Programmer<br>Programming Environment                                                                                                                                                                                                                                                                                          | 409<br>409<br>409<br>410<br>410<br>413<br>413<br>413<br>413<br>414                                                                                                          |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3<br>14.4         | ER 13 RESET FUNCTIONS<br>Features<br>Pin Functions<br>Initialization<br>ER 14 FLASH MEMORY (μPD70F3102, 70F3102A)<br>Features<br>Writing by Flash Programmer<br>Programming Environment<br>Communication System.                                                                                                                                                                                                                                                                 | 409<br>409<br>409<br>410<br>413<br>413<br>413<br>413<br>414<br>414                                                                                                          |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3<br>14.4<br>14.5 | ER 13 RESET FUNCTIONS<br>Features<br>Pin Functions<br>Initialization<br>ER 14 FLASH MEMORY (μPD70F3102, 70F3102A)<br>Features<br>Writing by Flash Programmer<br>Programming Environment<br>Communication System<br>Pin Handling                                                                                                                                                                                                                                                  | 409<br>409<br>409<br>410<br>410<br>413<br>413<br>413<br>413<br>414<br>414<br>414                                                                                            |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3<br>14.4<br>14.5 | ER 13 RESET FUNCTIONS<br>Features<br>Pin Functions<br>Initialization<br>ER 14 FLASH MEMORY (μPD70F3102, 70F3102A)<br>Features<br>Writing by Flash Programmer<br>Programming Environment<br>Communication System<br>Pin Handling                                                                                                                                                                                                                                                  | 409<br>409<br>409<br>410<br>413<br>413<br>413<br>413<br>413<br>414<br>414<br>414<br>415<br>415                                                                              |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3<br>14.4<br>14.5 | ER 13 RESET FUNCTIONS         Features         Pin Functions                                                                                                                                                                                                                                                                                                                                                                                                                     | 409<br>409<br>409<br>410<br>413<br>413<br>413<br>413<br>414<br>414<br>414<br>414<br>415<br>415<br>415                                                                       |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3<br>14.4<br>14.5 | ER 13 RESET FUNCTIONS         Features         Pin Functions                                                                                                                                                                                                                                                                                                                                                                                                                     | 409<br>409<br>409<br>410<br>413<br>413<br>413<br>413<br>414<br>414<br>414<br>414<br>415<br>415<br>415<br>415<br>417                                                         |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3<br>14.4<br>14.5 | ER 13 RESET FUNCTIONS         Features         Pin Functions                                                                                                                                                                                                                                                                                                                                                                                                                     | 409<br>409<br>409<br>410<br>410<br>413<br>413<br>413<br>413<br>414<br>414<br>414<br>414<br>415<br>415<br>415<br>415<br>417<br>417                                           |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3<br>14.4<br>14.5 | ER 13 RESET FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 409<br>409<br>409<br>410<br>410<br>413<br>413<br>413<br>413<br>414<br>414<br>414<br>414<br>415<br>415<br>415<br>415<br>417<br>417                                           |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3<br>14.4<br>14.5 | ER 13 RESET FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 409<br>409<br>409<br>410<br>413<br>413<br>413<br>413<br>413<br>414<br>414<br>414<br>415<br>415<br>415<br>415<br>415<br>417<br>417<br>417                                    |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3<br>14.4<br>14.5 | ER 13 RESET FUNCTIONS         Features         Pin Functions         Initialization         ER 14 FLASH MEMORY (μPD70F3102, 70F3102A)         Features         Writing by Flash Programmer         Programming Environment         Communication System         Pin Handling         14.5.1 MODE3/VPP pin         14.5.2 Serial interface pin         14.5.3 RESET pin         14.5.4 NMI pin         14.5.5 MODE0 to MODE2 pins         14.5.6 Port pin         14.5.7 WAIT pin | 409<br>409<br>409<br>410<br>410<br>413<br>413<br>413<br>413<br>414<br>414<br>414<br>414<br>415<br>415<br>415<br>415<br>415<br>417<br>417<br>417<br>417                      |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3<br>14.4<br>14.5 | ER 13 RESET FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 409<br>409<br>409<br>410<br>413<br>413<br>413<br>413<br>414<br>414<br>414<br>414<br>415<br>415<br>415<br>415<br>417<br>417<br>417<br>417<br>417                             |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3<br>14.4<br>14.5 | ER 13 RESET FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 409<br>409<br>409<br>410<br>413<br>413<br>413<br>413<br>413<br>414<br>414<br>414<br>415<br>415<br>415<br>415<br>415<br>417<br>417<br>417<br>417<br>417<br>417<br>417        |
| CHAPTE<br>13.1<br>13.2<br>13.3<br>CHAPTE<br>14.1<br>14.2<br>14.3<br>14.4<br>14.5 | ER 13 RESET FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 409<br>409<br>409<br>410<br>410<br>413<br>413<br>413<br>413<br>414<br>414<br>414<br>414<br>415<br>415<br>415<br>415<br>415<br>417<br>417<br>417<br>417<br>417<br>417<br>417 |

| 14.6.2                                 | Flash memory programming mode                                            |            |
|----------------------------------------|--------------------------------------------------------------------------|------------|
| 14.6.3                                 | Selection of communication mode                                          |            |
| 14.6.4                                 | Communication command                                                    |            |
| APPENDIX A                             | REGISTER INDEX                                                           | 423        |
|                                        |                                                                          |            |
| APPENDIX B                             | INSTRUCTION SET LIST                                                     |            |
| APPENDIX B<br>B.1 Gener                | INSTRUCTION SET LISTal Examples                                          | 431<br>431 |
| APPENDIX B<br>B.1 Gener<br>B.2 Instruc | INSTRUCTION SET LIST<br>al Examples<br>ction Set (in Alphabetical Order) |            |

# LIST OF FIGURES (1/4)

| Figure No. Title |                                                                 | Page             |
|------------------|-----------------------------------------------------------------|------------------|
| 3-1              | Program Counter (PC)                                            |                  |
| 3-2              | Interrupt Source Register (ECR)                                 |                  |
| 3-3              | Program Status Word (PSW)                                       |                  |
| 3-4              | CPU Address Space                                               |                  |
| 3-5              | Image on Address Space                                          |                  |
| 3-6              | Internal ROM Area in Single-Chip Mode 1                         |                  |
| 3-7              | Recommended Memory Map                                          |                  |
| 4-1              | Example of Inserting Wait States                                |                  |
| 5-1              | Example of Connection to SRAM                                   |                  |
| 5-2              | SRAM, External ROM, External I/O Access Timing.                 |                  |
| 5-3              | Example of Page ROM Connections                                 |                  |
| 5-4              | On-Page/Off-Page Judgment for Page ROM Conne                    | ction            |
| 5-5              | Page ROM Access Timing                                          |                  |
| 5-6              | Examples of Connections to DRAM                                 |                  |
| 5-7              | Row Address/Column Address Output                               |                  |
| 5-8              | High-Speed Page DRAM Access Timing                              |                  |
| 5-9              | EDO DRAM Access Timing                                          |                  |
| 5-10             | DRAM Access Timing During DMA Flyby Transfer .                  |                  |
| 5-11             | CBR Refresh Timing                                              |                  |
| 5-12             | CBR Self-Refresh Timing                                         |                  |
| 6-1              | DMAC Bus Cycle State Transition Diagram                         |                  |
| 6-2              | Single Transfer Example 1                                       |                  |
| 6-3              | Single Transfer Example 2                                       |                  |
| 6-4              | Single-Step Transfer Example 1                                  |                  |
| 6-5              | Single-Step Transfer Example 2                                  |                  |
| 6-6              | Block Transfer Example                                          |                  |
| 6-7              | Timing of Two-Cycle Transfer                                    |                  |
| 6-8              | Timing of Flyby Transfer (DRAM $\rightarrow$ External I/O)      |                  |
| 6-9              | Timing of Flyby Transfer (Internal Peripheral I/O $\rightarrow$ | Internal RAM)188 |
| 6-10             | Buffer Register Configuration                                   |                  |

# LIST OF FIGURES (2/4)

| Figure | No. Title                                                                                                      | Page |
|--------|----------------------------------------------------------------------------------------------------------------|------|
| 6-11   | Example of Forcible Termination of DMA Transfer                                                                | 193  |
| 7-1    | Block Diagram of Interrupt Control Function                                                                    |      |
| 7-2    | Processing Configuration of Non-Maskable Interrupt                                                             |      |
| 7-3    | Acknowledging Non-Maskable Interrupt Request                                                                   |      |
| 7-4    | RETI Instruction Processing                                                                                    |      |
| 7-5    | Maskable Interrupt Processing                                                                                  | 210  |
| 7-6    | RETI Instruction Processing                                                                                    | 211  |
| 7-7    | Example of Processing in Which Another Interrupt Request Is Issued While Interrupt Is Being Processed          |      |
| 7-8    | Example of Processing Interrupt Requests Simultaneously Generated                                              | 215  |
| 7-9    | Example of Noise Elimination Timing                                                                            | 219  |
| 7-10   | Software Exception Processing                                                                                  |      |
| 7-11   | RETI Instruction Processing                                                                                    |      |
| 7-12   | Exception Trap Processing                                                                                      |      |
| 7-13   | Pipeline Operation at Interrupt Request Acknowledgement (Outline)                                              | 229  |
| 8-1    | Power Save Mode State Transition Diagram                                                                       |      |
| 9-1    | Basic Operation of Timer 1                                                                                     |      |
| 9-2    | Operation after Overflow (If ECLR1n = 0 and OSTn = 1)                                                          |      |
| 9-3    | Timer Clear/Start Operation by TCLR1n Signal Input (If ECLR1n = 1 and OSTn = 0)                                |      |
| 9-4    | Relationship Between Clear/Start by TCLR1n Signal Input and Overflow Operation<br>(If ECLR1n = 1 and OSTn = 1) |      |
| 9-5    | Example of Capture Operation                                                                                   |      |
| 9-6    | Example of TM11 Capture Operation (When Both Edges Are Specified)                                              |      |
| 9-7    | Example of Compare Operation                                                                                   |      |
| 9-8    | Example of TM11 Compare Operation (Set/Reset Output Mode)                                                      |      |
| 9-9    | Basic Operation of Timer 4                                                                                     |      |
| 9-10   | Example of TM40 Compare Operation                                                                              |      |
| 9-11   | Example of Timing in Interval Timer Operation                                                                  | 274  |
| 9-12   | Example of Interval Timer Operation Setting Procedure                                                          | 274  |
| 9-13   | Example of Pulse Measurement Timing                                                                            |      |

# LIST OF FIGURES (3/4)

| Figure | Figure No. Title                                                                |     |
|--------|---------------------------------------------------------------------------------|-----|
| 0.14   | Evennla of Dulas Width Messurement Setting Dressdure                            | 076 |
| 9-14   | Example of Puse Width Measurement Setting Procedure                             | 270 |
| 9-15   | Example of Interrupt Request Processing Routine Which Calculates the Pulse Wath | 270 |
| 9-10   | Example of PWM Output Timing                                                    | 271 |
| 9-17   | Example of PWM Output Setting Procedure.                                        |     |
| 9-18   | Example of Interrupt Request Processing Routine for Rewriting Compare Value     |     |
| 9-19   | Example of Frequency Measurement Timing                                         |     |
| 9-20   | Example of Frequency Measurement Setting Procedure                              |     |
| 9-21   | Example of Interrupt Request Processing Routine Which Calculates the Frequency  | 280 |
| 10-1   | Block Diagram of Asynchronous Serial Interface                                  | 286 |
| 10-2   | Transmission/Reception Data Format of Asynchronous Serial Interface             | 295 |
| 10-3   | Asynchronous Serial Interface Transmission Completion Interrupt Timing          | 296 |
| 10-4   | Asynchronous Serial Interface Reception Complete Interrupt Timing               | 298 |
| 10-5   | Receive Error Timing                                                            | 298 |
| 10-6   | Block Diagram of Clocked Serial Interface                                       |     |
| 10-7   | Timing of 3-Wire Serial I/O Mode (Transmission)                                 |     |
| 10-8   | Timing of 3-Wire Serial I/O Mode (Reception)                                    |     |
| 10-9   | Timing of 3-Wire Serial I/O Mode (Transmission/Reception)                       |     |
| 10-10  | Example of CSI System Configuration                                             |     |
| 10-11  | Block Diagram of Dedicated Baud Rate Generator                                  |     |
| 11-1   | A/D Converter Block Diagram                                                     | 317 |
| 11-2   | Relationship Between Analog Input Voltage and A/D Conversion Results            |     |
| 11-3   | Select Mode Operation Timing: 1-Buffer Mode (ANI1)                              | 326 |
| 11-4   | Select Mode Operation Timing: 4-Buffer Mode (ANI6)                              | 327 |
| 11-5   | Scan Mode Operation Timing: 4-Channel Scan (ANI0 to ANI3)                       |     |
| 11-6   | Example of 1-Buffer Mode (A/D Trigger Select 1-Buffer) Operation                |     |
| 11-7   | Example of 4-Buffer Mode (A/D Trigger Select 4-Buffer) Operation                |     |
| 11-8   | Example of Scan Mode (A/D Trigger Scan) Operation                               |     |
| 11-9   | Example of 1-Trigger Mode (Timer Trigger Select 1-Buffer 1-Trigger) Operation   |     |
| 11-10  | Example of 4-Trigger Mode (Timer Trigger Select 1-Buffer 4-Trigger) Operation   |     |
| 11-11  | Example of 1-Trigger Mode (Timer Trigger Select 4-Buffer 1-Trigger) Operation   |     |
| 11-12  | Example of 4-Trigger Mode (Timer Trigger Select 4-Buffer 4-Trigger) Operation   |     |

# LIST OF FIGURES (4/4)

| Figure | No. Title                                                             | Page |
|--------|-----------------------------------------------------------------------|------|
|        |                                                                       |      |
| 11-13  | Example of 1-Trigger Mode (Timer Trigger Scan 1-Trigger) Operation    |      |
| 11-14  | Example of 4-Trigger Mode (Timer Trigger Scan 4-Trigger) Operation    |      |
| 11-15  | Example of 1-Buffer Mode (External Trigger Select 1-Buffer) Operation |      |
| 11-16  | Example of 4-Buffer Mode (External Trigger Select 4-Buffer) Operation |      |
| 11-17  | Example of Scan Mode (External Trigger Scan) Operation                |      |
| 11-18  | Relationship of A/D Converter and Port, INTC and RPU                  |      |
|        |                                                                       |      |
| 12-1   | Type A Block Diagram                                                  |      |
| 12-2   | Type B Block Diagram                                                  |      |
| 12-3   | Type C Block Diagram                                                  |      |
| 12-4   | Type D Block Diagram                                                  |      |
| 12-5   | Type E Block Diagram                                                  |      |
| 12-6   | Type F Block Diagram                                                  |      |
| 12-7   | Type G Block Diagram                                                  |      |
| 12-8   | Type H Block Diagram                                                  |      |
| 12-9   | Type I Block Diagram                                                  |      |
| 12-10  | Type J Block Diagram                                                  |      |
| 12-11  | Type K Block Diagram                                                  |      |
| 12-12  | Type L Block Diagram                                                  |      |
| 12-13  | Type M Block Diagram                                                  |      |
| 12-14  | Type N Block Diagram                                                  |      |
| 12-15  | Type O Block Diagram                                                  |      |
| 12-16  | Type P Block Diagram                                                  |      |
| 12-17  | Type Q Block Diagram                                                  |      |

# LIST OF TABLES (1/2)

| Table | No. Title                                                                                                              | Page            |
|-------|------------------------------------------------------------------------------------------------------------------------|-----------------|
|       |                                                                                                                        |                 |
| 3-1   | Program Registers                                                                                                      | 71              |
| 3-2   | System Register Numbers                                                                                                |                 |
| 3-3   | Interrupt/Exception Table                                                                                              |                 |
| 4-1   | Bus Cycles in Which the Wait Function Is Valid                                                                         |                 |
| 4-2   | Bus Priority Order                                                                                                     |                 |
| 5-1   | Example of DRAM and Address Multiplex Width                                                                            |                 |
| 5-2   | Example of DRAM Refresh Interval                                                                                       |                 |
| 5-3   | Example of Interval Factor Settings                                                                                    |                 |
| 6-1   | Relationship Between Transfer Type and Transfer Object                                                                 |                 |
| 6-2   | External Bus Cycle During DMA Transfer                                                                                 |                 |
| 6-3   | Minimum Execution Clock in DMA Cycle                                                                                   | 194             |
| 6-4   | $\overline{\text{DMAAKn}}$ Active $\rightarrow \overline{\text{DMARQn}}$ Inactive Time for Single Transfer to Extended | ernal Memory196 |
| 7-1   | Interrupt List                                                                                                         |                 |
| 7-2   | Interrupt Control Register Addresses and Bits                                                                          | 216             |
| 8-1   | Clock Generator Operation by Power Save Control                                                                        |                 |
| 8-2   | Operating States When in HALT Mode                                                                                     |                 |
| 8-3   | Operations after HALT Mode Is Released by Interrupt Request                                                            |                 |
| 8-4   | Operating States When in IDLE Mode                                                                                     |                 |
| 8-5   | Operating States When in Software STOP Mode                                                                            |                 |
| 8-6   | Example of Count Time ( $\phi = 5 \times fxx$ )                                                                        |                 |
| 9-1   | RPU Configuration List                                                                                                 |                 |
| 9-2   | Capture Trigger Signals (TM1n) to 16-Bit Capture Registers                                                             |                 |
| 9-3   | Interrupt Request Signals (TM1n) from 16-Bit Compare Registers                                                         |                 |
| 10-1  | Default Priority of Interrupt                                                                                          |                 |
| 10-2  | Baud Rate Generator Setup Values                                                                                       |                 |

## LIST OF TABLES (2/2)

| Table | No. Title                                                                    | Page |
|-------|------------------------------------------------------------------------------|------|
|       |                                                                              |      |
| 13-1  | Operating State of Each Pin During Reset                                     | 409  |
| 13-2  | Initial Values of CPU, Internal RAM, and Internal Peripheral I/O after Reset | 411  |
|       |                                                                              |      |
| 14-1  | List of Communication Modes                                                  | 419  |

[MEMO]

#### **CHAPTER 1 INTRODUCTION**

The V850E/MS1 is one of NEC's "V850 Family<sup>™</sup>" of single-chip microcontrollers. This chapter gives a simple outline of the V850E/MS1.

#### 1.1 Outline

The V850E/MS1 is a 32-/16-bit single-chip microcontroller which uses the V850 Family's "V850E" CPU, and incorporates peripheral functions such as ROM, RAM, various types of memory controllers, a DMA controller, realtime pulse unit, serial interface and A/D converter, realizing large volume data processing and sophisticated real-time control.

#### (1) "V850E" CPU included

The "V850E" CPU supports the RISC instruction set, and through the use of basic instructions, each of which can be executed in 1 clock period, and an optimized pipeline, achieves a marked improvement in instruction execution speed. In addition, in order to make it ideal for use in digital servo control, a 32-bit hardware multiplier enables this CPU to support multiply instructions, saturated multiply instructions, bit operation instructions, etc.

Also, through 2-byte basic instructions and instructions compatible with high level languages, etc., the object code efficiency in a C compiler is increased, and the program size can be made more compact.

Further, since the on-chip interrupt controller provides a high speed interrupt response, including processing, this device is suited to high level real-time control fields.

#### (2) External memory interface function

The V850E/MS1 features various on-chip external memory interfaces including separately address configured (24 bits) and data (16 bits) buses, and SRAM and ROM interfaces, as well as on-chip memory controllers that can be directly linked to EDO DRAM, high-speed page DRAM, page ROM, etc., thereby raising the system performance and reducing the number of parts needed for application systems.

Also, through the DMA controller, CPU internal calculations and data transfers can be performed simultaneously with transfers with external memory, so it is possible to process large volumes of image data or voice data, etc., and through the high-speed execution of instructions using internal ROM and RAM, motor control, communications control and other real-time control tasks can be realized simultaneously.

#### (3) On-chip flash memory (μPD70F3102, 70F3102A)

The on-chip flash memory model ( $\mu$ PD70F3102, 70F3102A) has on-chip flash memory which is capable of high speed access, and since it is possible to rewrite a program with the V850E/MS1 mounted as is in the application system, system development time can be reduced and system maintainability after shipping can be markedly improved.

#### (4) A full range of middleware and development environment products

The V850E/MS1 can execute middleware such as JPEG, JBIG and MH/MR/MMR at high speed. Also, middleware that enables voice recognition, voice synthesis and other such processing is available; by including these middleware programs, a multimedia system can be easily realized.

A development environment system that includes an optimized C compiler, debugger, in-circuit emulator, simulator, system performance analyzer and other elements is also available.

#### 1.2 Features

| O Number of instructions:             | 81                                                                                                                                                                                                                                                                                                                                                                                 |                           |              |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|--|
| O Minimum instruction execution time: | 25 ns (at internal 40 MHz) $\mu$ PD703100-40, 703100A-40<br>30 ns (at internal 33 MHz) other than above                                                                                                                                                                                                                                                                            |                           |              |  |
| O General registers:                  | 32 bits $\times$ 32                                                                                                                                                                                                                                                                                                                                                                |                           |              |  |
| O Instruction set:                    | Upwardly compatible with V850 CPU<br>Signed multiplication (16 bits × 16 bits → 32 bits or 32 bits × 32 bits →<br>64 bits): 1 to 2 clocks<br>Saturated operation instructions (with overflow/underflow detection<br>function)<br>32-bit shift instructions: 1 clock<br>Bit manipulation instructions<br>Load/store instructions with long/short format<br>Signed load instructions |                           |              |  |
| O Memory space:                       | 32 MB linear address space (common program/data use)<br>Chip select output function: 8 spaces<br>Memory block division function: 2, 4, 8 MB/block<br>Programmable wait function<br>Idle state insertion function                                                                                                                                                                   |                           |              |  |
| O External bus interface:             | 16-bit data bus (address/data multiplexed)<br>16-/8-bit bus sizing function<br>Bus hold function<br>External wait function                                                                                                                                                                                                                                                         |                           |              |  |
| O Internal memory:                    | Part Number                                                                                                                                                                                                                                                                                                                                                                        | Internal ROM              | Internal RAM |  |
|                                       | μPD703100, 703100A                                                                                                                                                                                                                                                                                                                                                                 | None                      | 4 Kbytes     |  |
|                                       | μPD703101, 703101A                                                                                                                                                                                                                                                                                                                                                                 | 96 Kbytes (Mask ROM)      | 4 Kbytes     |  |
|                                       | μPD703102, 703102A                                                                                                                                                                                                                                                                                                                                                                 | 128 Kbytes (Mask ROM)     | 4 Kbytes     |  |
|                                       | μPD70F3102, 70F3102A                                                                                                                                                                                                                                                                                                                                                               | 128 Kbytes (Flash memory) | 4 Kbytes     |  |
| O Interrupt/exception:                | External interrupts: 25 (including NMI)<br>Internal interrupts: 47 sources<br>Exceptions: 1 source<br>Eight levels of priorities can be set.                                                                                                                                                                                                                                       |                           |              |  |
| O Memory access controller:           | DRAM controller (Compatible with EDO DRAM and high-speed page<br>DRAM)<br>Page-ROM controller                                                                                                                                                                                                                                                                                      |                           |              |  |

| O DMA controller:       | 4 channels<br>Transfer units: 8 bits/16 bits<br>Maximum transfer count: 65,536 (2 <sup>16</sup> )<br>Transfer type: Flyby (1-cycle)/2-cycle<br>Transfer mode: Single/Single step/Block<br>DMA transfer terminate (terminal count) output signal |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| O I/O lines:            | Input ports: 9                                                                                                                                                                                                                                  |  |  |
|                         | 1/O ports: 114                                                                                                                                                                                                                                  |  |  |
| O Real-time pulse unit: | <ul> <li>16-bit timer/event counter: 6 channels</li> <li>16-bit timers: 6</li> <li>16-bit capture/compare registers: 24</li> <li>16-bit interval timer: 2 channels</li> </ul>                                                                   |  |  |
| O Serial interface:     | Asynchronous serial interface (UART)<br>Clocked serial interface (CSI)<br>UART/CSI: 2 channels<br>CSI: 2 channels<br>Dedicated baud rate generator: 3 channels                                                                                  |  |  |
| O A/D converter:        | 10-bit resolution A/D converter: 8 channels                                                                                                                                                                                                     |  |  |
| O Clock generator:      | A multiply-by-five function via a PLL clock synthesizer.<br>A divide-by-two function via external clock input.                                                                                                                                  |  |  |
| O Power save function:  | HALT/IDLE/software STOP mode<br>Clock output stop function                                                                                                                                                                                      |  |  |
| O Package:              | 144-pin plastic LQFP: pin pitch 0.5 mm                                                                                                                                                                                                          |  |  |
| O CMOS technology:      | All static circuits                                                                                                                                                                                                                             |  |  |

#### 1.3 Applications

- OA devices (printers, facsimiles, PPCs, etc.)
- Multimedia devices (digital still cameras, video printers, etc.)
- Consumer appliances (single lens reflex cameras, etc.)
- Industrial devices (motor control, NC machine tools, etc.)

### 1.4 Ordering Information

| Part Number                               | Package                                                       | Maximum Operating<br>Frequency | On-chip<br>ROM           | HVdd         |
|-------------------------------------------|---------------------------------------------------------------|--------------------------------|--------------------------|--------------|
| μΡD703100AF1-40-FA1 <sup>Note</sup>       | 157-pin plastic FBGA<br>(14 × 14 mm)                          | 40 MHz                         | None                     | 3.0 to 3.6 V |
| μΡD703100AGJ-40-8EU <sup>Νοτε</sup>       | 144-pin plastic LQFP (Fine pitc $(20 \times 20 \text{ mm})$   | h) 40 MHz                      | None                     | 3.0 to 3.6 V |
| μΡD703100GJ-40-8EU <sup>Νοτε</sup>        | 144-pin plastic LQFP (Fine pitc (20 $\times$ 20 mm)           | h) 40 MHz                      | None                     | 4.5 to 5.5 V |
| μPD703100AF1-33-FA1 <sup>№te</sup>        | 157-pin plastic FBGA (14 $	imes$ 14 mm)                       | 33 MHz                         | None                     | 3.0 to 3.6 V |
| μPD703100AGJ-33-8EU                       | 144-pin plastic LQFP (Fine pitc ( $20 \times 20 \text{ mm}$ ) | h) 33 MHz                      | None                     | 3.0 to 3.6 V |
| μΡD703100GJ-33-8EU <sup>Νοτε</sup>        | 144-pin plastic LQFP (Fine pitc $(20 \times 20 \text{ mm})$   | h) 33 MHz                      | None                     | 4.5 to 5.5 V |
| μΡD703101AF1-33-×××-FA1 <sup>Note</sup>   | 157-pin plastic FBGA (14 $	imes$ 14 mm)                       | 33 MHz                         | Mask ROM<br>(96 KB)      | 3.0 to 3.6 V |
| μPD703101AGJ-33-xxx-8EU                   | 144-pin plastic LQFP (Fine pitc ( $20 \times 20 \text{ mm}$ ) | h) 33 MHz                      | Mask ROM<br>(96 KB)      | 3.0 to 3.6 V |
| μΡD703101GJ-33-×××-8EU <sup>№te</sup>     | 144-pin plastic LQFP (Fine pitc ( $20 \times 20 \text{ mm}$ ) | h) 33 MHz                      | Mask ROM<br>(96 KB)      | 4.5 to 5.5 V |
| μPD703102AF1-33-×××-FA1 <sup>Note</sup>   | 157-pin plastic FBGA (14 $	imes$ 14 mm)                       | 33 MHz                         | Mask ROM<br>(128 KB)     | 3.0 to 3.6 V |
| μPD703102AGJ-33-xxx-8EU                   | 144-pin plastic LQFP (Fine pitc ( $20 \times 20 \text{ mm}$ ) | h) 33 MHz                      | Mask ROM<br>(128 KB)     | 3.0 to 3.6 V |
| μΡD703102GJ-33-×××-8EU <sup>№te</sup>     | 144-pin plastic LQFP (Fine pitc $(20 \times 20 \text{ mm})$   | h) 33 MHz                      | Mask ROM<br>(128 KB)     | 4.5 to 5.5 V |
| μPD70F3102AF1-33-FA1 <sup>№te</sup>       | 157-pin plastic FBGA (14 $	imes$ 14 mm)                       | 33 MHz                         | Flash memory<br>(128 KB) | 3.0 to 3.6 V |
| $\mu$ PD70F3102AGJ-33-8EU <sup>Note</sup> | 144-pin plastic LQFP (Fine pitc $(20 \times 20 \text{ mm})$   | h) 33 MHz                      | Flash memory<br>(128 KB) | 3.0 to 3.6 V |
| μPD70F3102GJ-33-8EU <sup>Νοτε</sup>       | 144-pin plastic LQFP (Fine pitc $(20 \times 20 \text{ mm})$   | h) 33 MHz                      | Flash memory<br>(128 KB) | 4.5 to 5.5 V |

Note Under development

**Remark** ××× indicates ROM code suffix.

#### 1.5 Pin Configuration (Top View)

#### 157-pin plastic FBGA (14 × 14 mm)

- μPD703100AF1-40-FA1
- μPD703100AF1-33-FA1
- μPD703101AF1-33-×××-FA1
- μPD703102AF1-33-×××-FA1
- μPD70F3102AF1-33-FA1



| 1 | 121 |
|---|-----|
|   | 12) |

| Pin<br>Number | Pin Name | Pin<br>Number | Pin Name           | Pin<br>Number | Pin Name           |
|---------------|----------|---------------|--------------------|---------------|--------------------|
| A1            | —        | B1            | INTP103/DMARQ3/P07 | C1            | INTP101/DMARQ1/P05 |
| A2            | D0/P40   | B2            | D1/P41             | C2            | INTP102/DMARQ2/P06 |
| A3            | D2/P42   | B3            | D3/P43             | C3            | Vss                |
| A4            | D4/P44   | B4            | D5/P45             | C4            | Vss                |
| A5            | D6/P46   | B5            | D7/P47             | C5            | HVdd               |
| A6            | D8/P50   | B6            | D9/P51             | C6            | Vss                |
| A7            | D10/P52  | B7            | D11/P53            | C7            | D12/P54            |
| A8            | D13/P55  | B8            | D14/P56            | C8            | D15/P57            |
| A9            | A0/PA0   | B9            | A1/PA1             | C9            | HVdd               |
| A10           | A2/PA2   | B10           | A3/PA3             | C10           | A4/PA4             |
| A11           | A5/PA5   | B11           | A6/PA6             | C11           | A7/PA7             |
| A12           | A8/PB0   | B12           | A9/PB1             | C12           | Vss                |
| A13           | A10/PB2  | B13           | A11/PB3            | C13           | A12/PB4            |
| A14           | A13/PB5  | B14           | A14/PB6            | C14           | A18/P62            |
| A15           | A15/PB7  | B15           | A17/P61            | C15           | A19/P63            |
| A16           | _        | B16           | A16/P60            | C16           | _                  |

|               |                    |               |                  |               | (2/2)              |
|---------------|--------------------|---------------|------------------|---------------|--------------------|
| Pin<br>Number | Pin Name           | Pin<br>Number | Pin Name         | Pin<br>Number | Pin Name           |
| D1            | TI10/P03           | K1            | TI12/P103        | P14           | RESET              |
| D2            | INTP100/DMARQ0/P04 | K2            | INTP120/TC0/P104 | P15           | INTP151/P125       |
| D3            | HVdd               | K3            | INTP121/TC1/P105 | P16           | INTP150/P124       |
| D4            | _                  | K14           | HLDAK/P96        | R1            | AVss               |
| D14           | Vss                | K15           | OE/P95           | R2            | ANI0/P70           |
| D15           | A21/P65            | K16           | BCYST/P94        | R3            | P21                |
| D16           | A20/P64            | L1            | TO120/P100       | R4            | SCK0/P24           |
| E1            | TO101/P01          | L2            | TO121/P101       | R5            | SCK1/P27           |
| E2            | TCLR10/P02         | L3            | TCLR12/P102      | R6            | INTP132/SI2/P36    |
| E3            | Vss                | L14           | Vss              | R7            | TI13/P33           |
| E14           | HVdd               | L15           | REFRQ/PX5        | R8            | TO130/P30          |
| E15           | A23/P67            | L16           | HLDRQ/P97        | R9            | INTP141/SO3/P115   |
| E16           | A22/P66            | M1            | ANI5/P75         | R10           | TCLR14/P112        |
| F1            | INTP113/DMAAK3/P17 | M2            | ANI6/P76         | R11           | TO140/P110         |
| F2            | TO100/P00          | M3            | ANI7/P77         | R12           | MODE0              |
| F3            | Vdd                | M14           | TO150/P120       | R13           | MODE1              |
| F14           | CS2/RAS2/P82       | M15           | WAIT/PX6         | R14           | MODE2              |
| F15           | CS1/RAS1/P81       | M16           | CLKOUT/PX7       | R15           | INTP153/ADTRG/P127 |
| F16           | CS0/RAS0/P80       | N1            | ANI2/P72         | R16           | INTP152/P126       |
| G1            | INTP110/DMAAK0/P14 | N2            | ANI3/P73         | T1            | —                  |
| G2            | INTP111/DMAAK1/P15 | N3            | ANI4/P74         | T2            | AVREF              |
| G3            | INTP112/DMAAK2/P16 | N14           | TI15/P123        | Т3            | NMI/P20            |
| G14           | CS5/RAS5/IORD/P85  | N15           | TCLR15/P122      | T4            | RXD0/SI0/P23       |
| G15           | CS4/RAS4/IOWR/P84  | N16           | TO151/P121       | T5            | RXD1/SI1/P26       |
| G16           | CS3/RAS3/P83       | P1            | AVdd             | Т6            | INTP131/SO2/P35    |
| H1            | TO111/P11          | P2            | ANI1/P71         | T7            | TCLR13/P32         |
| H2            | TCLR11/P12         | P3            | TXD0/SO0/P22     | Т8            | INTP143/SCK3/P117  |
| H3            | TI11/P13           | P4            | TXD1/SO1/P25     | Т9            | INTP140/P114       |
| H14           | LCAS/LWR/P90       | P5            | Vdd              | T10           | CVDD               |
| H15           | CS7/RAS7/P87       | P6            | INTP133/SCK2/P37 | T11           | X2                 |
| H16           | CS6/RAS6/P86       | P7            | INTP130/P34      | T12           | X1                 |
| J1            | INTP122/TC2/P106   | P8            | TO131/P31        | T13           | CVss               |
| J2            | INTP123/TC3/P107   | P9            | INTP142/SI3/P116 | T14           | MODE3 (MODE3/VPP)  |
| J3            | TO110/P10          | P10           | TI14/P113        | T15           | —                  |
| J14           | WE/P93             | P11           | TO141/P111       | T16           | —                  |
| J15           | RD/P92             | P12           | CKSEL            | —             | —                  |
| J16           | UCAS/UWR/P91       | P13           | HVdd             | —             | —                  |

**Remarks 1.** Leave the A1, A16, C16, D4, T1, T15, and T16 pins open.

**2.** Items in parentheses are pin names in the  $\mu$ PD70F3102, 70F3102A.

#### 144-pin plastic LQFP (fine pitch) (20 × 20 mm)

- μPD703100GJ-40-8EU, 703100AGJ-40-8EU
- μPD703100GJ-33-8EU, 703100AGJ-33-8EU
- μPD703101GJ-33-xxx-8EU, 703101AGJ-33-xxx-8EU
- μPD703102GJ-33-×××-8EU, 703102AGJ-33-×××-8EU
- μPD70F3102GJ-33-8EU, 70F3102AGJ-33-8EU



#### Pin Name

| A0 to A23:                                           | Address Bus                           | P60 to P67:                            | Port 6                         |
|------------------------------------------------------|---------------------------------------|----------------------------------------|--------------------------------|
| ADTRG:                                               | AD Trigger Input                      | P70 to P77:                            | Port 7                         |
| ANI0 to ANI7:                                        | Analog Input                          | P80 to P87:                            | Port 8                         |
| AVDD:                                                | Analog Power Supply                   | P90 to P97:                            | Port 9                         |
| AVREF:                                               | Analog Reference Voltage              | P100 to P107:                          | Port 10                        |
| AVss:                                                | Analog Ground                         | P110 to P117:                          | Port 11                        |
| BCYST:                                               | Bus Cycle Start Timing                | P120 to P127:                          | Port 12                        |
| CKSEL:                                               | Clock Generator Operating Mode Select | PA0 to PA7:                            | Port A                         |
| CLKOUT:                                              | Clock Output                          | PB0 to PB7:                            | Port B                         |
| $\overline{\text{CS0}}$ to $\overline{\text{CS7}}$ : | Chip Select                           | PX5 to PX7:                            | Port X                         |
| CVDD:                                                | Clock Generator Power Supply          | RASO to RAS7:                          | Row Address Strobe             |
| CVss:                                                | Clock Generator Ground                | RD:                                    | Read                           |
| D0 to D15:                                           | Data Bus                              | REFRQ:                                 | Refresh Request                |
| DMAAK0 to DMAAK3:                                    | DMA Acknowledge                       | RESET:                                 | Reset                          |
| DMARQ0 to DMARQ3:                                    | DMA Request                           | RXD0, RXD1:                            | Receive Data                   |
| HLDAK:                                               | Hold Acknowledge                      | SCK0 to SCK3:                          | Serial Clock                   |
| HLDRQ:                                               | Hold Request                          | SI0 to SI3:                            | Serial Input                   |
| HVdd:                                                | Power Supply for External Pins        | SO0 to SO3:                            | Serial Output                  |
| INTP100 to INTP103,                                  |                                       | $\overline{TC0}$ to $\overline{TC3}$ : | Terminal Count Signal          |
| INTP110 to INTP113,                                  |                                       | TCLR10 to TCLR15:                      | Timer Clear                    |
| INTP120 to INTP123,                                  |                                       | TI10 to TI15:                          | Timer Input                    |
| INTP130 to INTP133,                                  |                                       | TO100, TO101,                          |                                |
| INTP140 to INTP143,                                  |                                       | TO110, TO111,                          |                                |
| INTP150 to INTP153:                                  | Interrupt Request from Peripherals    | TO120, TO121,                          |                                |
| IORD:                                                | I/O Read Strobe                       | TO130, TO131,                          |                                |
| IOWR:                                                | I/O Write Strobe                      | TO140, TO141,                          |                                |
| LCAS:                                                | Lower Column Address Strobe           | TO150, TO151:                          | Timer Output                   |
| LWR:                                                 | Lower Write Strobe                    | TXD0, TXD1:                            | Transmit Data                  |
| MODE0 to MODE3:                                      | Mode                                  | UCAS:                                  | Upper Column Address Strobe    |
| NMI:                                                 | Non-Maskable Interrupt Request        | UWR:                                   | Upper Write Strobe             |
| OE:                                                  | Output Enable                         | Vdd:                                   | Power Supply for Internal Unit |
| P00 to P07:                                          | Port 0                                | Vpp:                                   | Programming Power Supply       |
| P10 to P17:                                          | Port 1                                | Vss:                                   | Ground                         |
| P20 to P27:                                          | Port 2                                | WAIT:                                  | Wait                           |
| P30 to P37:                                          | Port 3                                | WE:                                    | Write Enable                   |
| P40 to P47:                                          | Port 4                                | X1, X2:                                | Crystal                        |
| P50 to P57:                                          | Port 5                                |                                        |                                |

#### 1.6 Function Block

#### 1.6.1 Internal block diagram



#### 1.6.2 Internal units

#### (1) CPU

The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic logic operations, data transfers, and almost all other instruction processing.

Other dedicated on-chip hardware, such as a multiplier (16 bits  $\times$  16 bits  $\rightarrow$  32 bits or 32 bits  $\times$  32 bits  $\rightarrow$  64 bits) and a barrel shifter (32 bits), help accelerate processing of complex instructions.

#### (2) Bus control unit (BCU)

The BCU starts a required external bus cycle based on the physical address obtained by the CPU. When an instruction is fetched from external memory space and the CPU does not send a bus cycle start request, the BCU generates a prefetch address and prefetches the instruction code. The prefetched instruction code is stored in an instruction queue in the CPU.

The BCU incorporates a DRAM controller (DRAMC), page ROM controller, and DMA controller (DMAC).

#### (a) DRAM controller (DRAMC)

This controller generates the  $\overrightarrow{RAS}$ ,  $\overrightarrow{UCAS}$  and  $\overrightarrow{LCAS}$  signals (2CAS control) and controls DRAM access. It is compatible with high-speed DRAM and EDO DRAM. When accessing DRAM, there are 2 types of cycle; normal access (off page) and page access (on page).

Also, it includes a refresh function that is compatible with the CBR refresh cycle.

#### (b) Page ROM controller

This controller is compatible with ROM that includes a page access function. It performs address comparisons with the immediately preceding bus cycle and executes wait control for normal access (off page)/page access (on page). It can handle page widths of 8 to 64 bytes.

#### (c) DMA controller (DMAC)

This controller transfers data between memory and I/O in place of the CPU. There are two address modes, flyby (1 cycle) transfer, and 2-cycle transfer. There are three bus modes, single transfer, single step transfer, and block transfer.

#### (3) ROM

The  $\mu$ PD703101 and 703101A have on-chip mask ROM (96 KB), the  $\mu$ PD703102 and 703102A have on-chip mask ROM (128 KB), and the  $\mu$ PD70F3102 and 70F3102A have on-chip flash memory (128 KB). The  $\mu$ PD703100 and 703100A do not include on-chip memory.

During instruction fetch, these memories can be accessed from the CPU in 1 clock cycles.

If the single-chip mode 0 or flash memory programming mode is set, memory mapping is done from address 00000000H, and if single-chip mode 1 is set, from address 00100000H. If ROM-less mode 0 or 1 is set, access is impossible.

#### (4) RAM

4 KB of RAM is mapped from address FFFE000H. During instruction fetch, data can be accessed from the CPU in 1-clock cycles.
### (5) Interrupt controller (INTC)

This controller handles hardware interrupt requests (NMI, INTP100 to INTP103, INTP110 to INTP113, INTP120 to INTP123, INTP130 to INTP133, INTP140 to INTP143, INTP150 to INTP153) from internal peripheral I/O and external hardware. Eight levels of interrupt priorities can be specified for these interrupt requests, and multiplexed servicing control can be performed for interrupt sources.

### (6) Clock generator (CG)

This clock generator supplies frequencies that are 5 times the input clock (fxx) (used by the internal PLL) and 1/2 the input clock (when the internal PLL is not used) as an internal system clock ( $\phi$ ). As the input clock, an external oscillator is connected to pins X1 and X2 (only when an internal PLL synthesizer is used) or an external clock is input from pin X1.

### (7) Real-time pulse unit (RPU)

This unit has a 6-channel 16-bit timer/event counter and 2-channel 16-bit interval timer on-chip, and it is possible to measure pulse widths or frequency and to output a programmable pulse.

### (8) Serial interface (SIO)

The serial interface has a total of 4 channels of asynchronous serial interfaces (UART) and synchronous or clocked serial interfaces (CSI). Two of these channels can be switched between UART and CSI, and the other two channels are fixed to CSI.

UART transfers data by using the TXD and RXD pins and the CSI transfers data by using the SO, SI, and SCK pins.

The serial clock source can be selected from dedicated baud rate generator output or internal system clock.

### (9) A/D converter (ADC)

This high-speed, high-resolution 10-bit A/D converter includes 8 analog input pins. Conversion uses the successive approximation method.

# (10) Ports

As shown below, the following ports have general port functions and control pin functions.

| Port    | Port Function             | Control Function                                                                                  |
|---------|---------------------------|---------------------------------------------------------------------------------------------------|
| Port 0  | 8-bit I/O                 | Real-time pulse unit input/output, external interrupt input, DMA controller input                 |
| Port 1  | 8-bit I/O                 | Real-time pulse unit input/output, external interrupt input, DMA controller output                |
| Port 2  | 1-bit input,<br>7-bit I/O | NMI input, serial interface input/output                                                          |
| Port 3  | 8-bit I/O                 | Real-time pulse unit input/output, external interrupt input, serial interface input/output        |
| Port 4  | 8-bit I/O                 | External data bus                                                                                 |
| Port 5  | 8-bit I/O                 | External data bus                                                                                 |
| Port 6  | 8-bit I/O                 | External address bus                                                                              |
| Port 7  | 8-bit input               | A/D converter input                                                                               |
| Port 8  | 8-bit I/O                 | External bus interface control signal output                                                      |
| Port 9  | 8-bit I/O                 | External bus interface control signal input/output                                                |
| Port 10 | 8-bit I/O                 | Real-time pulse unit input/output, external interrupt input, DMA controller output                |
| Port 11 | 8-bit I/O                 | Real-time pulse unit input/output, external interrupt input, serial interface input/output        |
| Port 12 | 8-bit I/O                 | Real-time pulse unit input/output, external interrupt input, A/D converter external trigger input |
| Port A  | 8-bit I/O                 | External address bus                                                                              |
| Port B  | 8-bit I/O                 | External address bus                                                                              |
| Port X  | 3-bit I/O                 | Refresh request signal output, wait insertion signal input, internal system clock output          |

## **CHAPTER 2 PIN FUNCTIONS**

The names and functions of this product's pins are listed below. These pins can be divided into port pins and non-port pins according to their functions.

## 2.1 List of Pin Functions

# (1) Port pins (1/4)

| Pin Name | I/O   | Function                                                      | Alternate Function |
|----------|-------|---------------------------------------------------------------|--------------------|
| P00      | I/O   | Port 0                                                        | TO100              |
| P01      |       | 8-bit input/output port                                       | TO101              |
| P02      |       | inputouput mode can be specified in 1-bit drifts.             | TCLR10             |
| P03      |       |                                                               | TI10               |
| P04      |       |                                                               | INTP100/DMARQ0     |
| P05      |       |                                                               | INTP101/DMARQ1     |
| P06      |       |                                                               | INTP102/DMARQ2     |
| P07      |       |                                                               | INTP103/DMARQ3     |
| P10      | I/O   | Port 1                                                        | TO110              |
| P11      |       | 8-bit input/output port                                       | TO111              |
| P12      |       |                                                               | TCLR11             |
| P13      |       |                                                               | TI11               |
| P14      |       |                                                               | INTP110/DMAAK0     |
| P15      |       |                                                               | INTP111/DMAAK1     |
| P16      |       |                                                               | INTP112/DMAAK2     |
| P17      |       |                                                               | INTP113/DMAAK3     |
| P20      | Input | Port 2                                                        | NMI                |
| P21      | I/O   | P20 is an input-only port.                                    | —                  |
| P22      |       | status of the NMI input is shown by bit 0 of the P2 register. | TXD0/SO0           |
| P23      |       | P21 to P27 are 7-bit input/output ports.                      | RXD0/SI0           |
| P24      |       | Input/output mode can be specified in 1-bit units.            | SCK0               |
| P25      |       |                                                               | TXD1/SO1           |
| P26      |       |                                                               | RXD1/SI1           |
| P27      |       |                                                               | SCK1               |

## (1) Port pins (2/4)

| Pin Name   | I/O   | Function                                                                                | Alternate Function |
|------------|-------|-----------------------------------------------------------------------------------------|--------------------|
| P30        | I/O   | Port 3                                                                                  | TO130              |
| P31        |       | 8-bit input/output port<br>Input/output mode can be specified in 1-bit units.           | TO131              |
| P32        |       |                                                                                         | TCLR13             |
| P33        |       |                                                                                         | TI13               |
| P34        |       |                                                                                         | INTP130            |
| P35        |       |                                                                                         | INTP131/SO2        |
| P36        |       |                                                                                         | INTP132/SI2        |
| P37        |       |                                                                                         | INTP133/SCK2       |
| P40 to P47 | I/O   | Port 4<br>8-bit input/output port<br>Input/output mode can be specified in 1-bit units. | D0 to D7           |
| P50 to P57 | I/O   | Port 5<br>8-bit input/output port<br>Input/output mode can be specified in 1-bit units. | D8 to D15          |
| P60 to P67 | I/O   | Port 6<br>8-bit input/output port<br>Input/output mode can be specified in 1-bit units. | A16 to A23         |
| P70 to P77 | Input | Port 7<br>8-bit input only port                                                         | ANI0 to ANI7       |
| P80        | I/O   | Port 8                                                                                  | CS0/RAS0           |
| P81        |       | 8-bit input/output port                                                                 | CS1/RAS1           |
| P82        |       | inpurouput mode can be specified in t-bit drifts.                                       | CS2/RAS2           |
| P83        |       |                                                                                         | CS3/RAS3           |
| P84        |       |                                                                                         | CS4/RAS4/IOWR      |
| P85        |       |                                                                                         | CS5/RAS5/IORD      |
| P86        |       |                                                                                         | CS6/RAS6           |
| P87        |       |                                                                                         | CS7/RAS7           |
| P90        | I/O   | Port 9                                                                                  | LCAS/LWR           |
| P91        |       | 8-bit input/output port                                                                 | UCAS/UWR           |
| P92        |       |                                                                                         | RD                 |
| P93        |       |                                                                                         | WE                 |
| P94        |       |                                                                                         | BCYST              |
| P95        |       |                                                                                         | ŌE                 |
| P96        |       |                                                                                         | HLDAK              |
| P97        |       |                                                                                         | HLDRQ              |

## (1) Port pins (3/4)

| Pin Name | I/O | Function                                           | Alternate Function |
|----------|-----|----------------------------------------------------|--------------------|
| P100     | I/O | Port 10                                            | TO120              |
| P101     |     | 8-bit input/output port                            | TO121              |
| P102     |     |                                                    | TCLR12             |
| P103     |     |                                                    | TI12               |
| P104     |     |                                                    | INTP120/TC0        |
| P105     |     |                                                    | INTP121/TC1        |
| P106     |     |                                                    | INTP122/TC2        |
| P107     |     |                                                    | INTP123/TC3        |
| P110     | I/O | Port 11                                            | TO140              |
| P111     |     | 8-bit input/output port                            | TO141              |
| P112     |     | input/output mode can be specified in 1-bit units. | TCLR14             |
| P113     |     |                                                    | TI14               |
| P114     |     | INTP140                                            |                    |
| P115     |     |                                                    | INTP141/SO3        |
| P116     |     |                                                    | INTP142/SI3        |
| P117     |     |                                                    | INTP143/SCK3       |
| P120     | I/O | Port 12                                            | TO150              |
| P121     |     | 8-bit input/output port                            | TO151              |
| P122     |     | inpuvouput mode can be specified in 1-bit units.   | TCLR15             |
| P123     |     |                                                    | TI15               |
| P124     |     |                                                    | INTP150            |
| P125     |     |                                                    | INTP151            |
| P126     |     |                                                    | INTP152            |
| P127     |     |                                                    | INTP153/ADTRG      |
| PA0      | I/O | Port A                                             | A0                 |
| PA1      | -   | 8-bit input/output port                            | A1                 |
| PA2      |     | inputouput mode can be specified in 1-bit drifts.  | A2                 |
| PA3      |     |                                                    | A3                 |
| PA4      |     |                                                    | A4                 |
| PA5      | ]   |                                                    | A5                 |
| PA6      | ]   |                                                    | A6                 |
| PA7      |     |                                                    | A7                 |

## (1) Port pins (4/4)

| Pin Name | I/O | Function                | Alternate Function |
|----------|-----|-------------------------|--------------------|
| PB0      | I/O | Port B                  | A8                 |
| PB1      |     | 8-bit input/out port    | A9                 |
| PB2      |     |                         | A10                |
| PB3      |     |                         | A11                |
| PB4      |     |                         | A12                |
| PB5      |     |                         | A13                |
| PB6      |     |                         | A14                |
| PB7      |     |                         | A15                |
| PX5      | I/O | Port X                  | REFRQ              |
| PX6      |     | 3-bit input/output port | WAIT               |
| PX7      |     |                         | CLKOUT             |

## (2) Non-port pins (1/4)

| Pin Name | I/O    | Function                                                        | Alternate Function |
|----------|--------|-----------------------------------------------------------------|--------------------|
| TO100    | Output | Pulse signal output of timers 10 to 15                          | P00                |
| TO101    | -      |                                                                 | P01                |
| TO110    | -      |                                                                 | P10                |
| TO111    | -      |                                                                 | P11                |
| TO120    | -      |                                                                 | P100               |
| TO121    | -      |                                                                 | P101               |
| TO130    |        |                                                                 | P30                |
| TO131    |        |                                                                 | P31                |
| TO140    | -      |                                                                 | P110               |
| TO141    |        |                                                                 | P111               |
| TO150    | -      |                                                                 | P120               |
| TO151    | -      |                                                                 | P121               |
| TCLR10   | Input  | External clear signal input of timers 10 to 15                  | P02                |
| TCLR11   | -      |                                                                 | P12                |
| TCLR12   | -      |                                                                 | P102               |
| TCLR13   | -      |                                                                 | P32                |
| TCLR14   |        |                                                                 | P112               |
| TCLR15   |        |                                                                 | P122               |
| TI10     | Input  | External count clock input of timers 10 to 15                   | P03                |
| TI11     |        |                                                                 | P13                |
| TI12     |        |                                                                 | P103               |
| TI13     |        |                                                                 | P33                |
| TI14     |        |                                                                 | P113               |
| TI15     |        |                                                                 | P123               |
| INTP100  | Input  | External maskable interrupt request input, or timer 10 external | P04/DMARQ0         |
| INTP101  |        | capture trigger input                                           | P05/DMARQ1         |
| INTP102  |        |                                                                 | P06/DMARQ2         |
| INTP103  |        |                                                                 | P07/DMARQ3         |
| INTP110  | Input  | External maskable interrupt request input, or timer 11 external | P14/DMAAK0         |
| INTP111  |        | capture trigger input                                           | P15/DMAAK1         |
| INTP112  |        |                                                                 | P16/DMAAK2         |
| INTP113  |        |                                                                 | P17/DMAAK3         |
| INTP120  | Input  | External maskable interrupt request input, or timer 12 external | P104/TC0           |
| INTP121  |        | capture trigger input                                           | P105/TC1           |
| INTP122  |        |                                                                 | P106/TC2           |
| INTP123  | ]      |                                                                 | P107/TC3           |

## (2) Non-port pins (2/4)

| Pin Name   | I/O    | Function                                                        | Alternate Function |
|------------|--------|-----------------------------------------------------------------|--------------------|
| INTP130    | Input  | External maskable interrupt request input, or timer 13 external | P34                |
| INTP131    | -      | capture trigger input                                           | P35/SO2            |
| INTP132    |        |                                                                 | P36/SI2            |
| INTP133    |        |                                                                 | P37/SCK2           |
| INTP140    | Input  | External maskable interrupt request input, or timer 14 external | P114               |
| INTP141    | -      | capture trigger input                                           | P115/SO3           |
| INTP142    | -      |                                                                 | P116/SI3           |
| INTP143    |        |                                                                 | P117/SCK3          |
| INTP150    | Input  | External maskable interrupt request input, or timer 15 external | P124               |
| INTP151    | -      | capture trigger input                                           | P125               |
| INTP152    | -      |                                                                 | P126               |
| INTP153    | -      |                                                                 | P127/ADTRG         |
| SO0        | Input  | CSI0 to CSI3 serial transmission data output (3-wire)           | P22/TXD0           |
| SO1        | -      |                                                                 | P25/TXD1           |
| SO2        | -      |                                                                 | P35/INTP131        |
| SO3        |        |                                                                 | P115/INTP141       |
| SIO        | Input  | CSI0 to CSI3 serial reception data input (3-wire)               | P23/RXD0           |
| SI1        |        |                                                                 | P26/RXD1           |
| SI2        | -      |                                                                 | P36/INTP132        |
| SI3        | -      |                                                                 | P116/INTP142       |
| SCK0       | I/O    | CSI0 to CSI3 serial clock input/output (3-wire)                 | P24                |
| SCK1       |        |                                                                 | P27                |
| SCK2       | -      |                                                                 | P37/INTP133        |
| SCK3       | -      |                                                                 | P117/INTP143       |
| TXD0       | Output | UART0 and UART1 serial transmission data output                 | P22/SO0            |
| TXD1       |        |                                                                 | P25/SO1            |
| RXD0       | Input  | UART0 and UART1 serial reception data input                     | P23/SI0            |
| RXD1       | -      |                                                                 | P26/SI1            |
| D0 to D7   | I/O    | 16-bit data bus for external memory                             | P40 to P47         |
| D8 to D15  |        |                                                                 | P50 to P57         |
| A0 to A7   | Output | 24-bit address bus for external memory                          | PA0 to PA7         |
| A8 to A15  |        |                                                                 | PB0 to PB7         |
| A16 to A23 |        |                                                                 | P60 to P67         |
| LWR        | Output | External data bus lower byte write enable signal output         | P90/LCAS           |
| UWR        | Output | External data bus higher byte write enable signal output        | P91/UCAS           |
| RD         | Output | External data bus read strobe signal output                     | P92                |

## (2) Non-port pins (3/4)

| Pin Name                                           | I/O    | Function                                                   | Alternate Function              |
|----------------------------------------------------|--------|------------------------------------------------------------|---------------------------------|
| WE                                                 | Output | Write enable signal output for DRAM                        | P93                             |
| OE                                                 | Output | Output enable signal output for DRAM                       | P95                             |
| LCAS                                               | Output | Column address strobe signal output for DRAM lower data    | P90/LWR                         |
| UCAS                                               | Output | Column address strobe signal output for DRAM higher data   | P91/UWR                         |
| RAS0 to RAS3                                       | Output | Row address strobe signal output for DRAM                  | P80/CS0 to P83/CS3              |
| RAS4                                               |        |                                                            | P84/CS4/IOWR                    |
| RAS5                                               |        |                                                            | P85/CS5/IORD                    |
| RAS6                                               |        |                                                            | P86/CS6                         |
| RAS7                                               |        |                                                            | P87/CS7                         |
| BCYST                                              | Output | Strobe signal output that shows the start of the bus cycle | P94                             |
| $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ | Output | Chip select signal output                                  | P80/RAS0 to<br>P83/RAS3         |
| CS4                                                |        |                                                            | P84/RAS4/IOWR                   |
| CS5                                                |        |                                                            | P85/RAS5/IORD                   |
| CS6                                                |        |                                                            | P86/RAS6                        |
| CS7                                                |        |                                                            | P87/RAS7                        |
| WAIT                                               | Input  | Control signal input that inserts a wait in the bus cycle  | PX6                             |
| REFRQ                                              | Output | Refresh request signal output for DRAM                     | PX5                             |
| IOWR                                               | Output | DMA write strobe signal output                             | P84/RAS4/CS4                    |
| IORD                                               | Output | DMA read strobe signal output                              | P85/RAS5/CS5                    |
| DMARQ0 to<br>DMARQ3                                | Input  | DMA request signal input                                   | P04/INTP100 to<br>P07/INTP103   |
| DMAAK0 to<br>DMAAK3                                | Output | DMA acknowledge signal output                              | P14/INTP110 to<br>P17/INTP113   |
| TC0 to TC3                                         | Output | DMA termination (terminal count) signal output             | P104/INTP120 to<br>P107/INTP123 |
| HLDAK                                              | Output | Bus hold acknowledge output                                | P96                             |
| HLDRQ                                              | Input  | Bus hold request input                                     | P97                             |
| ANI0 to ANI7                                       | Input  | Analog inputs to the A/D converter                         | P70 to P77                      |
| NMI                                                | Input  | Non-maskable interrupt request input                       | P20                             |
| CLKOUT                                             | Output | System clock output                                        | PX7                             |
| CKSEL                                              | Input  | Input which specifies the clock generator's operating mode | —                               |
| MODE0 to<br>MODE2                                  | Input  | Operation mode specification                               | —                               |
| MODE3                                              | 1      |                                                            | VPP <sup>Note</sup>             |

Note  $\mu$ PD70F3102 and 70F3102A only

## (2) Non-port pins (4/4)

| Pin Name            | I/O   | Function                                                            | Alternate Function |
|---------------------|-------|---------------------------------------------------------------------|--------------------|
| RESET               | Input | System reset input                                                  | —                  |
| X1                  | Input | Connects the system clock oscillator. In the case of an external    | —                  |
| X2                  | _     | source supplying the clock, it is input to X1.                      |                    |
| ADTRG               | Input | A/D converter external trigger input                                | P127/INTP153       |
| AVREF               | Input | Reference voltage applied to A/D converter                          | —                  |
| AVdd                | _     | Positive power supply to A/D converter                              | —                  |
| AVss                | _     | Ground for A/D converter                                            | —                  |
| CVDD                | _     | Supplies a positive power supply for the dedicated clock generator. | —                  |
| CVss                | _     | Ground potential for the dedicated clock generator                  | —                  |
| Vdd                 | _     | Supplies the positive power supply (internal unit power supply).    | —                  |
| HVdd                | _     | Supplies the positive power supply (external pin power supply).     | —                  |
| Vss                 | _     | Ground potential                                                    |                    |
| VPP <sup>Note</sup> | _     | High-voltage application pin during program write/verify            | MODE3              |

Note  $\mu$ PD70F3102 and 70F3102A only

### 2.2 Pin Status

The state of each pin after reset, in a power save mode (software STOP, IDLE, HALT), during bus hold (TH), and in the idle state (TI), is shown below.

| Operating State<br>Pin                                                                                                                                                                                                       | Reset  | Software<br>STOP Mode      | IDLE Mode                  | HALT Mode | Bus Hold<br>(TH) | Idle State<br>(TI)     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|----------------------------|-----------|------------------|------------------------|
| D0 to D15                                                                                                                                                                                                                    | Hi-Z   | HI-Z (output)<br>— (input) | HI-Z (output)<br>— (input) | Operating | Hi-Z             | Hi-Z                   |
| A0 to A23                                                                                                                                                                                                                    | Hi-Z   | Hi-Z                       | Hi-Z                       | Operating | Hi-Z             | Hold                   |
| $\overline{WE}, \overline{OE}, \overline{RD}, \overline{BCYST}$                                                                                                                                                              | Hi-Z   | Hi-Z                       | Hi-Z                       | Operating | Hi-Z             | н                      |
| $\overline{UWR}, \overline{LWR}, \overline{IORD}, \\ \overline{IOWR}, \overline{CS0} \text{ to } \overline{CS7}$                                                                                                             | Hi-Z   | Н                          | н                          | Operating | Hi-Z             | н                      |
| RAS0 to RAS7                                                                                                                                                                                                                 | Hi-Z   | Operating                  | Operating                  | Operating | Hi-Z             | Hold <sup>Note 2</sup> |
| UCAS, LCAS                                                                                                                                                                                                                   | Hi-Z   | Operating                  | Operating                  | Operating | Hi-Z             | н                      |
| REFRQ                                                                                                                                                                                                                        | Hi-Z   | Operating                  | Operating                  | Operating | Operating        | Н                      |
| HLDRQ                                                                                                                                                                                                                        | —      | _                          | _                          | Operating | Operating        | Operating              |
| HLDAK                                                                                                                                                                                                                        | Hi-Z   | Hi-Z                       | Hi-Z                       | Operating | L                | Operating              |
| WAIT                                                                                                                                                                                                                         | _      | _                          | _                          | Operating | _                | _                      |
| CLKOUT                                                                                                                                                                                                                       | Note 1 | L                          | L                          | Operating | Operating        | Operating              |
| DMARQ0 to DMARQ3                                                                                                                                                                                                             | —      | _                          | _                          | Operating | Operating        | Operating              |
| DMAAK0 to DMAAK3                                                                                                                                                                                                             | Hi-Z   | Н                          | Н                          | Operating | Н                | Н                      |
| $\overline{\text{TC0}}$ to $\overline{\text{TC3}}$                                                                                                                                                                           | Hi-Z   | н                          | н                          | Operating | Operating        | Operating              |
| INTP100 to INTP103,<br>INTP110 to INTP113,<br>INTP120 to INTP123,<br>INTP130 to INTP133,<br>INTP140 to INTP143,<br>INTP150 to INTP153                                                                                        | _      | _                          | _                          | Operating | Operating        | Operating              |
| NMI                                                                                                                                                                                                                          | _      | Operating                  | Operating                  | Operating | Operating        | Operating              |
| P00 to P07, P10 to P17,<br>P20 to P27, P30 to P37,<br>P40 to P47, P50 to P57,<br>P60 to P67, P70 to P77,<br>P80 to P87, P90 to P97,<br>P100 to P107, P110 to<br>P117, P120 to P127, PA0<br>to PA7, PB0 to PB7, PX5<br>to PX7 | Hi-Z   | Hold (output)<br>— (input) | Hold (output)<br>— (input) | Operating | Operating        | Operating              |
| TCLR10 to TCLR15                                                                                                                                                                                                             | _      | _                          | _                          | Operating | Operating        | Operating              |
| TI10 to TI15                                                                                                                                                                                                                 | _      |                            |                            | Operating | Operating        | Operating              |
| TO100, TO101,<br>TO110, TO111,<br>TO120, TO121,<br>TO130, TO131,<br>TO140, TO141,<br>TO150, TO151                                                                                                                            | Hi-Z   | Hold                       | Hold                       | Operating | Operating        | Operating              |

| Operating State<br>Pin | Reset | Software<br>STOP Mode      | IDLE Mode                  | HALT Mode | Bus Hold<br>(TH) | Idle State<br>(TI) |
|------------------------|-------|----------------------------|----------------------------|-----------|------------------|--------------------|
| SI0 to SI3             | _     | _                          | —                          | Operating | Operating        | Operating          |
| SO0 to SO3             | Hi-Z  | Hold                       | Hold                       | Operating | Operating        | Operating          |
| SCK0 to SCK3           | Hi-Z  | Hold (output)<br>— (input) | Hold (output)<br>— (input) | Operating | Operating        | Operating          |
| RXD0, RXD1             | _     | _                          | —                          | Operating | Operating        | Operating          |
| TXD0, TXD1             | Hi-Z  | Hold                       | Hold                       | Operating | Operating        | Operating          |
| ANI0 to ANI7, ADTRG    | _     | _                          | _                          | Operating | Operating        | Operating          |

**Notes 1.** When in single-chip mode 0: Hi-Z At other times: Operating

- 2. In the idle state (TI) just before and just after bus hold, H
- Remark Hi-Z: High-impedance

Hold: State during immediately preceding external bus cycle is held

- H: High-level output
- L: Low-level output
- -: No sampling of input

### Cautions when turning on/off power supply

The V850E/MS1 is configured with two power supply pins: the internal unit power supply pin (V<sub>DD</sub>) and the external pin power supply pin (HV<sub>DD</sub>). If the voltage exceeds its operation guaranteed range, the input/output state of the I/O pins may become undefined. If this input/output undefined state causes problems in the system, the pin status can be made high impedance by taking the following countermeasures.

### • When turning on the power

Apply 0 V to the HVDD pin until the voltage of the VDD pin is within the operation guaranteed range (3.0 to 3.6 V).

### • When turning off the power

Apply a voltage within the operation guaranteed range (3.0 to 3.6 V) to the  $V_{DD}$  pin until the voltage of the  $HV_{DD}$  pin becomes 0 V.



### 2.3 Description of Pin Functions

### (1) P00 to P07 (Port 0) --- 3-state I/O

Port 0 is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as the input/output for the real-time pulse unit (RPU), the external interrupt request input and the DMA request input.

The operation mode can be set as port or control in 1-bit units, specified by the port 0 mode control register (PMC0).

### (a) Port mode

P00 to P07 can be set to input or output in bit units by the port 0 mode register (PM0).

#### (b) Control mode

P00 to P07 can be set in the port/control mode in bit units by the PMC0 register.

### (i) TO100, TO101 (Timer Output) --- output

Output the pulse signals for timer 1.

#### (ii) TCLR10 (Timer Clear) --- input

This is an input pin for external clear signals for timer 1.

### (iii) TI10 (Timer Input) --- input

This is an input pin for an external counter clock for timer 1.

### (iv) INTP100 to INTP103 (Interrupt Request from Peripherals) --- input

These are input pins for external interrupt requests for timer 1.

### (v) DMARQ0 to DMARQ3 (DMA Request) --- input

These are DMA service request signals. They correspond to DMA channels 0 to 3, respectively, and operate independently of each other. The priority order is fixed at  $\overline{\text{DMARQ0}} > \overline{\text{DMARQ1}} > \overline{\text{DMARQ1}} > \overline{\text{DMARQ2}}$ 

This signal is sampled when the CLKOUT signal falls. Maintain the active level until a DMA request is received.

### (2) P10 to P17 (Port 1) --- 3-state I/O

Port 1 is an 8-bit input/output port that can be set to input or output in 1-bit units. Besides functioning as a port, in the control mode it operates as the input/output for the real-time pulse unit (RPU), the external interrupt request input and the DMA request input.

The operation mode can be set as port or control in 1-bit units, specified by the port 1 mode control register (PMC1).

### (a) Port mode

P10 to P17 can be set to input or output in bit units by the port 1 mode register (PM1).

### (b) Control Mode

P10 to P17 can be set in the port/control mode in bit units by the PMC1 register.

- (i) TO110, TO111 (Timer Output) --- output Output the pulse signals for timer 1.
- (ii) TCLR11 (Timer Clear) --- input

This is an input pin for external clear signals for timer 1.

#### (iii) TI11 (Timer Input) --- input

This is an input pin for an external counter clock for timer 1.

(iv) INTP110 to INTP113 (Interrupt Request from Peripherals) --- input

These are input pins for external interrupt requests for timer 1.

### (v) DMAAK0 to DMAAK3 (DMA Acknowledge) --- output

This signal shows that a DMA service request was acknowledged.

They correspond to DMA channels 0 to 3, respectively, and operate independently of each other. These signals become active only when external memory is being accessed. When DMA transfers are being executed between internal RAM and internal peripheral I/O, they do not become active. These signals are activated on the falling of the CLKOUT signal in the T0, T1R, or T1FH state of the DMA cycle, and are retained at the active level during DMA transfers.

### (3) P20 to P27 (Port 2) --- 3-state I/O

Port 2, except for P20, which is an input-only pin, is an input/output port which can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as the input/output for the serial interface (UART0/CSI0, UART1/CST1).

The operation mode can be set as port or control in 1-bit units, specified by the port 2 mode control register (PMC2).

### (a) Port mode

P21 to P27 can be set to input or output in bit units by the port 2 mode register (PM2). P20 is an exclusive input port, and if a valid edge is input, it operates as an NMI input.

### (b) Control mode

P22 to P27 can be set in the port/control mode in bit units by the PMC2 register.

## (i) NMI (Non-Maskable Interrupt Request) --- input This is the input pin for non-maskable interrupt requests.

- (ii) TXD0, TXD1 (Transmit Data) --- output Output UART0, UART1 serial transmit data.
- (iii) RXD0, RXD1 (Receive Data) --- input Input UART0, UART1 serial receive data.
- (iv) SO0, SO1 (Serial Output) --- output Output CSI0, CSI1 serial transmit data.
- (v) SI0, SI1 (Serial Input) --- input Input CSI0, CSI1 serial receive data.
- (vi) SCK0, SCK1 (Serial Clock) --- 3-state I/O These are the input/output pins for the CSI0, CSI1 serial clock.

### (4) P30 to P37 (Port 3) --- 3-state I/O

Port 3 is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as the input/output for the real-time pulse unit (RPU), the external request input and the serial interface (CSI2) input/output. The operation mode can be set as port or control in 1-bit units, specified by the port 3 mode control register (PMC3).

### (a) Port mode

P33 to P37 can be set to input or output in bit units by the port 3 mode register (PM3).

### (b) Control mode

P30 to P37 can be set in the port/control mode in bit units by the PMC3 register.

- (i) TO130, TO131 (Timer Output) --- output Output pulse signals for timer 1.
- (ii) TCLR13 (Timer Clear) --- input This is an input pin for external clear signals for timer 1.

## (iii) TI13 (Timer Input) --- input

This is an input pin for an external counter clock for timer 1.

- (iv) INTP130 to INTP133 (Interrupt Request from Peripherals) --- input These are input pins for external interrupt requests for timer 1.
- (v) SO2 (Serial Output)--- output Outputs CSI2 serial transmit data.
- (vi) SI2 (Serial Input)--- input Inputs CSI2 serial receive data.

### (vii) SCK2 (Serial Clock)--- 3-state I/O

This is the input/output pin for the CSI2 serial clock.

### (5) P40 to P47 (Port 4) --- 3-state I/O

Port 4 is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode (external expansion mode) it operates as a data bus (D0 to D7) when memory is externally expanded.

The operation mode is specified by the mode specification pins (MODE0 to MODE3) and the memory expansion mode register (MM).

### (a) Port mode

P40 to P47 can be set to input or output in bit units by the port 4 mode register (PM4).

### (b) Control mode (External expansion mode)

P40 to P47 can be set as D0 to D7 by using the MODE0 to MODE3 pins and MM register.

### (i) D0 to D7 (Data) --- 3-state I/O

These pins constitute the data bus that is used for external access. They operate as the lower 8-bit input/output bus pins for 16-bit data. The output changes in synchronization with the falling of the clock in the T1 state CLKOUT signal of the bus cycle. In the idle state (TI), the impedance becomes high.

### (6) P50 to P57 (Port 5) --- 3-state I/O

Port 5 is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as an I/O port, in the control mode (external expansion mode) it operates as a data bus (D8 to D15) when memory is externally expanded.

The operation mode is specified by the mode specification pins (MODE0 to MODE3) and the memory expansion mode register (MM).

### (a) Port mode

P50 to P57 can be set to input or output in bit units by the port 5 mode register (PM5).

### (b) Control mode (External expansion mode)

P50 to P57 can be set as D8 to D15 by using the MODE0 to MODE3 pins and MM register.

### (i) D8 to D15 (Data) --- 3-state I/O

These pins constitute the data bus that is used for external access. They operate as the higher 8-bit input/output bus pins for 16-bit data. The output changes in synchronization with the falling of the clock in the T1 state CLKOUT signal of the bus cycle. In the idle state (TI), the impedance becomes high.

### (7) P60 to P67 (Port 6) --- 3-state I/O

Port 6 is an 8-bit input/output port that can be set to input or output in 1-bit units. Besides functioning as a port, in the control mode (external expansion mode) it operates as an address bus (A16 to A23) when memory is externally expanded.

The operation mode can be set as port or control in 2-bit units, specified by the mode specification pins (MODE0 to MODE3) and the memory expansion mode register (MM).

### (a) Port mode

P60 to P67 can be set to input or output in bit units by the port 6 mode register (PM6).

#### (b) Control mode (External expansion mode)

P60 to P67 can be set as A16 to A23 by using the MODE0 to MODE3 pins and MM register.

#### (i) A16 to A23 (Address) --- output

These pins constitute the higher 8-bits of a 24-bits address bus when the external memory is accessed. The output changes in synchronization with the falling edge of the CLKOUT signal in the T1 state of the bus cycle. In the idle state (TI), the previous bus cycle's address is held.

#### (8) P70 to P77 (Port 7) --- input

Port 7 is an 8-bit input-only port in which all pins are fixed as input pins.

Besides functioning as a port, in the control mode it operates as analog input for the A/D converter. However, the input port and analog input pin cannot be switched.

#### (a) Port mode

P70 to P77 are input-only pins.

#### (b) Control mode

P70 to P77 function alternately pins ANI0 to ANI7, but these alternate functions are not switchable.

#### (i) ANI0 to ANI7 (Analog Input) --- input

These are analog input pins for the A/D converter.

Connect a capacitor between these pins and AVss to prevent noise-related operation faults. Also, do not apply voltage that is outside the range for AVss and AVREF to pins that are being used as inputs for the A/D converter. If it is possible for noise above the AVREF range or below the AVss to enter, clamp these pins using a diode that has a small VF value.

### (9) P80 to P87 (Port 8) --- 3-state I/O

Port 8 is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as a control signal output when memory and peripheral I/O are externally expanded.

The operation mode can be set as port or control in 1-bit units, specified by the port 8 mode control register (PMC8).

### (a) Port mode

P80 to P87 can be set to input or output in bit units by the port 8 mode register (PM8).

#### (b) Control mode

P80 to P87 can be set in the port/control mode in bit units by the PMC8 register.

### (i) CS0 to CS7 (Chip Select) --- 3-state output

This is the chip select signal for SRAM, external ROM, external peripheral I/O, page ROM and the synchronous flash memory area.

The CSn signal is assigned to memory block n (n = 0 to 7).

It becomes active at the time the bus cycle when the corresponding memory block is accessed starts. In the idle state (TI), it becomes inactive.

### (ii) RAS0 to RAS7 (Row Address Strobe) --- 3-state output

This is the strobe signal for the row address for the DRAM area and the strobe signal for the CBR refresh cycle.

The RASn signal is assigned to memory block n (n = 0 to 7).

During on-page disable, after the DRAM access bus cycle ends, it becomes inactive.

During on-page enable, even after the DRAM access bus cycle ends, it is kept in the active state.

During the reset period and during a hold period, it is in the high impedance state, so connect it to HV<sub>DD</sub> via a resistor.

#### (iii) IORD (I/O Read) --- 3-state output

This is the read strobe signal for external I/O during DMA flyby transfer. It indicates whether the bus cycle currently being executed is a read cycle for external I/O during flyby transfer, or a read cycle for the SRAM area.

In order to make it possible to connect directly to memory or external I/O during DMA flyby transfer,  $\overline{\text{UWR}}$  or  $\overline{\text{LWR}}$  rises before  $\overline{\text{IORD}}$  rises.

Furthermore, this external I/O can be accessed even when it is assigned to the SRAM area.

### (iv) IOWR (I/O Write) --- 3-state output

This is the write strobe signal for external I/O during DMA flyby transfer. It indicates whether the bus cycle currently being executed is a write cycle for external I/O during flyby transfer, or a write cycle for the SRAM area.

In order to make it possible to connect directly to memory or external I/O during DMA flyby transfer,  $\overline{IOWR}$  rises before  $\overline{RD}$  rises.

Furthermore, this external I/O can be accessed even when it is assigned to the SRAM area.

### (10) P90 to P97 (Port 9) --- 3-state I/O

Port 9 is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode it operates as a control signal output and bus hold control signal input/output when memory is externally expanded.

The operation mode can be set as port or control in 1-bit units, specified by the port 9 mode control register (PMC9).

#### (a) Port mode

P90 to P97 can be set to input or output in bit units by the port 9 mode register (PM9).

### (b) Control mode

P90 to P97 can be set in the port/control mode in bit units by the PMC9 register.

#### (i) LCAS (Lower Column Address Strobe) --- 3-state output

This is the strobe signal for column address for DRAM and the strobe signal for the CBR refresh cycle.

In the data bus, the lower byte is valid.

### (ii) UCAS (Upper Column Address Strobe) --- 3-state output

This is the strobe signal for column address for DRAM and the strobe signal for the CBR refresh cycle.

In the data bus, the higher byte is valid.

### (iii) LWR (Lower Byte Write Strobe) --- 3-state output

This strobe signal shows whether the bus cycle currently being executed is a write cycle for the SRAM, external ROM, external peripheral I/O, or page ROM.

In the data bus, the lower byte becomes valid. If the bus cycle is a lower memory write, it becomes active at the rise of the T1 state's CLKOUT signal and becomes inactive at the rise of the T2 state's CLKOUT signal.

#### (iv) UWR (Upper Byte Write Strobe) --- 3-state output

This strobe signal shows whether the bus cycle currently being executed is a write cycle for the SRAM, external ROM, external peripheral I/O, or page ROM.

In the data bus, the higher byte becomes valid. If the bus cycle is a higher memory write, it becomes active at the rise of the T1 state's CLKOUT signal and becomes inactive at the rise of the T2 state's CLKOUT signal.

### (v) RD (Read Strobe) --- 3-state output

This strobe signal shows that the bus cycle currently being executed is a read cycle for the SRAM, external ROM, external peripheral I/O, page ROM or synchronous flash memory area. In the idle state (TI), it becomes inactive.

### (vi) WE (Write Enable) --- 3-state output

This signal shows that the bus cycle currently being executed is a write cycle for the SRAM area. In the idle state (TI), it becomes inactive.

### (vii) BCYST (Bus Cycle Start Timing) --- 3-state output

This outputs a status signal showing the start of the bus cycle. It becomes active for 1 clock cycle from the start of each cycle.

In the idle state (TI), it becomes inactive.

### (viii) OE (Output Enable) --- 3-state output

This signal shows that the bus cycle currently being executed is a read cycle for the DRAM area. In the idle state (TI), it becomes inactive.

#### (ix) HLDAK (Hold Acknowledge) --- output

In this mode, this pin is the output pin for the acknowledge signal that indicates high impedance status for the address bus, data bus, and control bus when the V850E/MS1 receives a bus hold request.

While this signal is active, the impedance of the address bus, data bus and control bus becomes high and the bus mastership is transferred to the external bus master.

### (x) **HLDRQ** (Hold Request) --- input

In this mode, this pin is the input pin by which an external device requests the V850E/MS1 to release the address bus, data bus, and control bus. This pin accepts asynchronous input for the CLKOUT signal. When this pin is active, the address bus, data bus, and control bus are set to high impedance. This occurs either when the V850E/MS1 completes execution of the current bus cycle or immediately if no bus cycle is being executed, then the HLDAK signal is set as active and the bus is released.

In order to make the bus hold state secure, keep the HLDRQ signal active until the HLDAK signal is output.

### (11) P100 to P107 (Port 10) --- 3-state I/O

Port 10 is an 8-bit input/output port that can be set to input or output in 1-bit units. Besides functioning as a port, in the control mode it operates as an input/output for real time pulse unit (RPU), external interrupt request input and DMA termination signal (terminal count) from DMA controller. The operation mode can be set as port or control in 1-bit units, specified by the port 10 mode control register (PMC10).

### (a) Port mode

P100 to P107 can be set to input or output in bit units by the port 10 mode register (PM10).

### (b) Control mode

P100 to P107 can be set in the port/control mode in bit units by the PMC10 register.

- (i) TO120, TO121 (Timer Output) --- output Output the pulse signal of timer 1.
- (ii) TCLR12 (Timer Clear) --- input

This is an input pin for external clear signals for timer 1.

### (iii) TI12 (Timer Input) --- input

This is an input pin for an external counter clock for timer 1.

(iv) INTP120 to INTP123 (Interrupt Request from Peripherals) --- input These are input pins for external interrupt requests for timer 1.

### (v) $\overline{\text{TC0}}$ to $\overline{\text{TC3}}$ (Terminal Count) --- output

This signal shows that DMA transfer by the DMA controller is terminated. This signal becomes active for 1 clock cycle at the fall of the CLKOUT signal.

### (12) P110 to P117 (Port 11) --- 3-state I/O

Port 11 is an 8-bit input/output port that can be set to input or output in 1-bit units. Besides functioning as a port, in the control mode it operates as an input/output for real-time pulse unit (RPU), external interrupt request, input and serial interface (CSI3) input/output.

The operation mode can be set as port or control in 1-bit units, specified by the port 11 mode control register (PMC11).

### (a) Port mode

P110 to P117 can be set to input or output in bit units by the port 11 mode register (PM11).

#### (b) Control mode

P110 to P117 can be set in the port/control mode in bit units by the PMC11 register.

(i) TO140, TO141 (Timer Output) --- output Output the pulse signal of timer 1.

#### (ii) TCLR14 (Timer Clear) --- input

This is an input pin for external clear signals for timer 1.

#### (iii) TI14 (Timer Input) --- input

This is an input pin for an external counter clock for timer 1.

- (iv) INTP140 to INTP143 (Interrupt Request from Peripherals) --- input These are input pins for external interrupt requests for timer 1.
- (v) SO3 (Serial Output 3)--- output Outputs the CSI3 serial transfer data.
- (vi) SI3 (Serial Input 3)--- input Inputs the CSI3 serial receive data.

#### (vii) SCK3 (Serial Clock 3)--- 3-state I/O

This is the input/output pin for the CSI3 serial clock.

### (13) P120 to P127 (Port 12) --- 3-state I/O

Port 12 is an 8-bit input/output port that can be set to input or output in 1-bit units. Besides functioning as a port, in the control mode it operates as an input/output for real-time pulse unit (RPU), external interrupt request input and external trigger input to A/D converter.

The operation mode can be set as port or control in 1-bit units, specified by the port 12 mode control register (PMC12).

### (a) Port mode

P120 to P127 can be set to input or output in bit units by the port 12 mode register (PM12).

### (b) Control mode

P120 to P127 can be set in the port/control mode in bit units by the PMC12 register.

- (i) TO150, TO151 (Timer Output) --- output Output the pulse signal of timer 1.
- (ii) TCLR15 (Timer Clear) --- input This is an input pin for external clear signals for timer 1.

(iii) TI15 (Timer Input) --- input

This is an input pin for an external counter clock for timer 1.

(iv) INTP150 to INTP153 (Interrupt Request from Peripherals) --- input These are input pins for external interrupt requests for timer 1.

### (v) ADTRG (AD Trigger Input)--- input

This is the A/D converter external trigger input pin.

### (14) PA0 to PA7 (Port A) --- 3-state I/O

Port A is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode (external expansion mode) it operates as an address bus (A0 to A7) when memory is externally expanded.

The operation mode is specified by the mode specification pins (MODE0 to MODE3) and the memory expansion mode register (MM).

### (a) Port mode

PA0 to PA7 can be set to input or output in bit units by the port A mode register (PMA).

### (b) Control mode (External expansion mode)

PA0 to PA7 can be set as A0 to A7 by using the MODE0 to MODE3 pins and MM register.

#### (i) A0 to A7 (Address) --- output

These pins constitute the address bus that is used for external access. The output changes in synchronization with the falling of the CLKOUT signal in the T1 state of the bus cycle. In the idle state (TI), the previous bus cycle's address is held.

### (15) PB0 to PB7 (Port B) --- 3-state I/O

Port B is an 8-bit input/output port that can be set to input or output in 1-bit units.

Besides functioning as a port, in the control mode (external expansion mode) it operates as an address bus (A8 to A15) when memory is externally expanded.

The operation mode can be set as port or control in 2-bit or 4-bit units, specified by the mode specification pins (MODE0 to MODE3) and memory expansion mode register (MM).

### (a) Port mode

PB0 to PB7 can be set to input or output in bit units by the port B mode register (PMB).

#### (b) Control mode (External expansion mode)

PB0 to PB7 can be set as A8 to A15 by using the MODE0 to MODE3 pins and MM register.

#### (i) A8 to A15 (Address) --- output

These pins constitute the address bus when the external memory is accessed. The output changes in synchronization with the rising edge of the CLKOUT signal in the T1 state of the bus cycle. In the idle state (TI), the impedance becomes high.

### (16) PX5 to PX7 (Port X) --- 3-state I/O

Port X is an 8-bit input/output port that can be set to input or output in 1-bit units. Besides functioning as a port, in the control mode it operates as a refresh request signal output for DRAM,

The operation mode can be set as port or control in 1-bit units, specified by the port X mode control register (PMCX).

### (a) Port mode

PX5 to PX7 can be set to input or output in bit units by the port X mode register (PMX).

### (b) Control mode

PX5 to PX7 can be set in the port/control mode in bit units by the PMCX register.

### (i) **REFRQ** (Refresh Request) --- 3-state output

wait insertion signal input and system clock output.

This is the refresh request signal for DRAM.

In cases where the address is decoded by an external circuit and the connected DRAM is increased, or in cases where external SIMMs are connected, this signal is used for  $\overline{RAS}$  control during the refresh cycle.

This signal becomes active during the refresh cycle. Also, during bus hold, it becomes active when a refresh request is generated and informs the external bus master that a refresh request was generated.

### (ii) WAIT (Wait) --- input

This is the control signal input pin that inserts a data wait in the bus cycle, and it can be input asynchronously with respect to the CLKOUT signal. When the CLKOUT signal falls, sampling is executed. When the set/hold time is not terminated within the sampling timing, the wait insertion may not be executed.

### (iii) CLKOUT (Clock Output) --- output

This is the internal system clock output pin. When in single-chip mode 1 and ROM-less modes 0 and 1, output from the CLKOUT pin can be executed even during reset.

When in single-chip mode 0, it changes to the port mode during reset, so output from the CLKOUT pin cannot be executed. Set the port X mode control register (PMCX) to control mode to execute CLKOUT output.

### (17) CKSEL (Clock Generator Operating Mode Select) --- input

This is the input pin that specifies the clock generator's operation mode. Make sure the input level does not change during operation.

### (18) MODE0 to MODE3 (Mode) --- input

These are the input pins that specify the operation mode. Operation modes can be roughly divided into normal operation mode and flash memory programming mode. In the normal operation mode, there are single-chip modes 0 and 1, and ROM-less modes 0 and 1 (for details, refer to **3.3 Operation Modes**). The operation mode is determined by sampling the status of each of the MODE0 to MODE3 pins during reset. Note that this status must be fixed so that the input level does not change during operation.

### (a) μPD703100, 703100A

| MODE3            | MODE2 | MODE1 | MODE0 | Operation Mode     |                 |
|------------------|-------|-------|-------|--------------------|-----------------|
| L                | L     | L     | L     | Normal operation   | ROM-less mode 0 |
| L                | L     | L     | Н     | mode ROM-less mode |                 |
| Other than above |       |       |       | Setting prohibited |                 |

### (b) µPD703101, 703101A, 703102, 703102A

| MODE3            | MODE2 | MODE1 | MODE0 | Operation Mode     |                    |
|------------------|-------|-------|-------|--------------------|--------------------|
| L                | L     | L     | L     | Normal operation   | ROM-less mode 0    |
| L                | L     | L     | н     | mode               | ROM-less mode 1    |
| L                | L     | н     | L     |                    | Single-chip mode 0 |
| L                | L     | н     | н     |                    | Single-chip mode 1 |
| Other than above |       |       |       | Setting prohibited |                    |

#### (c) µPD70F3102, 70F3102A

| MODE3/VPP        | MODE2 | MODE1 | MODE0 | Operation Mode                |                    |
|------------------|-------|-------|-------|-------------------------------|--------------------|
| 0 V              | L     | L     | L     | Normal operation              | ROM-less mode 0    |
| 0 V              | L     | L     | Н     | mode                          | ROM-less mode 1    |
| 0 V              | L     | Н     | L     |                               | Single-chip mode 0 |
| 0 V              | L     | Н     | Н     |                               | Single-chip mode 1 |
| 7.8 V            | L     | Н     | L     | Flash memory programming mode |                    |
| Other than above |       |       |       | Setting prohibited            |                    |

Remark L: Low-level input

H: High-level input

### (19) RESET (Reset) --- input

RESET input is asynchronous input for a signal that has a constant low-level width regardless of the operating clock's status. When this signal is input, a system reset is executed as the first priority ahead of all other operations.

In addition to being used for ordinary initialization/start operations, this pin can also be used to release a power save mode (HALT, IDLE, or software STOP).

### (20) X1, X2 (Crystal) --- input

These pins are used to connect the resonator that generates the system clock. An external clock source can be referenced by connecting the external clock input to the X1 pin and leaving the X2 pin open.

### (21) CVDD (Power Supply for Clock Generator)

This pin supplies positive power to the clock generator.

### (22) CVss (Ground for Clock Generator)

This is the ground pin of the clock generator.

### (23) VDD (Power Supply for Internal Unit)

These are the positive power supply pins for each internal unit. All the  $V_{DD}$  pins should be connected to a positive power source (3.3 V).

### (24) HVDD (Power Supply for External Pins)

These are the positive power supply pins for external pins. All the HV<sub>DD</sub> pins should be connected to a positive power source (5 V to 3.3 V).

### (25) Vss (Ground)

These are ground pins. All the Vss pins should be connected to ground.

### (26) AVDD (Analog VDD)

This is the analog power supply pin for the A/D converter.

### (27) AVss (Analog Vss)

This is the ground pin for the A/D converter.

### (28) AVREF (Analog Reference Voltage) --- input

This is the reference voltage supply pin for the A/D converter.

### (29) VPP (Programming Power Supply)

This is the positive power supply pin used for flash memory programming mode. This pin is used for  $\mu$ PD70F3102 and 70F3102A.

# 2.4 Pin Input/Output Circuits and Recommended Connection of Unused Pins

If connecting to V\_DD or Vss via resistors, it is recommended that 1 to 10 k $\Omega$  resistors be connected.

| Pin Name                                    | Input/Output Circuit Type | Recommended Connection of Unused Pins        |
|---------------------------------------------|---------------------------|----------------------------------------------|
| P00/TO100, P01/TO101                        | 5                         | Input: Independently connect to HVDD or      |
| P02,TCLR10, P03/TI10                        | 5-K                       | Vss via a resistor.                          |
| P04/INTP100/DMARQ0 to<br>P07/INTP103/DMARQ3 |                           | Output: Leave open.                          |
| P10/TO110, P11/TO111                        | 5                         |                                              |
| P12/TCLR11, P13/TI11                        | 5-K                       |                                              |
| P14/INTP110/DMAAK0 to<br>P17/INTP113/DMAAK3 |                           |                                              |
| P20/NMI                                     | 2                         | Connect directly to Vss.                     |
| P21                                         | 5                         | Input: Independently connect to HVDD or      |
| P22/TXD0/SO0                                |                           | Vss via a resistor.                          |
| P23/RXD0/SI0                                | 5-K                       | Output: Leave open.                          |
| P24/SCK0                                    |                           |                                              |
| P25/TXD1/SO1                                | 5                         |                                              |
| P26/RXD1/SI1                                | 5-K                       |                                              |
| P27/SCK1                                    |                           |                                              |
| P30/TO130, P31/TO131                        | 5                         |                                              |
| P32/TCLR13, P33/TI13                        | 5-K                       |                                              |
| P34/INTP130                                 |                           |                                              |
| P35/INTP131/SO2                             |                           |                                              |
| P36/INTP132/SI2                             |                           |                                              |
| P37/INTP133/SCK2                            |                           |                                              |
| P40/D0 to P47/D7                            | 5                         |                                              |
| P50/D8 to P57/D15                           |                           |                                              |
| P60/A16 to P67/A23                          |                           |                                              |
| P70/ANI0 to P77/ANI7                        | 9                         | Connect directly to Vss.                     |
| P80/CS0/RAS0 to P83/CS3/RAS3                | 5                         | Input: Independently connect to $HV_{DD}$ or |
| P84/CS4/RAS4/IOWR,<br>P85/CS5/RAS5/IORD     |                           | Vss via a resistor.<br>Output: Leave open.   |
| P86/CS6/RAS6, P87/CS7/RAS7                  |                           |                                              |
| P90/LCAS/LWR                                |                           |                                              |
| P91/UCAS/UWR                                |                           |                                              |
| P92/RD                                      |                           |                                              |
| P93/WE                                      |                           |                                              |
| P94/BCYST                                   |                           |                                              |
| P95/OE                                      |                           |                                              |
| P96/HLDAK                                   |                           |                                              |
| P97/HLDRQ                                   |                           |                                              |
| P100/TO120, P101/TO121                      |                           |                                              |

| Pin Name                     | Input/Output Circuit Type | Recommended Connection of Unused Pins   |
|------------------------------|---------------------------|-----------------------------------------|
| P102/TCLR12, P103/TI12       | 5-K                       | Input: Independently connect to HVDD or |
| P104/INTP120/TC0 to          |                           | Vss via a resistor.                     |
| P107/INTP123/TC3             |                           | Output: Leave open.                     |
| P110/TO140, P111/TO141       | 5                         |                                         |
| P112/TCLR14, P113/TI14       | 5-K                       |                                         |
| P114/INTP140                 |                           |                                         |
| P115/INTP141/SO3             |                           |                                         |
| P116/INTP142/SI3             |                           |                                         |
| P117/INTP143/SCK3            |                           |                                         |
| P120/TO150, P121/TO151       | 5                         |                                         |
| P122/TCLR15, P123/TI15       | 5-K                       |                                         |
| P124/INTP150 to P126/INTP152 |                           |                                         |
| P127/INTP153/ADTRG           |                           |                                         |
| PA0/A0 to PA7/A7             | 5                         |                                         |
| PB0/A8 to PB7/A15            |                           |                                         |
| PX5/REFRQ                    |                           |                                         |
| PX6/WAIT                     |                           |                                         |
| PX7/CLKOUT                   |                           |                                         |
| CKSEL                        | 1                         | Connect directly to HVDD.               |
| RESET                        | 2                         | _                                       |
| MODE0 to MODE2               |                           |                                         |
| MODE3 <sup>Note 1</sup>      |                           | Connect to Vss via a resistor (RVPP).   |
| MODE3/VPP <sup>Note 2</sup>  |                           |                                         |
| AVREF, AVSS                  | _                         | Connect directly to Vss.                |
| AV <sub>DD</sub>             | _                         | Connect directly to HVDD.               |

**Notes 1.** μPD703100, 703100A, 703101, 703101A, 703102, 703102A only

**2.** *μ*PD70F3102, 70F3102A only

## 2.5 Pin Input/Output Circuits



Caution Note that VDD in the circuit diagram is replaced by HVDD.

68

[MEMO]

### **CHAPTER 3 CPU FUNCTION**

The CPU of the V850E/MS1 is based on RISC architecture and executes almost all the instructions in one clock cycle, using 5-stage pipeline control.

### 3.1 Features

Minimum instruction execution time: 25 ns (at internal 40 MHz operation) ... μPD703100-40, 703100A-40

30 ns (at internal 33 MHz operation) ... other than above

Memory space Program space: 64 MB Linear

Data space: 4 GB Linear

- Thirty-two 32-bit general-purpose registers
- Internal 32-bit architecture
- Five-stage pipeline control
- Multiplication/division instructions
- Saturated operation instructions
- One-clock 32-bit shift instruction
- Long/short instruction format
- Four types of bit manipulation instructions
  - Set
  - Clear
  - Not
  - Test

## 3.2 CPU Register Set

The registers of the V850E/MS1 can be classified into two categories: a general-purpose program register set and a dedicated system register set. The size of the registers is 32 bits.

For details, refer to V850E/MS1 User's Manual Architecture.

### (1) Program register set

| r0  | Zero Register                   |   |
|-----|---------------------------------|---|
| r1  | Reserved for Address Generation |   |
| r2  | Interrupt Stack Pointer         |   |
| r3  | Stack Pointer (SP)              |   |
| r4  | Global Pointer (GP)             |   |
| r5  | Text Pointer (TP)               |   |
| r6  |                                 |   |
| r7  |                                 |   |
| r8  |                                 |   |
| r9  |                                 |   |
| r10 |                                 |   |
| r11 |                                 |   |
| r12 |                                 |   |
| r13 |                                 |   |
| r14 |                                 |   |
| r15 |                                 |   |
| r16 |                                 |   |
| r17 |                                 |   |
| r18 |                                 |   |
| r19 |                                 |   |
| r20 |                                 |   |
| r21 |                                 |   |
| r22 |                                 |   |
| r23 |                                 |   |
| r24 |                                 |   |
| r25 |                                 |   |
| r26 |                                 |   |
| r27 |                                 |   |
| r28 |                                 |   |
| r29 |                                 |   |
| r30 | Element Pointer (EP)            |   |
| r31 | Link Pointer (LP)               |   |
|     |                                 |   |
| 1   |                                 | ( |

### (2) System register set

| 31    |                          | 0 |  |
|-------|--------------------------|---|--|
| EIPC  | Exception/Interrupt PC   |   |  |
| EIPSW | Exception/Interrupt PSW  |   |  |
|       |                          |   |  |
| 31    |                          | 0 |  |
| FEPC  | Fatal Error PC           |   |  |
| FEPSW | Fatal Error PSW          |   |  |
|       |                          |   |  |
| 31    |                          | 0 |  |
| ECR   | Exception Cause Register |   |  |
|       |                          |   |  |
| 31    |                          | 0 |  |
| PSW   | Program Status Word      |   |  |
|       |                          |   |  |
| 31    |                          | 0 |  |
| CTPC  | CALLT Caller PC          |   |  |
| CTPSW | CALLT Caller PSW         |   |  |
|       |                          |   |  |
| 31    |                          | 0 |  |
| DBPC  | ILGOP Caller PC          |   |  |
| DBPSW | ILGOP Caller PSW         |   |  |
|       |                          |   |  |
| 31    |                          | 0 |  |
| CTBP  | CALLT Base Pointer       |   |  |
|       |                          |   |  |

### 3.2.1 Program register set

The program register set includes general-purpose registers and a program counter.

### (1) General-purpose registers

Thirty-two general-purpose registers, r0 to r31, are available. Any of these registers can be used as a data variable or address variable.

However, r0 and r30 are implicitly used by instructions, and care must be exercised when using these registers. Also, r1 to r5 and r31 are implicitly used by the assembler and C compiler. Therefore, before using these registers, their contents must be saved so that they are not lost. The contents must be restored to the registers after the registers have been used.

| Name      | Usage                       | Operation                                                                       |
|-----------|-----------------------------|---------------------------------------------------------------------------------|
| rO        | Zero register               | Always holds 0                                                                  |
| r1        | Assembler-reserved register | Working register for generating 32-bit immediate data                           |
| r2        | Interrupt stack pointer     | Stack pointer for interrupt handler                                             |
| r3        | Stack pointer               | Used to generate stack frame when function is called                            |
| r4        | Global pointer              | Used to access global variable in data area                                     |
| r5        | Text pointer                | Register to indicate the start of the text area (where program code is located) |
| r6 to r29 |                             | Address/data variable registers                                                 |
| r30       | Element pointer             | Base pointer when memory is accessed                                            |
| r31       | Link pointer                | Used by compiler when calling function                                          |
| PC        | Program counter             | Holds instruction address during program execution                              |

### Table 3-1. Program Registers

### (2) Program counter

This register holds the instruction address during program execution. The lower 26 bits of this register are valid, and bits 31 to 26 are fixed to 0. If a carry occurs from bit 25 to 26, it is ignored. Bit 0 is fixed to 0, and branching to an odd address cannot be performed.

### Figure 3-1. Program Counter (PC)



### 3.2.2 System register set

System registers control the status of the CPU and hold interrupt information.

| No.      | System Register Name | Usage                                      | Operation                                                                                                                                                                                                                                                                                                                                                                            |
|----------|----------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | EIPC                 | Status saving register during<br>interrupt | These registers save the PC and PSW when a software exception or interrupt occurs. Because only                                                                                                                                                                                                                                                                                      |
| 1        | EIPSW                |                                            | one set of these registers is available, their contents must be saved when multiple interrupts are enabled.                                                                                                                                                                                                                                                                          |
| 2        | FEPC                 | Status saving register during              | These registers save the PC and PSW when an NMI                                                                                                                                                                                                                                                                                                                                      |
| 3        | FEPSW                | NMI                                        | occurs.                                                                                                                                                                                                                                                                                                                                                                              |
| 4        | ECR                  | Interrupt source register                  | If an exception, maskable interrupt, or NMI occurs,<br>this register will contain information referencing the<br>interrupt source. The higher 16 bits of this register<br>are called FECC, to which the exception code of the<br>NMI is set. The lower 16 bits are called EICC, to<br>which the exception code of the exception/interrupt is<br>set.<br>Refer to <b>Figure 3-2</b> . |
| 5        | PSW                  | Program status word                        | The program status word is a collection of flags that<br>indicate the program status (instruction execution<br>result) and CPU status.<br>Refer to <b>Figure 3-3</b> .                                                                                                                                                                                                               |
| 16       | CTPC                 | Status saving register during              | If the CALLT instruction is executed, this register                                                                                                                                                                                                                                                                                                                                  |
| 17       | CTPSW                | CALLT execution                            | saves the PC and PSW.                                                                                                                                                                                                                                                                                                                                                                |
| 18       | DBPC                 | Status saving register during              | If an exception trap is generated due to detection of                                                                                                                                                                                                                                                                                                                                |
| 19       | DBPSW                | exception trap                             | an inegal instruction code, this register saves the PC and PSW.                                                                                                                                                                                                                                                                                                                      |
| 20       | СТВР                 | CALLT base pointer                         | This is used to specify the table address and generate the target address.                                                                                                                                                                                                                                                                                                           |
| 6 to 15  | Reserved             |                                            |                                                                                                                                                                                                                                                                                                                                                                                      |
| 21 to 31 |                      |                                            |                                                                                                                                                                                                                                                                                                                                                                                      |

### Table 3-2. System Register Numbers

To read/write these system registers, specify the system register number indicated by a system register load/store instruction (LDSR or STSR instruction).



### Figure 3-2. Interrupt Source Register (ECR)
| PSW      |                                                                     |      | RFU NP EP ID SAT CY OV S Z After reset<br>00000020H                                                                                                                                                |  |  |  |  |
|----------|---------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Bit Posi | tion                                                                | Flag | Function                                                                                                                                                                                           |  |  |  |  |
| 31 to    | 8                                                                   | RFU  | Reserved field (fixed to 0).                                                                                                                                                                       |  |  |  |  |
| 7 NP     |                                                                     |      | NMI Pending<br>Indicates that NMI processing is in progress. This flag is set when an NMI is<br>accepted, and disables multiple interrupts.                                                        |  |  |  |  |
| 6 EP     |                                                                     |      | Exception Pending<br>Indicates that exception processing is in progress. This flag is set when an<br>exception is generated. Moreover, interrupt requests can be accepted when this<br>bit is set. |  |  |  |  |
| 5 ID     |                                                                     |      | Interrupt Disable<br>Indicates that accepting maskable interrupt request is disabled.                                                                                                              |  |  |  |  |
| 4 SAT    |                                                                     |      | Saturated Math<br>This flag is set if the result of executing saturated operation instruction overflows<br>(if overflow does not occur, value of previous operation is held).                      |  |  |  |  |
| 3        | 3 CY Carry<br>This flag is set if carry<br>does not occur, it is re |      | Carry<br>This flag is set if carry or borrow occurs as result of operation (if carry or borrow<br>does not occur, it is reset).                                                                    |  |  |  |  |
| 2        |                                                                     | OV   | Overflow<br>This flag is set if overflow occurs during operation (if overflow does not occur, it<br>is reset).                                                                                     |  |  |  |  |
| 1        |                                                                     | S    | Sign<br>This flag is set if the result of operation is negative (it is reset if the result is<br>positive).                                                                                        |  |  |  |  |
| 0        |                                                                     | Z    | Zero<br>This flag is set if the result of operation is zero (if the result is not zero, it is reset).                                                                                              |  |  |  |  |

## 3.3 Operation Modes

## 3.3.1 Operation modes

The V850E/MS1 has the following operation modes. Mode specification is carried out by MODE0 to MODE3.

### (1) Normal operation mode

## (a) Single-chip modes 0, 1

Access to the internal ROM is enabled.

In single-chip mode 0, after system reset is cancelled, each pin related to the bus interface enters the port mode, branches to the reset entry address of the internal ROM and starts instruction processing. The external expansion mode, which connects an external device to external memory area, is enabled by setting the memory expansion mode register (MM: refer to **3.4.6 (1)**) with an instruction.

In single-chip mode 1, after system reset is cancelled, each pin related to the bus interface enters the control mode, branches to the external device (memory) reset entry address and starts instruction processing.

The internal ROM area is mapped from address 100000H.

### (b) ROM-less modes 0, 1

After system reset is cancelled, each pin related to the bus interface enters the control mode, branches to the external device (memory) reset entry address and starts instruction processing. Fetching of instructions and data access from internal ROM becomes impossible.

In ROM-less mode 0, the data bus is a 16-bit data bus and in ROM-less mode 1, the data bus is an 8-bit data bus.

### (2) Flash memory programming mode ( $\mu$ PD70F3102 and 70F3102A only)

If this mode is specified, it becomes possible for the flash programmer to run a program to the internal flash memory.

## 3.3.2 Operation mode specification

The operation mode is specified according to the status of pins MODE0 to MODE3. In an application system fix the specification of these pins and do not change them during operation.

Operation is not guaranteed if these pins are changed during operation.

### (a) μPD703100, 703100A

| MODE3            | MODE2 | MODE1 | MODE0 | Operation Mode     |                 | External Data<br>Bus Width | Remarks |
|------------------|-------|-------|-------|--------------------|-----------------|----------------------------|---------|
| L                | L     | L     | L     | Normal operation   | ROM-less mode 0 | 16 bits                    | _       |
| L                | L     | L     | н     | mode               | ROM-less mode 1 | 8 bits                     |         |
| Other than above |       |       |       | Setting prohibited |                 | —                          |         |

## (b) μPD703101, 703101A, 703102, 703102A

| MODE3      | MODE2   | MODE1 | MODE0 | Operation Mode     |                    | External Data<br>Bus Width | Remarks                                                       |
|------------|---------|-------|-------|--------------------|--------------------|----------------------------|---------------------------------------------------------------|
| L          | L       | L     | L     | Normal operation   | ROM-less mode 0    | 16 bits                    | —                                                             |
| L          | L       | L     | Н     | mode               | ROM-less mode 1    | 8 bits                     | —                                                             |
| L          | L       | Н     | L     |                    | Single-chip mode 0 | _                          | Internal ROM<br>area is allocated<br>from address<br>000000H. |
| L          | L       | н     | Н     |                    | Single-chip mode 1 | 16 bits                    | Internal ROM<br>area is allocated<br>from address<br>100000H. |
| Other than | n above |       |       | Setting prohibited |                    | _                          | —                                                             |

## (c) µPD70F3102, 70F3102A

| MODE3/<br>VPP | MODE2   | MODE1 | MODE0 | Operation Mode                |                    | Operation Mode External Data<br>Bus Width |                                                               | Remarks |
|---------------|---------|-------|-------|-------------------------------|--------------------|-------------------------------------------|---------------------------------------------------------------|---------|
| 0 V           | L       | L     | L     | Normal operation              | ROM-less mode 0    | 16 bits                                   | _                                                             |         |
| 0 V           | L       | L     | Н     | mode                          | ROM-less mode 1    | 8 bits                                    | —                                                             |         |
| 0 V           | L       | H     | L     |                               | Single-chip mode 0 | _                                         | Internal ROM<br>area is allocated<br>from address<br>000000H. |         |
| 0 V           | L       | Н     | Н     |                               | Single-chip mode 1 | 16 bits                                   | Internal ROM<br>area is allocated<br>from address<br>100000H. |         |
| 7.8 V         | L       | Н     | L     | Flash memory programming mode |                    | —                                         | _                                                             |         |
| Other than    | n above |       |       | Setting prohibited            |                    | _                                         |                                                               |         |

Remark L: Low-level input

H: High-level input

## 3.4 Address Space

## 3.4.1 CPU address space

The CPU of the V850E/MS1 is of 32-bit architecture and supports up to 4 GB of linear address space (data space) during operand addressing (data access). Also, in instruction address addressing, a maximum of 64 MB of linear address space (program space) is supported.

Figure 3-4 shows the CPU address space.



Figure 3-4. CPU Address Space

### 3.4.2 Image

The core CPU supports 4 GB of "virtual" addressing space, or 64 memory blocks, each containing 64 MB physical address space. In actuality, the same 64 MB physical address space is accessed regardless of the values of bits 31 to 26 of the CPU address. Figure 3-5 shows the image of the virtual addressing space.

Because the higher 6 bits of a 32-bit CPU address are disregarded and access is made to a 26-bit physical address, physical address x0000000H can be seen as CPU address 00000000H, and in addition, can be seen as address 04000000H, address 08000000H, address F8000000H or address FC000000H.





## 3.4.3 Wrap-around of CPU address space

## (1) Program space

Of the 32 bits of the PC (program counter), the higher 6 bits are set to 0, and only the lower 26 bits are valid. Even if a carry or borrow occurs from bit 25 to 26 as a result of branch address calculation, the higher 6 bits ignore the carry or borrow.

Therefore, the lower-limit address of the program space, address 00000000H, and the upper-limit address 03FFFFFH become contiguous addresses. Wrap-around refers to the situation that the lower-limit address and upper-limit address become contiguous like this.

Caution No instruction can be fetched from the 4 KB area of 03FFF000H to 03FFFFFFH because this area is defined as the peripheral I/O area. Therefore, do not execute any branch address calculation in which the result will reside in any part of this area.



### (2) Data space

The result of an operand address calculation that exceeds 32 bits is ignored.

Therefore, the lower-limit address of the program space, address 00000000H, and the upper-limit address FFFFFFH are contiguous addresses, and the data space is wrapped around at the boundary of these addresses.



## 3.4.4 Memory map

The V850E/MS1 reserves areas as shown below.

Each mode is specified by the MM register and the MODE0 to MODE3 pins.



## 3.4.5 Area

## (1) Internal ROM area (µPD703101, 703101A, 703102, 703102A, 70F3102, and 70F3102A only)

# (a) Memory map

1 MB of internal ROM area, addresses 00000H to FFFFFH, is reserved.

## <1> µPD703101, 703101A

96 KB of memory, addresses 00000H to 17FFFH, is provided as physical internal ROM (mask ROM).

Also, in the remaining area (20000H to FFFFH), the image of 00000H to 1FFFFH can be seen (however, addresses 18000H to 1FFFFH are fixed at 1).



## <2> µPD703102, 703102A

128 KB of memory, addresses 00000H to 1FFFFH, is provided as physical internal ROM (mask ROM).

Also, in the remaining area (20000H to FFFFH), the image of 00000H to 1FFFFH can be seen.



### <3> μPD70F3102, 70F3102A

128 KB of memory, addresses 00000H to 1FFFFH, is provided as physical internal ROM (flash memory).

Also, in the remaining area (20000H to FFFFFH), the image of 00000H to 1FFFFH can be seen.



#### (b) Interrupt/exception table

The V850E/MS1 increases the interrupt response speed by assigning handler addresses corresponding to interrupts/exceptions.

The collection of these handler addresses is called an interrupt/exception table, which is located in the internal ROM area. When an interrupt/exception request is granted, execution jumps to the handler address, and the program written at that memory is executed. Table 3-3 shows the sources of interrupts/exceptions, and the corresponding addresses.

**Remark** When in ROM-less modes 0 and 1, or in the case of the  $\mu$ PD703100 or 703100A, the internal ROM area becomes an external memory area. In order to restore correct operation after reset, provide a handler address to the reset routine in address 0 of the external memory.

| Start Address of Interrupt/Exception Table | Interrupt/Exception Source |
|--------------------------------------------|----------------------------|
| 0000000H                                   | RESET                      |
| 0000010H                                   | NMI                        |
| 0000040H                                   | TRAP0n (n = 0 to FH)       |
| 0000050H                                   | TRAP1n (n = 0 to FH)       |
| 0000060H                                   | ILGOP                      |
| 0000080H                                   | INTOV10                    |
| 0000090H                                   | INTOV11                    |
| 00000A0H                                   | INTOV12                    |
| 00000B0H                                   | INTOV13                    |
| 00000C0H                                   | INTOV14                    |
| 00000D0H                                   | INTOV15                    |
| 00000100H                                  | INTP100/INTCC100           |
| 00000110H                                  | INTP101/INTCC101           |
| 00000120H                                  | INTP102/INTCC102           |
| 00000130H                                  | INTP103/INTCC103           |
| 00000140H                                  | INTP110/INTCC110           |
| 00000150H                                  | INTP111/INTCC111           |
| 00000160H                                  | INTP112/INTCC112           |
| 00000170H                                  | INTP113/INTCC113           |
| 00000180H                                  | INTP120/INTCC120           |
| 00000190H                                  | INTP121/INTCC121           |
| 000001A0H                                  | INTP122/INTCC122           |
| 000001B0H                                  | INTP123/INTCC123           |
| 000001C0H                                  | INTP130/INTCC130           |
| 000001D0H                                  | INTP131/INTCC131           |
| 000001E0H                                  | INTP132/INTCC132           |
| 000001F0H                                  | INTP133/INTCC133           |
| 00000200H                                  | INTP140/INTCC140           |
| 00000210H                                  | INTP141/INTCC141           |
| 00000220H                                  | INTP142/INTCC142           |
| 00000230H                                  | INTP143/INTCC143           |
| 00000240H                                  | INTP150/INTCC150           |
| 00000250H                                  | INTP151/INTCC151           |
| 00000260H                                  | INTP152/INTCC152           |
| 00000270H                                  | INTP153/INTCC153           |
| 00000280H                                  | INTCM40                    |

## Table 3-3. Interrupt/Exception Table (1/2)

| Start Address of Interrupt/Exception Table | Interrupt/Exception Source |
|--------------------------------------------|----------------------------|
| 00000290H                                  | INTCM41                    |
| 000002A0H                                  | INTDMA0                    |
| 000002B0H                                  | INTDMA1                    |
| 000002C0H                                  | INTDMA2                    |
| 000002D0H                                  | INTDMA3                    |
| 00000300H                                  | INTCSI0                    |
| 00000310H                                  | INTSER0                    |
| 00000320H                                  | INTSR0                     |
| 00000330H                                  | INTST0                     |
| 00000340H                                  | INTCSI1                    |
| 00000350H                                  | INTSER1                    |
| 00000360H                                  | INTSR1                     |
| 00000370H                                  | INTST1                     |
| 00000380H                                  | INTCSI2                    |
| 000003C0H                                  | INTCSI3                    |
| 00000400H                                  | INTAD                      |

### Table 3-3. Interrupt/Exception Table (2/2)

## (c) Internal ROM area relocation function

If set in single-chip mode 1, the internal ROM area is located beginning from address 100000H, so booting from external memory becomes possible.

Therefore, in order to restore correct operation after reset, provide a handler address to the reset routine in address 0 of the external memory.



Figure 3-6. Internal ROM Area in Single-Chip Mode 1

## (2) Internal RAM area

4 KB of memory, addresses 3FFE000H to 3FFEFFH, is provided as a physical internal RAM area.



#### (3) Internal peripheral I/O area

4 KB of memory, addresses 3FFF000H to 3FFFFFFH, is provided as an internal peripheral I/O area.



Peripheral I/O registers associated with the operation mode specification and the state monitoring for the internal peripheral I/O are all memory-mapped to the internal peripheral I/O area. Program fetches are not allowed in this area.

- Cautions 1. The least significant bit of an address is not decoded. If byte access is executed in the register at an odd address (2n + 1), the register at the even address (2n) will be accessed because of the hardware specification.
  - 2. In the V850E/MS1, no registers exist which are capable of word access, but if word access is executed in the register, for the word area, disregarding the bottom 2 bits of the address, halfword access is performed twice in the order of lower, then higher.
  - 3. For registers in which byte access is possible, if halfword access is executed, the higher 8 bits become non-specific during the read operation, and the lower 8 bits of data are written to the register during the write operation.
  - 4. Addresses that are not defined as registers are reserved for future expansion. If these addresses are accessed, the operation is undefined and not guaranteed.

## (4) External memory area

The following areas can be used as external memory area. However, the reserved area from x1000000H to x2FFFFFH is excluded.

## (a) μPD703101, 703101A, 703102, 703102A, 70F3102, 70F3102A

When in single-chip mode 0:x0100000H to x3FFDFFHWhen in single-chip mode 1:x0000000H to x00FFFFH, x0200000H to x3FFDFFFHWhen in ROM-less modes 0 and 1:x0000000H to x3FFDFFFH

## (b) *μ*PD703100, 703100A

x000000H to x3FFDFFFH

Access to the external memory area uses the chip select signal assigned to each memory block (refer to **4.4 Bus Cycle Type Control Function**).

Note that the internal ROM, internal RAM and internal peripheral I/O areas cannot be accessed as external memory areas.

#### 3.4.6 External expansion mode

The V850E/MS1 allows external devices to be connected to the external memory space by using the pins of ports 4, 5, 6, A, and B. Setting the external expansion mode is carried out by selecting each pin of ports 4, 5, 6, A, and B in the control mode by means of the MM register.

Note that the status at reset time differs as shown below in accordance with the operating mode specification set by pins MODE0 to MODE3 (refer to **3.3 Operation Modes** for details of the operation modes).

#### (1) Status at reset time in each operation mode

#### (a) In the case of ROM-less mode 0

At reset time, each pin of ports 4, 5, 6, A, and B enters the control mode, so the external expansion mode is set without changing the MM register (the external data bus width is 16 bits).

#### (b) In the case of ROM-less mode 1

At reset time, each pin of ports 4, 5, 6, A, and B enters the control mode, so the external expansion mode is set without changing the setting of the MM register (the external data bus width is 8 bits).

#### (c) In the case of single-chip mode 0

At reset time, since the internal ROM area is accessed, each pin of ports 4, 5, 6, A, and B enters the port mode and external devices cannot be used.

Set the MM register to change to the external expansion mode.

#### (d) In the case of single-chip mode 1

Internal ROM area is allocated from address 100000H (Refer to **3.4.5 (1) (c) Internal ROM area relocation function**). For that reason, at reset time, each pin of ports 4, 5, 6, A, and B enters the control mode, and is set in the external expansion mode without changing the settings of the MM register (the external data bus width becomes 16 bits).

#### (2) Memory expansion mode register (MM)

This register sets the mode of each pin of ports 4, 5, 6, A, and B. In the external expansion mode, an external device can be connected to an external memory area of up to 32 MB. However, an external device cannot be connected to the internal RAM area, internal peripheral I/O area, and internal ROM area in the single-chip modes 0, 1 (even if connected physically, it does not become an access target.).

The MM register can be read/written in 8- or 1-bit units. However, bits 4 to 7 are fixed to 0.



Caution Write to the MM register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the MM register is complete. However, it is possible to access an external memory area whose initialization is complete.

Remarks 1. For details of the operation of each port's pins, refer to 2.3 Description of Pin Functions.2. The function of each port at system reset time is as shown below.

| Operation Mode     | MM Register | Port 4     | Port 5     | Port A     | Port B     | Port 6     |
|--------------------|-------------|------------|------------|------------|------------|------------|
| ROM-less mode 0    | 07H         | D0 to D7   | D8 to D15  | A0 to A7   | A8 to A15  | A16 to A23 |
| ROM-less mode 1    | 0FH         |            | P50 to P57 |            |            |            |
| Single-chip mode 0 | 00H         | P40 to P47 | P50 to P57 | PA0 to PA7 | PB0 to PB7 | P60 to P67 |
| Single-chip mode 1 | 07H         | D0 to D7   | D8 to D15  | A0 to A7   | A8 to A15  | A16 to A23 |

#### 3.4.7 Recommended use of address space

The architecture of the V850E/MS1 requires that a register that serves as a pointer be secured for address generation when accessing the operand data in the data space. An instruction can be used to directly access operand data at the address in this pointer register  $\pm$ 32 KB. However, the general-purpose registers that can be used as a pointer register are limited. Therefore, by minimizing the deterioration of address calculation performance when changing the pointer value, the number of usable general-purpose registers for handling variables is maximized, and the program size can be saved.

To enhance the efficiency of using the pointer in connection with the memory map of the V850E/MS1, the following points are recommended:

#### (1) Program space

Of the 32 bits of the PC (program counter), the higher 6 bits are fixed to 0, and only the lower 26 bits are valid. Therefore, a contiguous 64 MB space, starting from address 00000000H, unconditionally corresponds to the memory map of the program space.

## (2) Data space

For the efficient use of resources using the wrap-around feature of the data space, the continuous 16 MB address spaces 00000000H to 00FFFFFFH and FF000000H to FFFFFFFH of the 4 GB CPU are used as the data space. With the V850E/MS1, the 64 MB physical address space is seen as 64 images in the 4 GB CPU address space. The highest bit (bit 25) of this 26-bit address is assigned as address sign-extended to 32 bits.





When R = r0 (zero register) is specified for the LD/ST disp16 [R] instruction, an addressing range of 00000000H ±32 KB can be referenced with the sign-extended, 16-bit displacement value. By mapping the external memory in the 24 KB area in the figure, all resources including internal hardware can be accessed with one pointer.

The zero register (r0) is a register set to 0 by hardware, and eliminates the need for additional registers for the pointer.





# 3.4.8 Peripheral I/O registers

| Address   | Function Register Name         | Symbol | R/\//   | Bit Units for Manipulation |        |         | (1/8)<br>After  |
|-----------|--------------------------------|--------|---------|----------------------------|--------|---------|-----------------|
| Audiess   |                                | Symbol | FV/ V V | 1 hit                      | 8 hite | 16 hite | Reset           |
| FFFFF000H | Port 0                         | P0     | R/W     | 0                          | 0.0    | 10 5110 | Undefined       |
| FFFFF002H | Port 1                         | P1     |         | 0                          | 0      |         |                 |
| FFFFF004H | Port 2                         | P2     |         | 0                          | 0      |         |                 |
| FFFFF006H | Port 3                         | P3     |         | 0                          | 0      |         |                 |
| FFFFF008H | Port 4                         | P4     |         | 0                          | 0      |         |                 |
| FFFFF00AH | Port 5                         | P5     |         | 0                          | 0      |         |                 |
| FFFFF00CH | Port 6                         | P6     |         | 0                          | 0      |         |                 |
| FFFFF00EH | Port 7                         | P7     | R       | 0                          | 0      |         |                 |
| FFFFF010H | Port 8                         | P8     | R/W     | 0                          | 0      |         |                 |
| FFFFF012H | Port 9                         | P9     |         | 0                          | 0      |         |                 |
| FFFFF014H | Port 10                        | P10    |         | 0                          | 0      |         |                 |
| FFFFF016H | Port 11                        | P11    |         | 0                          | 0      |         |                 |
| FFFFF018H | Port 12                        | P12    |         | 0                          | 0      |         |                 |
| FFFFF01CH | Port A                         | PA     |         | 0                          | 0      |         |                 |
| FFFFF01EH | Port B                         | PB     |         | 0                          | 0      |         |                 |
| FFFFF020H | Port 0 mode register           | PM0    |         | 0                          | 0      |         | FFH             |
| FFFFF022H | Port 1 mode register           | PM1    |         | 0                          | 0      |         |                 |
| FFFFF024H | Port 2 mode register           | PM2    |         | 0                          | 0      |         |                 |
| FFFFF026H | Port 3 mode register           | PM3    |         | 0                          | 0      |         |                 |
| FFFFF028H | Port 4 mode register           | PM4    |         | 0                          | 0      |         |                 |
| FFFFF02AH | Port 5 mode register           | PM5    |         | 0                          | 0      |         |                 |
| FFFFF02CH | Port 6 mode register           | PM6    |         | 0                          | 0      |         |                 |
| FFFFF030H | Port 8 mode register           | PM8    |         | 0                          | 0      |         |                 |
| FFFFF032H | Port 9 mode register           | PM9    |         | 0                          | 0      |         |                 |
| FFFFF034H | Port 10 mode register          | PM10   |         | 0                          | 0      |         |                 |
| FFFFF036H | Port 11 mode register          | PM11   |         | 0                          | 0      |         |                 |
| FFFFF038H | Port 12 mode register          | PM12   |         | 0                          | 0      |         |                 |
| FFFFF03CH | Port A mode register           | PMA    |         | 0                          | 0      |         |                 |
| FFFFF03EH | Port B mode register           | PMB    |         | 0                          | 0      |         |                 |
| FFFFF040H | Port 0 mode control register   | PMC0   |         | 0                          | 0      |         | 00H             |
| FFFFF042H | Port 1 mode control register   | PMC1   |         | 0                          | 0      |         |                 |
| FFFFF044H | Port 2 mode control register   | PMC2   |         | 0                          | 0      |         | 01H             |
| FFFFF046H | Port 3 mode control register   | PMC3   |         | 0                          | 0      |         | 00H             |
| FFFFF04CH | Memory expansion mode register | MM     |         | 0                          | 0      |         | 00H/07H/<br>0FH |

| Address   | Function Register Name                          | Symbol  | P/M     | Bit I Init | s for Mani              | pulation | After           |
|-----------|-------------------------------------------------|---------|---------|------------|-------------------------|----------|-----------------|
| Audiess   | FULCION REGISTER MAINE                          | Зуппоог | Γ\/ V V | 1 hit      | 8 IUI IVIAIII<br>8 hits | 16 hits  | Reset           |
| FFFF050H  | Port 8 mode control register                    | PMC8    | R/W     | 0          | 0 0103                  | 10 013   | 00H/FFH         |
| FFFF052H  | Port 9 mode control register                    | PMC9    | 1.,     | 0          | 0                       |          | 001,711.11      |
| FFFF054H  | Port 10 mode control register                   | PMC10   | -       | 0          | 0                       |          | 00H             |
| FFFFF056H | Port 11 mode control register                   | PMC11   | -       | 0          | 0                       |          |                 |
| FFFFF058H | Port 12 mode control register                   | PMC12   |         | 0          | 0                       |          | -               |
| FFFFF060H | Data wait control register 1                    | DWC1    | -       |            | -                       | 0        | FFFFH           |
| FFFFF062H | Bus cycle control register                      | BCC     | -       |            |                         | 0        | 5555H           |
| FFFFF064H | Bus cycle type control register                 | BCT     | -       |            |                         | 0        | 0000H           |
| FFFFF066H | Bus size configuration register                 | BSC     |         |            |                         | 0        | 5555H/<br>0000H |
| FFFF06AH  | Data wait control register 2                    | DWC2    |         | 0          | 0                       |          | FFH             |
| FFFFF06CH | Fly-by transfer data wait control register      | FDW     |         | 0          | 0                       |          | 00H             |
| FFFFF070H | Power save control register                     | PSC     |         | 0          | 0                       |          |                 |
| FFFFF072H | Clock control register                          | СКС     |         | 0          | 0                       |          | -               |
| FFFFF078H | System status register                          | SYS     | -       | 0          | 0                       |          | 0000000×B       |
| FFFFF084H | Baud rate generator compare register 0          | BRGC0   |         | 0          | 0                       |          | Undefined       |
| FFFFF086H | Baud rate generator prescaler mode register 0   | BPRM0   |         | 0          | 0                       |          | 00H             |
| FFFFF088H | Clocked serial interface mode register 0        | CSIM0   |         | 0          | 0                       |          |                 |
| FFFFF08AH | Serial I/O shift register 0                     | SIO0    |         | 0          | 0                       |          | Undefined       |
| FFFFF094H | Baud rate generator compare register 1          | BRGC1   |         | 0          | 0                       |          |                 |
| FFFFF096H | Baud rate generator prescaler mode register 1   | BPRM1   |         | 0          | 0                       |          | 00H             |
| FFFFF098H | Clocked serial interface mode register 1        | CSIM1   |         | 0          | 0                       |          |                 |
| FFFFF09AH | Serial I/O shift register 1                     | SIO1    |         | 0          | 0                       |          | Undefined       |
| FFFFF0A4H | Baud rate generator compare register 2          | BRGC2   |         | 0          | 0                       |          |                 |
| FFFFF0A6H | Baud rate generator prescaler mode register 2   | BPRM2   |         | 0          | 0                       |          | 00H             |
| FFFFF0A8H | Clocked serial interface mode register 2        | CSIM2   |         | 0          | 0                       |          |                 |
| FFFFF0AAH | Serial I/O shift register 2                     | SIO2    |         | 0          | 0                       |          | Undefined       |
| FFFFF0B8H | Clocked serial interface mode register 3        | CSIM3   |         | 0          | 0                       |          | 00H             |
| FFFFF0BAH | Serial I/O shift register 3                     | SIO3    |         | 0          | 0                       |          | Undefined       |
| FFFFF0C0H | Asynchronous serial interface mode register 00  | ASIM00  |         | 0          | 0                       |          | 80H             |
| FFFFF0C2H | Asynchronous serial interface mode register 01  | ASIM01  |         | 0          | 0                       |          | 00H             |
| FFFFF0C4H | Asynchronous serial interface status register 0 | ASIS0   | R       | 0          | 0                       |          |                 |
| FFFFF0C8H | Receive buffer 0 (9 bits)                       | RXB0    |         |            |                         | 0        | Undefined       |
| FFFFF0CAH | Receive buffer 0L (lower 8 bits)                | RXB0L   |         | 0          | 0                       |          | ]               |
| FFFFF0CCH | Transmit shift register 0 (9 bits)              | TXS0    | W       |            |                         | 0        |                 |
| FFFFF0CEH | Transmit shift register 0L (lower 8 bits)       | TXS0L   | ]       |            | 0                       |          |                 |

|           |                                                 |        |     |          |                            |         | (3/8)     |
|-----------|-------------------------------------------------|--------|-----|----------|----------------------------|---------|-----------|
| Address   | Function Register Name                          | Symbol | R/W | Bit Unit | Bit Units for Manipulation |         | After     |
|           |                                                 |        |     | 1 bit    | 8 bits                     | 16 bits | Reset     |
| FFFFF0D0H | Asynchronous serial interface mode register 10  | ASIM10 | R/W | 0        | 0                          |         | 80H       |
| FFFFF0D2H | Asynchronous serial interface mode register 11  | ASIM11 |     | 0        | 0                          |         | 00H       |
| FFFFF0D4H | Asynchronous serial interface status register 1 | ASIS1  | R   | 0        | 0                          |         |           |
| FFFFF0D8H | Receive buffer 1 (9 bits)                       | RXB1   |     |          |                            | 0       | Undefined |
| FFFFF0DAH | Receive buffer 1L (lower 8 bits)                | RXB1L  |     | 0        | 0                          |         |           |
| FFFFF0DCH | Transmit shift register 1 (9 bits)              | TXS1   | W   |          |                            | 0       |           |
| FFFFF0DEH | Transmit shift register 1L (lower 8 bits)       | TXS1L  |     |          | 0                          |         |           |
| FFFFF100H | Interrupt control register                      | OVIC10 | R/W | 0        | 0                          |         | 47H       |
| FFFFF102H | Interrupt control register                      | OVIC11 |     | 0        | 0                          |         |           |
| FFFFF104H | Interrupt control register                      | OVIC12 |     | 0        | 0                          |         |           |
| FFFFF106H | Interrupt control register                      | OVIC13 |     | 0        | 0                          |         |           |
| FFFFF108H | Interrupt control register                      | OVIC14 |     | 0        | 0                          |         |           |
| FFFFF10AH | Interrupt control register                      | OVIC15 |     | 0        | 0                          |         |           |
| FFFFF10CH | Interrupt control register                      | CMIC40 |     | 0        | 0                          |         |           |
| FFFFF10EH | Interrupt control register                      | CMIC41 |     | 0        | 0                          |         |           |
| FFFFF110H | Interrupt control register                      | P10IC0 |     | 0        | 0                          |         |           |
| FFFFF112H | Interrupt control register                      | P10IC1 |     | 0        | 0                          |         |           |
| FFFFF114H | Interrupt control register                      | P10IC2 |     | 0        | 0                          |         |           |
| FFFFF116H | Interrupt control register                      | P10IC3 |     | 0        | 0                          |         |           |
| FFFFF118H | Interrupt control register                      | P11IC0 |     | 0        | 0                          |         |           |
| FFFFF11AH | Interrupt control register                      | P11IC1 |     | 0        | 0                          |         |           |
| FFFFF11CH | Interrupt control register                      | P11IC2 |     | 0        | 0                          |         |           |
| FFFFF11EH | Interrupt control register                      | P11IC3 |     | 0        | 0                          |         |           |
| FFFFF120H | Interrupt control register                      | P12IC0 |     | 0        | 0                          |         |           |
| FFFFF122H | Interrupt control register                      | P12IC1 |     | 0        | 0                          |         |           |
| FFFFF124H | Interrupt control register                      | P12IC2 |     | 0        | 0                          |         |           |
| FFFFF126H | Interrupt control register                      | P12IC3 |     | 0        | 0                          |         |           |
| FFFFF128H | Interrupt control register                      | P13IC0 |     | 0        | 0                          |         |           |
| FFFFF12AH | Interrupt control register                      | P13IC1 |     | 0        | 0                          |         |           |
| FFFFF12CH | Interrupt control register                      | P13IC2 |     | 0        | 0                          |         |           |
| FFFFF12EH | Interrupt control register                      | P13IC3 |     | 0        | 0                          |         |           |
| FFFFF130H | Interrupt control register                      | P14IC0 |     | 0        | 0                          |         |           |
| FFFFF132H | Interrupt control register                      | P14IC1 |     | 0        | 0                          |         |           |
| FFFFF134H | Interrupt control register                      | P14IC2 |     | 0        | 0                          |         |           |
| FFFFF136H | Interrupt control register                      | P14IC3 |     | 0        | 0                          |         |           |

| Address   | Function Register Name              | Symbol | R/W | Bit Unit | ts for Mani | pulation | After     |
|-----------|-------------------------------------|--------|-----|----------|-------------|----------|-----------|
|           |                                     |        |     | 1 bit    | 8 bits      | 16 bits  | Reset     |
| FFFFF138H | Interrupt control register          | P15IC0 | R/W | 0        | 0           |          | 47H       |
| FFFFF13AH | Interrupt control register          | P15IC1 |     | 0        | 0           |          |           |
| FFFFF13CH | Interrupt control register          | P15IC2 |     | 0        | 0           |          |           |
| FFFFF13EH | Interrupt control register          | P15IC3 |     | 0        | 0           |          |           |
| FFFFF140H | Interrupt control register          | DMAIC0 |     | 0        | 0           |          |           |
| FFFFF142H | Interrupt control register          | DMAIC1 |     | 0        | 0           |          |           |
| FFFFF144H | Interrupt control register          | DMAIC2 |     | 0        | 0           |          |           |
| FFFFF146H | Interrupt control register          | DMAIC3 |     | 0        | 0           |          |           |
| FFFFF148H | Interrupt control register          | CSIC0  |     | 0        | 0           |          |           |
| FFFFF14AH | Interrupt control register          | CSIC1  |     | 0        | 0           |          |           |
| FFFFF14CH | Interrupt control register          | CSIC2  |     | 0        | 0           |          |           |
| FFFFF14EH | Interrupt control register          | CSIC3  |     | 0        | 0           |          |           |
| FFFFF150H | Interrupt control register          | SEIC0  |     | 0        | 0           |          |           |
| FFFFF152H | Interrupt control register          | SRIC0  |     | 0        | 0           |          |           |
| FFFFF154H | Interrupt control register          | STIC0  |     | 0        | 0           |          |           |
| FFFFF156H | Interrupt control register          | SEIC1  |     | 0        | 0           |          |           |
| FFFFF158H | Interrupt control register          | SRIC1  |     | 0        | 0           |          |           |
| FFFFF15AH | Interrupt control register          | STIC1  |     | 0        | 0           |          |           |
| FFFFF15CH | Interrupt control register          | ADIC   |     | 0        | 0           |          |           |
| FFFFF166H | In-service priority register        | ISPR   | R   | 0        | 0           |          | 00H       |
| FFFFF170H | Command register                    | PRCMD  | W   |          | 0           |          | Undefined |
| FFFFF180H | External interrupt mode register 0  | INTM0  | R/W | 0        | 0           |          | 00H       |
| FFFFF182H | External interrupt mode register 1  | INTM1  |     | 0        | 0           |          |           |
| FFFFF184H | External interrupt mode register 2  | INTM2  |     | 0        | 0           |          |           |
| FFFFF186H | External interrupt mode register 3  | INTM3  |     | 0        | 0           |          |           |
| FFFFF188H | External interrupt mode register 4  | INTM4  |     | 0        | 0           |          |           |
| FFFFF18AH | External interrupt mode register 5  | INTM5  |     | 0        | 0           |          |           |
| FFFFF18CH | External interrupt mode register 6  | INTM6  |     | 0        | 0           |          |           |
| FFFFF1A0H | DMA source address register 0H      | DSA0H  |     |          |             | 0        | Undefined |
| FFFFF1A2H | DMA source address register 0L      | DSA0L  |     |          |             | 0        |           |
| FFFFF1A4H | DMA destination address register 0H | DDA0H  |     |          |             | 0        |           |
| FFFFF1A6H | DMA destination address register 0L | DDA0L  |     |          |             | 0        |           |
| FFFFF1A8H | DMA source address register 1H      | DSA1H  |     |          |             | 0        |           |
| FFFFF1AAH | DMA source address register 1L      | DSA1L  | ]   |          |             | 0        |           |
| FFFFF1ACH | DMA destination address register 1H | DDA1H  |     |          |             | 0        |           |
| FFFFF1AEH | DMA destination address register 1L | DDA1L  |     |          |             | 0        |           |

|           |                                     | Ĩ      |     |          |            |          | (5/8)     |
|-----------|-------------------------------------|--------|-----|----------|------------|----------|-----------|
| Address   | Function Register Name              | Symbol | R/W | Bit Unit | s for Mani | pulation | After     |
|           |                                     |        |     | 1 bit    | 8 bits     | 16 bits  | Reset     |
| FFFFF1B0H | DMA source address register 2H      | DSA2H  | R/W |          |            | 0        | Undefined |
| FFFFF1B2H | DMA source address register 2L      | DSA2L  |     |          |            | 0        |           |
| FFFFF1B4H | DMA destination address register 2H | DDA2H  |     |          |            | 0        |           |
| FFFFF1B6H | DMA destination address register 2L | DDA2L  |     |          |            | 0        |           |
| FFFFF1B8H | DMA source address register 3H      | DSA3H  |     |          |            | 0        |           |
| FFFFF1BAH | DMA source address register 3L      | DSA3L  |     |          |            | 0        |           |
| FFFFF1BCH | DMA destination address register 3H | DDA3H  |     |          |            | 0        |           |
| FFFFF1BEH | DMA destination address register 3L | DDA3L  |     |          |            | 0        |           |
| FFFFF1E0H | DMA byte count register 0           | DBC0   |     |          |            | 0        |           |
| FFFFF1E2H | DMA byte count register 1           | DBC1   |     |          |            | 0        |           |
| FFFFF1E4H | DMA byte count register 2           | DBC2   |     |          |            | 0        |           |
| FFFFF1E6H | DMA byte count register 3           | DBC3   |     |          |            | 0        |           |
| FFFFF1F0H | DMA addressing control register 0   | DADC0  |     |          |            | 0        | 0000H     |
| FFFFF1F2H | DMA addressing control register 1   | DADC1  |     |          |            | 0        |           |
| FFFFF1F4H | DMA addressing control register 2   | DADC2  |     |          |            | 0        |           |
| FFFFF1F6H | DMA addressing control register 3   | DADC3  |     |          |            | 0        |           |
| FFFFF200H | DRAM configuration register 0       | DRC0   |     |          |            | 0        | 3FC1H     |
| FFFFF202H | DRAM configuration register 1       | DRC1   |     |          |            | 0        |           |
| FFFFF204H | DRAM configuration register 2       | DRC2   |     |          |            | 0        |           |
| FFFFF206H | DRAM configuration register 3       | DRC3   |     |          |            | 0        |           |
| FFFFF210H | Refresh control register 0          | RFC0   |     |          |            | 0        | 0000H     |
| FFFFF212H | Refresh control register 1          | RFC1   |     |          |            | 0        |           |
| FFFFF214H | Refresh control register 2          | RFC2   |     |          |            | 0        |           |
| FFFFF216H | Refresh control register 3          | RFC3   |     |          |            | 0        |           |
| FFFFF218H | Refresh wait control register       | RWC    |     | 0        | 0          |          | 00H       |
| FFFFF220H | DRAM type configuration register    | DTC    |     |          |            | 0        | 0000H     |
| FFFFF224H | Page-ROM configuration register     | PRC    |     | 0        | 0          |          | E0H       |
| FFFFF230H | Timer overflow status register      | TOVS   |     | 0        | 0          |          | 00H       |
| FFFFF240H | Timer unit mode register 10         | TUM10  |     |          |            | 0        | 0000H     |
| FFFFF242H | Timer control register 10           | TMC10  |     | 0        | 0          |          | 00H       |
| FFFFF244H | Timer output control register 10    | TOC10  |     | 0        | 0          |          |           |
| FFFFF250H | Timer 10                            | TM10   | R   |          |            | 0        | 0000H     |
| FFFFF252H | Capture/compare register 100        | CC100  | R/W |          |            | 0        | Undefined |
| FFFFF254H | Capture/compare register 101        | CC101  |     |          |            | 0        |           |
| FFFFF256H | Capture/compare register 102        | CC102  |     |          |            | 0        |           |
| FFFFF258H | Capture/compare register 103        | CC103  |     |          |            | 0        |           |

|           |                                  | 1      |     |          |            |          | (6/8)     |
|-----------|----------------------------------|--------|-----|----------|------------|----------|-----------|
| Address   | Function Register Name           | Symbol | R/W | Bit Unit | s for Mani | pulation | After     |
|           |                                  | 1      |     | 1 bit    | 8 bits     | 16 bits  | Reset     |
| FFFF260H  | Timer unit mode register 11      | TUM11  | R/W |          |            | 0        | 0000H     |
| FFFFF262H | Timer control register 11        | TMC11  |     | 0        | 0          |          | 00H       |
| FFFFF264H | Timer output control register 11 | TOC11  |     | 0        | 0          |          |           |
| FFFFF270H | Timer 11                         | TM11   | R   |          |            | 0        | 0000H     |
| FFFFF272H | Capture/compare register 110     | CC110  | R/W |          |            | 0        | Undefined |
| FFFFF274H | Capture/compare register 111     | CC111  |     |          |            | 0        |           |
| FFFFF276H | Capture/compare register 112     | CC112  |     |          |            | 0        |           |
| FFFFF278H | Capture/compare register 113     | CC113  |     |          |            | 0        |           |
| FFFFF280H | Timer unit mode register 12      | TUM12  |     |          |            | 0        | 0000H     |
| FFFFF282H | Timer control register 12        | TMC12  |     | 0        | 0          |          | 00H       |
| FFFFF284H | Timer output control register 12 | TOC12  |     | 0        | 0          |          |           |
| FFFFF290H | Timer 12                         | TM12   | R   |          |            | 0        | 0000H     |
| FFFFF292H | Capture/compare register 120     | CC120  | R/W |          |            | 0        | Undefined |
| FFFFF294H | Capture/compare register 121     | CC121  |     |          |            | 0        |           |
| FFFFF296H | Capture/compare register 122     | CC122  |     |          |            | 0        |           |
| FFFFF298H | Capture/compare register 123     | CC123  |     |          |            | 0        |           |
| FFFFF2A0H | Timer unit mode register 13      | TUM13  |     |          |            | 0        | 0000H     |
| FFFFF2A2H | Timer control register 13        | TMC13  |     | 0        | 0          |          | 00H       |
| FFFFF2A4H | Timer output control register 13 | TOC13  |     | 0        | 0          |          |           |
| FFFFF2B0H | Timer 13                         | TM13   | R   |          |            | 0        | 0000H     |
| FFFFF2B2H | Capture/compare register 130     | CC130  | R/W |          |            | 0        | Undefined |
| FFFFF2B4H | Capture/compare register 131     | CC131  |     |          |            | 0        |           |
| FFFFF2B6H | Capture/compare register 132     | CC132  |     |          |            | 0        |           |
| FFFFF2B8H | Capture/compare register 133     | CC133  |     |          |            | 0        |           |
| FFFFF2C0H | Timer unit mode register 14      | TUM14  |     |          |            | 0        | 0000H     |
| FFFFF2C2H | Timer control register 14        | TMC14  |     | 0        | 0          |          | 00H       |
| FFFFF2C4H | Timer output control register 14 | TOC14  |     | 0        | 0          |          |           |
| FFFFF2D0H | Timer 14                         | TM14   | R   |          |            | 0        | 0000H     |
| FFFFF2D2H | Capture/compare register 140     | CC140  | R/W |          |            | 0        | Undefined |
| FFFFF2D4H | Capture/compare register 141     | CC141  |     |          |            | 0        |           |
| FFFFF2D6H | Capture/compare register 142     | CC142  |     |          |            | 0        |           |
| FFFFF2D8H | Capture/compare register 143     | CC143  |     |          |            | 0        |           |
| FFFFF2E0H | Timer unit mode register 15      | TUM15  |     |          |            | 0        | 0000H     |
| FFFFF2E2H | Timer control register 15        | TMC15  |     | 0        | 0          |          | 00H       |
| FFFFF2E4H | Timer output control register 15 | TOC15  |     | 0        | 0          |          |           |
| FFFFF2F0H | Timer 15                         | TM15   | R   |          |            | 0        | 0000H     |

|   |           |                                   |        |     |          |            |          | (7/8)     |
|---|-----------|-----------------------------------|--------|-----|----------|------------|----------|-----------|
|   | Address   | Function Register Name            | Symbol | R/W | Bit Unit | s for Mani | pulation | After     |
|   |           |                                   |        |     | 1 bit    | 8 bits     | 16 bits  | Reset     |
|   | FFFFF2F2H | Capture/compare register 150      | CC150  | R/W |          |            | 0        | Undefined |
|   | FFFFF2F4H | Capture/compare register 151      | CC151  |     |          |            | 0        |           |
|   | FFFFF2F6H | Capture/compare register 152      | CC152  |     |          |            | 0        |           |
|   | FFFFF2F8H | Capture/compare register 153      | CC153  |     |          |            | 0        |           |
|   | FFFFF342H | Timer control register 40         | TMC40  |     | 0        | 0          |          | 00H       |
|   | FFFFF346H | Timer control register 41         | TMC41  |     | 0        | 0          |          |           |
|   | FFFFF350H | Timer 40                          | TM40   | R   |          |            | 0        | 0000H     |
|   | FFFFF352H | Compare register 40               | CM40   | R/W |          |            | 0        | Undefined |
|   | FFFFF354H | Timer 41                          | TM41   | R   |          |            | 0        | 0000H     |
|   | FFFFF356H | Compare register 41               | CM41   | R/W |          |            | 0        | Undefined |
|   | FFFFF380H | A/D converter mode register 0     | ADM0   |     | 0        | 0          |          | 00H       |
|   | FFFFF382H | A/D converter mode register 1     | ADM1   |     | 0        | 0          |          | 07H       |
|   | FFFFF390H | A/D conversion result register 0  | ADCR0  | R   |          |            | 0        | Undefined |
|   | FFFFF392H | A/D conversion result register 0H | ADCR0H |     | 0        | 0          |          |           |
|   | FFFFF394H | A/D conversion result register 1  | ADCR1  |     |          |            | 0        |           |
|   | FFFFF396H | A/D conversion result register 1H | ADCR1H |     | 0        | 0          |          |           |
|   | FFFFF398H | A/D conversion result register 2  | ADCR2  |     |          |            | 0        |           |
|   | FFFFF39AH | A/D conversion result register 2H | ADCR2H |     | 0        | 0          |          |           |
|   | FFFFF39CH | A/D conversion result register 3  | ADCR3  |     |          |            | 0        |           |
|   | FFFFF39EH | A/D conversion result register 3H | ADCR3H |     | 0        | 0          |          |           |
|   | FFFFF3A0H | A/D conversion result register 4  | ADCR4  |     |          |            | 0        |           |
|   | FFFFF3A2H | A/D conversion result register 4H | ADCR4H |     | 0        | 0          |          |           |
|   | FFFFF3A4H | A/D conversion result register 5  | ADCR5  |     |          |            | 0        |           |
|   | FFFFF3A6H | A/D conversion result register 5H | ADCR5H |     | 0        | 0          |          |           |
|   | FFFFF3A8H | A/D conversion result register 6  | ADCR6  |     |          |            | 0        |           |
|   | FFFFF3AAH | A/D conversion result register 6H | ADCR6H |     | 0        | 0          |          |           |
|   | FFFFF3ACH | A/D conversion result register 7  | ADCR7  |     |          |            | 0        |           |
|   | FFFFF3AEH | A/D conversion result register 7H | ADCR7H |     | 0        | 0          |          |           |
|   | FFFFF41AH | Port X                            | PX     | R/W | 0        | 0          |          |           |
| * | FFFFF43AH | Port X mode register              | PMX    | W   |          | 0          |          | FFH       |
| * | FFFFF45AH | Port X mode control register      | PMCX   |     |          | 0          |          | 00H/E0H   |
|   | FFFF580H  | Port/control select register 0    | PCS0   | R/W | 0        | 0          |          | 00H       |
|   | FFFF582H  | Port/control select register 1    | PCS1   |     | 0        | 0          |          |           |
|   | FFFF586H  | Port/control select register 3    | PCS3   |     | 0        | 0          |          |           |
|   | FFFF590H  | Port/control select register 8    | PCS8   |     | 0        | 0          |          |           |
|   | FFFF594H  | Port/control select register 10   | PCS10  |     | 0        | 0          |          |           |

|           |                                 |        |     |          |                            |         | (8/8) |
|-----------|---------------------------------|--------|-----|----------|----------------------------|---------|-------|
| Address   | Function Register Name          | Symbol | R/W | Bit Unit | Bit Units for Manipulation |         | After |
|           |                                 |        |     | 1 bit    | 8 bits                     | 16 bits | Reset |
| FFFFF596H | Port/control select register 11 | PCS11  | R/W | 0        | 0                          |         | 00H   |
| FFFF5D0H  | DMA disable status register     | DDIS   | R   | 0        | 0                          |         |       |
| FFFF5D2H  | DMA restart register            | DRST   | R/W | 0        | 0                          |         |       |
| FFFF5E0H  | DMA trigger factor register 0   | DTFR0  |     | 0        | 0                          |         |       |
| FFFF5E2H  | DMA trigger factor register 1   | DTFR1  |     | 0 0      |                            |         |       |
| FFFF5E4H  | DMA trigger factor register 2   | DTFR2  |     | 0        | 0                          |         |       |
| FFFF5E6H  | DMA trigger factor register 3   | DTFR3  |     | 0        | 0                          |         |       |
| FFFF5F0H  | DMA channel control register 0  | DCHC0  |     | 0        | 0                          |         |       |
| FFFF5F2H  | DMA channel control register 1  | DCHC1  |     | 0        | 0                          |         |       |
| FFFF5F4H  | DMA channel control register 2  | DCHC2  | 0 0 |          |                            |         |       |
| FFFF5F6H  | DMA channel control register 3  | DCHC3  |     | 0        | 0                          |         |       |

#### 3.4.9 Specific registers

Specific registers are registers that are protected from being written with illegal data due to erroneous program execution, etc. The write access of these specific registers is executed in a specific sequence, and if abnormal store operations occur, the system status register (SYS) is notified. The V850E/MS1 has two specific registers, clock control register (CKC) and the power save control register (PSC). For details of the CKC register, refer to **8.3.3** and for details of the PSC register, refer to **8.5.2**.

The access sequence to the specific registers is shown below.

The following sequence shows the data setting of the specific registers.

- <1> Provide data in the desired general-purpose register to be set in the specific register.
- <2> Write the general-purpose register prepared in <1> in the command register (PRCMD).
- <3> Write to the specific register using the general-purpose register prepared in <1> (do this using the following instructions).
  - Store instruction (ST/SST instruction)
  - Bit operation instruction (SET1/CLR1/NOT1 instruction)
- <4> If the system moves to the IDLE or software STOP mode, insert a NOP instruction (1 instruction).

| Example | <1> MOV  | 0x04, r10       |
|---------|----------|-----------------|
|         | <2> ST.B | r10, PRCMD [r0] |
|         | <3> ST.B | r10, PSC [r0]   |
|         | <4> NOP  |                 |

No special sequence is required when reading the specific registers.

### Caution Do not write to the PRCMD register or to a specific register by DMA transfer.

- Remarks 1. A store instruction to a command register will not be received with an interrupt. This presupposes that this is done with the continuous store instructions in <1> and <2> above in the program. If another instruction is placed between <1> and <2>, when an interrupt is received by that instruction, the above sequence may not be established, and cause a malfunction, so caution is necessary.
  - 2. The data written in the PRCMD register is dummy data, but use the same general-purpose register for writing to the PRCMD register (<2> in the example above) as was used in setting data in the specific register (<3> in the example above). Addressing is the same in the case where a general-purpose register is used.
  - 3. It is necessary to insert 1 or more NOP instructions just after a store instruction to the PSC register for setting it in the software STOP or IDLE mode. When releasing each power save mode by interrupt, or when resetting after executing interrupt processing, start execution from the next instruction without executing the instruction just after the store instruction.

| [Example of Description | ]                                                |
|-------------------------|--------------------------------------------------|
| ST reg_code, PRCMD      | ; PRCMD write                                    |
|                         | (reg_code: Registration code)                    |
| ST data, PSC            | ; Setting of the PSC register                    |
| NOP                     | ; Dummy instruction (1 instruction)              |
| (next instruction)      | ; Execution routine after releasing the software |
|                         | STOP/IDLE mode                                   |
| :                       | :                                                |
|                         |                                                  |

The case where bit operation instructions are used in the PSC register settings is the same.

## (1) Command register (PRCMD)

The command register (PRCMD) is a register used when write-accessing the specific register to prevent incorrect writing to the specific registers due to the erroneous program execution.

This register can be written in 8-bit units. It becomes undefined in a read cycle.

Occurrence of illegal store operations can be checked by the PRERR bit of the SYS register.

| Г            | 7          | 6           | 5         | 4          | 3              | 2         | 1           | 0    | Addross   | After reco |
|--------------|------------|-------------|-----------|------------|----------------|-----------|-------------|------|-----------|------------|
| PRCMD        | REG7       | REG6        | REG5      | REG4       | REG3           | REG2      | REG1        | REG0 | FFFFF170H | Undefined  |
|              |            |             |           |            |                |           |             |      |           |            |
| Bit Position | Bit        | Name        |           |            |                |           | Function    |      |           |            |
| 7 to 0       | REG<br>REG | 67 to<br>60 | Registrat | ion Code   |                |           |             |      |           |            |
|              |            |             | Specif    | ic Registe | r              | Reg       | istration C | ode  |           |            |
|              |            |             | CKC       |            | Any 8          | -bit data |             |      |           |            |
|              |            |             | PSC       |            | Any 8-bit data |           |             |      |           |            |
|              |            |             | L         |            |                |           |             |      |           |            |

# (2) System status register (SYS)

This register is assigned status flags showing the operating state of the entire system. This register can be read/written in 8- or 1-bit units.

|        | 7                                                                                                                                                                                                  | 6                            | 5                                      | 4                                                                     | 3                                                             | 2                                                | 1                                  | 0                                           |                                                        |                               |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|------------------------------------|---------------------------------------------|--------------------------------------------------------|-------------------------------|
| SYS    | 0                                                                                                                                                                                                  | 0                            | 0                                      | PRERR                                                                 | 0                                                             | 0                                                | 0                                  | UNLOCK                                      | Address<br>FFFFF078H                                   | After reset<br>0000000×B      |
| ł      |                                                                                                                                                                                                    |                              | n                                      |                                                                       |                                                               |                                                  |                                    |                                             |                                                        |                               |
| Bit Po | osition                                                                                                                                                                                            | Bit Name                     |                                        |                                                                       |                                                               |                                                  | Functi                             | on                                          |                                                        |                               |
|        | 4                                                                                                                                                                                                  | PRERR                        | Prote<br>This is<br>correc<br>0:<br>1: | ction Error<br>s a cumulat<br>ct sequence<br>Protection<br>Protection | Flag<br>tive flag th<br>and that<br>error did r<br>error occu | nat shows t<br>a protectio<br>not occur<br>irred | hat writing                        | g to a specifi<br>ccurred <sup>∾ote</sup> . | c register was not                                     | t done in the                 |
| (      | 0 UNLOCK Unlock Status Flag<br>This is an exclusive read out flag. It shows that the PLL is in the unlocked state (for<br>details, refer to <b>8.4 PLL Lockup</b> ).<br>0: Locked.<br>1: Unlocked. |                              |                                        |                                                                       |                                                               |                                                  |                                    | tate (for                                   |                                                        |                               |
| lote ( | Operati                                                                                                                                                                                            | on conditions                | of PRE<br><1>                          | RR flag<br>If the sto                                                 | ore instru                                                    | iction mo                                        | st recent                          | tly executed                                | d to peripheral                                        | I/O does not                  |
|        | (PRE                                                                                                                                                                                               | ERR = "1")                   | <2>                                    | write dat<br>If the fir<br>PRCMD<br>registers                         | a to the l<br>st store<br>register                            | PRCMD r<br>instruction<br>is to a                | egister, t<br>on exec<br>oeriphera | out to the sp<br>uted after<br>al I/O regis | becific register.<br>the write oper<br>ster other than | ration to the<br>the specific |
| •      | Rese<br>(PRE                                                                                                                                                                                       | et conditions:<br>ERR = "0") | <1><br><2>                             | When "0"<br>At syster                                                 | ' is writte<br>n reset.                                       | en to the F                                      | PRERR f                            | lag of the S                                | SYS register.                                          |                               |

## **CHAPTER 4 BUS CONTROL FUNCTION**

The V850E/MS1 is provided with an external bus interface function by which external memories such as ROM and RAM, and I/O can be connected.

## 4.1 Features

- 16-bit/8-bit data bus sizing function
- 8-space chip select output function
- Wait function
  - Programmable wait function, capable of inserting up to 7 wait states for each memory block
  - External wait function via WAIT pin
- Idle state insertion function
- Bus mastership arbitration function
- Bus hold function
- · Capable of connecting to external devices via alternate function pins

## 4.2 Bus Control Pins

The following pins are used for connecting to external devices:

| Bus Control Pin (Function When in the Control Mode)                                                                                  | Function When in the Port<br>Mode | Register Which Performs<br>Port/Control Mode Switching |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------|
| Data bus (D0 to D7)                                                                                                                  | P40 to P47 (Port 4)               | MM                                                     |
| Data bus (D8 to D15)                                                                                                                 | P50 to P57 (Port 5)               | MM                                                     |
| Address bus (A0 to A7)                                                                                                               | PA0 to PA7 (Port A)               | ММ                                                     |
| Address bus (A8 to A15)                                                                                                              | PB0 to PB7 (Port B)               | ММ                                                     |
| Address bus (A16 to A23)                                                                                                             | P60 to P67 (Port 6)               | ММ                                                     |
| Chip select $\overline{(CS0}$ to $\overline{CS7}$ , $\overline{RAS0}$ to $\overline{RAS7}$ , $\overline{IORD}$ , $\overline{IOWR}$ ) | P80 to P87 (Port 8)               | PMC8                                                   |
| Read/write control (ICAS, UCAS, IWR, UWR, RD, WE, OE)                                                                                | P90 to P93, P95 (Port 9)          | PMC9                                                   |
| Bus cycle start (BCYST)                                                                                                              | P94 (Port 9)                      | PMC9                                                   |
| External wait control (WAIT)                                                                                                         | PX6 (Port X)                      | PMCX                                                   |
| Bus hold control (HLDAK, HLDRQ)                                                                                                      | P96, P97 (Port 9)                 | PMC9                                                   |
| DRAM refresh control (REFRQ)                                                                                                         | PX5 (Port X)                      | PMCX                                                   |
| Internal system clock (CLKOUT)                                                                                                       | PX7 (Port X)                      | PMCX                                                   |

**Remark** In the case of single-chip mode 1 and ROM-less modes 0 and 1, when the system is reset, each bus control pin becomes unconditionally valid (however, D8 to D15 are valid only in single-chip mode 1 and ROM-less mode 0). For details, refer to **3.4.6 External expansion mode**.

## 4.3 Memory Block Function

The 64 MB memory space is divided into memory blocks of 2 MB, 4 MB, and 8 MB units. The programmable wait function and bus cycle operation mode can be independently controlled for each individual memory block.



## 4.4 Bus Cycle Type Control Function

In the V850E/MS1, the following external devices can be connected directly to each memory block.

- SRAM, external ROM, external I/O
- Page ROM
- DRAM

Connected external devices are specified by the bus cycle type configuration register (BCT).

#### 4.4.1 Bus cycle type configuration register (BCT)

This register can be read /written in 16-bit units.



**Note** Using the DTC register, one DRAM access type setting can be selected out of 4 types for each memory block (refer to **5.3.5 DRAM type configuration register (DTC)**).

Caution Write to the BCT register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the BCT register is complete. However, it is possible to access an external memory area whose initialization is complete. The chip select signal ( $\overline{CS0}/\overline{RAS0}$  to  $\overline{CS7}/\overline{RAS7}$ ) is output as follows in correspondence with blocks 0 to 7.

| External D<br>Memory Block | Device SRAM, External I<br>Page ROM | ROM, External I/O DRAM |
|----------------------------|-------------------------------------|------------------------|
| Block 0 <sup>Note 1</sup>  | CS0                                 | RAS0                   |
| Block 1                    | CS1                                 | RAS1                   |
| Block 2                    | CS2                                 | RAS2                   |
| Block 3                    | CS3                                 | RAS3                   |
| Block 4                    | CS4                                 | RAS4                   |
| Block 5                    | CS5                                 | RAS5                   |
| Block 6                    | CS6                                 | RAS6                   |
| Block 7 <sup>Note 2</sup>  | CS7                                 | RAS7                   |

Notes 1. Except internal ROM area.

2. Except internal RAM area and internal peripheral I/O area.

## 4.5 Bus Access

# 4.5.1 Number of access clocks

The number of basic clocks necessary for accessing each resource is as follows.

|                 | Bus Cycle Configuration              |                           |                 | Instruction Fetch |              | Operand Data Access |                 |
|-----------------|--------------------------------------|---------------------------|-----------------|-------------------|--------------|---------------------|-----------------|
| Resource (Bus   | s Width)                             |                           |                 | Normal<br>Access  | Burst Access | Normal<br>Access    | Burst<br>Access |
| Internal ROM    | (32 bits)                            |                           |                 | 1                 | _            | 3                   | _               |
| Internal RAM (  | (32 bits)                            |                           |                 | 1 or 2            | —            | 1                   | _               |
| Internal periph | eral I/O (1                          | 16 bits)                  |                 | —                 | —            | 3 + n               | _               |
| External        | External SRAM, external ROM, externa |                           | I/O (16/8 bits) | 2 + n             |              | 2 + n               | _               |
| device          |                                      | During DMA flyby tran     | nsfer           | _                 |              | 2 + n               |                 |
|                 | Page ROM (16/8 bits)                 |                           | 2 + n           | 2 + n             | 2 + n        | 2 + n               |                 |
|                 | High-sp                              | peed page DRAM (16/8      | bits)           | 3 + n             | 2 + n        | 3 + n               | 2 + n           |
|                 |                                      | During DMA flyby transfer | During read     | _                 |              | 3 + n               | 2 + n           |
|                 |                                      |                           | During write    | —                 | —            | 3 + n               | 3 + n           |
|                 | EDO D                                | EDO DRAM (16/8 bits)      |                 |                   | 1 + n        | 3 + n               | 1 + n           |
|                 |                                      | During DMA flyby          | During read     | _                 | _            | 3 + n               | 2 + n           |
|                 |                                      | transfer                  | During write    | _                 |              | 3 + n               | 3 + n           |

Remarks 1. Unit: Clock/access

2. n: Number of wait insertions

# (1) Internal peripheral I/O interface

The contents of the access to internal peripheral I/O are not output to the external bus. Therefore, during instruction fetch access, internal peripheral I/O access can be performed in parallel.

Internal peripheral I/O access is basically 3-clock access. However, on some occasions, access to internal peripheral I/O registers with timer/counter functions also involves a wait.

| Internal Peripheral I/O Register | Access | Waits | Clock Cycles |
|----------------------------------|--------|-------|--------------|
| CC1n0 to CC1n3,                  | Read   | 1     | 4            |
| TM1n (n = 0 to 5)                | Write  | 0/1   | 3/4          |
| CM40, CM41                       | Read   | 0     | 3            |
|                                  | Write  | 0/1   | 3/4          |
| TM40, TM41                       | Read   | 0/1   | 3/4          |
|                                  | Write  | 0     | 3            |
| Other                            | Read   | 0     | 3            |
|                                  | Write  | 0     | 3            |

## 4.5.2 Bus sizing function

The V850E/MS1 is provided with a bus sizing function that is used to control the data bus width of each memory block.

The data bus width is specified by using the bus size configuration register (BSC).

## (1) Bus size configuration register (BSC)

This register can be read/written in 16-bit units.



- Cautions 1. Write to the BSC register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the BSC register is complete. However, it is possible to access an external memory area whose initialization is complete.
  - 2. The in-circuit emulator (IE-703102-MC) for the V850E/MS1 does not support 8-bit width external ROM emulation.
  - 3. When 8-bit data bus width is selected, only the write signal LWR becomes active, UWR does not become active.

\*
#### 4.5.3 Bus width

V850E/MS1 carries out peripheral I/O access and external memory access in 8, 16, or 32 bits. The following shows the operation for each access. All data is accessed in order from the lower side.

### (1) Byte access (8 bits)

#### (a) When the data bus width is 16 bits



#### (b) When the data bus width is 8 bits



### (2) Halfword access (16 bits)

In halfword access to external memory, data is exchanged as is, or accessed in the order of lower byte, then higher byte.

#### (a) When the data bus width is 16 bits



#### (b) When the data bus width is 8 bits



#### (3) Word access (32 bits)

In word access to external memory, data is accessed in order from the lower halfword, then the higher halfword, or in order from the lowest byte to the highest byte.



#### (a) When the data bus width is 16 bits





### 4.6 Wait Function

#### 4.6.1 Programmable wait function

With the aim of realizing easy interfacing with low-speed memory or with I/Os, it is possible to insert up to 7 data wait states with respect to the starting bus cycle for each memory block.

The number of wait states can be set by data wait control registers 1 and 2 (DWC1, DWC2) and can be specified by program. Just after system reset, all blocks have 7 data wait states inserted.

### (1) Data wait control registers 1, 2 (DWC1, DWC2)

It is possible to read/write the DWC1 register in 16-bit units and the DWC2 register in 8/1-bit units.

| OWC1<br>emory  | DW71 D | 0W70   | DW61 DW60        | DW51 DW50                                           | 9<br>DW41 | B<br>DW40                                               |                                      | 5 4<br>30 DW21 DW                                                      | 20 DW11 DW10                                                                   |                                                                            | Address<br>FFFFF060H                                              | After res<br>FFFF |
|----------------|--------|--------|------------------|-----------------------------------------------------|-----------|---------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|
| block          | 7      |        | 0                | 5                                                   |           | 4                                                       | ა<br>ე                               | 2                                                                      | 1                                                                              | 0                                                                          |                                                                   |                   |
| DWC2           | DW7    | 72     | DW62             | 5<br>DW52                                           | DV        | 4<br>V42                                                | DW32                                 | <br>DW22                                                               | DW12                                                                           | DW02                                                                       | Address<br>FFFFF06AH                                              | After res<br>FFH  |
| emory<br>block | 7      |        | 6                | 5                                                   |           | 4                                                       | 3                                    | 2                                                                      | 1                                                                              | 0                                                                          |                                                                   |                   |
| Regis          | ster   |        | Bit              | Bit Name                                            | •         |                                                         |                                      |                                                                        | F                                                                              | unction                                                                    |                                                                   |                   |
| ivan           | ne     | P      | osition          |                                                     |           |                                                         |                                      |                                                                        |                                                                                |                                                                            |                                                                   |                   |
| DWC1           | ne     | P<br>1 | 5 to 0           | DWn1,<br>DWn0<br>(n = 7 to 0                        | 0)        | Data<br>Speci<br>Regis                                  | Wait<br>fies the r<br>ters DW        | number of<br>C1 and D                                                  | wait states<br>WC2 are se                                                      | inserted in n<br>t in combina                                              | nemory block n.<br>tion.                                          |                   |
| DWC1           | ne     | P<br>1 | 5 to 0           | DWn1,<br>DWn0<br>(n = 7 to 0                        | 0)        | Data<br>Speci<br>Regis                                  | Wait<br>fies the r<br>ters DW<br>Wn2 | number of<br>C1 and D<br>DWn1                                          | wait states<br>WC2 are se<br>DWn0                                              | inserted in n<br>t in combinat<br>Number                                   | nemory block n.<br>tion.<br>of Wait States Inse<br>Memory Block n | erted in          |
| DWC1           | ne     | P<br>1 | 5 to 0           | DWn1,<br>DWn0<br>(n = 7 to 0                        | D)        | Data<br>Speci<br>Regis<br>D\<br>0                       | Wait<br>fies the r<br>ters DW<br>Wn2 | number of<br>C1 and D<br>DWn1<br>0                                     | wait states<br>WC2 are se<br>DWn0<br>0                                         | inserted in n<br>t in combina<br>Number<br>0                               | nemory block n.<br>tion.<br>of Wait States Inse<br>Memory Block n | erted in          |
| DWC1           | ne     | P<br>1 | 5 to 0<br>7 to 0 | DWn1,<br>DWn0<br>(n = 7 to 0                        | D)        | Data<br>Speci<br>Regis<br>D\<br>0                       | Wait<br>fies the r<br>ters DW<br>Wn2 | number of<br>C1 and D<br>DWn1<br>0<br>0                                | wait states<br>WC2 are se<br>DWn0<br>0<br>1                                    | inserted in n<br>t in combina<br>Number<br>0<br>1                          | nemory block n.<br>tion.<br>of Wait States Inse<br>Memory Block n | erted in          |
| DWC1           | ne     | P<br>1 | 5 to 0<br>7 to 0 | DWn1,<br>DWn0<br>(n = 7 to 0<br>DWn2<br>(n = 7 to 0 | 0)        | Data Speci<br>Regis<br>D\<br>0<br>0                     | Wait<br>fies the r<br>ters DW<br>Wn2 | number of<br>C1 and D <sup>1</sup><br>DWn1<br>0<br>0<br>1              | wait states<br>WC2 are se<br>DWn0<br>0<br>1<br>0                               | inserted in n<br>t in combina<br>Number<br>0<br>1<br>2                     | nemory block n.<br>tion.<br>of Wait States Inse<br>Memory Block n | erted in          |
| DWC1           | ne     | 1      | 5 to 0<br>7 to 0 | DWn1,<br>DWn0<br>(n = 7 to 0<br>DWn2<br>(n = 7 to 0 | D)<br>D)  | Data Speci<br>Regis<br>DV<br>0<br>0<br>0                | Wait<br>fies the r<br>ters DW<br>Wn2 | number of<br>C1 and D<br>DWn1<br>0<br>0<br>1<br>1                      | wait states<br>WC2 are se<br>DWn0<br>0<br>1<br>0<br>1                          | inserted in n<br>t in combina<br>Number<br>0<br>1<br>2<br>3                | nemory block n.<br>tion.<br>of Wait States Inse<br>Memory Block n | erted in          |
| DWC1           | ne     | 1      | 5 to 0<br>7 to 0 | DWn1,<br>DWn0<br>(n = 7 to 0<br>DWn2<br>(n = 7 to 0 | ))        | Data<br>Speci<br>Regis<br>D\<br>0<br>0<br>0<br>0<br>0   | Wait<br>fies the r<br>ters DW<br>Wn2 | number of<br>C1 and D<br>DWn1<br>0<br>0<br>1<br>1<br>0                 | wait states<br>WC2 are se<br>DWn0<br>0<br>1<br>0<br>1<br>0                     | inserted in n<br>t in combinat<br>Number<br>0<br>1<br>2<br>3<br>4          | nemory block n.<br>tion.<br>of Wait States Inse<br>Memory Block n | erted in          |
| DWC1           | ne     | P<br>1 | 5 to 0<br>7 to 0 | DWn1,<br>DWn0<br>(n = 7 to 0<br>DWn2<br>(n = 7 to 0 | )))))     | Data<br>Speci<br>Regis<br>D\<br>0<br>0<br>0<br>1<br>1   | Wait<br>fies the r<br>ters DW<br>Wn2 | number of<br>C1 and D<br>DWn1<br>0<br>0<br>1<br>1<br>0<br>0<br>0       | wait states<br>WC2 are se<br>DWn0<br>0<br>1<br>0<br>1<br>0<br>1<br>0           | inserted in n<br>t in combinat<br>Number<br>0<br>1<br>2<br>3<br>4<br>5     | nemory block n.<br>tion.<br>of Wait States Inse<br>Memory Block n | erted in          |
| DWC1           | ne     | 1      | 5 to 0<br>7 to 0 | DWn1,<br>DWn0<br>(n = 7 to 0<br>DWn2<br>(n = 7 to 0 | ))        | Data Speci<br>Regis<br>D\<br>0<br>0<br>0<br>1<br>1<br>1 | Wait<br>fies the r<br>ters DW<br>Wn2 | number of<br>C1 and DV<br>DWn1<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1 | wait states<br>WC2 are se<br>DWn0<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0 | inserted in n<br>t in combina<br>Number<br>0<br>1<br>2<br>3<br>4<br>5<br>6 | nemory block n.<br>tion.<br>of Wait States Inse<br>Memory Block n | erted in          |

Cautions 1. The internal ROM area and internal RAM area are not subject to programmable waits and ordinarily no wait access is carried out. Neither is the internal peripheral I/O area subject to programmable wait states, with wait control performed only by each peripheral function.

- 2. In the following cases, the settings of registers DWC1 and DWC2 are invalid (wait control is performed by each memory controller).
  - DRAM access
  - Page ROM on-page access
- 3. Write to the DWC1 and DWC2 registers after reset, and then do not change the set values. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the DWC1 and DWC2 registers is complete. However, it is possible to access an external memory area whose initialization is complete.

#### 4.6.2 External wait function

When an extremely slow device, I/O, or asynchronous system is connected, any number of wait states can be inserted in a bus cycle by the external wait pin ( $\overline{WAIT}$ ) to synchronize with the external device.

Just as with programmable waits, access to internal ROM, internal RAM and internal peripheral I/O areas cannot be controlled by external waits.

Input of the external WAIT signal can be done asynchronously to CLKOUT and is sampled at the falling edge of the clock in the T1 and TW states of a bus cycle. If the setup/hold time in the sampling timing is not satisfied, a wait may or may not be inserted in the next state.

#### 4.6.3 Relationship between programmable wait and external wait

A wait cycle is inserted as a result of an OR operation between the wait cycle specified by the set value of programmable wait and the wait cycle controlled by the  $\overline{WAIT}$  pin. In other words, the number of wait cycles is determined by whichever has the most cycles.



For example, if the programmable wait is two waits, and the timing of the  $\overline{WAIT}$  pin input signal is as illustrated below, three wait states will be inserted in the bus cycle.





# 4.6.4 Bus cycles in which the wait function is valid

In the V850E/MS1, the number of waits can be specified according to the type of memory specified for each memory block.

The registers which set the bus cycles and waits in which the wait function is valid are as shown below.

|                    | Bus Cycle            |          | Type of Wait     | Programmable Wait      | Setting  | Wait by  |
|--------------------|----------------------|----------|------------------|------------------------|----------|----------|
|                    |                      |          |                  | Higher Order: Register | Number   | WAIT Pin |
|                    |                      |          |                  | Lower Order: Bit       | of Waits |          |
| SRAM, external ROM | l, external I/O cycl | е        | Data access wait | DWC1, DWC2             | 0 to 7   | 0        |
|                    | -                    |          |                  | DWxx                   |          |          |
| Page ROM cycle     | Off-page             |          | Data access wait | DWC1, DWC2             | 0 to 7   | 0        |
|                    |                      |          |                  | DWxx                   |          |          |
|                    | On-page              |          | Data access wait | PRC                    | 0 to 7   | 0        |
|                    |                      |          |                  | PRW0 to PRW2           |          |          |
| EDO DRAM, high-    | Read access          | Off-page | RAS pre-charge   | DRCn                   | 0 to 3   | ×        |
| speed page DRAM    |                      |          |                  | RPC0n, RPC1n           |          |          |
| cycle              |                      |          | Row address hold | DRCn                   | 0 to 3   | ×        |
|                    |                      |          |                  | RHC0n, RHC1n           |          |          |
|                    |                      |          | Data access wait | DRCn                   | 0 to 3   | Note     |
|                    |                      |          |                  | DAC0n, DAC1n           |          |          |
|                    |                      | On-page  | CAS pre-charge   | DRCn                   | 0 to 3   | ×        |
|                    |                      |          |                  | CPC0n, CPC1n           |          |          |
|                    |                      |          | Data access wait | DRCn                   | 0 to 3   | ×        |
|                    |                      |          |                  | DAC0n, DAC1n           |          |          |
|                    | Write access         | Off-page | RAS pre-charge   | DRCn                   | 0 to 3   | ×        |
|                    |                      |          |                  | RPC0n, RPC1n           |          |          |
|                    |                      |          | Row address hold | DRCn                   | 0 to 3   | Note     |
|                    |                      |          |                  | RHC0n, RHC1n           |          |          |
|                    |                      |          | Data access wait | DRCn                   | 0 to 3   | ×        |
|                    |                      |          |                  | DAC0n, DAC1n           |          |          |
|                    |                      | On-page  | CAS pre-charge   | DRCn                   | 0 to 3   | ×        |
|                    |                      |          |                  | CPC0n, CPC1n           |          |          |
|                    |                      |          | Data access wait | DRCn                   | 0 to 3   | ×        |
|                    |                      |          |                  | DAC0n, DAC1n           |          |          |
| CBR refresh cycle  |                      |          | RAS pre-charge   | RWC                    | 0 to 3   | ×        |
|                    |                      |          |                  | RRW0, RRW1             |          |          |
|                    |                      |          | RAS active width | RWC                    | 0 to 7   | ×        |
|                    |                      |          |                  | RCW0 to RCW2           |          |          |

| Table 4-1. | Bus C | vcles in | Which t | the Wait | Function | Is Valid ( | (1/2) |
|------------|-------|----------|---------|----------|----------|------------|-------|
|            |       | ,        |         |          |          |            | ···-/ |

Note EDO DRAM cycle: × High-speed page DRAM cycle:O

Remarks 1. O: Valid ×: Invalid

**2.** n = 0 to 3

xx = 00 to 02, 10 to 12, 20 to 22, 30 to 32, 40 to 42, 50 to 52, 60 to 62, 70 to 72

|                        | Bus Cycle                      |          | Type of Wa    | ait  | Programmable Wait      | Setting  | Wait by  |  |
|------------------------|--------------------------------|----------|---------------|------|------------------------|----------|----------|--|
|                        |                                |          |               |      | Higher Order: Register | Number   | WAIT Pin |  |
|                        |                                |          |               |      | Lower Order: Bit       | of Waits |          |  |
| CBR self-refresh cycle | <b>;</b>                       |          | RAS pre-char  | ge   | RWC                    | 0 to 3   | ×        |  |
|                        |                                |          |               |      | RRW0, RRW1             |          |          |  |
|                        |                                |          | RAS active wi | dth  | RWC                    | 0 to 7   | ×        |  |
|                        |                                |          |               |      | RCW0 to RCW2           |          |          |  |
|                        |                                |          | Self-refresh  |      | RWC                    | 0 to 14  | ×        |  |
|                        |                                |          | release width |      | SRW0 to SRW2           |          |          |  |
| DMA flyby transfer     | External I/O $\leftrightarrow$ | SRAM     | Data access   | тw   | DWC1, DWC2             | 0 to 7   | 0        |  |
| cycle                  |                                |          | wait          |      | DWxx                   |          |          |  |
|                        |                                |          |               | TF   | FDW                    | 0, 1     | ×        |  |
|                        |                                |          |               |      | FDWm                   |          |          |  |
|                        | $DRAM \rightarrow$             | Off-page | RAS pre-char  | ge   | DRCn                   | 0 to 3   | ×        |  |
|                        | External I/O                   |          |               |      | RPC0n, RPC1n           |          |          |  |
|                        |                                |          | Row address   | hold | DRCn                   | 0 to 3   | ×        |  |
|                        |                                |          |               |      | RHC0n, RHC1n           |          |          |  |
|                        |                                |          | Data access   | ΤW   | DRCn                   | 0 to 3   | 0        |  |
|                        |                                |          | wait          |      | DAC0n, DAC1n           |          |          |  |
|                        |                                |          |               | TF   | FDW                    | 0, 1     | ×        |  |
|                        |                                |          |               |      |                        | FDWm     |          |  |
|                        |                                | On-page  | CAS pre-char  | ge   | DRCn                   | 0 to 3   | ×        |  |
|                        |                                |          |               |      | CPC0n, CPC1n           |          |          |  |
|                        |                                |          | Data access   | ΤW   | DRCn                   | 0 to 3   | 0        |  |
|                        |                                |          | wait          |      | DAC0n, DAC1n           |          |          |  |
|                        |                                |          |               | TF   | FDW                    | 0, 1     | ×        |  |
|                        |                                |          |               |      | FDWm                   |          |          |  |
|                        | External I/O                   | Off-page | RAS pre-char  | ge   | DRCn                   | 0 to 3   | ×        |  |
|                        | $\rightarrow$ DRAM             |          | RPC0n, RPC1n  |      |                        |          |          |  |
|                        |                                |          | Row address   | hold | DRCn                   | 0 to 3   | 0        |  |
|                        |                                |          |               |      | RHC0n, RHC1n           |          |          |  |
|                        |                                |          | Data access   | ТW   | DRCn                   | 0 to 3   | ×        |  |
|                        |                                |          | wait          |      | DAC0n, DAC1n           |          |          |  |
|                        |                                |          |               | TF   | FDW                    | 0, 1     | ×        |  |
|                        |                                |          |               |      | FDWm                   |          |          |  |
|                        |                                | On-page  | CAS pre-char  | ge   | DRCn                   | 1 to 3   | 0        |  |
|                        |                                |          |               |      | CPC0n, CPC1n           |          |          |  |
|                        |                                |          | Data access   | тw   | DRCn                   | 0 to 3   | ×        |  |
|                        |                                |          | wait          |      | DAC0n, DAC1n           |          |          |  |
|                        |                                |          |               | TF   | FDW                    | 0, 1     | ×        |  |
|                        |                                |          |               |      | FDWm                   |          |          |  |

# Table 4-1. Bus Cycles in Which the Wait Function Is Valid (2/2)

Remarks 1. O: Valid  $\times$ : Invalid

**2.** n = 0 to 3

m = 0 to 7

xx = 00 to 02, 10 to 12, 20 to 22, 30 to 32, 40 to 42, 50 to 52, 60 to 62, 70 to 72

### 4.7 Idle State Insertion Function

To facilitate interfacing with low-speed memory devices, an idle state (TI) can be inserted into the current bus cycle after the T2 state in order to meet the data output float delay time ( $t_{DF}$ ) on memory read accesses for each memory block. The bus cycle following the T2 state starts after the idle state is inserted.

Specifying insertion of the idle state is programmable by setting the bus cycle control register (BCC).

Immediately after the system reset is cancelled, idle state insertion is automatically programmed for all memory blocks.

The idle state is inserted only if the read cycle is followed by a write cycle.

#### (1) Bus cycle control register (BCC)

This register can be read/written in 16-bit units.



2. Write to the BCC register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the BCC register is complete. However, it is possible to access an external memory area whose initialization is complete.

# (2) Idle state insertion timing



### 4.8 Bus Hold Function

#### 4.8.1 Outline of function

If pins P96 and P97 are specified in the control mode, the HLDAK and HLDRQ functions become valid.

If it is determined that the HLDRQ pin has become active (low level) as a bus acquisition request from another bus master, the external address/data bus and each strobe pin are shifted to high impedance and released (bus hold state). If the HLDRQ pin becomes inactive (high level) and the bus acquisition request is canceled, driving of these pins begins again.

During the bus hold interval, internal operations in the V850E/MS1 continue until there is external memory access. The bus hold state can be known by the  $\overline{\text{HLDAK}}$  pin becoming active (low level).

In a multiprocessor configuration, etc., a system that has multiple bus masters can be configured.

Note that bus hold requests are not received with the following timings.

Caution The HLDRQ function is invalid during the reset period. When the RESET pin and HLDRQ pin are made active simultaneously, and then the RESET pin is made inactive, the HLDAK pin becomes active after a one-clock idle cycle has been inserted. Note that for a power-on reset, even if the RESET pin and HLDRQ pin are made active simultaneously, and then the RESET pin is made inactive, the HLDAK pin does not become active. When a bus master other than the V850E/MS1 is externally connected, execute arbitration at the moment of power-on using the RESET signal.

| State                                                    | Data Bus Width | Access Configuration           | Timing in Which Bus Hold<br>Request Will Not Be Received |
|----------------------------------------------------------|----------------|--------------------------------|----------------------------------------------------------|
| CPU bus lock                                             | 16 bits        | Word access to even address    | Between 1st and 2nd times                                |
|                                                          |                | Word access to odd address     | Between 1st and 2nd times                                |
|                                                          |                |                                | Between 2nd and 3rd times                                |
|                                                          |                | Halfword access to odd address | Between 1st and 2nd times                                |
|                                                          | 8 bits         | Word access                    | Between 1st and 2nd times                                |
|                                                          |                |                                | Between 2nd and 3rd times                                |
|                                                          |                |                                | Between 3rd and 4th times                                |
|                                                          |                | Halfword access                | Between 1st and 2nd times                                |
| Read modify write access to<br>bit operation instruction | _              | —                              | Between read access and write access                     |

#### 4.8.2 Bus hold procedure

The procedure of the bus hold function is illustrated below.



#### 4.8.3 Operation in power save mode

In the STOP or IDLE mode, the internal system clock is stopped. Consequently, the bus hold state is not accepted and set even if the HLDRQ pin becomes active.

In the HALT mode, the HLDAK pin immediately becomes active when the HLDRQ pin becomes active, and the bus hold state is set. When the HLDRQ pin becomes inactive, the HLDAK pin becomes inactive. As a result, the bus hold state is cleared, and the HALT mode is set again.

#### 4.8.4 Bus hold timing



### 4.9 Bus Priority Order

There are five external bus cycles: bus hold, instruction fetch, operand data access, DMA cycle and refresh cycle.

Bus hold has the highest priority, then the refresh cycle, DMA cycle, instruction fetch and operand data access, in descending order.

Between read access and write access in read modify write access, an instruction fetch may be inserted. Also, between bus access and bus access during CPU bus lock, an instruction fetch may be inserted.

| Priority Order | External Bus Cycle  | Bus Master      |
|----------------|---------------------|-----------------|
| High           | Bus hold            | External device |
| Ť              | Refresh cycle       | DRAM controller |
|                | DMA cycle           | DMA controller  |
| Ļ              | Instruction fetch   | CPU             |
| Low            | Operand data access | CPU             |

#### Table 4-2. Bus Priority Order

#### 4.10 Boundary Operation Conditions

# 4.10.1 Program space

- (1) Branching to the peripheral I/O area or successive fetch from the internal RAM area to the internal peripheral I/O area is prohibited. In terms of hardware, fetching the NOP op code continues, and fetching from the external memory is not performed.
- (2) If a branch instruction exists at the upper limit of the internal RAM area, a pre-fetch operation (invalid fetch) that straddles over the internal peripheral I/O area does not occur when instruction fetch is performed.
- (3) In burst fetch mode, if an instruction fetch is performed for contiguous memory blocks, the burst fetch is terminated at the upper limit of a block, and the start-up cycle is started at the lower limit of the next block.
- (4) Burst fetch is valid only in the external memory area. In memory block 7, it is terminated when the internal address count value has reached the upper limit of the external memory area.

#### 4.10.2 Data space

The V850E/MS1 incorporates an address misalign function.

Through this function, regardless of the data format (word data, halfword data), data can be placed in all addresses. However, in the case of word data and halfword data, if data is not subject to boundary alignment, the bus cycle will be generated at least 2 times and bus efficiency will drop.

#### (1) In the case of halfword length data access

When the address's lowest bit is a 1, the byte length bus cycle will be generated 2 times.

#### (2) In the case of word length data access

- (a) When the address's lowest bit is a 1, bus cycles will be generated in the order of byte length bus cycle, halfword length bus cycle, and byte length bus cycle.
- (b) When the address's lower 2 bits are 10, the halfword length bus cycle will be generated 2 times.

[MEMO]

# CHAPTER 5 MEMORY ACCESS CONTROL FUNCTION

# 5.1 SRAM, External ROM, External I/O Interface

# 5.1.1 SRAM connections

An example of connection to SRAM is shown below.





# 5.1.2 SRAM, external ROM, external I/O access







Figure 5-2. SRAM, External ROM, External I/O Access Timing (2/4)



Figure 5-2. SRAM, External ROM, External I/O Access Timing (3/4)





# 5.2 Page ROM Controller (ROMC)

The page ROM controller (ROMC) is for access to ROM (page ROM) with a page access function.

Comparison of addresses with the immediately previous bus cycle is carried out and wait control for normal access (off-page) and page access (on-page) is executed. This controller is capable of handling page widths of from 8 to 64 bytes.

### 5.2.1 Features

- It can connect directly to 8-bit/16-bit page ROM.
- When the bus width is 16 bits, it can handle 4/8/16/32-word page access. When the bus width is 8 bits, it can handle 8/16/32/64-word page access.
- Individual wait settings (0 to 7 waits) for off-page and on-page are possible.

### 5.2.2 Page ROM connections

Examples of page ROM connections are shown below.









# 5.2.3 On-page/off-page judgment

Whether a page ROM cycle is on-page or off-page is judged by latching the address of the previous cycle and comparing it with the address of the current cycle.

Using the page ROM configuration register (PRC), one of the addresses (A3 to A5) is set as the masking address (no comparison is made) according to the configuration of the connected page ROM and the number of continuously readable bits.



Figure 5-4. On-Page/Off-Page Judgment for Page ROM Connection (1/2)





#### 5.2.4 Page ROM configuration register (PRC)

This specifies whether page ROM on-page access is enabled or disabled. Also, if on-page access is enabled, the masked addresses (no comparison is made) out of the addresses (A3 to A5) corresponding to the configuration of the connected page ROM and the number of bits that can be read continuously, as well as the number of waits corresponding to the internal system clock, are set.

This register can be read/written in 8- or 1-bit units.

| Г      | ,       |                 |                                         | 4                                                  | 5                                             | 2                                                     | I                                                        |                                             |                                                             | A. 61                      |
|--------|---------|-----------------|-----------------------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|----------------------------|
| PRC    | PAE     | PRW2            | PRW1                                    | PRW0                                               | 0                                             | MA5                                                   | MA4                                                      | MA3                                         | FFFFF224H                                                   | Aπer rese<br>70H           |
|        |         |                 |                                         |                                                    |                                               |                                                       |                                                          |                                             |                                                             |                            |
| Bit Po | osition | Bit Name        |                                         |                                                    |                                               |                                                       | Functio                                                  | on                                          |                                                             |                            |
| -      | 7       | PAE             | Page R<br>Specifie<br>0: Di<br>1: Er    | COM On-p<br>es whethe<br>sable<br>nable            | age Acc<br>r page F                           | ess Enable<br>ROM on-pa                               | ge access is                                             | enabled o                                   | disabled.                                                   |                            |
| 6 t    | o 4     | PRW2 to<br>PRW0 | Page-R<br>Sets th<br>The wa<br>waits se | ROM On-p<br>e number<br>iits set by<br>et by regis | age Acc<br>of waits<br>this bit a<br>sters DW | ess Wait C<br>correspond<br>re inserted<br>/C1 and DV | ontrol<br>ding to the ir<br>only for on-<br>VC2 are inse | nternal syste<br>page acces<br>erted (refer | em clock.<br>s. For off-page ac<br>to <b>4.6 Wait Funct</b> | cess, the<br><b>ion</b> ). |
|        |         |                 | PRV                                     | W2 P                                               | RW1                                           | PRW0                                                  | 1                                                        | Number of I                                 | nserted Wait Cycle                                          | S                          |
|        |         |                 | 0                                       |                                                    | 0                                             | 0                                                     | 0                                                        |                                             |                                                             |                            |
|        |         |                 | 0                                       |                                                    | 0                                             | 1                                                     | 1                                                        |                                             |                                                             |                            |
|        |         |                 | 0                                       |                                                    | 1                                             | 0                                                     | 2                                                        |                                             |                                                             |                            |
|        |         |                 | 0                                       |                                                    | 1                                             | 1                                                     | 3                                                        |                                             |                                                             |                            |
|        |         |                 | 1                                       |                                                    | 0                                             | 0                                                     | 4                                                        |                                             |                                                             |                            |
|        |         |                 | 1                                       |                                                    | 0                                             | 1                                                     | 5                                                        |                                             |                                                             |                            |
|        |         |                 | 1                                       |                                                    | 1                                             | 0                                                     | 6                                                        |                                             |                                                             |                            |
|        |         |                 | 1                                       |                                                    | 1                                             | 1                                                     | 7                                                        |                                             |                                                             |                            |
| 2 t    | o 0     | MA5 to<br>MA3   | Mask A<br>Each a<br>address<br>the nun  | address<br>ddress (A<br>s is not su<br>nber of co  | 5 to A3)<br>bject to<br>ntinuous              | correspond<br>comparisor<br>sly readable              | ling to MA5 f<br>a during on/c<br>e bits.                | to MA3 is m<br>off-page jud                 | nasked (by 1). The<br>gment. It is set acc                  | masked<br>cording to       |
|        |         |                 | MA                                      | \5 N                                               | /IA4                                          | MA3                                                   | Num                                                      | nber of Con                                 | tinuously Readable                                          | Bits                       |
|        |         |                 | 0                                       |                                                    | 0                                             | 0                                                     | 4 words $\times$                                         | 16 bits (8 v                                | vords $\times$ 8 bits)                                      |                            |
|        |         |                 | 0                                       |                                                    | 0                                             | 1                                                     | 8 words ×                                                | 16 bits (16                                 | words $\times$ 8 bits)                                      |                            |
|        |         |                 | 0                                       |                                                    | 1                                             | 1                                                     | 16 words                                                 | × 16 bits (3                                | 2 words $\times$ 8 bits)                                    |                            |
|        |         |                 | 1                                       |                                                    | 1                                             | 1                                                     | 32 words                                                 | $\times$ 16 bits (6                         | 4 words $\times$ 8 bits)                                    |                            |
|        |         |                 |                                         |                                                    |                                               |                                                       |                                                          |                                             |                                                             |                            |

an external memory area other than the one for this initialization routine until the initial setting of the PRC register is complete. However, it is possible to access an external memory area whose initialization is complete.

# 5.2.5 Page ROM access



Figure 5-5. Page ROM Access Timing

# 5.3 DRAM Controller

# 5.3.1 Features

- O Generates the  $\overline{RAS}$ ,  $\overline{LCAS}$  and  $\overline{UCAS}$  signals.
- O Can be connected directly to high-speed page DRAM and EDO DRAM.
- O Supports the RAS hold mode.
- O 4 types of DRAM can be assigned to 8 memory block spaces.
- O Can handle 2CAS type DRAM
- O Can be switched between row and column address multiplex widths.
- O Waits (0 to 3 waits) can be inserted at the following timings.
  - Row address precharge wait
  - Row address hold wait
  - Data access wait
  - Column address precharge wait
- O Supports CBR refresh and CBR self-refresh.

### 5.3.2 DRAM connections

Examples of connections to DRAM are shown below.





### 5.3.3 Address multiplex function

Depending on the value of the DAW0n and DAW1n bits in DRAM configuration register n (DRCn), the row address, column address output in the DRAM cycle is multiplexed as shown in Figure 5-7 (n = 0 to 3). In Figure 5-7, a0 to a23 show the addresses output from the CPU and A0 to A23 show the V850E/MS1's address pins. For example, when DAW0n and DAW1n = 11, it indicates that a12 to a22 are output from the address pins (A1 to A11) as row addresses and a1 to a11 are output as column addresses.

Table 5-1 shows the relationship between connectable DRAM and the address multiplex width. Depending on the DRAM being connected, DRAM space is from 128 KB to 8 MB.

| Address pin                        | A23 to A18 | A17 | A16 | A15 | A14 | A13 | A12 | A11 | A10 | A9  | A8  | A7  | A6  | A5  | A4  | A3  | A2  | A1  | A0  |
|------------------------------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Row address<br>(DAW1n, DAW0n = 11) | a23 to a18 | a17 | a16 | a15 | a25 | a24 | a23 | a22 | a21 | a20 | a19 | a18 | a17 | a16 | a15 | a14 | a13 | a12 | a11 |
| Row address<br>(DAW1n, DAW0n = 10) | a23 to a18 | a17 | a16 | a25 | a24 | a23 | a22 | a21 | a20 | a19 | a18 | a17 | a16 | a15 | a14 | a13 | a12 | a11 | a10 |
| Row address<br>(DAW1n, DAW0n = 01) | a23 to a18 | a17 | a25 | a24 | a23 | a22 | a21 | a20 | a19 | a18 | a17 | a16 | a15 | a14 | a13 | a12 | a11 | a10 | a9  |
| Row address<br>(DAW1n, DAW0n = 00) | a23 to a18 | a25 | a24 | a23 | a22 | a21 | a20 | a19 | a18 | a17 | a16 | a15 | a14 | a13 | a12 | a11 | a10 | a9  | a8  |
| Column address                     | a23 to a18 | a17 | a16 | a15 | a14 | a13 | a12 | a11 | a10 | a9  | a8  | а7  | a6  | а5  | a4  | a3  | a2  | a1  | a0  |

#### Figure 5-7. Row Address/Column Address Output

Table 5-1. Example of DRAM and Address Multiplex Width

| Address         |          | DRAM Cap  | pacity (Bits) and Co   | onfiguration           |          | DRAM Space |
|-----------------|----------|-----------|------------------------|------------------------|----------|------------|
| Multiplex Width | 256 K    | 1 M       | 4 M                    | 16 M                   | 64 M     | (Bytes)    |
| 8 bits          | 64 K × 4 | —         | —                      | —                      | —        | 128 K      |
| 9 bits          | _        | 256 K × 4 | 256 K × 16             | —                      | —        | 512 K      |
|                 |          | _         | 512 K × 8              | _                      | _        | 1 M        |
|                 | _        | —         | —                      | —                      | 4 M × 16 | 8 M        |
| 10 bits         | _        | _         | $1 \text{ M} \times 4$ | 1 M × 16               | _        | 2 M        |
|                 |          | _         | _                      | 2 M × 8                | _        | 4 M        |
|                 | _        | —         | —                      | —                      | 4 M × 16 | 8 M        |
| 11 bits         | _        | _         | _                      | $4 \text{ M} \times 4$ | _        | 8 M        |

### 5.3.4 DRAM configuration registers 0 to 3 (DRC0 to DRC3)

This sets the type of DRAM to be connected.

These registers can be read/written in 16-bit units.

# Caution If the object of access is a DRAM area, the wait set in registers DWC1 and DWC2 becomes invalid. In this case, waits are controlled by registers DRC0 to DRC3.

| 15             | 14        | 13             | 12        | 11          | 10                          | 9                                                                              | 8         | 7                                                                       | 6                | 5                                            | 4                                    | 3                                         | 2                              | 1                              | 0         |                                      |                     |
|----------------|-----------|----------------|-----------|-------------|-----------------------------|--------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------|------------------|----------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------|--------------------------------|-----------|--------------------------------------|---------------------|
| DRC0 PAE<br>10 | PAE<br>00 | RPC<br>10      | RPC<br>00 | RHC<br>10   | RHC<br>00                   | DAC<br>10                                                                      | DAC<br>00 | CPC<br>10                                                               | CPC<br>00        | 0                                            | RHD<br>0                             | 0                                         | 0                              | DAW<br>10                      | DAW<br>00 | Address<br>FFFFF200H                 | After rese<br>3FC1H |
| DRC1 PAE       | PAE<br>01 | RPC<br>11      | RPC<br>01 | RHC<br>11   | RHC<br>01                   | DAC<br>11                                                                      | DAC<br>01 | CPC<br>11                                                               | CPC<br>01        | 0                                            | RHD<br>1                             | 0                                         | 0                              | DAW<br>11                      | DAW<br>01 | FFFF202H                             | 3FC1H               |
| DRC2 PAE       | PAE<br>02 | RPC<br>12      | RPC<br>02 | RHC<br>12   | RHC<br>02                   | DAC<br>12                                                                      | DAC<br>02 | CPC<br>12                                                               | CPC<br>02        | 0                                            | RHD<br>2                             | 0                                         | 0                              | DAW<br>12                      | DAW<br>02 | FFFFF204H                            | 3FC1H               |
| DRC3 PAE       | PAE<br>03 | RPC<br>13      | RPC<br>03 | RHC<br>13   | RHC<br>03                   | DAC<br>13                                                                      | DAC<br>03 | CPC<br>13                                                               | CPC<br>03        | 0                                            | RHD<br>3                             | 0                                         | 0                              | DAW<br>13                      | DAW<br>03 | FFFFF206H                            | 3FC1H               |
| Bit Positior   | n         | Bit N          | lame      |             |                             |                                                                                |           |                                                                         |                  |                                              |                                      | Func                                      | tion                           |                                |           |                                      |                     |
| 15, 14         | F         | PAE1r          | ٦,        | D           | RAM                         | On-p                                                                           | age A     | cces                                                                    | s Mod            | le Co                                        | ntrol                                |                                           |                                |                                |           |                                      |                     |
|                |           | PAEUr          | า         | C           | ontro                       | s the                                                                          | on-pa     | age a                                                                   | ccess            | cycle                                        | Ð.                                   |                                           |                                |                                |           |                                      |                     |
|                |           | PAEUr          | า         |             | PA                          | s the<br>E1n                                                                   | on-pa     | age ao<br>PAE0                                                          | ccess<br>)n      | cycle                                        | э.                                   |                                           |                                | Acce                           | ess Mo    | ode                                  |                     |
|                | Г         | AEUr           | ז         |             | PA                          | s the<br>E1n<br>0                                                              | on-pa     | age a<br>PAE0<br>0                                                      | ccess<br>)n      | cycle<br>On-                                 | e.<br>page a                         | acces                                     | s dis                          | Acce                           | ess Mo    | ode                                  |                     |
|                | ſ         | AEOr           | ٦         |             | PA                          | E1n<br>0                                                                       | on-pa     | PAE0                                                                    | ccess<br>)n      | Cycle<br>On-<br>Higl                         | e.<br>page a                         | acces<br>ed pag                           | s dis<br>ge Df                 | Acce<br>abled<br>RAM           | ess Mo    | ode                                  |                     |
|                | ſ         | AEUr           | ו         |             | PA                          | E 1n<br>0<br>0<br>1                                                            | on-pa     | PAE0 0 1 0 1                                                            | on               | On-<br>Higl<br>EDC                           | page a<br>n-spee<br>D DRA            | acces<br>ed pag                           | s dis<br>ge Df                 | Acce<br>abled<br>RAM           | ess Mo    | ode                                  |                     |
|                | ſ         | AEUr           | ז         |             | PA                          | s the<br>E1n<br>0<br>1                                                         | on-pa     | PAE0<br>0<br>1<br>0<br>1                                                | )n               | On-<br>Higl<br>EDC<br>Sett                   | page a<br>n-spee<br>D DRA            | acces<br>ed pag<br>M<br>ohibit            | s dis<br>ge Df<br>ed           | Acce<br>abled<br>RAM           | ess Mo    | ode                                  |                     |
| 13, 12         | F         | RPC11          | n,<br>n   | R           | PA<br>PA<br>ow Ad<br>pecifi | E 1n<br>0<br>1<br>1<br>ddres<br>es the                                         | s Pree    | PAEO<br>0<br>1<br>0<br>1<br>charg                                       | e Con            | On-<br>Higl<br>ED0<br>Sett                   | page a<br>n-spee<br>D DRA<br>ting pr | acces<br>ed pag<br>M<br>ohibit            | s dis<br>ge DF<br>ed           | Acce<br>abled<br>RAM           | ress pr   | ode                                  |                     |
| 13, 12         | F         | RPC11<br>RPC01 | n,<br>n   | R<br>R<br>S | PA<br>PA<br>ow Ad<br>pecifi | s the<br>E1n<br>0<br>0<br>1<br>1<br>ddres<br>es the<br>C1n                     | s Pre     | PAEC<br>0<br>1<br>0<br>1<br>charg<br>ber of                             | e Cor<br>f wait  | On-<br>Higl<br>EDC<br>Sett                   | page a<br>n-spee<br>D DRA<br>ting pr | acces<br>ed pa<br>MM<br>ohibit<br>rted a  | s dis<br>ge DF<br>ed<br>as rov | Acca<br>abled<br>RAM<br>v addu | ess Mo    | echarge time.                        |                     |
| 13, 12         | F         | RPC11<br>RPC0  | n,<br>n   |             | PA<br>PA<br>ow Ad<br>pecifi | s the<br>E1n<br>0<br>0<br>1<br>1<br>1<br>dddres<br>es the<br>C1n<br>0          | s Pree    | age are an are an are an are        | e Corr<br>f wait | On-<br>Higl<br>EDC<br>Sett                   | page a<br>n-spee<br>D DRA<br>ting pr | acces<br>ed par<br>MM<br>ohibit<br>rted a | s dis<br>ge DF<br>ed<br>as rov | Acca<br>abled<br>RAM<br>v addr | ress pr   | ode<br>echarge time.<br>tes Inserted |                     |
| 13, 12         | F         | RPC11<br>RPC01 | n,<br>n   | R<br>S      | PA<br>PA<br>ow Ar<br>pecifi | s the<br>E1n<br>0<br>0<br>1<br>1<br>1<br>1<br>ddres<br>the<br>C1n<br>0<br>0    | s Pre-    | age are an are an are               | e Cor<br>f wait  | On-<br>Higl<br>EDC<br>Sett<br>ntrol<br>state | page a<br>n-spee<br>D DRA<br>ting pr | acces<br>ed pag<br>M<br>ohibit<br>rted a  | s dis<br>ge Df<br>ed<br>as rov | Acca<br>abled<br>RAM<br>v add  | ress pr   | echarge time.<br>tes Inserted        |                     |
| 13, 12         | F         | RPC11<br>RPC01 | n,<br>n   | R<br>S<br>S | PA<br>PA<br>ow A4<br>pecifi | s the<br>E1n<br>0<br>0<br>1<br>1<br>1<br>ddres<br>es the<br>C1n<br>0<br>0<br>1 | s Pre-    | PAE0<br>0<br>1<br>0<br>1<br>charg<br>ber of<br>RPCC<br>0<br>1<br>1<br>0 | e Corr           | On-<br>Higl<br>EDC<br>Sett<br>ntrol<br>state | page a<br>n-spee<br>D DRA<br>ting pr | acces<br>ed pag<br>MM<br>ohibit<br>rted a | s dis<br>ge DF<br>ed<br>as rov | Acca<br>abled<br>RAM<br>v addu | ress pr   | echarge time.<br>tes Inserted        |                     |

Remark n = 0 to 3

| Bit Position | Bit Name        |                                                                                                                                                           |                                                                                                                            | Function                                                                                                                                                                                                                                                                                          |
|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11, 10       | RHC1n,<br>RHC0n | Row Address<br>Specifies the r                                                                                                                            | Hold Wait Co<br>number of wa                                                                                               | ntrol<br>it states inserted as row address hold time.                                                                                                                                                                                                                                             |
|              |                 | RHC1n                                                                                                                                                     | RHC0n                                                                                                                      | Number of Wait States Inserted                                                                                                                                                                                                                                                                    |
|              |                 | 0                                                                                                                                                         | 0                                                                                                                          | 0                                                                                                                                                                                                                                                                                                 |
|              |                 | 0                                                                                                                                                         | 1                                                                                                                          | 1                                                                                                                                                                                                                                                                                                 |
|              |                 | 1                                                                                                                                                         | 0                                                                                                                          | 2                                                                                                                                                                                                                                                                                                 |
|              |                 | 1                                                                                                                                                         | 1                                                                                                                          | 3                                                                                                                                                                                                                                                                                                 |
| 9, 8         | DAC1n,<br>DAC0n | Data Access F<br>Specifies the r                                                                                                                          | Programmable                                                                                                               | e Wait Control<br>it states inserted as data access time in DRAM access.                                                                                                                                                                                                                          |
|              |                 | DAC1n                                                                                                                                                     | DAC0n                                                                                                                      | Number of Wait States Inserted                                                                                                                                                                                                                                                                    |
|              |                 | 0                                                                                                                                                         | 0                                                                                                                          | 0                                                                                                                                                                                                                                                                                                 |
|              |                 | 0                                                                                                                                                         | 1                                                                                                                          | 1                                                                                                                                                                                                                                                                                                 |
|              |                 | 1                                                                                                                                                         | 0                                                                                                                          | 2                                                                                                                                                                                                                                                                                                 |
|              |                 | 1                                                                                                                                                         | 1                                                                                                                          | 3                                                                                                                                                                                                                                                                                                 |
| 7, 6         | CPC1n,<br>CPC0n | Column Addre<br>Specifies the r<br>CPC1n                                                                                                                  | ess Pre-charg<br>number of wa<br>CPC0n                                                                                     | e Control<br>it states inserted as column address precharge time.<br>Number of Wait States Inserted                                                                                                                                                                                               |
|              |                 | 0                                                                                                                                                         | 0                                                                                                                          | 0 <sup>Note</sup>                                                                                                                                                                                                                                                                                 |
|              |                 | 0                                                                                                                                                         | 1                                                                                                                          | 1                                                                                                                                                                                                                                                                                                 |
|              |                 | 1                                                                                                                                                         | 0                                                                                                                          | 2                                                                                                                                                                                                                                                                                                 |
|              |                 | 1                                                                                                                                                         | 1                                                                                                                          | 3                                                                                                                                                                                                                                                                                                 |
|              |                 | Note 1 wait is                                                                                                                                            | s inserted duri                                                                                                            | ng DRAM write access in DMA flyby transfer.                                                                                                                                                                                                                                                       |
| 4            | RHDn            | RAS Hold Disa<br>Sets the RAS<br>If access to DI<br>another space<br>(low level) dur<br>state. In this v<br>of the other sp<br>0: RAS hold<br>1: RAS hold | able<br>hold mode.<br>RAM during o<br>e midway, the<br>ing the time ti<br>way, if access<br>bace, on-page<br>d mode enable | n-page operation is not continuous, and access enters<br>$\overrightarrow{RASm}$ signal (m = 0 to 7) is maintained in the active state<br>ne other space is being accessed in the RAS hold mode<br>continues in the same DRAM row address following access<br>e operation can be continued.<br>ed |

Remark n = 0 to 3

| Bit Position | Bit Name        | Function                       |                                  |                                                                               |  |  |  |  |  |  |  |
|--------------|-----------------|--------------------------------|----------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1, 0         | DAW1n,<br>DAW0n | DRAM Addres<br>This sets the a | ss Multiplex W<br>address multip | ridth Control blex width (refer to <b>5.3.3 Address multiplex function</b> ). |  |  |  |  |  |  |  |
|              |                 | DAW1n                          | DAW0n                            | Address Multiplex Width                                                       |  |  |  |  |  |  |  |
|              |                 | 0                              | 0                                | 8 bits                                                                        |  |  |  |  |  |  |  |
|              |                 | 0                              | 1                                | 9 bits                                                                        |  |  |  |  |  |  |  |
|              |                 | 1                              | 0                                | 10 bits                                                                       |  |  |  |  |  |  |  |
|              |                 | 1                              | 1                                | 11 bits                                                                       |  |  |  |  |  |  |  |

Caution Write to the DRCn register after reset, and then do not change the set value. Also, do not access an external memory area other than the one for this initialization routine until the initial setting of the DRCn register is complete. However, it is possible to access an external memory area whose initialization is complete.

Remark n = 0 to 3

# 5.3.5 DRAM type configuration register (DTC)

This controls the relationship between DRAM configuration register n (DRCn) and memory block m (n = 0 to 3, m = 0 to 7).

These registers can be read/written in 16-bit units.

| Me     | DTC<br>emory<br>block | 15<br>DC<br>71                              | 14<br>DC<br>70                                                    | 13<br>DC<br>61                               | 12<br>DC<br>60                  | 11<br>DC<br>51                                                                    | 10<br>DC<br>50<br>5                                                                                                                                                                                          | 9<br>DC<br>41                    | 8<br>DC<br>40<br>4     | 7<br>DC<br>31          | 6<br>DC<br>30<br>3    | 5<br>DC<br>21          | 4<br>DC<br>20           | 3<br>DC<br>11            | 2<br>DC<br>10           | 1<br>DC<br>01            | 0<br>DC<br>00             | Address<br>FFFFF220H                           | After reset<br>0000H                     |  |
|--------|-----------------------|---------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|------------------------|-----------------------|------------------------|-------------------------|--------------------------|-------------------------|--------------------------|---------------------------|------------------------------------------------|------------------------------------------|--|
|        | Bit Position          |                                             | Bit Name                                                          |                                              |                                 |                                                                                   | Function                                                                                                                                                                                                     |                                  |                        |                        |                       |                        |                         |                          |                         |                          |                           |                                                |                                          |  |
| 15 tc  |                       | 00                                          | DCm1,<br>DCm0                                                     |                                              |                                 | DR/<br>Spe<br>Fur<br>area                                                         | DRAM Type Configuration<br>Specifies the DRAM configuration register n (DRCn) corresponding to memory block m.<br>Furthermore, it has no meaning if the memory block m is not specified in the DRAM<br>area. |                                  |                        |                        |                       |                        |                         |                          |                         |                          |                           |                                                |                                          |  |
|        |                       |                                             |                                                                   |                                              |                                 | DCm1 DCm0 DRAM Configuration Register n (DRCn) Corresponding<br>to Memory Block m |                                                                                                                                                                                                              |                                  |                        |                        |                       |                        |                         |                          |                         |                          | onding                    |                                                |                                          |  |
|        | l                     |                                             |                                                                   |                                              |                                 |                                                                                   | 0 0 DRC0                                                                                                                                                                                                     |                                  |                        |                        |                       |                        |                         |                          |                         |                          |                           |                                                |                                          |  |
|        | l                     |                                             |                                                                   |                                              |                                 |                                                                                   | 0                                                                                                                                                                                                            |                                  | <u> </u>               | 1                      | [                     | DRC1                   |                         |                          |                         |                          |                           |                                                |                                          |  |
|        | l                     |                                             |                                                                   |                                              |                                 |                                                                                   | 1 0 DRC2                                                                                                                                                                                                     |                                  |                        |                        |                       |                        |                         |                          |                         |                          |                           |                                                |                                          |  |
|        | l                     |                                             |                                                                   |                                              |                                 |                                                                                   | 1                                                                                                                                                                                                            |                                  | l                      | 1                      | [                     | DRC3                   |                         |                          |                         |                          |                           |                                                |                                          |  |
| C<br>R | aution<br>emark       | Write<br>an e<br>of th<br>who<br>n =<br>m = | e to f<br>xterr<br>ne D <sup>-</sup><br>se in<br>0 to 3<br>0 to 3 | the D<br>nal m<br>TC ro<br>iitiali<br>3<br>7 | )TC r<br>nemc<br>egist<br>zatio | egis<br>ory an<br>er is<br>on is                                                  | ter a<br>rea o<br>com                                                                                                                                                                                        | fter r<br>ther<br>nplet<br>plete | reset<br>than<br>:e. F | , and<br>ı the<br>łowe | l thei<br>one<br>ver, | n do<br>for t<br>it is | not c<br>his ii<br>pos: | chang<br>nitial<br>sible | ge th<br>izatio<br>to a | ie sei<br>on ro<br>icces | t valu<br>outine<br>is an | ue. Also, do<br>e until the ini<br>external me | not access<br>tial setting<br>emory area |  |

### 5.3.6 DRAM access



Figure 5-8. High-Speed Page DRAM Access Timing (1/4)



Figure 5-8. High-Speed Page DRAM Access Timing (2/4)










Figure 5-9. EDO DRAM Access Timing (1/4)







Figure 5-9. EDO DRAM Access Timing (3/4)



Figure 5-9. EDO DRAM Access Timing (4/4)

#### 5.3.7 DRAM access during DMA flyby transfer



Figure 5-10. DRAM Access Timing During DMA Flyby Transfer (1/2)





### 5.3.8 Refresh control function

V850E/MS1 can create a CBR (CAS-before-RAS) refresh cycle. The refresh cycle is set with the refresh control register (RFC).

When another bus master occupies the external bus, the DRAM controller cannot occupy the external bus. In this case, the DRAM controller sends a refresh request to the bus master by changing the REFRQ signal to active (low level).

During the refresh interval, the address bus maintains the state it was in just before the refresh cycle.

## (1) Refresh control registers 0 to 3 (RFC0 to RFC3)

These set whether refresh is enabled or disabled, and the refresh interval. The refresh interval is determined by the following calculation formula.

Refresh interval (µs) = Refresh count clock (TRCY) × Interval factor

The refresh count clock and interval factor are determined by the RENn bit and RIn bit, respectively, of the RFCn register.

Note that n corresponds to the register number (0 to 3) of DRAM configuration registers 0 to 3 (DRC0 to DRC3).

These registers can be read/written in 16-bit units.

|       | 15                    | 14 | 13   | 12 | 11 | 10                               | ٩                                   | 8                                 | 7                    | 6     | 5        | 4        | з        | 2        | 1        | 0        |                      |                      |
|-------|-----------------------|----|------|----|----|----------------------------------|-------------------------------------|-----------------------------------|----------------------|-------|----------|----------|----------|----------|----------|----------|----------------------|----------------------|
| RFC0  | REN<br>0              | 0  | 0    | 0  | 0  | 0                                | RCC<br>01                           | RCC<br>00                         | 0                    | 0     | RI<br>05 | RI<br>04 | RI<br>03 | RI<br>02 | RI<br>01 | RI<br>00 | Address<br>FFFFF210H | After reset<br>0000H |
|       |                       |    |      |    |    |                                  |                                     |                                   |                      |       |          |          |          |          |          |          |                      |                      |
| RFC1  | REN<br>1              | 0  | 0    | 0  | 0  | 0                                | RCC<br>11                           | RCC<br>10                         | 0                    | 0     | RI<br>15 | RI<br>14 | RI<br>13 | RI<br>12 | RI<br>11 | RI<br>10 | FFFFF212H            | 0000H                |
|       |                       |    |      |    |    |                                  |                                     |                                   |                      |       |          |          |          |          |          |          |                      |                      |
| RFC2  | REN<br>2              | 0  | 0    | 0  | 0  | 0                                | RCC<br>21                           | RCC<br>20                         | 0                    | 0     | RI<br>25 | RI<br>24 | RI<br>23 | RI<br>22 | RI<br>21 | RI<br>20 | FFFFF214H            | 0000H                |
|       |                       |    |      |    |    |                                  |                                     |                                   |                      |       |          |          |          |          |          |          |                      |                      |
| RFC3  | REN<br>3              | 0  | 0    | 0  | 0  | 0                                | RCC<br>31                           | RCC<br>30                         | 0                    | 0     | RI<br>35 | RI<br>34 | RI<br>33 | RI<br>32 | RI<br>31 | RI<br>30 | FFFFF216H            | 0000H                |
|       |                       |    |      |    |    |                                  |                                     |                                   |                      |       |          |          |          |          |          |          |                      |                      |
| Bit P | Bit Position Bit Name |    |      |    |    |                                  |                                     |                                   |                      |       |          | Func     | tion     |          |          |          |                      |                      |
|       | Bit Position<br>15    |    | RENn |    | F  | Refres<br>Specif<br>0: F<br>1: F | h Ena<br>ies wł<br>Refres<br>Refres | ible<br>nether<br>h disa<br>h ena | CBR<br>Ibled<br>bled | refre | sh is    | enabl    | ed or    | disab    | led.     |          |                      |                      |

Remark n = 0 to 3

|        | Bit Name        |                                                      |                                    |                                                                                                 |                                            |                                       | Functior                           | ו                           |                                       |  |
|--------|-----------------|------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|------------------------------------|-----------------------------|---------------------------------------|--|
| 9, 8   | RCCn1,<br>RCCn0 | Refresh<br>Specifie                                  | Count (<br>s the ref               | Clock<br>fresh cou                                                                              | unt clock                                  | (Trcy).                               |                                    |                             |                                       |  |
|        |                 | RCC                                                  | Cn1                                | RCCn                                                                                            | 0                                          |                                       | Ref                                | resh Cour                   | nt Clock (Trcy)                       |  |
|        |                 | 0                                                    |                                    | 0                                                                                               | 32                                         | 2/φ                                   |                                    |                             |                                       |  |
|        |                 | 0                                                    |                                    | 1                                                                                               | 12                                         | 28/ <i>φ</i>                          |                                    |                             |                                       |  |
|        |                 | 1                                                    |                                    | 0                                                                                               | 25                                         | 56/ <i>φ</i>                          |                                    |                             |                                       |  |
|        |                 | 1                                                    |                                    | 1                                                                                               | Se                                         | etting pro                            | ohibited                           |                             |                                       |  |
| 5 10 0 |                 | Refresh                                              | interval                           | footor                                                                                          | f the int                                  | on (ol tim                            | or for a                           | on orotion (                | of rofroch timing                     |  |
| 5 to 0 | RIn0            | Sets the                                             | interva                            | l factor c                                                                                      | of the int                                 | erval tim                             | er for ge                          | eneration o                 | of refresh timing.                    |  |
| 5 to 0 | RIn0            | Sets the<br>RIn5                                     | niterva<br>interva<br>RIn4         | l factor c                                                                                      | of the int                                 | erval tim                             | ner for ge                         | eneration o                 | of refresh timing.<br>Interval Factor |  |
| 5 to 0 | RIn0            | Refresh<br>Sets the<br>RIn5                          | RIn4                               | RIn3                                                                                            | of the internet RIn2                       | erval tim<br>RIn1<br>0                | RIn0                               | eneration o                 | of refresh timing.<br>Interval Factor |  |
| 5 10 0 | Rin0            | Refresh<br>Sets the<br>RIn5<br>0                     | RIn4<br>0                          | RIn3<br>0                                                                                       | of the internet RIn2                       | erval tim<br>RIn1<br>0<br>0           | RIn0                               | eneration of 1              | of refresh timing.<br>Interval Factor |  |
| 5 to U | Rino            | Refresh<br>Sets the<br>RIn5<br>0<br>0                | RIn4<br>0<br>0                     | RIn3<br>0<br>0                                                                                  | f the int<br>RIn2<br>0<br>0                | erval tim<br>RIn1<br>0<br>0<br>1      | RIn0<br>0<br>1<br>0                | 1<br>2<br>3                 | of refresh timing.<br>Interval Factor |  |
| 5 to U | Rin0            | Refresh<br>Sets the<br>RIn5<br>0<br>0<br>0           | RIn4<br>0<br>0<br>0<br>0           | RIn3<br>0<br>0<br>0<br>0                                                                        | f the int<br>RIn2<br>0<br>0<br>0<br>0      | erval tim<br>RIn1<br>0<br>0<br>1<br>1 | RIn0<br>0<br>1<br>0<br>1           | 1<br>2<br>3<br>4            | of refresh timing.<br>Interval Factor |  |
| 5 to U | Rin0            | Refresh<br>Sets the<br>RIn5<br>0<br>0<br>0<br>0      | RIn4<br>0<br>0<br>0<br>0<br>0      | factor c     RIn3     0     0     0     0     0     0     1                                     | f the int<br>RIn2<br>0<br>0<br>0<br>0<br>0 | RIn1<br>0<br>0<br>1<br>1<br>:         | RIn0<br>0<br>1<br>0<br>1<br>:      | 1<br>2<br>3<br>4<br>:       | of refresh timing.<br>Interval Factor |  |
| 5 10 0 | Rino            | Refresh<br>Sets the<br>RIn5<br>0<br>0<br>0<br>0<br>1 | RIn4<br>0<br>0<br>0<br>0<br>0<br>1 | Factor c           RIn3           0           0           0           0           0           1 | f the int<br>RIn2<br>0<br>0<br>0<br>0<br>1 | RIn1<br>0<br>0<br>1<br>1<br>:<br>1    | RIn0<br>0<br>1<br>0<br>1<br>:<br>1 | 1<br>2<br>3<br>4<br>:<br>64 | of refresh timing.<br>Interval Factor |  |

**Remark** n = 0 to 3

 $\phi$  = Internal system clock frequency

**Example** An example of the DRAM refresh interval and an example of setting the interval factor are shown below.

| DRAM Capacity (bits) | Refresh Cycle (Cycles/ms) | Refresh Interval (µs) |
|----------------------|---------------------------|-----------------------|
| 256 K                | 256/4                     | 15.6                  |
| 1 M                  | 512/8                     | 15.6                  |
|                      | 512/64                    | 125                   |
| 4 M                  | 512/128                   | 250                   |
|                      | 1 K/16                    | 15.6                  |
|                      | 1 K/128                   | 125                   |
| 16 M                 | 1 K/256                   | 250                   |
|                      | 2 K/256                   | 125                   |
|                      | 4 K/64                    | 15.6                  |
|                      | 4 K/256                   | 62.5                  |
| 64 M                 | 4 K/64                    | 15.6                  |

Table 5-2. Example of DRAM Refresh Interval

| Table 5-3. | Example of | Interval | Factor | Settings |
|------------|------------|----------|--------|----------|
|------------|------------|----------|--------|----------|

| Specified Refresh   | Refresh Count |                              | Interval Facto               | or Value <sup>Notes 1, 2</sup> |                              |
|---------------------|---------------|------------------------------|------------------------------|--------------------------------|------------------------------|
| Interval Value (µs) | Clock (Trcy)  | When $\phi = 16 \text{ MHz}$ | When $\phi = 20 \text{ MHz}$ | When $\phi = 33 \text{ MHz}$   | When $\phi = 40 \text{ MHz}$ |
| 15.6                | 32/ <i>φ</i>  | 7 (14)                       | 9 (14.4)                     | 15 (14.5)                      | 19 (15.2)                    |
|                     | 128/ø         | 1 (8)                        | 2 (12.8)                     | 3 (11.6)                       | 4 (12.8)                     |
|                     | 256/ <i>φ</i> |                              | 1 (12.8)                     | 1 (7.8)                        | 2 (12.8)                     |
| 62.5                | 32/ <i>φ</i>  | 30 (60)                      | 38 (60.8)                    | 63 (61.1)                      |                              |
|                     | 128/ø         | 7 (56)                       | 9 (57.6)                     | 15 (58.2)                      | 19 (60.8)                    |
|                     | 256/ <i>φ</i> | 3 (48)                       | 4 (51.2)                     | 7 (54.3)                       | 9 (57.6)                     |
| 125                 | 32/ <i>φ</i>  |                              |                              |                                |                              |
|                     | 128/ø         | 15 (120)                     | 19 (121.6)                   | 32 (124.1)                     | 39 (124.8)                   |
|                     | 256/ <i>φ</i> | 7 (112)                      | 9 (115.2)                    | 16 (124.1)                     | 19 (121.6)                   |
| 250                 | 32/ <i>φ</i>  | _                            | _                            | —                              | _                            |
|                     | 128/ø         | 31 (248)                     | 38 (243.2)                   | 64 (248.2)                     |                              |
|                     | 256/ <i>φ</i> | 15 (240)                     | 19 (243.2)                   | 32 (248.2)                     | 39 (249.6)                   |

**Notes 1.** The interval factor is set by bits RIn0 to RIn5 of the RFCn register (n = 0 to 3).

2. The values in parentheses are the calculated value ( $\mu$ s) for the refresh interval. Refresh Interval ( $\mu$ s) = Refresh count clock (T<sub>RCY</sub>) × Interval factor

**Remark**  $\phi$ : Internal system clock frequency

# (2) Refresh wait control register (RWC)

This specifies insertion of wait states during the refresh cycle. The register can be read/written in 8- or 1-bit units.

| RWC    | RRW1    | RRW0            | RCW2                           | RCW1                               | RCW0                             | SRV                    | V2            | SRW1       | SRW0        | FFFFF218H 00H                   |
|--------|---------|-----------------|--------------------------------|------------------------------------|----------------------------------|------------------------|---------------|------------|-------------|---------------------------------|
| Bit Do | osition | Bit Name        |                                |                                    |                                  |                        |               | Functio    | on          |                                 |
| 7      | 6       |                 | Rofrost                        | RASM                               | ait Contr                        | ol                     |               | T uncu     |             |                                 |
| 7,     | 0       | RRW0            | Specifie<br>level wi           | es the nu                          | imber of<br>ng CBR r             | wait stat<br>efresh.   | tes ir        | nserted as | hold time   | for the RASm signal's high      |
|        |         |                 | RF                             | :W1                                | RRW                              | /0                     |               | Nu         | mber of Ins | ertion Wait States              |
|        |         |                 |                                | 0                                  | 0                                | (                      | 0             |            |             |                                 |
|        |         |                 |                                | 0                                  | 1                                |                        | 1             |            |             |                                 |
|        |         |                 |                                | 1                                  | 0                                | :                      | 2             |            |             |                                 |
|        |         |                 |                                | 1                                  | 1                                | :                      | 3             |            |             |                                 |
| 5 t    | о З     | RCW2 to<br>RCW0 | Refrest<br>Specifie<br>width d | n Cycle V<br>es the nu<br>uring CB | Vait Con<br>Imber of<br>R refres | trol<br>wait stat      | ites ir       | nserted as | s hold time | for the RASm signal's low level |
|        |         |                 | RCW                            | 2 RC                               | N1 R0                            | CW0                    |               | Nu         | mber of Ins | ertion Wait States              |
|        |         |                 | 0                              | C                                  | )                                | 0                      | 0             |            |             |                                 |
|        |         |                 | 0                              | C                                  | )                                | 1                      | 1             |            |             |                                 |
|        |         |                 | 0                              | 1                                  |                                  | 0 2                    | 2             |            |             |                                 |
|        |         |                 | 0                              | 1                                  |                                  | 1 :                    | 3             |            |             |                                 |
|        |         |                 | 1                              | C                                  | )                                | 0 4                    | 4             |            |             |                                 |
|        |         |                 | 1                              | C                                  | )                                | 1 :                    | 5             |            |             |                                 |
|        |         |                 | 1                              | 1                                  |                                  | 0                      | 6             |            |             |                                 |
|        |         |                 | 1                              | 1                                  |                                  | 1                      | 7             |            |             |                                 |
| 2 t    | o 0     | SRW2 to<br>SRW0 | Self-ref<br>Specifie           | resh Rel<br>es the nu              | ease Wa<br>Imber of              | it Contro<br>wait stat | ol<br>ites ir | nserted as | CBR self-   | refresh release time.           |
|        |         |                 | SRW                            | 2 SR                               | N1 SF                            | RWO                    |               | Nu         | mber of Ins | ertion Wait States              |
|        |         |                 | 0                              | C                                  | )                                | 0                      | 0             |            |             |                                 |
|        |         |                 | 0                              | C                                  | )                                | 1                      | 1             |            |             |                                 |
|        |         |                 | 0                              | 1                                  |                                  | 0 2                    | 2             |            |             |                                 |
|        |         |                 | 0                              | 1                                  |                                  | 1 ;                    | 3             |            |             |                                 |
|        |         |                 | 1                              | C                                  | )                                | 0 4                    | 4             |            |             |                                 |
|        |         |                 | 1                              | C                                  | )                                | 1                      | 5             |            |             |                                 |
|        |         |                 | 1                              | 1                                  |                                  | 0                      | 6             |            |             |                                 |
|        |         |                 | 1                              | 1                                  |                                  | 1                      | 7             |            |             |                                 |
|        |         |                 |                                |                                    |                                  |                        |               |            |             |                                 |

area whose initialization is complete.

**Remark** m = 0 to 7

# (3) Refresh timing



Figure 5-11. CBR Refresh Timing

**2.** n = 0 to 7

# 5.3.9 Self-refresh functions

In the case of IDLE mode and software STOP mode, the DRAM controller generates a CBR self-refresh cycle. However, the RASn pulse width of DRAM should meet the specifications to enter a self-refresh operation mode (n

= 0 to 7).

To release the self-refresh cycle, follow either of two methods below.

## (1) Release by NMI input

(a) In the case of self-refresh cycle with IDLE mode

Set the RASn, LCAS, UCAS signals to inactive (high level) immediately to release the self-refresh cycle.

## (b) In the case of self-refresh cycle with software STOP mode

Set the RASn, LCAS, UCAS signals to inactive (high level) after stabilizing oscillation to release the self-refresh cycle.

# (2) Release by RESET input



Figure 5-12. CBR Self-Refresh Timing (1/2)



Figure 5-12. CBR Self-Refresh Timing (2/2)

# CHAPTER 6 DMA FUNCTIONS (DMA CONTROLLER)

The V850E/MS1 includes a DMA (Direct Memory Access) controller (DMAC), which executes and controls DMA transfer.

The DMAC (DMA controller) transfers data between memory and I/O, or within memory, based on DMA requests issued by the internal peripheral I/O (serial interface and real-time pulse unit), DMARQ0 to DMARQ3 pins, or software triggers.

# 6.1 Features

- O 4 independent DMA channels
- O Transfer unit: 8/16 bits
- O Maximum transfer count: 65,536 (2<sup>16</sup>)
- O Two types of transfer
  - Flyby (one-cycle) transfer
  - Two-cycle transfer
- O Three transfer modes
  - Single transfer mode
  - Single-step transfer mode
  - Block transfer mode
- O Transfer requests
  - $\overline{\text{DMARQ0}}$  to  $\overline{\text{DMARQ3}}$  pin (× 4)
  - Requests from internal peripheral I/O (serial interface and real-time pulse unit)
  - Requests from software
- O Transfer objects
  - Memory to I/O and vice versa
  - Memory to memory
- O DMA transfer end output signal ( $\overline{TC0}$  to  $\overline{TC3}$ )

# 6.2 Configuration



# 6.3 Control Registers

## 6.3.1 DMA source address registers 0 to 3 (DSA0 to DSA3)

These registers are used to set the DMA source addresses (26 bits each) for DMA channel n (n = 0 to 3). They are divided into two 16-bit registers, DSAnH and DSAnL.

During DMA transfer, the registers store the next DMA source addresses.

When flyby transfer between external memory and external I/O is specified with the TTYP bits of DMA addressing control register n (DADCn), the external memory addresses are set with the DSAn register. The setting made with DMA destination address register n (DDAn) is ignored.

#### (1) DMA source address registers 0H to 3H (DSA0H to DSA3H)

|   |      | 15          | 14 | 13 | 12     | 11   | 10 | 9        | 8        | 7        | 6        | 5        | 4              | 3        | 2        | 1        | 0        |                      |                          |
|---|------|-------------|----|----|--------|------|----|----------|----------|----------|----------|----------|----------------|----------|----------|----------|----------|----------------------|--------------------------|
| D | SA0H | 0           | 0  | 0  | 0      | 0    | 0  | SA<br>25 | SA<br>24 | SA<br>23 | SA<br>22 | SA<br>21 | SA<br>20       | SA<br>19 | SA<br>18 | SA<br>17 | SA<br>16 | Address<br>FFFFF1A0H | After reset<br>Undefined |
|   |      |             |    |    |        |      |    |          |          |          |          |          |                |          |          |          |          |                      |                          |
| D | SA1H | 0           | 0  | 0  | 0      | 0    | 0  | SA<br>25 | SA<br>24 | SA<br>23 | SA<br>22 | SA<br>21 | SA<br>20       | SA<br>19 | SA<br>18 | SA<br>17 | SA<br>16 | FFFFF1A8H            | Undefined                |
|   |      |             |    |    |        |      |    |          |          |          |          |          |                |          |          |          |          |                      |                          |
| D | SA2H | 0           | 0  | 0  | 0      | 0    | 0  | SA<br>25 | SA<br>24 | SA<br>23 | SA<br>22 | SA<br>21 | SA<br>20       | SA<br>19 | SA<br>18 | SA<br>17 | SA<br>16 | FFFFF1B0H            | Undefined                |
|   |      |             | -  |    |        |      |    |          |          |          |          |          |                |          |          |          |          |                      |                          |
| D | SA3H | н 0 0 0 0 0 |    |    |        |      | 0  | SA<br>25 | SA<br>24 | SA<br>23 | SA<br>22 | SA<br>21 | SA<br>20       | SA<br>19 | SA<br>18 | SA<br>17 | SA<br>16 | FFFFF1B8H            | Undefined                |
| F |      |             |    |    |        |      |    | 1        |          |          |          |          |                |          |          |          |          |                      |                          |
|   | Bit  | Positi      | on |    | Bit    | Name | ;  |          |          |          |          |          |                |          | Func     | tion     |          |                      |                          |
|   | ç    | 9 to 0      |    | SA | \25 tc | SA1  | 6  | So       | urce A   | Addre    | SS       |          |                |          |          |          |          |                      |                          |
|   |      |             |    |    |        |      |    | Set      | ts the   | DMA      | sour     | ce ad    | dress          | (A25     | to A1    | 6). C    | )uring   | DMA transfer, it     | stores the               |
|   |      |             |    |    |        |      |    | ext      | ernal    | I/O, it  | store    | es a m   | s. Di<br>nemor | y add    | lress.   | ansi     | er bet   |                      |                          |
|   |      |             |    | •  |        |      |    | •        |          |          |          |          |                |          |          |          |          |                      |                          |

# (2) DMA source address registers 0L to 3L (DSA0L to DSA3L)

|       | 15                      | 14       | 13       | 12       | 11       | 10       | 9                    | 8                         | 7                                | 6                                  | 5                          | 4                      | 3                         | 2                         | 1               | 0                  |                                        |                          |
|-------|-------------------------|----------|----------|----------|----------|----------|----------------------|---------------------------|----------------------------------|------------------------------------|----------------------------|------------------------|---------------------------|---------------------------|-----------------|--------------------|----------------------------------------|--------------------------|
| DSA0L | SA<br>15                | SA<br>14 | SA<br>13 | SA<br>12 | SA<br>11 | SA<br>10 | SA<br>9              | SA<br>8                   | SA<br>7                          | SA<br>6                            | SA<br>5                    | SA<br>4                | SA<br>3                   | SA<br>2                   | SA<br>1         | SA<br>0            | Address<br>FFFFF1A2H                   | After reset<br>Undefined |
|       |                         |          |          |          |          |          |                      |                           |                                  |                                    |                            |                        |                           |                           |                 |                    |                                        |                          |
| DSA1L | SA<br>15                | SA<br>14 | SA<br>13 | SA<br>12 | SA<br>11 | SA<br>10 | SA<br>9              | SA<br>8                   | SA<br>7                          | SA<br>6                            | SA<br>5                    | SA<br>4                | SA<br>3                   | SA<br>2                   | SA<br>1         | SA<br>0            | FFFFF1AAH                              | Undefined                |
|       |                         |          |          |          |          |          |                      |                           |                                  |                                    |                            |                        |                           |                           |                 |                    |                                        |                          |
| DSA2L | SA<br>15                | SA<br>14 | SA<br>13 | SA<br>12 | SA<br>11 | SA<br>10 | SA<br>9              | SA<br>8                   | SA<br>7                          | SA<br>6                            | SA<br>5                    | SA<br>4                | SA<br>3                   | SA<br>2                   | SA<br>1         | SA<br>0            | FFFFF1B2H                              | Undefined                |
|       |                         |          |          |          |          |          |                      |                           |                                  |                                    |                            |                        |                           |                           |                 |                    |                                        |                          |
| DSA3L | SA<br>15                | SA<br>14 | SA<br>13 | SA<br>12 | SA<br>11 | SA<br>10 | SA<br>9              | SA<br>8                   | SA<br>7                          | SA<br>6                            | SA<br>5                    | SA<br>4                | SA<br>3                   | SA<br>2                   | SA<br>1         | SA<br>0            | FFFFF1BAH                              | Undefined                |
|       |                         |          |          |          |          |          |                      |                           |                                  |                                    |                            |                        |                           |                           |                 | -                  |                                        |                          |
| Bit   | Posit                   | ion      |          | Bit      | Name     | Э        |                      |                           |                                  |                                    |                            |                        |                           | Fund                      | tion            |                    |                                        |                          |
|       | Bit Position<br>15 to 0 |          |          |          | o SA0    | )        | So<br>Se<br>ne<br>ex | ts the<br>xt DN<br>ternal | Addre<br>DMA<br>IA sou<br>I/O, i | ess<br>A sour<br>urce a<br>t store | rce ad<br>iddres<br>es a r | dress<br>ss. D<br>nemo | i (A15<br>uring<br>ry ado | i to A(<br>flyby<br>dress | 0). D<br>transt | uring l<br>fer bet | DMA transfer, it s<br>tween external m | stores the<br>nemory and |

## 6.3.2 DMA destination address registers 0 to 3 (DDA0 to DDA3)

These registers are used to set the DMA destination addresses (26 bits each) for DMA channel n (n = 0 to 3). They are divided into two 16-bit registers, DDAnH and DDAnL.

During DMA transfer, the registers store the next DMA destination addresses.

When flyby transfer between external memory and external I/O is specified with the TTYP bits of DMA addressing control register n (DADCn), the setting of these registers are ignored. But when flyby transfer between internal RAM and internal peripheral I/O has been set, the DMA destination address registers (DDA0 to DDA3) must be set.

# (1) DMA destination address registers 0H to 3H (DDA0H to DDA3H)

| 15      | 14                | 13                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0       | 0                 | 0                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DA<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DA<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DA<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DA<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DA<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DA<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DA<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Address<br>FFFFF1A4H                                                                                                                                                                                                                                                                                                                                                | After reset<br>Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                   |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0       | 0                 | 0                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DA<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DA<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DA<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DA<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DA<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DA<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DA<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FFFFF1ACH                                                                                                                                                                                                                                                                                                                                                           | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                   |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0       | 0                 | 0                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DA<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DA<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DA<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DA<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DA<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DA<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DA<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FFFFF1B4H                                                                                                                                                                                                                                                                                                                                                           | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                   |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0       | 0                 | 0                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DA<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DA<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DA<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DA<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DA<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DA<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DA<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FFFFF1BCH                                                                                                                                                                                                                                                                                                                                                           | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                   |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ositior | า                 | E                                                                                                                                                                                                                                                     | Bit Na                                                                                                                                                                                                                                                                                                                                                                                           | me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | unctio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| :o 0    |                   | DA2                                                                                                                                                                                                                                                   | 5 to D                                                                                                                                                                                                                                                                                                                                                                                           | A16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E<br>S<br>t<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Destin<br>Sets tl<br>he ne<br>Detwe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ation<br>ne DN<br>xt DN<br>en ex<br>ransfe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Addro<br>IA de<br>IA de<br>ternal<br>er bet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ess<br>stinat<br>stinati<br>mem<br>ween                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion ac<br>ion ac<br>iory a<br>interr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ddress<br>Idress<br>nd ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s (A2<br>s. Thi<br>ternal<br>M an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 to A<br>is is d<br>I I/O, I<br>id inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16).<br>isrega<br>but be<br>rnal r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | During<br>arded<br>e sure<br>periph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g DMA transfer, i<br>during flyby trans<br>to set this regist<br>eral I/O.                                                                                                                                                                                                                                                                                          | t stores<br>sfer<br>er during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 15<br>0<br>0<br>0 | 15       14         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0 | 15       14       13         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0 | 15       14       13       12         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0 | 15       14       13       12       11         0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0 | 15       14       13       12       11       10         0       0       0       0       0       0       0         0       0       0       0       0       0       0       0         0       0       0       0       0       0       0       0         0       0       0       0       0       0       0       0         0       0       0       0       0       0       0       0         0       0       0       0       0       0       0       0         0       0       0       0       0       0       0       0         0       0       0       0       0       0       0       0         0       0       0       0       0       0       0       0         0       0       0       0       0       0       0       0       0         0       0       0       0       0       0       0       0       0         0       0       0       0       0       0       0       0       0       0 | 15       14       13       12       11       10       9         0       0       0       0       0       0       DA       25         0       0       0       0       0       0       0       DA       25         0       0       0       0       0       0       0       DA       25         0       0       0       0       0       0       0       DA       25         0       0       0       0       0       0       0       DA       25         0       0       0       0       0       0       0       DA       25         0       0       0       0       0       0       0       DA       25         0       0       0       0       0       0       0       DA       25         0       0       0       0       0       0       0       DA       25         0       0       0       0       0       0       0       DA       25         0       0       0       0       0       0       0       DA       25 | 15       14       13       12       11       10       9       8         0       0       0       0       0       0       0       DA       24         0       0       0       0       0       0       0       DA       24         0       0       0       0       0       0       DA       25       24         0       0       0       0       0       0       DA       25       24         0       0       0       0       0       0       DA       25       24         0       0       0       0       0       0       DA       25       DA         0       0       0       0       0       0       DA       25       24         0       0       0       0       0       0       DA       25       24         0       0       0       0       0       0       DA       25       24         0       0       0       0       0       0       DA       25       24         0       0       0       0       0       0       DA </td <td>15       14       13       12       11       10       9       8       7         0       0       0       0       0       0       0       DA       DA       DA         0       0       0       0       0       0       0       DA       DA       24       23         0       0       0       0       0       0       DA       DA       24       23         0       0       0       0       0       0       DA       25       24       23         0       0       0       0       0       0       DA       25       24       23         0       0       0       0       0       0       DA       25       24       23         0       0       0       0       0       0       DA       25       24       23         0       0       0       0       0       0       DA       25       24       23         0       0       0       0       0       0       DA       25       24       23         0       0       0       0       0       <td< td=""><td>15       14       13       12       11       10       9       8       7       6         0       0       0       0       0       0       25       24       23       22         0       0       0       0       0       0       0       25       24       23       22         0       0       0       0       0       0       DA       24       23       22         0       0       0       0       0       0       DA       24       23       22         0       0       0       0       0       0       DA       25       24       23       22         0       0       0       0       0       0       DA       25       24       23       22         0       0       0       0       0       0       0       25       24       23       22         0       0       0       0       0       0       25       24       23       22         0       0       0       0       0       0       25       24       23       22         0</td><td>15       14       13       12       11       10       9       8       7       6       5         0       0       0       0       0       0       25       24       23       22       21         0       0       0       0       0       0       0       25       24       23       22       21         0       0       0       0       0       0       0       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21</td><td>15       14       13       12       11       10       9       8       7       6       5       4         0       0       0       0       0       0       24       23       22       21       20         0       0       0       0       0       0       25       24       23       22       21       20         0       0       0       0       0       0       25       24       23       22       21       20         0       0       0       0       0       0       DA       25       24       23       22       21       20         0       0       0       0       0       0       DA       25       24       23       22       21       20         0       0       0       0       0       0       DA       25       24       23       22       21       20         0       0       0       0       0       0       DA       25       24       23       22       21       20         0       0       0       0       0       DA       25       24</td><td>15       14       13       12       11       10       9       8       7       6       5       4       3         0       0       0       0       0       0       0       DA       DA</td><td>15       14       13       12       11       10       9       8       7       6       5       4       3       2         0       0       0       0       0       0       DA       DA</td><td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1         0       0       0       0       0       0       DA       DA</td><td>1514131211109876543210000000DADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADAD</td><td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1       0         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td></td<></td> | 15       14       13       12       11       10       9       8       7         0       0       0       0       0       0       0       DA       DA       DA         0       0       0       0       0       0       0       DA       DA       24       23         0       0       0       0       0       0       DA       DA       24       23         0       0       0       0       0       0       DA       25       24       23         0       0       0       0       0       0       DA       25       24       23         0       0       0       0       0       0       DA       25       24       23         0       0       0       0       0       0       DA       25       24       23         0       0       0       0       0       0       DA       25       24       23         0       0       0       0       0       0       DA       25       24       23         0       0       0       0       0 <td< td=""><td>15       14       13       12       11       10       9       8       7       6         0       0       0       0       0       0       25       24       23       22         0       0       0       0       0       0       0       25       24       23       22         0       0       0       0       0       0       DA       24       23       22         0       0       0       0       0       0       DA       24       23       22         0       0       0       0       0       0       DA       25       24       23       22         0       0       0       0       0       0       DA       25       24       23       22         0       0       0       0       0       0       0       25       24       23       22         0       0       0       0       0       0       25       24       23       22         0       0       0       0       0       0       25       24       23       22         0</td><td>15       14       13       12       11       10       9       8       7       6       5         0       0       0       0       0       0       25       24       23       22       21         0       0       0       0       0       0       0       25       24       23       22       21         0       0       0       0       0       0       0       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21</td><td>15       14       13       12       11       10       9       8       7       6       5       4         0       0       0       0       0       0       24       23       22       21       20         0       0       0       0       0       0       25       24       23       22       21       20         0       0       0       0       0       0       25       24       23       22       21       20         0       0       0       0       0       0       DA       25       24       23       22       21       20         0       0       0       0       0       0       DA       25       24       23       22       21       20         0       0       0       0       0       0       DA       25       24       23       22       21       20         0       0       0       0       0       0       DA       25       24       23       22       21       20         0       0       0       0       0       DA       25       24</td><td>15       14       13       12       11       10       9       8       7       6       5       4       3         0       0       0       0       0       0       0       DA       DA</td><td>15       14       13       12       11       10       9       8       7       6       5       4       3       2         0       0       0       0       0       0       DA       DA</td><td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1         0       0       0       0       0       0       DA       DA</td><td>1514131211109876543210000000DADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADAD</td><td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1       0         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</td></td<> | 15       14       13       12       11       10       9       8       7       6         0       0       0       0       0       0       25       24       23       22         0       0       0       0       0       0       0       25       24       23       22         0       0       0       0       0       0       DA       24       23       22         0       0       0       0       0       0       DA       24       23       22         0       0       0       0       0       0       DA       25       24       23       22         0       0       0       0       0       0       DA       25       24       23       22         0       0       0       0       0       0       0       25       24       23       22         0       0       0       0       0       0       25       24       23       22         0       0       0       0       0       0       25       24       23       22         0 | 15       14       13       12       11       10       9       8       7       6       5         0       0       0       0       0       0       25       24       23       22       21         0       0       0       0       0       0       0       25       24       23       22       21         0       0       0       0       0       0       0       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21         0       0       0       0       0       0       DA       25       24       23       22       21 | 15       14       13       12       11       10       9       8       7       6       5       4         0       0       0       0       0       0       24       23       22       21       20         0       0       0       0       0       0       25       24       23       22       21       20         0       0       0       0       0       0       25       24       23       22       21       20         0       0       0       0       0       0       DA       25       24       23       22       21       20         0       0       0       0       0       0       DA       25       24       23       22       21       20         0       0       0       0       0       0       DA       25       24       23       22       21       20         0       0       0       0       0       0       DA       25       24       23       22       21       20         0       0       0       0       0       DA       25       24 | 15       14       13       12       11       10       9       8       7       6       5       4       3         0       0       0       0       0       0       0       DA       DA | 15       14       13       12       11       10       9       8       7       6       5       4       3       2         0       0       0       0       0       0       DA       DA | 15       14       13       12       11       10       9       8       7       6       5       4       3       2       1         0       0       0       0       0       0       DA       DA | 1514131211109876543210000000DADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADADAD | 15       14       13       12       11       10       9       8       7       6       5       4       3       2       1       0         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |

# (2) DMA destination address registers 0L to 3L (DDA0L to DDA3L)

| 15                      | 14                                                                        | 13                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DA<br>15                | DA<br>14                                                                  | DA<br>13                                                                                                                                                                                                                                                                                            | DA<br>12                                                                                                                                                                                                                                                                                                                                                                                                                           | DA<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DA<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DA<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DA<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DA<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DA<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DA<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DA<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DA<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Address<br>FFFFF1A6H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | After reset<br>Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                                                           |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DA<br>15                | DA<br>14                                                                  | DA<br>13                                                                                                                                                                                                                                                                                            | DA<br>12                                                                                                                                                                                                                                                                                                                                                                                                                           | DA<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DA<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DA<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DA<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DA<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DA<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DA<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DA<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DA<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FFFFF1AEH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         |                                                                           |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DA<br>15                | DA<br>14                                                                  | DA<br>13                                                                                                                                                                                                                                                                                            | DA<br>12                                                                                                                                                                                                                                                                                                                                                                                                                           | DA<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DA<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DA<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DA<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DA<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DA<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DA<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DA<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DA<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FFFFF1B6H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         |                                                                           |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DA<br>15                | DA<br>14                                                                  | DA<br>13                                                                                                                                                                                                                                                                                            | DA<br>12                                                                                                                                                                                                                                                                                                                                                                                                                           | DA<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DA<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DA<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DA<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DA<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DA<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DA<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DA<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DA<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DA<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FFFFF1BEH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         |                                                                           | 1                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Positio                 | n                                                                         |                                                                                                                                                                                                                                                                                                     | Bit N                                                                                                                                                                                                                                                                                                                                                                                                                              | lame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Functi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bit Position<br>15 to 0 |                                                                           |                                                                                                                                                                                                                                                                                                     | 15 to                                                                                                                                                                                                                                                                                                                                                                                                                              | DA0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Des<br>Sets<br>the<br>betv<br>duri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tinations the l<br>next [<br>veen of<br>na fly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on Ad<br>DMA<br>DMA o<br>DMA o<br>exterr<br>by tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dress<br>destir<br>destin<br>nal me<br>nsfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nation<br>ation<br>emory<br>betwo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | addre<br>addre<br>and<br>een in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ess (A<br>ess. 1<br>exterr<br>iterna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A15 to<br>This is<br>nal I/C<br>I RAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A0).<br>disre<br>), but<br>1 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Durir<br>egarde<br>be su<br>intern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng DMA transfer,<br>ad during flyby tra<br>re to set this regi<br>al peripheral I/O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | it stores<br>ansfer<br>ister                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | 15<br>DA<br>15<br>DA<br>15<br>DA<br>15<br>DA<br>15<br>DA<br>15<br>Cositio | 15       14         DA       DA         15       14         DA       5         5       to 0 | 15       14       13         DA       DA       DA         15       14       13         Position       DA         5 to 0       DA | 15       14       13       12         DA       DA       DA       DA       DA         15       14       13       12         DA       DA       DA       DA       DA         15       14       13       12         DA       DA       DA       DA       DA         15       14       13       12         Position       Bit N       N       N         5 to 0       DA 15 to       N | 15       14       13       12       11         DA       DA       DA       DA       DA       DA         15       14       13       12       11         DA       DA       DA       DA       DA       DA         15       14       13       12       11         DA       DA       DA       DA       DA         15       14       13       12       11         DA       DA       DA       DA       DA         15       14       13       12       11         DA       DA       DA       DA       DA         15       14       13       12       11         DA       DA       DA       DA       DA         15       14       13       12       11         Position       Bit Name       Name       Name         5 to 0       DA       DA       Name | 15       14       13       12       11       10         DA       DA       DA       DA       DA       DA       DA         15       14       13       12       11       10         DA       DA       DA       DA       DA       DA       DA         15       14       13       12       11       10         DA       DA       DA       DA       DA       DA         15       14       13       12       11       10         DA       DA       DA       DA       DA       DA         15       14       13       12       11       10         DA       DA       DA       DA       DA       DA         15       14       13       12       11       10         Position       Bit Name       DA       DA       So to 0       DA       So to DA | 15       14       13       12       11       10       9         DA       DA       DA       DA       DA       DA       DA       DA       DA         15       14       13       12       11       10       9         DA       DA       DA       DA       DA       DA       DA       DA         15       14       13       12       11       10       9         DA       DA       DA       DA       DA       DA       DA         15       14       13       12       11       10       9         DA       DA       DA       DA       DA       DA       DA       0         15       14       13       12       11       10       9         DA       DA       DA       DA       DA       DA       DA       9         Position       Bit Name       U       U       Sets       14       14       14       14       14       15       U       Da       Da< | 15       14       13       12       11       10       9       8         DA       DA | 15       14       13       12       11       10       9       8       7         DA       D | 15       14       13       12       11       10       9       8       7       6         DA       DA | 15       14       13       12       11       10       9       8       7       6       5         DA       DA< | 15       14       13       12       11       10       9       8       7       6       5       4         DA       DA </td <td>15       14       13       12       11       10       9       8       7       6       5       4       3         DA       DA<td>15       14       13       12       11       10       9       8       7       6       5       4       3       2         DA       DA<td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1         DA       DA</td><td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1       0         DA       DA</td><td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1       0         DA       DA</td></td></td> | 15       14       13       12       11       10       9       8       7       6       5       4       3         DA       DA <td>15       14       13       12       11       10       9       8       7       6       5       4       3       2         DA       DA<td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1         DA       DA</td><td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1       0         DA       DA</td><td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1       0         DA       DA</td></td> | 15       14       13       12       11       10       9       8       7       6       5       4       3       2         DA       DA <td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1         DA       DA</td> <td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1       0         DA       DA</td> <td>15       14       13       12       11       10       9       8       7       6       5       4       3       2       1       0         DA       DA</td> | 15       14       13       12       11       10       9       8       7       6       5       4       3       2       1         DA       DA | 15       14       13       12       11       10       9       8       7       6       5       4       3       2       1       0         DA       DA | 15       14       13       12       11       10       9       8       7       6       5       4       3       2       1       0         DA       DA |

## 6.3.3 DMA byte count registers 0 to 3 (DBC0 to DBC3)

These 16-bit registers are used to set the byte transfer counts for DMA channel n (n = 0 to 3).

They store the remaining transfer counts during DMA transfer.

These registers are decremented by 1 for byte transfer and by two for 16-bit transfer. Transfer ends when a borrow occurs. Thus, "transfer count -1" should be set for byte transfer and "(transfer count -1)  $\times 2$ " for 16-bit transfer.

|       | 15       | 14       | 13          | 12       | 11          | 10                        | ٥               | 8       | 7       | 6       | 5       | 1       | 3       | 2                    | 1           | 0       |                      |                        |
|-------|----------|----------|-------------|----------|-------------|---------------------------|-----------------|---------|---------|---------|---------|---------|---------|----------------------|-------------|---------|----------------------|------------------------|
| DBC0  | BC<br>15 | BC<br>14 | BC<br>13    | BC<br>12 | BC<br>11    | BC<br>10                  | BC<br>9         | BC<br>8 | BC<br>7 | BC<br>6 | BC<br>5 | BC<br>4 | BC<br>3 | BC<br>2              | BC<br>1     | BC<br>0 | Address<br>FFFFF1E0H | After rese<br>Undefine |
| DBC1  | BC<br>15 | BC<br>14 | BC<br>13    | BC<br>12 | BC<br>11    | BC<br>10                  | BC<br>9         | BC<br>8 | BC<br>7 | BC<br>6 | BC<br>5 | BC<br>4 | BC<br>3 | BC<br>2              | BC<br>1     | BC<br>0 | FFFFF1E2H            | Undefine               |
| [     |          | 50       |             |          |             |                           |                 |         |         |         |         | 50      | 50      |                      | 50          |         |                      |                        |
| )BC2  | вс<br>15 | ВС<br>14 | ВС<br>13    | вс<br>12 | вс<br>11    | вс<br>10                  | 9<br>BC         | 8<br>8  | ВС<br>7 | ВС<br>6 | ВС<br>5 | вс<br>4 | ВС<br>3 | ВС<br>2              | вс<br>1     | 0<br>BC | FFFFF1E4H            | Undefine               |
| DBC3  | BC<br>15 | BC<br>14 | BC<br>13    | BC<br>12 | BC<br>11    | BC<br>10                  | BC<br>9         | BC<br>8 | BC<br>7 | BC<br>6 | BC<br>5 | BC<br>4 | BC<br>3 | BC<br>2              | BC<br>1     | BC<br>0 | FFFFF1E6H            | Undefine               |
| Bit P | ositior  | n        | Bit N       | ame      |             |                           |                 |         |         |         |         |         | Func    | tion                 |             |         |                      |                        |
| 15    | to 0     | E        | 3C15<br>3C0 | to       | B<br>S<br>c | oyte C<br>ets th<br>ount. | ount<br>ie byte | e tran  | sfer c  | ount.   | Durii   | ng DN   | 1A tra  | insfer,              | , it sto    | ores th | ne remaining byte    | e transfer             |
|       |          |          |             |          |             | DE                        | 3Cn             |         |         |         |         |         |         | Sta                  | ates        |         |                      |                        |
|       |          |          |             |          |             | 000                       | 00H             | B       | yte tra | ansfer  | coun    | t 1 or  | the re  | emain                | ing b       | yte tra | insfer count         |                        |
|       |          |          |             |          |             | 000                       | 01H             | B       | yte tra | ansfer  | coun    | t 2 or  | the re  | emain                | ing b       | yte tra | insfer count         |                        |
|       |          |          |             |          |             | FFI                       | :<br>FFH        | В       | yte tra | ansfer  | coun    | t 65,5  | 36 (2   | <sup>16</sup> ) or 1 | :<br>the re | maini   | ng byte transfer     | count                  |
|       |          |          |             |          |             |                           |                 |         |         |         |         |         | •       | ,                    |             |         |                      |                        |

# 6.3.4 DMA addressing control registers 0 to 3 (DADC0 to DADC3)

These 16-bit registers are used to control the DMA transfer operation modes for DMA channel n (n = 0 to 3). These registers can be read/written in 16-bit units.

|        |         |          |             |         |          |                                      |                             |                   | _                | _                 | _             |               | _            |              |           | _         |                      |                      |
|--------|---------|----------|-------------|---------|----------|--------------------------------------|-----------------------------|-------------------|------------------|-------------------|---------------|---------------|--------------|--------------|-----------|-----------|----------------------|----------------------|
| DADC0  | 15<br>0 | 14<br>0  | 13<br>0     | 12<br>0 | 0        | 10<br>0                              | 9                           | 8<br>DS           | 7<br>SAD<br>1    | 6<br>SAD<br>0     | 5<br>DAD<br>1 | 4<br>DAD<br>0 | 3<br>TM<br>1 | 2<br>TM<br>0 | 1<br>TTYP | 0<br>TDIR | Address<br>FFFFF1F0H | After reset<br>0000H |
|        |         | 0        | 0           | 0       | 0        | 0                                    | 0                           | De                | SAD              | SAD               | DAD           | DAD           | ТМ           | ТМ           | TTVD      |           |                      | 000011               |
| DADCT  | 0       | 0        | 0           | 0       | 0        | 0                                    | 0                           | 05                | 1                | 0                 | 1             | 0             | 1            | 0            | IIIP      | IDIR      | FFFF1F2H             | 0000H                |
| DADC2  | 0       | 0        | 0           | 0       | 0        | 0                                    | 0                           | DS                | SAD<br>1         | SAD<br>0          | DAD<br>1      | DAD<br>0      | TM<br>1      | TM<br>0      | TTYP      | TDIR      | FFFFF1F4H            | 0000H                |
|        |         |          |             | _       | _        | _                                    |                             |                   | SAD              | SAD               |               |               | тм           | тм           |           |           |                      |                      |
| DADC3  | 0       | 0        | 0           | 0       | 0        | 0                                    | 0                           | DS                | 1                | 0                 | 1             | 0             | 1            | 0            | TTYP      | TDIR      | FFFFF1F6H            | 0000H                |
| Bit Po | osition |          | Bit Na      | ame     |          |                                      |                             |                   |                  |                   |               | F             | uncti        | on           |           |           |                      |                      |
|        | 8       | D        | S           |         | Da<br>Se | ata Si<br>ets the<br>0: 8 b<br>1: 16 | ze<br>e tran<br>its<br>bits | sfer d            | ata si           | ze foi            | r DMA         | trans         | sfer.        |              |           |           |                      |                      |
| 7      | , 6     | S,<br>S, | AD1,<br>AD0 |         | So<br>Se | ource<br>ets the                     | Addro<br>e cou              | ess co<br>nt dire | ount E<br>ection | Directi<br>of the | on<br>e soui  | ce ad         | dress        | for E        | DMA d     | channe    | el n.                |                      |
|        |         |          |             |         |          | SA                                   | D1                          |                   | SAD0             | )                 |               |               |              | (            | Count     | Direct    | tion                 |                      |
|        |         |          |             |         |          | C                                    | )                           |                   | 0                |                   | Incre         | ment          |              |              |           |           |                      |                      |
|        |         |          |             |         |          | C                                    | )                           |                   | 1                |                   | Decr          | emen          | t            |              |           |           |                      |                      |
|        |         |          |             |         |          | 1                                    |                             |                   | 0                |                   | Fixed         | 4             |              |              |           |           |                      |                      |
|        |         |          |             |         | L        | 1                                    |                             |                   | 1                |                   | Setti         | ng pro        | hibite       | ed           |           |           |                      |                      |
|        |         |          |             |         |          |                                      |                             |                   |                  |                   |               |               |              |              |           |           |                      |                      |

## Caution During DMA transfer, do not perform writing to these registers.

Remark n = 0 to 3

| Bit Position | Bit Name      |                                                                                                                                                                                                                           |                                                                       | Function                  |  |  |  |  |  |  |
|--------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|
| 5, 4         | DAD1,<br>DAD0 | Destination Address count Direction<br>Sets the count direction of the destination address for DMA channel n.                                                                                                             |                                                                       |                           |  |  |  |  |  |  |
|              |               | DAD1                                                                                                                                                                                                                      | DAD0                                                                  | Count Direction           |  |  |  |  |  |  |
|              |               | 0                                                                                                                                                                                                                         | 0                                                                     | Increment                 |  |  |  |  |  |  |
|              |               | 0                                                                                                                                                                                                                         | 1                                                                     | Decrement                 |  |  |  |  |  |  |
|              |               | 1                                                                                                                                                                                                                         | 0                                                                     | Fixed                     |  |  |  |  |  |  |
|              |               | 1                                                                                                                                                                                                                         | 1                                                                     | Setting prohibited        |  |  |  |  |  |  |
| 3, 2         | TM1, TM0      | Transfer Mode<br>Sets the trans                                                                                                                                                                                           | e<br>fer mode dur                                                     | ing DMA transfer.         |  |  |  |  |  |  |
|              |               | TM1                                                                                                                                                                                                                       | TM0                                                                   | Transfer Mode             |  |  |  |  |  |  |
|              |               | 0                                                                                                                                                                                                                         | 0                                                                     | Single transfer mode      |  |  |  |  |  |  |
|              |               | 0                                                                                                                                                                                                                         | 1                                                                     | Single-step transfer mode |  |  |  |  |  |  |
|              |               | 1                                                                                                                                                                                                                         | 0                                                                     | Block transfer mode       |  |  |  |  |  |  |
|              |               | 1                                                                                                                                                                                                                         | 1                                                                     | Setting prohibited        |  |  |  |  |  |  |
| 1            | ТТҮР          | Transfer Type<br>Sets the DMA<br>0: Two-cycl<br>1: Flyby tra                                                                                                                                                              | Transfer Type<br>Sets the DMA transfer type.<br>0: Two-cycle transfer |                           |  |  |  |  |  |  |
| 0            | TDIR          | Transfer Direction<br>Sets the transfer direction during transfer between I/O and memory. The setting is valid<br>during flyby transfer only and ignored during two-cycle transfer.<br>0: Memory $\rightarrow$ I/O (read) |                                                                       |                           |  |  |  |  |  |  |

# 6.3.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)

These 8-bit registers are used to control the DMA transfer operation mode for DMA channel n (n = 0 to 3). These registers can be read/written in 8-bit units. (However, bit 7 is read-only and bits 2 and 1 are write-only. When the DMA channel control registers are read, bits 2 and 1 are always 0.)

|        | 7       | 6     | 5                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                     | 2     | 1     | 0   |                     |                   |  |  |  |  |
|--------|---------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----|---------------------|-------------------|--|--|--|--|
| DCHC0  | TC0     | 0     | 0                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                     | INITO | STG0  | EN0 | Address<br>FFFF5F0H | After rese<br>00H |  |  |  |  |
| r      |         | 1     |                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                     | 1     |       |     | I                   |                   |  |  |  |  |
| DCHC1  | TC1     | 0     | 0                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                     | INIT1 | STG1  | EN1 | FFFF5F2H            | 00H               |  |  |  |  |
| ī      |         |       |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                       |       |       |     | l                   |                   |  |  |  |  |
| DCHC2  | TC2     | 0     | 0                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                     | INIT2 | STG2  | EN2 | FFFF5F4H            | 00H               |  |  |  |  |
|        | TC2     | 0     | 0                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                     |       | STC 2 | EN2 | FFFFFFF             | 004               |  |  |  |  |
| DCHC3  | 103     | 0     | 0                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                     | 11113 | 5163  | EN3 | FFFF5F0H            | UUH               |  |  |  |  |
| Bit Po | osition | Bit I | Name                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                  | Function                                                                                                                                                                                                                                                                                              |       |       |     |                     |                   |  |  |  |  |
| 7 TCn  |         |       |                                                                                                                                                                                                                                                                                                                                   | Termin<br>This sta<br>ended<br>This bit<br>count a<br>0: D<br>1: D                                                                               | Terminal Count<br>This status bit indicates whether DMA transfer through DMA channel n has<br>ended or not.<br>This bit can only be read. It is set (1) when DMA transfer ends with a terminal<br>count and reset (0) when it is read.<br>0: DMA transfer has not ended.<br>1: DMA transfer has ended |       |       |     |                     |                   |  |  |  |  |
| 2      | 2       | INITn |                                                                                                                                                                                                                                                                                                                                   | Initialize<br>If this bit is set (1), the DMA transfer is forcibly terminated.                                                                   |                                                                                                                                                                                                                                                                                                       |       |       |     |                     |                   |  |  |  |  |
| 1 STGn |         |       |                                                                                                                                                                                                                                                                                                                                   | Software Trigger<br>In DMA transfer enable state (TCn bit = 0, ENn bit = 1), if this bit is set (1), DMA<br>transfer can be started by software. |                                                                                                                                                                                                                                                                                                       |       |       |     |                     |                   |  |  |  |  |
| 0 ENn  |         |       | Enable<br>Specifies whether DMA transfer through DMA channel n is to be enabled or<br>disabled. It is reset (0) when DMA transfer ends with a terminal count. It is also<br>reset (0) when transfer is forcibly ended by means of setting (1) NMI input or<br>INITn bit.<br>0: DMA transfer disabled.<br>1: DMA transfer enabled. |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                       |       |       |     |                     |                   |  |  |  |  |

# 6.3.6 DMA trigger factor registers 0 to 3 (DTFR0 to DTFR3)

These 8-bit registers are used to control the DMA transfer start trigger through interrupt requests from peripheral I/O.

The interrupt requests that are set with these registers start DMA transfer.

| _       | 7      | 6                 | 5   |           | 4                    | 3                      | 2         | 2         | 1      | C     | )        |                                                 |                   |
|---------|--------|-------------------|-----|-----------|----------------------|------------------------|-----------|-----------|--------|-------|----------|-------------------------------------------------|-------------------|
| DTFR0   | 0      | 0                 | IFC | 05        | IFC04                | IFC0                   | )3 IFC    | :02 II    | FC01   | IFC   | 00       | Address<br>FFFFF5E0H                            | After rese<br>00H |
| DTFR1   | 0      | 0                 | IFC | 15        | IFC14                | IFC1                   | I3 IFC    | :12 II    | FC11   | IFC   | :10      | FFFF5E2H                                        | 00H               |
| L       |        |                   |     |           |                      |                        |           |           |        |       |          |                                                 |                   |
| DTFR2   | 0      | 0                 | IFC | 25        | IFC24                | IFC2                   | 23 IFC    | 22        | FC21   | IFC   | 20       | FFFF5E4H                                        | 00H               |
| DTFR3   | 0      | 0                 | IFC | 35        | IFC34                | IFC3                   | 33 IFC    | 32        | FC31   | IFC   | 30       | FFFF5E6H                                        | 00H               |
| Dit Doc | ition  | Dit Nor           |     |           |                      |                        |           |           | Fund   | tion  |          |                                                 |                   |
| BIT POS | sition | Bit Nam           | ie  |           |                      |                        |           |           | Funci  | tion  |          |                                                 |                   |
| 5 to    | 0      | IFCn5 to<br>IFCn0 |     | Int<br>Th | errupt F<br>iis code | actor Coo<br>indicates | the sourc | ce of the | DMA tı | ransf | er trigg | er.                                             |                   |
|         |        |                   |     |           | IFCn5                | IFCn4                  | IFCn3     | IFCn2     | IFCr   | า1    | IFCn0    | Interrupt S                                     | ource             |
|         |        |                   |     |           | 0                    | 0                      | 0         | 0         | 0      |       | 0        | DMA request fr<br>internal periphe<br>disabled. | om<br>ral I/O     |
|         |        |                   |     |           | 0                    | 0                      | 0         | 0         | 0      |       | 1        | INTCM40                                         |                   |
|         |        |                   |     |           | 0                    | 0                      | 0         | 0         | 1      |       | 0        | INTCM41                                         |                   |
|         |        |                   |     |           | 0                    | 0                      | 0         | 0         | 1      |       | 1        | INTCSI0                                         |                   |
|         |        |                   |     |           | 0                    | 0                      | 0         | 1         | 0      |       | 0        | INTSR0                                          |                   |
|         |        |                   |     |           | 0                    | 0                      | 0         | 1         | 0      |       | 1        | INTST0                                          |                   |
|         |        |                   |     |           | 0                    | 0                      | 0         | 1         | 1      |       | 0        | INTCSI1                                         |                   |
|         |        |                   |     |           | 0                    | 0                      | 0         | 1         | 1      |       | 1        | INTSR1                                          |                   |
|         |        |                   |     |           | 0                    | 0                      | 1         | 0         | 0      |       | 0        | INTST1                                          |                   |
|         |        |                   |     |           | 0                    | 0                      | 1         | 0         | 0      |       | 1        | INTCSI2                                         |                   |
|         |        |                   |     |           | 0                    | 0                      | 1         | 0         | 1      |       | 0        | INTCSI3                                         |                   |
|         |        |                   |     |           | 0                    | 0                      | 1         | 0         | 1      |       | 1        | INTP100/INTC                                    | C100              |
|         |        |                   |     |           | 0                    | 0                      | 1         | 1         | 0      |       | 0        | INTP101/INTC                                    | C101              |
|         |        |                   |     |           | 0                    | 0                      | 1         | 1         | 0      |       | 1        | INTP102/INTC                                    | C102              |
|         |        |                   |     |           | 0                    | 0                      | 1         | 1         | 1      |       | 0        | INTP103/INTC                                    | C103              |
|         |        |                   |     |           | 0                    | 0                      | 1         | 1         | 1      |       | 1        | INTP110/INTC                                    | C110              |
|         |        |                   |     |           | 0                    | 1                      | 0         | 0         | 0      |       | 0        | INTP111/INTC                                    | C111              |
|         |        | 1                 |     |           | 0                    | 1                      | 0         | 0         | 0      |       | 1        | INTP112/INTC                                    | C112              |
|         |        |                   |     |           |                      |                        |           |           |        |       |          |                                                 |                   |

| Bit Position | Bit Name |          |           |       |       | Function |       |                    |
|--------------|----------|----------|-----------|-------|-------|----------|-------|--------------------|
| 5 10 0       | IFCn0    | IFCn5    | IFCn4     | IFCn3 | IFCn2 | IFCn1    | IFCn0 | Interrupt Source   |
|              |          | 0        | 1         | 0     | 0     | 1        | 1     | INTP120/INTCC120   |
|              |          | 0        | 1         | 0     | 1     | 0        | 0     | INTP121/INTCC121   |
|              |          | 0        | 1         | 0     | 1     | 0        | 1     | INTP122/INTCC122   |
|              |          | 0        | 1         | 0     | 1     | 1        | 0     | INTP123/INTCC123   |
|              |          | 0        | 1         | 0     | 1     | 1        | 1     | INTP130/INTCC130   |
|              |          | 0        | 1         | 1     | 0     | 0        | 0     | INTP131/INTCC131   |
|              |          | 0        | 1         | 1     | 0     | 0        | 1     | INTP132/INTCC132   |
|              |          | 0        | 1         | 1     | 0     | 1        | 0     | INTP133/INTCC133   |
|              |          | 0        | 1         | 1     | 0     | 1        | 1     | INTP140/INTCC140   |
|              |          | 0        | 1         | 1     | 1     | 0        | 0     | INTP141/INTCC141   |
|              |          | 0        | 1         | 1     | 1     | 0        | 1     | INTP142/INTCC142   |
|              |          | 0        | 1         | 1     | 1     | 1        | 0     | INTP143/INTCC143   |
|              |          | 0        | 1         | 1     | 1     | 1        | 1     | INTP150/INTCC150   |
|              |          | 1        | 0         | 0     | 0     | 0        | 0     | INTP151/INTCC151   |
|              |          | 1        | 0         | 0     | 0     | 0        | 1     | INTP152/INTCC151   |
|              |          | 1        | 0         | 0     | 0     | 1        | 0     | intp153/intcc153   |
|              |          | 1        | 0         | 0     | 0     | 1        | 1     | INTAD              |
|              |          | Other th | nan above | Э     |       |          |       | Setting prohibited |

**Remark** The relationship between the  $\overline{DMARQn}$  signal and the interrupt source which becomes the DMA transfer start trigger is as follows (n = 0 to 3).



★

# 6.3.7 DMA disable status register (DDIS)

This register holds the contents of the ENn bit of the DCHCn register during NMI input (n = 0 to 3). It is read-only, in 8- or 1-bit units.

|       | 7        | 6               | 5     | 4                                    | 3                                                       | 2                                      | 1                         | 0                           |                                               |                          |  |  |  |  |
|-------|----------|-----------------|-------|--------------------------------------|---------------------------------------------------------|----------------------------------------|---------------------------|-----------------------------|-----------------------------------------------|--------------------------|--|--|--|--|
| DDIS  | 0        | 0               | 0     | 0                                    | СНЗ                                                     | CH2                                    | CH1                       | CH0                         | Address<br>FFFFF5D0H                          | After reset<br>00H       |  |  |  |  |
| Bit F | Position | Bit             | Name  |                                      | Function                                                |                                        |                           |                             |                                               |                          |  |  |  |  |
| 3     | to 0     | CHn<br>(n = 3 1 | to 0) | NMI Ir<br>Reflec<br>The co<br>syster | nterruption<br>ets the cont<br>ontents of t<br>n reset. | Status<br>tents of the<br>this registe | e ENn bit o<br>r are held | of the DCHO<br>until the ne | Cn register during N<br>ext NMI input or unti | IMI input.<br>I the next |  |  |  |  |

## 6.3.8 DMA restart register (DRST)

This register is used to restart DMA transfer that was forcibly interrupted during NMI input. The RENn bit of this register and the ENn bit of the DCHCn register are linked to each other (n = 0 to 3). After NMI is completed, the DDIS register is referred to and the DMA channel that was interrupted is confirmed, then by setting the RENn bit in the corresponding channel (1), DMA transfer can be restarted. The register can be read/written in 8- or 1-bit units.

|       | 7        | 6                | 5     | 4                                                        | 3                                                                                            | 2                                                                                  | 1                                                      | 0                                        |                                                                           |                                          |  |  |  |  |
|-------|----------|------------------|-------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|--|--|--|--|
| DRST  | 0        | 0                | 0     | 0                                                        | REN3                                                                                         | REN2                                                                               | REN1                                                   | REN0                                     | Address<br>FFFF5D2H                                                       | After reset<br>00H                       |  |  |  |  |
| Bit F | Position | Bit              | Name  |                                                          | Function                                                                                     |                                                                                    |                                                        |                                          |                                                                           |                                          |  |  |  |  |
| 3     | to 0     | RENn<br>(n = 3 t | :o 0) | Resta<br>This s<br>compl<br>(0) wh<br>(1) in<br>0:<br>1: | rt Enable<br>ets DMA tr<br>leted in acc<br>nen DMA is<br>the DCHCr<br>DMA trans<br>DMA trans | ansfer ena<br>ordance w<br>forcibly te<br>register.<br>sfer disable<br>sfer enable | ble/disable<br>ith the terr<br>rminated b<br>ed.<br>d. | e in DMA c<br>minal count<br>by NMI inpu | hannel n. If DMA tr<br>, it is reset (0). It is<br>it or by setting of th | ansfer is<br>: also reset<br>e INITn bit |  |  |  |  |

# 6.3.9 Flyby transfer data wait control register (FDW)

To prevent illegal writing during flyby transfer, this register sets the insertion of wait states (TF) for securing the time from when the write signal ( $\overline{IOWR}$ ,  $\overline{IWR}$ ,  $\overline{IWR}$ ,  $\overline{WE}$ ) becomes inactive until the read signal ( $\overline{RD}$ ,  $\overline{IORD}$ ,  $\overline{OE}$ ) becomes inactive. This register can be read/written in 8- or 1-bit units.

|                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                   | 6                      | 5    | 4                                                   | 3                                                    | 2                            | 1          | 0       |                    |                         |  |  |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|-----------------------------------------------------|------------------------------------------------------|------------------------------|------------|---------|--------------------|-------------------------|--|--|--|--|
| FDW                                                                             | FDW7                                                                                                                                                                                                                                                                                                                                                                | FDW6                   | FDW5 | FDW4                                                | FDW3                                                 | FDW2                         | FDW1       | FDW0    | Address<br>FFFFF06 | s After reset<br>CH 00H |  |  |  |  |
| Memory Block                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                   | 6                      | 5    | 4                                                   | 3                                                    | 2                            | 1          | 0       |                    |                         |  |  |  |  |
| Bit Positi                                                                      | ion                                                                                                                                                                                                                                                                                                                                                                 | Bit Nan                | ne   |                                                     |                                                      |                              | Funct      | tion    |                    |                         |  |  |  |  |
| 7 to 0                                                                          |                                                                                                                                                                                                                                                                                                                                                                     | FDWn<br>(n = 7 to 0)   |      | Flyby Data<br>Sets wait s<br>0: Wait s<br>1: Wait s | Wait<br>state insert<br>state not in<br>state insert | ion for me<br>serted.<br>ed. | mory blocl | k n.    |                    |                         |  |  |  |  |
| Caution W<br>ex<br>m<br>Remark S                                                | <ul> <li>Caution Write to the FDW register after reset, and then do not change the value. Also, do not access an external memory area until the initial setting of the FDW register is complete. (However, the memory area 0000000H to 01FFFFFH is excluded.)</li> <li>Remark Setting of the FDW register is valid during the DMA transfers shown below.</li> </ul> |                        |      |                                                     |                                                      |                              |            |         |                    |                         |  |  |  |  |
| Type of Memory         SRAM, Page ROM         DRAM           Object of Transfer |                                                                                                                                                                                                                                                                                                                                                                     |                        |      |                                                     |                                                      |                              |            |         |                    |                         |  |  |  |  |
|                                                                                 | Mer                                                                                                                                                                                                                                                                                                                                                                 | nory $\rightarrow$ I/O |      |                                                     | Valid                                                |                              |            | Valid   |                    |                         |  |  |  |  |
|                                                                                 | I/O                                                                                                                                                                                                                                                                                                                                                                 | → Memory               |      |                                                     | Valid                                                |                              |            | Invalid |                    |                         |  |  |  |  |

## 6.4 DMA Bus States

## 6.4.1 Types of bus states

The DMAC bus cycle consists of the following 25 states:

## (1) TI state

The TI state is idle state, during which no access request is issued. The DMARQ0 to DMARQ3 signals are sampled at the falling edge of the CLKOUT signal.

## (2) T0 state

DMA transfer ready state. (A DMA transfer request has been issued, causing bus mastership to be acquired for the first DMA transfer).

## (3) T1R state

The bus enters the T1R state at the beginning of a read operation in two-cycle transfer mode. Address driving starts. After entering the T1R state, the bus invariably enters the T2R state.

## (4) T1RI state

T1RI is a state in which the bus is waiting for the acknowledge in response to an external memory read request. After entering the last T1RI state, the bus invariably enters the T2R state.

### (5) T2R state

The T2R state corresponds to the last state of a read operation in two-cycle transfer mode, or to a wait state. In the last T2R state, read data is sampled. After entering the last T2R state, the bus invariably enters the T1W state.

### (6) T2RI state

Internal peripheral I/O or internal RAM DMA transfer ready state (Bus mastership is acquired for DMA transfer to internal peripheral I/O or internal RAM). After entering the last T2RI state, the bus invariably enters the T1W state.

# (7) T1W state

The bus enters the T1W state at the beginning of a write operation in two-cycle transfer mode. Address driving starts. After entering the T1W state, the bus invariably enters the T2W state.

### (8) T1WI state

T1WI is a state in which the bus is waiting for the acknowledge signal in response to an external memory write request. After entering the last T1WI state, the bus invariably enters the T2W state.

### (9) T2W state

The T2W state corresponds to the last state of a write operation in two-cycle transfer mode, or to a wait state. In the last T2W state, the write strobe signal is made inactive.

### (10) T1F state

The bus enters the T1F state at the beginning of a flyby transfer from internal peripheral I/O to internal RAM. The read cycle from internal peripheral I/O is started. After entering the T1F state, the bus invariably enters the T2F state.

#### (11) T2F state

The T2F state corresponds to the middle state of a flyby transfer from internal peripheral I/O to internal RAM. The write cycle to internal RAM is started. After entering the T2F state, the bus invariably enters the T3F state.

#### (12) T3F state

The T3F state corresponds to the last state of a flyby transfer from internal peripheral I/O to internal RAM, or a wait state. In the last T3F state, the write strobe signal is made inactive.

#### (13) T1FR state

The bus enters the T1FR state at the beginning of a flyby transfer from internal RAM to internal peripheral I/O. The read cycle from internal RAM is started. After entering the T1FR state, the bus invariably enters the T2FR state.

#### (14) T2FR state

The T2FR state corresponds to the middle state of a flyby transfer from internal RAM to internal peripheral I/O. The write cycle to internal peripheral I/O is started. After entering the T2FR state, the bus invariably enters the T3FR state.

#### (15) T3FR state

T3FR is a state in which it is judged whether a flyby transfer from internal RAM to internal peripheral I/O is continued or not. If the next transfer is executed in block transfer mode, the bus enters the T1FRB state after the T3FR state, otherwise, the bus enters the T4 state.

#### (16) T1FRB state

The bus enters the T1FRB state at the beginning of a flyby block transfer from internal RAM to internal peripheral I/O. The read cycle from internal RAM is started.

#### (17) T1FRBI state

The T1FRBI state corresponds to a wait state of a flyby block transfer from internal RAM to internal peripheral I/O.

A wait state requested by peripheral hardware is generated, and the bus enters the T2FRB state.

#### (18) T2FRB state

The T2FRB state corresponds to the middle state of a flyby block transfer from internal RAM to internal peripheral I/O. The write cycle to internal peripheral I/O is started. After entering the T2FRB state, the bus invariably enters the T3FRB state.

### (19) T3FRB state

T3FRB is a state in which it is judged whether a flyby transfer from internal RAM to internal peripheral I/O is continued or not. If the next transfer is executed in block transfer mode, the bus enters the T1FRB state after the T3FRB state, otherwise, the bus enters the T4 state.

#### (20) T4 state

The T4 state corresponds to a wait state of a flyby transfer from internal RAM to internal peripheral I/O. A wait state requested by peripheral hardware is generated, and the bus enters the T3 state.

### (21) T1FH state

The T1FH state corresponds to the standard state of a flyby transfer between external memory and external I/O, and is the executing cycle of this transfer. After entering the T1FH state, the bus enters the T2FH state.

## (22) T1FHI state

The T1FHI state corresponds to the last state of a flyby transfer between external memory and external I/O, and is a state in which the bus is waiting for end of DMA flyby transfer. After entering the T1FHI state, the bus is released, and enters the TE state.

## (23) T2FH state

T2FH is a state in which it is judged whether a flyby transfer between external memory and external I/O is continued or not. If the next transfer is executed in block transfer mode, the bus enters the T1FH state after the T2FH state, otherwise, when a wait is issued, the bus enters the T1FHI state. When a wait is not issued, the bus is released, and enters the TE state.

## (24) T3 state

The bus enters the T3 state when a DMA transfer has been completed, and the bus has been released. After entering the T3 state, the bus invariably enters the TE state.

#### (25) TE state

The TE state corresponds to the output state. In the TE state, the DMAC outputs the DMA transfer end signal  $(\overline{\text{TCn}})$ , and initializes miscellaneous internal signals (n = 0 to 3). After entering the TE state, the bus invariably enters the TI state.

# 6.4.2 DMAC state transition

Except block transfer mode, each time the processing for a DMA service is completed, the bus is released (the bus enters bus release mode).



Figure 6-1. DMAC Bus Cycle State Transition Diagram

# 6.5 Transfer Mode

## 6.5.1 Single transfer mode

In single transfer mode, the DMAC releases the bus at each byte/halfword transfer. If there is a subsequent DMA transfer request, transfer is performed again. This operation continues until a terminal count occurs.

When the DMAC has released the bus, if another higher priority DMA transfer request is issued, the higher priority DMA request always takes precedence.

Figures 6-2 and 6-3 show examples of single transfer. Figure 6-3 shows an example of single transfer in which a higher priority DMA request is issued. DMA channels 0 to 2 are in block transfer mode and channel 3 is in single transfer mode.









## 6.5.2 Single-step transfer mode

In single-step transfer mode, DMAC releases the bus at each byte/halfword transfer. Once a request signal (DMARQ0 to DMARQ3) is received, this operation continues until a terminal count occurs.

When the DMAC has released the bus, if another higher priority DMA transfer request is issued, the higher priority DMA request always takes precedence.

Figures 6-4 and 6-5 show examples of single-step transfer.





Figure 6-5. Single-Step Transfer Example 2



### 6.5.3 Block transfer mode

In block transfer mode, once transfer starts, the transfer continues without the bus being released, until a terminal count occurs. No other DMA requests are accepted during block transfer.

After the block transfer ends and DMAC releases the bus, another DMA transfer can be accepted.

Figures 6-6 shows an example of block transfer. In this block transfer example, a high priority DMA request is issued. DMA channels 2 and 3 are in block transfer mode.

Note that caution is required when in block transfer mode. For details, refer to 6.19 Precautions.




## 6.6 Transfer Types

### 6.6.1 Two-cycle transfer

In two-cycle transfer, data transfer is performed in two-cycles, source to DMAC then DMAC to destination.

In the first cycle, the source address is output to perform reading from the source to DMAC. In the second cycle, the destination address is output to perform writing from DMAC to the destination.

Figure 6-7 shows examples of two-cycle transfer.

Note that caution is required when in two-cycle transfer. For details, refer to 6.19 Precautions.

Figure 6-7. Timing of Two-Cycle Transfer (1/4)









Figure 6-7. Timing of Two-Cycle Transfer (3/4)



Figure 6-7. Timing of Two-Cycle Transfer (4/4)

### 6.6.2 Flyby transfer

The V850E/MS1 supports flyby transfer between external memory and external I/O, and internal RAM and internal peripheral I/O.

### (1) Flyby transfer between external memory and external I/O

This data transfer between memory and I/O is performed in one cycle. To achieve single-cycle transfer, the memory address is always output irrespective of whether it is that of the source or the destination, and the read/write strobe signals for the memory and I/O are made active at the same time. The external I/O is selected with the DMAAK0 to DMAAK3 signal.

Figure 6-8 shows examples of flyby DMA transfer for an external device.



#### Figure 6-8. Timing of Flyby Transfer (DRAM $\rightarrow$ External I/O) (1/3)



Figure 6-8. Timing of Flyby Transfer (DRAM  $\rightarrow$  External I/O) (2/3)





## (2) Flyby transfer between internal RAM and internal peripheral I/O

Internal RAM and internal peripheral I/O are mapped on different address spaces. Therefore, different addresses are always output, and the read/write strobe signals for internal RAM and internal peripheral I/O are controlled at the same time.

Figure 6-9 shows an example of flyby DMA transfer (block transfer mode) between internal RAM and internal peripheral I/O.





# 6.7 Transfer Objects

## 6.7.1 Transfer type and transfer objects

Table 6-1 lists the relationship between transfer type and transfer object.

- Cautions 1. Among the transfer destinations and sources shown in Table 6-1, when an " $\times$ " is indicated for a combination, that operation is not guaranteed.
  - 2. Make the data bus width of the transfer destination and source the same (for two-cycle transfer and flyby transfer).

(b) Flyby transfer

# Table 6-1. Relationship Between Transfer Type and Transfer Object

- Destination Destination External Internal External Internal External Internal Internal External I/O I/O peripheral RAM memory peripheral RAM memory I/O I/O Internal 0 0 Internal 0 × × × × × peripheral I/O peripheral I/O Source Source External I/O Х × 0 0 External I/O × × × 0 Internal RAM 0 0 0 0 Internal RAM 0 × × × External 0 0 0 0 External 0 × × × memory memory
- (a) Two-cycle transfer

Remark o: Possible

×: Impossible

# 6.7.2 External bus cycle during DMA transfer

The external bus cycle during DMA transfer is as follows.

### Table 6-2. External Bus Cycle During DMA Transfer

| Transfer Type      | Transfer Object                                  |                      | External Bus Cycle                                                                    |  |  |
|--------------------|--------------------------------------------------|----------------------|---------------------------------------------------------------------------------------|--|--|
| Two-cycle transfer | Internal peripheral I/O, Internal RAM            | None <sup>Note</sup> | —                                                                                     |  |  |
|                    | External I/O                                     | Yes                  | SRAM cycle                                                                            |  |  |
|                    | External memory                                  | Yes                  | Memory access cycle set in the BCT register                                           |  |  |
| Flyby transfer     | Between internal RAM and internal peripheral I/O | None <sup>Note</sup> | _                                                                                     |  |  |
|                    | Between external memory and external I/O         | Yes                  | The memory access DMA flyby transfer cycle set by the BCT register as external memory |  |  |

Note Other external bus cycles, such as a CPU-based bus cycle, can be started.

# 6.8 DMA Channel Priorities

The DMA channel priorities are fixed, as follows:

DMA channel 0 > DMA channel 1 > DMA channel 2 > DMA channel 3

These priorities are valid in the TI state only. In block transfer mode, the channel used for transfer is never switched.

In single-step transfer mode, if a higher priority DMA transfer request is issued while the bus is released (in the TI state), the higher priority DMA transfer request is accepted.

#### 6.9 Next Address Setting Function

The DMA source address registers (DSAnH, DSAnL) DMA destination address registers (DDAnH, DDAnL) and DMA byte count register (DBCn) are buffer registers with a 2-stage FIFO configuration (n = 0 to 3).

When the terminal count is issued, these registers are rewritten with the value that was set just previously. Therefore, during DMA transfer, these registers' contents do not become valid even if they are rewritten. When starting DMA transfer with the rewritten contents of these registers, set the ENn bit (1) of the DCHCn register.

Figure 6-10 shows the buffer register configuration.



Figure 6-10. Buffer Register Configuration

# 6.10 DMA Transfer Start Factors

There are 3 types of DMA transfer start factors, as shown below.

## (1) Request from an external pin (DMARQn)

Although requests from the  $\overline{DMARQn}$  pin are sampled each time the CLKOUT signal falls, sampling should be continued until the  $\overline{DMAAKn}$  signal becomes active (n = 0 to 3).

If a state in which the ENn bit of the DCHCn register = 1 and the TCn bit = 0 is set, the  $\overline{\text{DMARQn}}$  signal in the T1 state becomes active. If the  $\overline{\text{DMARQn}}$  signal becomes active in the T1 state, it changes to the T0 state and DMA transfer starts.

## (2) Request from software

If the STGn, ENn and TCn bits of the DCHCn register are set as follows, DMA transfer starts (n = 0 to 3).

- STGn bit = 1
- ENn bit = 1
- TCn bit = 0

## (3) Request from internal peripheral I/O

If, when the ENn and TCn bits of the DCHCn register are set as shown below, an interrupt request is issued from the internal peripheral I/O that is set in the DTFRn register, DMA transfer starts (n = 0 to 3).

- ENn bit = 1
- TCn bit = 0

# 6.11 Interrupting DMA Transfer

## 6.11.1 Interruption factors

DMA transfer is interrupted if the following factors occur.

- Bus hold
- Refresh cycle

If the factor that is interrupting DMA transfer disappears, DMA transfer promptly restarts.

# 6.11.2 Forcible interruption

DMA transfer can be forcibly interrupted by an NMI input during DMA transfer.

At such a time, the DMAC resets the ENn bit of the DCHCn register of all channels (0) and activates the DMA transfer disabled state, after which the DMA transfer being executed when the NMI was input is terminated (n = 0 to 3).

When in the single step mode or block transfer mode, the DMA transfer request is held in the DMAC. If the ENn bit is reset (1), DMA transfer restarts from the point where it was interrupted.

When in the single transfer mode, if the ENn bit is set (1), the next DMA transfer request is received and DMA transfer starts.

# 6.12 Terminating DMA Transfer

## 6.12.1 DMA transfer end interrupt

When DMA transfer ends and the TC bit of the corresponding DCHCn register is set (1), a DMA transfer end interrupt (INTDMAn) is issued (n = 0 to 3) to the interrupt controller (INTC).

# 6.12.2 Terminal count output

In the TI state directly after the cycle when DMA transfer ends (TE state), the TCn signal output becomes active for 1 clock cycle.

### 6.12.3 Forcible termination

In addition to forcible interruption of DMA transfer by NMI input, DMA transfer can also be terminated forcibly by the INITn bit of the DCHCn register. Examples of the forcible termination operation are shown below (n = 0 to 3).





# 6.13 Boundary of Memory Area

The transfer operation is not guaranteed if the source or the destination address is over the area of DMA objects (external memory, internal RAM, external I/O, or internal peripheral I/O) during DMA transfer.

## 6.14 Transfer of Misalign Data

16-bit DMA transfer of misalign data is not supported. If the source or the destination address is set to an odd address, the LSB bit of the address is forcibly accepted as "0".

### 6.15 Clocks of DMA Transfer

Table 6-3 lists the overhead before and after DMA transfer and minimum execution clock for DMA transfer.

#### Table 6-3. Minimum Execution Clock in DMA Cycle

| From accepting DMARQn to falling edge of DMAAKn   | 4 clocks                                    |
|---------------------------------------------------|---------------------------------------------|
| External memory access                            | Refer to miscellaneous memory and I/O cycle |
| Internal RAM access                               | 2 clocks                                    |
| Internal peripheral I/O access                    | 3 clocks                                    |
| From rising edge of DMAAKn to falling edge of TCn | 1 clock                                     |

Remark n = 0 to 3

## 6.16 Maximum Response Time to DMA Request

Under the conditions shown below, the response time to a DMA request becomes the maximum time (this is the state permitted by the DRAM refresh cycle).

### (1) Condition 1

| Condition Instruction fetch from external memory at the 8-bit data bus width |                                                                                                                      |  |  |  |  |  |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Response time                                                                | Tinst × 4 + Tref                                                                                                     |  |  |  |  |  |  |
| DM<br>DMA<br>D0 to D15                                                       | ARQn (input)<br>AKn (output)<br>(input/output) XFetch (1/4) Fetch (2/4) Fetch (3/4) Fetch (4/4) Refresh XDMA cycle X |  |  |  |  |  |  |

# (2) Condition 2

| Condition Word data access with external memory at the 8-bit data bus width |                                                                                                                                                                       |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Response time         Tdata × 4 + Tref                                      |                                                                                                                                                                       |  |  |  |  |  |  |
| DM<br>DM/<br>D0 to D15                                                      | ARQn (input)<br>AAKn (output)<br>(input/output) <u>XData (1/4)</u> <u>XData (2/4)</u> <u>XData (3/4)</u> <u>XData (4/4)</u> <u>Refresh</u> <u>XDMA cycle</u> <u>X</u> |  |  |  |  |  |  |

# (3) Condition 3

| Condition                                         | Instruction fetch from external memory at the 8-bit data bus width.<br>Execution of the bit manipulation instruction (SET1, CLR1, NOT1). |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Response time                                     | Tinst × 4 + Tdata × 2 + Tref                                                                                                             |
| DMARQn (in<br>DMAAKn (out<br>D0 to D15 (input/out | aput)<br>tput)<br>XData read XFetch (1/4) XFetch (2/4) XFetch (3/4) XFetch (4/4) XData write X Refresh XDMA cycle X                      |

Remarks 1. Tinst: The number of clocks per bus cycle during instruction fetch.

Tdata: The number of clocks per bus cycle during data access.

Tref: The number of clocks per refresh cycle.

**2.** n = 0 to 3

# 6.17 One Time Single Transfer with DMARQ0 to DMARQ3

To execute one time single transfer to external memory via  $\overline{DMARQn}$  signal input,  $\overline{DMARQn}$  should be inactive within the clock time shown in Table 6-4 from when  $\overline{DMAKn}$  becomes active (n = 0 to 3). If  $\overline{DMARQn}$  is active for more than the clock time shown in Table 6-4, single transfers are continuously executed.



Table 6-4. DMAAKn Active → DMARQn Inactive Time for Single Transfer to External Memory

| Transfer Type      | Source                                         | Destination          | $ \overline{ DMAAKn} \text{ Signal Active } \rightarrow \\ \overline{ DMARQn} \text{ Inactive Time (Max.)}^{\text{Note}} $ |  |
|--------------------|------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Two-cycle transfer | DRAM (off page)                                | All objects          | 5 clocks                                                                                                                   |  |
|                    | DRAM (on page)                                 | All objects          | 4 clocks                                                                                                                   |  |
|                    | SRAM or external I/O                           | All objects          | 4 clocks                                                                                                                   |  |
|                    | Internal RAM or internal peripheral I/O        | DRAM (off page)      | 7 clocks                                                                                                                   |  |
|                    | Internal RAM or internal peripheral I/O        | DRAM (on page)       | 6 clocks                                                                                                                   |  |
|                    | Internal RAM                                   | SRAM or external I/O | 6 clocks                                                                                                                   |  |
|                    | Internal peripheral I/O SRAM                   |                      | 6 clocks                                                                                                                   |  |
| Flyby transfer     | DRAM (off page) $\leftrightarrow$ External I/O | 3 clocks             |                                                                                                                            |  |
|                    | DRAM (on page) $\leftrightarrow$ External I/O  | 2 clocks             |                                                                                                                            |  |
|                    | $SRAM \leftrightarrow External \ I/O$          |                      | 2 clocks                                                                                                                   |  |

Note When inserting waits, add the number of waits together.

**Remark** n = 0 to 3

Also, if a single transfer is executed between internal RAM and internal peripheral I/O, it is necessary that the DMARQn signal be inactivated within 8 clock cycles after it is activated. If 8 clock cycles are exceeded, transfer may continue. Note that the DMAAKn signal does not become active at this time.



## 6.18 Bus Arbitration for CPU

The CPU can access any external memory, external I/O, internal RAM, and internal peripheral I/O not undergoing DMA transfer.

While data is being transferred between external memory and external I/O, the CPU can access internal RAM and internal peripheral I/O.

While data transfer is being executed between internal RAM and internal peripheral I/O, the CPU can access external memory and external I/O.

### 6.19 Precaution

If a DMA transfer which satisfies all the following conditions is interrupted by NMI input, the  $\overline{DMAAKn}$  signal may become active and remain so until the next DMA transfer (n = 0 to 3).

- Two-cycle transfer
- Block transfer mode
- Transfer from external memory to external memory, or from external I/O to external I/O
- The destination side is EDO DRAM, with no-wait on-page access.

Note that device operations other than the DMAAKn signal are not influenced. Change the DMAAKn signal to inactive by executing the routine shown below in the NMI handler, etc.

- LD.B DDIS[r0], reg ; Confirm the interrupted DMA channel by NMI input.
- ST.B reg, DRST[r0]; Restart transfer in the interrupted channel.
- ST.B r0, DRST[r0] ; By immediately interrupting transfer again, after DMA transfer only once, the DMAAKn signal becomes inactive.

[MEMO]

# CHAPTER 7 INTERRUPT/EXCEPTION PROCESSING FUNCTION

The V850E/MS1 is provided with a dedicated interrupt controller (INTC) for interrupt processing and can process a total of 48 interrupt requests.

An interrupt is an event that occurs independently of program execution, and an exception is an event that is dependent on program execution. Generally, an exception takes precedence over an interrupt.

The V850E/MS1 can process interrupt requests from the internal peripheral hardware and external sources. Moreover, exception processing can be started by the TRAP instruction (software exception) or by the generation of an exception event (fetching of an illegal op code), which is known as an exception trap.

# 7.1 Features

O Interrupts

- Non-maskable interrupts: 1 source
- Maskable interrupts: 47 sources
- 8 levels of programmable priorities
- Mask specification for interrupt requests according to priority
- Mask can be specified for each maskable interrupt request.
- Noise elimination, edge detection, and valid edge of external interrupt request signal can be specified.

## O Exceptions

- Software exceptions: 32 sources
- Exception trap: 1 source (illegal op code exception)

Interrupt/exception sources are listed in Table 7-1.

| Туре           | Classification |                       | Interrupt/E>            | ception Source                 |                    | Default  | Exception              | Handler   | Restored PC |
|----------------|----------------|-----------------------|-------------------------|--------------------------------|--------------------|----------|------------------------|-----------|-------------|
|                |                | Name                  | Controlling<br>Register | Source                         | Generating<br>Unit | Priority | Code                   | Address   |             |
| Reset          | Interrupt      | RESET                 | _                       | RESET input                    | Pin                | _        | 0000H                  | 0000000H  | Undefined   |
| Non-maskable   | Interrupt      | NMI                   |                         | NMI input                      | Pin                |          | 0010H                  | 00000010H | nextPC      |
| Software       | Exception      | TRAP0 <sup>Note</sup> |                         | TRAP instruction               | _                  | _        | 004n <sup>∾ote</sup> H | 00000040H | nextPC      |
| exception      | Exception      | TRAP1n <sup>№™</sup>  | _                       | TRAP instruction               | _                  | _        | 005n <sup>№ote</sup> H | 00000050H | nextPC      |
| Exception trap | Exception      | ILGOP                 |                         | Illegal op code                | _                  | _        | 0060H                  | 0000060H  | nextPC      |
| Maskable       | Interrupt      | INTOV10               | OVIC10                  | Timer 10 overflow              | RPU                | 0        | 0080H                  | 0000080H  | nextPC      |
|                | Interrupt      | INTOV11               | OVIC11                  | Timer 11 overflow              | RPU                | 1        | 0090H                  | 00000090H | nextPC      |
|                | Interrupt      | INTOV12               | OVIC12                  | Timer 12 overflow              | RPU                | 2        | 00A0H                  | 000000A0H | nextPC      |
|                | Interrupt      | INTOV13               | OVIC13                  | Timer 13 overflow              | RPU                | 3        | 00B0H                  | 000000B0H | nextPC      |
|                | Interrupt      | INTOV14               | OVIC14                  | Timer 14 overflow              | RPU                | 4        | 00C0H                  | 000000C0H | nextPC      |
|                | Interrupt      | INTOV15               | OVIC15                  | Timer 15 overflow              | RPU                | 5        | 00D0H                  | 000000D0H | nextPC      |
|                | Interrupt      | INTP100/<br>INTCC100  | P10IC0                  | Match of INTP100<br>pin/CC100  | Pin/RPU            | 6        | 0100H                  | 00000100H | nextPC      |
|                | Interrupt      | INTP101/<br>INTCC101  | P10IC1                  | Match of INTP101<br>pin/CC101  | Pin/RPU            | 7        | 0110H                  | 00000110H | nextPC      |
|                | Interrupt      | INTP102/<br>INTCC102  | P10IC2                  | Match of INTP102<br>pin/CC102  | Pin/RPU            | 8        | 0120H                  | 00000120H | nextPC      |
|                | Interrupt      | INTP103/<br>INTCC103  | P10IC3                  | Match of INTP103<br>pin/CC103  | Pin/RPU            | 9        | 0130H                  | 00000130H | nextPC      |
|                | Interrupt      | INTP110/<br>INTCC110  | P11IC0                  | Match of INTP110<br>pin/CC110  | Pin/RPU            | 10       | 0140H                  | 00000140H | nextPC      |
|                | Interrupt      | INTP111/<br>INTCC111  | P11IC1                  | Match of INTP111<br>pin/CC111  | Pin/RPU            | 11       | 0150H                  | 00000150H | nextPC      |
|                | Interrupt      | INTP112/<br>INTCC112  | P11IC2                  | Match of INTP112<br>pin/CC112  | Pin/RPU            | 12       | 0160H                  | 00000160H | nextPC      |
|                | Interrupt      | INTP113/<br>INTCC113  | P11IC3                  | Match of INTP113<br>pin/CC113  | Pin/RPU            | 13       | 0170H                  | 00000170H | nextPC      |
|                | Interrupt      | INTP120/<br>INTCC120  | P12IC0                  | Match of INTP120<br>pin/CC120  | Pin/RPU            | 14       | 0180H                  | 00000180H | nextPC      |
|                | Interrupt      | INTP121/<br>INTCC121  | P12IC1                  | Match of INTP121<br>pin/CC121  | Pin/RPU            | 15       | 0190H                  | 00000190H | nextPC      |
|                | Interrupt      | INTP122/<br>INTCC122  | P12IC2                  | Match of INTP122<br>pin/CC122  | Pin/RPU            | 16       | 01A0H                  | 000001A0H | nextPC      |
| Ir             | Interrupt      | INTP123/<br>INTCC123  | P12IC3                  | Match of INTP123<br>pin/CC123  | Pin/RPU            | 17       | 01B0H                  | 000001B0H | nextPC      |
|                | Interrupt      | INTP130/<br>INTCC130  | P13IC0                  | Match of INTP130<br>pin/CC130  | Pin/RPU            | 18       | 01C0H                  | 000001C0H | nextPC      |
|                | Interrupt      | INTP131/<br>INTCC131  | P13IC1                  | Match of INTP131<br>pin /CC131 | Pin/RPU            | 19       | 01D0H                  | 000001D0H | nextPC      |

# Table 7-1. Interrupt List (1/3)

**Note** n = 0 to FH

| Туре     | Classification |                      | Interrupt/E             | ception Source                                | tion Source Default Exception I |          |       |           | Restored |
|----------|----------------|----------------------|-------------------------|-----------------------------------------------|---------------------------------|----------|-------|-----------|----------|
|          |                | Name                 | Controlling<br>Register | Source                                        | Generating<br>Unit              | Priority | Code  | Address   | PC       |
| Maskable | Interrupt      | INTP132/<br>INTCC132 | P13IC2                  | Match of INTP132<br>pin/CC132                 | Pin/RPU                         | 20       | 01E0H | 000001E0H | nextPC   |
|          | Interrupt      | INTP133/<br>INTCC133 | P13IC3                  | Match of INTP133<br>pin/CC133                 | Pin/RPU                         | 21       | 01F0H | 000001F0H | nextPC   |
|          | Interrupt      | INTP140/<br>INTCC140 | P14IC0                  | Match of INTP140<br>pin/CC140                 | Pin/RPU                         | 22       | 0200H | 00000200H | nextPC   |
|          | Interrupt      | INTP141/<br>INTCC141 | P14IC1                  | Match of INTP141<br>pin/CC141                 | Pin/RPU                         | 23       | 0210H | 00000210H | nextPC   |
|          | Interrupt      | INTP142/<br>INTCC142 | P14IC2                  | Match of INTP142<br>pin/CC142                 | Pin/RPU                         | 24       | 0220H | 00000220H | nextPC   |
|          | Interrupt      | INTP143/<br>INTCC143 | P14IC3                  | Match of INTP143<br>pin/CC143                 | Pin/RPU                         | 25       | 0230H | 00000230H | nextPC   |
|          | Interrupt      | INTP150/<br>INTCC150 | P15IC0                  | Match of INTP150<br>pin/CC150                 | Pin/RPU                         | 26       | 0240H | 00000240H | nextPC   |
|          | Interrupt      | INTP151/<br>INTCC151 | P15IC1                  | Match of INTP151<br>pin/CC151                 | Pin/RPU                         | 27       | 0250H | 00000250H | nextPC   |
|          | Interrupt      | INTP152/<br>INTCC152 | P15IC2                  | Match of INTP152<br>pin/CC152                 | Pin/RPU                         | 28       | 0260H | 00000260H | nextPC   |
|          | Interrupt      | INTP153/<br>INTCC153 | P15IC3                  | Match of INTP153<br>pin/CC153                 | Pin/RPU                         | 29       | 0270H | 00000270H | nextPC   |
|          | Interrupt      | INTCM40              | CMIC40                  | CM40 match signal                             | RPU                             | 30       | 0280H | 00000280H | nextPC   |
|          | Interrupt      | INTCM41              | CMIC41                  | CM41 match signal                             | RPU                             | 31       | 0290H | 00000290H | nextPC   |
|          | Interrupt      | INTDMA0              | DMAICO                  | DMA channel 0<br>transfer completion          | DMAC                            | 32       | 02A0H | 000002A0H | nextPC   |
|          | Interrupt      | INTDMA1              | DMAIC1                  | DMA channel 1<br>transfer completion          | DMAC                            | 33       | 02B0H | 000002B0H | nextPC   |
|          | Interrupt      | INTDMA2              | DMAIC2                  | DMA channel 2<br>transfer completion          | DMAC                            | 34       | 02C0H | 000002C0H | nextPC   |
|          | Interrupt      | INTDMA3              | DMAIC3                  | DMA channel 3<br>transfer completion          | DMAC                            | 35       | 02D0H | 000002D0H | nextPC   |
|          | Interrupt      | INTCSIO              | CSICO                   | CSI0 transmission/<br>reception<br>completion | SIO                             | 36       | 0300H | 00000300H | nextPC   |
|          | Interrupt      | INTSER0              | SEIC0                   | UART0 reception<br>error                      | SIO                             | 37       | 0310H | 00000310H | nextPC   |
|          | Interrupt      | INTSR0               | SRIC0                   | UART0 reception completion                    | SIO                             | 38       | 0320H | 00000320H | nextPC   |
|          | Interrupt      | INTSTO               | STIC0                   | UART0<br>transmission<br>completion           | SIO                             | 39       | 0330H | 00000330H | nextPC   |

# Table 7-1. Interrupt List (2/3)

| Туре     | Classification |         | Interrupt/Ex            | ception Source                                |                    | Default  | Exception | Handler   | Restored |
|----------|----------------|---------|-------------------------|-----------------------------------------------|--------------------|----------|-----------|-----------|----------|
|          |                | Name    | Controlling<br>Register | Source                                        | Generating<br>Unit | Priority | Code      | Address   | PC       |
| Maskable | Interrupt      | INTCSI1 | CSIC1                   | CSI1 transmission/<br>reception<br>completion | SIO                | 40       | 0340H     | 00000340H | nextPC   |
|          | Interrupt      | INTSER1 | SEIC1                   | UART1 reception<br>error                      | SIO                | 41       | 0350H     | 00000350H | nextPC   |
|          | Interrupt      | INTSR1  | SRIC1                   | UART1 reception completion                    | SIO                | 42       | 0360H     | 00000360H | nextPC   |
|          | Interrupt      | INTST1  | STIC1                   | UART1<br>transmission<br>completion           | SIO                | 43       | 0370H     | 00000370H | nextPC   |
|          | Interrupt      | INTCSI2 | CSIC2                   | CSI2 transmission/<br>reception<br>completion | SIO                | 44       | 0380H     | 00000380H | nextPC   |
|          | Interrupt      | INTCSI3 | CSIC3                   | CSI3 transmission/<br>reception<br>completion | SIO                | 45       | 03C0H     | 000003C0H | nextPC   |
|          | Interrupt      | INTAD   | ADIC                    | A/D conversion completion                     | ADC                | 46       | 0400H     | 00000400H | nextPC   |

Table 7-1. Interrupt List (3/3)

- Caution INTP1mn (external interrupt) and INTCC1mn (compare register match interrupt) share a control register (m = 0 to 5, n = 0 to 3). Set the valid interrupt request using bits 3 to 0 (IMS1mn) of timer unit mode registers 10 to 15 (TUM10 to TUM15) (see 9.3 (1) Timer unit mode registers 10 to 15 (TUM10 to TUM15)).
- **Remarks 1.** Default priority: The priority order when two or more maskable interrupt requests occur at the same time. The highest priority is 0.
  - Restored PC: The value of the PC saved to EIPC or FEPC when interrupt/exception processing is started. However, the value of the PC, which is saved when an interrupt is acknowledged during division (DIV, DIVH, DIVU, and DIVHU) instruction execution, is the value of the PC of the current instruction (DIV, DIVH, DIVU, and DIVHU).
  - 2. The execution address of the illegal instruction when an illegal op code exception occurs is d





### 7.2 Non-Maskable Interrupt

A non-maskable interrupt request is acknowledged unconditionally, even when interrupts are in the interrupt disabled (DI) status. An NMI is not subject to priority control and takes precedence over all other interrupts.

A non-maskable interrupt request is input from the NMI pin. When the valid edge specified by bit 0 (ESN0) of the external interrupt mode register 0 (INTM0) is detected on the NMI pin, the interrupt occurs.

While the service program of the non-maskable interrupt is being executed (PSW.NP = 1), the acknowledgement of another non-maskable interrupt requests is held pending. The pending NMI is acknowledged after the original service program of the non-maskable interrupt under execution has been terminated (by the RETI instruction), or when PSW.NP is cleared to 0 by the LDSR instruction. Note that if two or more NMI requests are input during the execution of the service program for an NMI, the number of NMIs that will be acknowledged after PSW.NP goes to "0", is only one.

Remark PSW.NP: The NP bit of the PSW register.

## 7.2.1 Operation

If a non-maskable interrupt is generated, the CPU performs the following processing, and transfers control to the handler routine:

- (1) Saves the restored PC to FEPC.
- (2) Saves the current PSW to FEPSW.
- (3) Writes the exception code (0010H) to the higher halfword (FECC) of ECR.
- (4) Sets the NP and ID bits of PSW and clears the EP bit.
- (5) Sets the handler address (00000010H) corresponding to the non-maskable interrupt to the PC, and transfers control.

The processing configuration of a non-maskable interrupt is shown in Figure 7-2.







Figure 7-3. Acknowledging Non-Maskable Interrupt Request

## 7.2.2 Restore

Execution is restored from the non-maskable interrupt processing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing, and transfers control to the address of the restored PC.

- (1) Restores the values of the PC and PSW from FEPC and FEPSW, respectively, because the EP bit of PSW is 0 and the NP bit of PSW is 1.
- (2) Transfers control back to the address of the restored PC and PSW.

Figure 7-4 illustrates how the RETI instruction is processed.



Figure 7-4. RETI Instruction Processing

#### 7.2.3 Non-maskable interrupt status flag (NP)

The NP flag is bit 7 of the PSW.

The NP flag is a status flag that indicates that non-maskable interrupt (NMI) processing is under execution. This flag is set when the NMI interrupt has been acknowledged, and masks all interrupt requests and exceptions to prohibit multiple interrupts from being acknowledged.



#### 7.2.4 Noise elimination

NMI pin noise is eliminated with analog delay. The delay time is 60 to 220 ns. The signal input that changes within the delay time is not internally acknowledged.

The NMI pin is used for releasing the software STOP mode. In the software STOP mode, the internal system clock is not used for noise elimination because the internal system clock is stopped.

### 7.2.5 Edge detection function

INTMO is a register that specifies the valid edge of the non-maskable interrupt (NMI). The NMI valid edge can be specified to be either the rising edge or the falling edge by the ESN0 bit.

This register can be read/written in 8- or 1-bit units.

| INTM0   | 7<br>0 | 6<br>0            | 5<br>0 | 4                                             | 3<br>0                                                                    | 2<br>0 | 1 | 0<br>ESN0 | Address<br>FFFFF180H | After reset<br>00H |
|---------|--------|-------------------|--------|-----------------------------------------------|---------------------------------------------------------------------------|--------|---|-----------|----------------------|--------------------|
| Bit Pos | sition | Bit Name Function |        |                                               |                                                                           |        |   |           |                      |                    |
| 0       |        | ESN0              |        | Edge Sel<br>Specifies<br>0: Falli<br>1: Risir | Edge Select NMI<br>Specifies the NMI pin's valid edge.<br>0: Falling edge |        |   |           |                      |                    |

# 7.3 Maskable Interrupts

Maskable interrupt requests can be masked by interrupt control registers. The V850E/MS1 has 47 maskable interrupt sources.

If two or more maskable interrupt requests are generated at the same time, they are acknowledged according to the default priority. In addition to the default priority, eight levels of priorities can be specified by using the interrupt control registers (programmable priority control).

When an interrupt request has been acknowledged, the acknowledgement of other maskable interrupt requests is disabled and the interrupt disabled (DI) status is set.

When the EI instruction is executed in an interrupt processing routine, the interrupt enabled (EI) status is set which enables interrupts having a higher priority than the interrupt requests in progress (specified by the interrupt control register). Note that only interrupts with a higher priority will have this capability; interrupts with the same priority level cannot be nested.

However, if multiplexed interrupts are executed, the following processing is necessary.

- <1> Save EIPC and EIPSW in memory or a general-purpose register before executing the EI instruction.
- <2> Execute the DI instruction before executing the RETI instruction, then reset EIPC and EIPSW with the values saved in <1>.

### 7.3.1 Operation

If a maskable interrupt occurs by INT input, the CPU performs the following processing, and transfers control to a handler routine:

- (1) Saves the restored PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code to the lower halfword of ECR (EICC).
- (4) Sets the ID bit of the PSW and clears the EP bit.
- (5) Sets the handler address corresponding to each interrupt to the PC, and transfers control.

The processing configuration of a maskable interrupt is shown in Figure 7-5.



Figure 7-5. Maskable Interrupt Processing

The INT input masked by the interrupt controllers and the INT input that occurs while another interrupt is being processed (when PSW.NP = 1 or PSW.ID = 1) are held pending internally by the interrupt controller. When the interrupts are unmasked, or when PSW.NP = 0 and PSW.ID = 0 are set by the RETI and LDSR instructions, input of the pending INT starts the new maskable interrupt processing.

## 7.3.2 Restore

To restore from the maskable interrupt processing, the RETI instruction is used.

When the RETI instruction is executed, the CPU performs the following steps, and transfers control to the address of the restored PC.

- (1) Restores the values of the PC and PSW from EIPC and EIPSW because the EP bit of the PSW is 0 and the NP bit of the PSW is 0.
- (2) Transfers control to the address of the restored PC and PSW.

Figure 7-6 illustrates the processing of the RETI instruction.



Figure 7-6. RETI Instruction Processing

#### 7.3.3 Priorities of maskable interrupts

The V850E/MS1 provides multiple interrupt servicing whereby an interrupt is acknowledged while another interrupt is being serviced. Multiple interrupts can be controlled by priority levels.

There are two types of priority level control: control based on the default priority levels, and control based on the programmable priority levels which are specified by the interrupt priority level specification bit (xxPRn) of the interrupt control register (xxICn). When two or more interrupts having the same priority level specified by the xxPRn bit are generated at the same time, interrupts are serviced in order depending on the priority level allocated to each interrupt request type (default priority level) beforehand. For more information, refer to Table 7-1. The programmable priority control customizes interrupt requests into eight levels by setting the priority level specification flag.

Note that when an interrupt request is acknowledged, the ID flag of the PSW is automatically set to 1. Therefore, when multiple interrupts are to be used, clear the ID flag to 0 beforehand (for example, by placing the EI instruction into the interrupt service program) to set the interrupt enable mode.











## Figure 7-8. Example of Processing Interrupt Requests Simultaneously Generated

# 7.3.4 Interrupt control register (xxICn)

An interrupt control register is assigned to each interrupt request (maskable interrupt) and sets the control conditions for each maskable interrupt request.

This register can be read/written in 8- or 1-bit units.

| xxICn    | 7<br>XXI | Fn         | 6<br>xxMKn      | 0                                                                    | 4                                                                     | 0                                                         | 2<br>xxPRn2               | xxPRn1       | 0<br>xxPRn0   | Address            | After rese |
|----------|----------|------------|-----------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|---------------------------|--------------|---------------|--------------------|------------|
|          |          |            |                 | 1 1                                                                  |                                                                       |                                                           | 1                         |              |               | FFFFF15CH          | 4/11       |
| Bit Posi | ition    | Bit        | Name            |                                                                      |                                                                       |                                                           |                           | Function     |               |                    |            |
| 7        |          | xxI        | Fn              | Interrupt R<br>This is an<br>0: Interru<br>1: Interru<br>The flag xx | equest Fla<br>interrupt re<br>upt reques<br>upt reques<br>(IFn is res | ag<br>equest fla<br>st not issu<br>st issued<br>et automa | g.<br>ed<br>itically by t | he hardwa    | re if an inte | rrupt request is r | eceived.   |
| 6        |          | xxN        | ЛКn             | Mask Flag<br>This is an<br>0: Enabl<br>1: Disab                      | interrupt n<br>es interru<br>les interru                              | nask flag.<br>ot process<br>pt proces                     | sing<br>sing (pend        | ing)         |               |                    |            |
| 2 to     | 0        | xxF<br>xxF | PRn2 to<br>PRn0 | Priority<br>8 levels of                                              | priority or                                                           | der are sp                                                | ecified in e              | each interro | upt.          |                    |            |
|          |          |            |                 | xxPRn2                                                               | xxPRr                                                                 | n1 xxP                                                    | Rn0                       | Inter        | rupt Priority | Specification Bi   | t          |
|          |          |            |                 | 0                                                                    | 0                                                                     | (                                                         | ) Spe                     | ecifies leve | I 0 (highest  | ).                 |            |
|          |          |            |                 | 0                                                                    | 0                                                                     |                                                           | 1 Spe                     | ecifies leve | 11.           |                    |            |
|          |          |            |                 | 0                                                                    | 1                                                                     | (                                                         | ) Spe                     | ecifies leve | 12.           |                    |            |
|          |          |            |                 | 0                                                                    | 1                                                                     |                                                           | 1 Spe                     | ecifies leve | 13.           |                    |            |
|          |          |            |                 | 1                                                                    | 0                                                                     | (                                                         | ) Spe                     | ecifies leve | 14.           |                    |            |
|          |          |            |                 | 1                                                                    | 0                                                                     |                                                           | 1 Spe                     | ecifies leve | 15.           |                    |            |
|          |          |            |                 | 1                                                                    | 1                                                                     | (                                                         | D Spe                     | ecifies leve | 16.           |                    |            |
|          |          |            |                 | 1                                                                    | 1                                                                     |                                                           | 1 Spe                     | ecifies leve | l 7 (lowest)  |                    |            |
|          |          |            |                 |                                                                      |                                                                       |                                                           |                           |              |               |                    |            |
|          |          |            |                 |                                                                      |                                                                       |                                                           |                           |              |               |                    |            |

n: Peripheral unit number (None, or 0 to 3, 10 to 15, 40, 41).

Address and bit of each interrupt control register is as follows:

| Table 7-2. | Interrupt Control | Register | Addresses | and Bits | (1/2) |
|------------|-------------------|----------|-----------|----------|-------|
|------------|-------------------|----------|-----------|----------|-------|

| Address   | Register | Bit    |        |   |   |   |         |         |         |
|-----------|----------|--------|--------|---|---|---|---------|---------|---------|
|           |          | 7      | 6      | 5 | 4 | 3 | 2       | 1       | 0       |
| FFFFF100H | OVIC10   | OVIF10 | OVMK10 | 0 | 0 | 0 | OVPR102 | OVPR101 | OVPR100 |
| FFFFF102H | OVIC11   | OVIC11 | OVMK11 | 0 | 0 | 0 | OVPR112 | OVPR111 | OVPR110 |
| FFFFF104H | OVIC12   | OVIF12 | OVMK12 | 0 | 0 | 0 | OVPR122 | OVPR121 | OVPR120 |
| Address   | Register |        |        |   | В | it |         |         |         |
|-----------|----------|--------|--------|---|---|----|---------|---------|---------|
|           |          | 7      | 6      | 5 | 4 | 3  | 2       | 1       | 0       |
| FFFFF106H | OVIC13   | OVIF13 | OVMK13 | 0 | 0 | 0  | OVPR132 | OVPR131 | OVPR130 |
| FFFFF108H | OVIC14   | OVIF14 | OVMK14 | 0 | 0 | 0  | OVPR142 | OVPR141 | OVPR140 |
| FFFFF10AH | OVIC15   | OVIF15 | OVMK15 | 0 | 0 | 0  | OVPR152 | OVPR151 | OVPR150 |
| FFFFF10CH | CMIC40   | CMIF40 | CMMK40 | 0 | 0 | 0  | CMPR402 | CMPR401 | CMPR400 |
| FFFFF10EH | CMIC41   | CMIF41 | CMMK41 | 0 | 0 | 0  | CMPR412 | CMPR411 | CMPR410 |
| FFFFF110H | P10IC0   | P10IF0 | P10MK0 | 0 | 0 | 0  | P10PR02 | P10PR01 | P10PR00 |
| FFFFF112H | P10IC1   | P10IF1 | P10MK1 | 0 | 0 | 0  | P10PR12 | P10PR11 | P10PR10 |
| FFFFF114H | P10IC2   | P10IF2 | P10MK2 | 0 | 0 | 0  | P10PR22 | P10PR21 | P10PR20 |
| FFFFF116H | P10IC3   | P10IF3 | P10MK3 | 0 | 0 | 0  | P10PR32 | P10PR31 | P10PR30 |
| FFFFF118H | P11IC0   | P11IF0 | P11MK0 | 0 | 0 | 0  | P11PR02 | P11PR01 | P11PR00 |
| FFFFF11AH | P11IC1   | P11IF1 | P11MK1 | 0 | 0 | 0  | P11PR12 | P11PR11 | P11PR10 |
| FFFFF11CH | P11IC2   | P11IF2 | P11MK2 | 0 | 0 | 0  | P11PR22 | P11PR21 | P11PR20 |
| FFFFF11EH | P11IC3   | P11IF3 | P11MK3 | 0 | 0 | 0  | P11PR32 | P11PR31 | P11PR30 |
| FFFFF120H | P12IC0   | P12IF0 | P12MK0 | 0 | 0 | 0  | P12PR02 | P12PR01 | P12PR00 |
| FFFFF122H | P12IC1   | P12IF1 | P12MK1 | 0 | 0 | 0  | P12PR12 | P12PR11 | P12PR10 |
| FFFFF124H | P12IC2   | P12IF2 | P12MK2 | 0 | 0 | 0  | P12PR22 | P12PR21 | P12PR20 |
| FFFFF126H | P12IC3   | P12IF3 | P12MK3 | 0 | 0 | 0  | P12PR32 | P12PR31 | P12PR30 |
| FFFFF128H | P13IC0   | P13IF0 | P13MK0 | 0 | 0 | 0  | P13PR02 | P13PR01 | P13PR00 |
| FFFFF12AH | P13IC1   | P13IF1 | P13MK1 | 0 | 0 | 0  | P13PR12 | P13PR11 | P13PR10 |
| FFFFF12CH | P13IC2   | P13IF2 | P13MK2 | 0 | 0 | 0  | P13PR22 | P13PR21 | P13PR20 |
| FFFFF12EH | P13IC3   | P13IF3 | P13MK3 | 0 | 0 | 0  | P13PR32 | P13PR31 | P13PR30 |
| FFFFF130H | P14IC0   | P14IF0 | P14MK0 | 0 | 0 | 0  | P14PR02 | P14PR01 | P14PR00 |
| FFFFF132H | P14IC1   | P14IF1 | P14MK1 | 0 | 0 | 0  | P14PR12 | P14PR11 | P14PR10 |
| FFFFF134H | P14IC2   | P14IF2 | P14MK2 | 0 | 0 | 0  | P14PR22 | P14PR21 | P14PR20 |
| FFFFF136H | P14IC3   | P14IF3 | P14MK3 | 0 | 0 | 0  | P14PR32 | P14PR31 | P14PR30 |
| FFFFF138H | P15IC0   | P15IF0 | P15MK0 | 0 | 0 | 0  | P15PR02 | P15PR01 | P15PR00 |
| FFFFF13AH | P15IC1   | P15IF1 | P15MK1 | 0 | 0 | 0  | P15PR12 | P15PR11 | P15PR10 |
| FFFFF13CH | P15IC2   | P15IF2 | P15MK2 | 0 | 0 | 0  | P15PR22 | P15PR21 | P15PR20 |
| FFFFF13EH | P15IC3   | P15IF3 | P15MK3 | 0 | 0 | 0  | P15PR32 | P15PR31 | P15PR30 |
| FFFFF140H | DMAIC0   | DMAIF0 | DMAMK0 | 0 | 0 | 0  | DMAPR02 | DMAPR01 | DMAPR00 |
| FFFFF142H | DMAIC1   | DMAIF1 | DMAMK1 | 0 | 0 | 0  | DMAPR12 | DMAPR11 | DMAPR10 |
| FFFFF144H | DMAIC2   | DMAIF2 | DMAMK2 | 0 | 0 | 0  | DMAPR22 | DMAPR21 | DMAPR20 |
| FFFFF146H | DMAIC3   | DMAIF3 | DMAMK3 | 0 | 0 | 0  | DMAPR32 | DMAPR31 | DMAPR30 |
| FFFFF148H | CSIC0    | CSIF0  | CSMK0  | 0 | 0 | 0  | CSPR02  | CSPR01  | CSPR00  |
| FFFFF14AH | CSIC1    | CSIF1  | CSMK1  | 0 | 0 | 0  | CSPR12  | CSPR11  | CSPR10  |
| FFFFF14CH | CSIC2    | CSIF2  | CSMK2  | 0 | 0 | 0  | CSPR22  | CSPR21  | CSPR20  |
| FFFFF14EH | CSIC3    | CSIF3  | CSMK3  | 0 | 0 | 0  | CSPR32  | CSPR31  | CSPR30  |
| FFFFF150H | SEIC0    | SEIF0  | SEMK0  | 0 | 0 | 0  | SEPR02  | SEPR01  | SEPR00  |
| FFFFF152H | SRIC0    | SRIF0  | SRMK0  | 0 | 0 | 0  | SRPR02  | SRPR01  | SRPR00  |
| FFFFF154H | STIC0    | STIF0  | STMK0  | 0 | 0 | 0  | STPR02  | STPR01  | STPR00  |
| FFFFF156H | SEIC1    | SEIF1  | SEMK1  | 0 | 0 | 0  | SEPR12  | SEPR11  | SEPR10  |
| FFFFF158H | SRIC1    | SRIF1  | SRMK1  | 0 | 0 | 0  | SRPR12  | SRPR11  | SRPR10  |
| FFFFF15AH | STIC1    | STIF1  | STMK1  | 0 | 0 | 0  | STPR12  | STPR11  | STPR10  |
| FFFFF15CH | ADIC     | ADIF   | ADMK   | 0 | 0 | 0  | ADPR2   | ADPR1   | ADPR0   |

Table 7-2. Interrupt Control Register Addresses and Bits (2/2)

## 7.3.5 In-service priority register (ISPR)

This register holds the priority level of the maskable interrupt currently acknowledged. When an interrupt request is acknowledged, the bit of this register corresponding to the priority level of that interrupt request is set (1) and remains set while the interrupt is serviced.

When the RETI instruction is executed, the bit corresponding to the interrupt request having the highest priority is automatically cleared (0) by hardware. However, it is not cleared (0) when execution is returned from non-maskable interrupt servicing or exception processing.

This register is read-only in 8- or 1-bit units.

| ISPR   | 7<br>ISPR7            | 6<br>ISPR6   | 5<br>ISPR5                             | 4<br>ISPR4                                                  | 3<br>ISPR3                                         | 2<br>ISPR2                                    | 1<br>ISPR1                              | 0<br>ISPR0          | Address<br>FFFFF166H | After reset<br>00H |
|--------|-----------------------|--------------|----------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-----------------------------------------|---------------------|----------------------|--------------------|
| Bit F  | Bit Position Bit Name |              |                                        |                                                             |                                                    |                                               | Fu                                      | nction              |                      |                    |
| 7      | 7 to 0 ISPR7 to ISPR0 |              | In-Servi<br>Indicate<br>0: In<br>1: In | ice Priority<br>es priority c<br>terrupt req<br>terrupt req | Flag<br>of interrupt<br>uest with p<br>uest with p | currently a<br>priority n no<br>priority n ac | acknowledg<br>ot acknowle<br>cknowledge | led.<br>edged<br>ed |                      |                    |
| Remark | n = 0 to              | o 7 (priorit | ty level)                              | 1                                                           |                                                    |                                               |                                         |                     |                      |                    |

#### 7.3.6 Maskable interrupt status flag (ID)

The ID flag is bit 5 of the PSW.

This controls the maskable interrupt's operating state, and stores control information on enabling/disabling acknowledgement of interrupt requests.

| 31<br>PSW 0  | 0000000000 | 8 7 6 5 4 3 2 1 0<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NP EP ID SAT CY OV S Z After reset<br>00000020H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit Position | Bit Name   | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5            | ID         | Interrupt Disable<br>Indicates whether maskable interrupt processing is enabled or disabled.<br>0: Maskable interrupt acknowledgement enabled<br>1: Maskable interrupt acknowledgement disabled (pending)<br>It is set to 1 by the DI instruction and reset to 0 by the EI instruction. Its value is<br>also modified by the RETI instruction or LDSR instruction when referencing the<br>PSW.<br>Non-maskable interrupts and exceptions are acknowledged regardless of this<br>flag. When a maskable interrupt is acknowledged, the ID flag is automatically<br>set to 1 by hardware.<br>The interrupt request generated during the acknowledgement disabled period<br>(ID = 1) is acknowledged when the xxIFn bit of xxICn is set to 1, and the ID flag<br>is cleared to 0. |

## 7.3.7 Noise elimination

Digital noise elimination circuits are added to each of the INTPn0 to INTPn3, TIn, TCLRn and ADTRG pins (n = 10 to 15). Using these circuits, these pins' input level is sampled each sampling clock cycle ( $f_{SMP}$ ). If the same level cannot be detected 3 times consecutively in the sampling results, that input pulse is removed as noise.

The noise elimination time at each pin is shown below.

| Pin                                                                                                                                            | Sampling Clock (fSMP) | Noise Elimination Time |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|
| TCLR10 to TCLR15                                                                                                                               | $\phi$                | 2× <i>φ</i>            |
| TI10 to TI15                                                                                                                                   | $\phi$                | to<br>3×♠              |
| INTP100 to INTP103, INTP110 to INTP113,<br>INTP120 to INTP123, INTP130 to INTP133,<br>INTP140 to INTP143, INTP150 to INTP152,<br>INTP153/ADTRG | φ                     | 3×φ                    |

**Remark**  $\phi$ : Internal system clock



#### Figure 7-9. Example of Noise Elimination Timing

# Cautions 1. If the input pulse width is between 2 and 3 sampling clocks, whether the input pulse is detected as a valid edge or eliminated as a noise is indefinite.

- 2. To securely detect the level as a pulse, the same level input of 3 sampling clocks or more is required.
- 3. When noise is generated in synchronization with a sampling clock, this may not be recognized as noise. In this case, eliminate the noise by attaching a filter to the input pin.

## 7.3.8 Edge detection function

The valid edge of pins INTPn0 to INTPn3 and ADTRG can be selected by program. The valid edge that can be selected is one of the following (n = 10 to 15).

- Rising edge
- Falling edge
- Both the rising and falling edges

Edge detected INTPn0 to INTPn3 and ADTRG signals become interrupt factors or capture triggers. The block diagram of the edge detectors for these pins is shown below.



Valid edges are specified in external interrupt mode registers 1 to 6 (INTM1 to INTM6).

## (1) External interrupt mode registers 1 to 6 (INTM1 to INTM6)

These are registers that specify the valid edge for external interrupt requests (INTP100 to INTP103, INTP110 to INTP113, INTP120 to INTP123, INTP130 to INTP133, INTP140 to INTP143, INTP150 to INTP152, INTP153/ADTRG), by external pins. The correspondence between each register and the external interrupt requests which that register controls is shown below.

- INTM1: INTP100 to INTP103
- INTM2: INTP110 to INTP113
- INTM3: INTP120 to INTP123
- INTM4: INTP130 to INTP133
- INTM5: INTP140 to INTP143
- INTM6: INTP150 to INTP152, INTP153/ADTRG

INTP153 is used for both an A/D converter external trigger input (ADTRG) and a pin. Therefore, if the ES531 and ES530 bits of INTM6 are set in the external trigger mode by bits TRG0 to TRG2 of A/D converter mode register 1 (ADM1), they specify the active edge of the external trigger input (ADTRG).

The valid edge can be specified independently for each pin, as the rising edge, the falling edge or both the rising and falling edges.

These registers can be read/written in 8- or 1-bit units.

|              | 7                  | 6                        | 5                                                                         | 4     | 3       | 2           | 1       | 0        |           |            |
|--------------|--------------------|--------------------------|---------------------------------------------------------------------------|-------|---------|-------------|---------|----------|-----------|------------|
| INTM1        | ES031              | ES030                    | ES021                                                                     | ES020 | ES011   | ES010       | ES001   | ES000    | Address   | After rese |
| Control pins | INT                | P103                     | INTE                                                                      | P102  | INT     | P101        | INTI    | P100     |           | 0011       |
| INTM2        | ES131              | ES130                    | ES121                                                                     | ES120 | ES111   | ES110       | ES101   | ES100    | FFFFF184H | 00H        |
| Control pins | INT                | P113                     | INTE                                                                      | P112  | INT     | P111        | INTI    | P110     |           |            |
| INTM3        | ES231              | ES230                    | ES221                                                                     | ES220 | ES211   | ES210       | ES201   | ES200    | FFFFF186H | 00H        |
| Control pins | INT                | P123                     | INTE                                                                      | P122  | INT     | P121        | INTI    | P120     |           |            |
| INTM4        | ES331              | ES330                    | ES321                                                                     | ES320 | ES311   | ES310       | ES301   | ES300    | FFFFF188H | 00H        |
| Control pins | INTP133            |                          | INTE                                                                      | P132  | INT     | P131        | INTI    | P130     |           |            |
| INTM5        | ES431              | ES430                    | ES421                                                                     | ES420 | ES411   | ES410       | ES401   | ES400    | FFFFF18AH | 00H        |
| Control pins | INTP143            |                          | INTP142                                                                   |       | INTP141 |             | INTP140 |          |           |            |
| INTM6        | ES531              | ES530                    | ES521                                                                     | ES520 | ES511   | ES510       | ES501   | ES500    | FFFFF18CH | 00H        |
| Control pins | INTP15             | 3/ADTRG                  | ; INTP152                                                                 |       | INTP151 |             | INTP150 |          |           |            |
| Bit Positi   | on Bit             | Name                     |                                                                           |       |         | F           | unction |          |           |            |
| 7 to 0       | ESn<br>ESn<br>(m = | nn1,<br>nn0<br>= 5 to 0, | Edge Select<br>Specifies the valid edge of the INTP1mn pins and ADTRG pin |       |         |             |         | ۱.       |           |            |
|              | n =                | 3 to 0)                  | ESmn                                                                      | 1 ES  | Smn0    |             |         | Operatio | n         |            |
|              |                    |                          | 0                                                                         |       | 0       | Falling edg | je      |          |           |            |
|              |                    |                          | 0                                                                         |       | 1       | Rising edg  | е       |          |           |            |
|              |                    |                          |                                                                           |       | 1       |             |         |          |           | 11         |
|              |                    |                          | 1                                                                         |       | 0       | RFU (rese   | rved)   |          |           |            |

## 7.4 Software Exception

A software exception is generated when the CPU executes the TRAP instruction, and can be always acknowledged.

### 7.4.1 Operation

If a software exception occurs, the CPU performs the following processing, and transfers control to the handler routine:

- (1) Saves the restored PC to EIPC.
- (2) Saves the current PSW to EIPSW.
- (3) Writes an exception code to the lower 16 bits (EICC) of ECR (interrupt source).
- (4) Sets the EP and ID bits of the PSW.
- (5) Sets the handler address (00000040H or 00000050H) corresponding to the software exception to the PC, and transfers control.

Figure 7-10 illustrates how a software exception is processed.



Figure 7-10. Software Exception Processing

The handler address is determined by the TRAP instruction's operand (vector). If the vector is 0 to 0FH, it becomes 00000040H, and if the vector is 10H to 1FH, it becomes 00000050H.

## 7.4.2 Restore

To restore from the software exception processing, the RETI instruction is used.

By executing the RETI instruction, the CPU carries out the following processing and shifts control to the restored PC's address.

- (1) Loads the restored PC and PSW from EIPC and EIPSW because the EP bit of PSW is 1.
- (2) Transfers control to the address of the restored PC and PSW.

Figure 7-11 illustrates the processing of the RETI instruction.





## 7.4.3 Exception status flag (EP)

The EP flag is a status flag used to indicate that exception processing is in progress. It is set when an exception occurs.

| 31<br>PSW 0 0 | 00000000 | 8 7 6 5 4 3 2 1 0<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 NP EP ID SAT CY OV S Z After reset<br>00000020H                                                         |
|---------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit Position  | Bit Name | Function                                                                                                                                                 |
| 6             | EP       | Exception Pending<br>Shows that exception processing is in progress.<br>0: Exception processing not in progress.<br>1: Exception processing in progress. |

## 7.5 Exception Trap

The exception trap is an interrupt that is requested when illegal execution of an instruction takes place. In the V850E/MS1, an illegal op code exception (ILGOP: ILleGal Opcode trap) is considered an exception trap.

An illegal op code exception is generated in the case where the sub op code of the following instruction is an illegal op code when execution of that instruction is attempted.

#### 7.5.1 Illegal op code definition

The illegal op code has a 32-bit long instruction format: bits 10 to 5 are 111111B and bits 26 to 23 are 0111B to 1111B, with bit 16 defined as an optional instruction code, 0B.



Caution Since it is possible to assign this instruction to an illegal op code in the future, it is recommended that it not be used.

#### 7.5.2 Operation

If an exception trap occurs, the CPU performs the following processing, and transfers control to the handler routine:

- (1) Saves the restored PC to DBPC.
- (2) Saves the current PSW to DBPC.
- (3) Sets the NP, EP and ID bits of PSW.
- (4) Sets the handler address (00000060H) corresponding to the exception trap to the PC, and transfers control.

Figure 7-12 illustrates how the exception trap is processed.



Figure 7-12. Exception Trap Processing

## 7.5.3 Restore

Recovery from an exception trap is not possible. Perform system reset by RESET input.

## 7.6 Multiple Interrupt Processing Control

Multiple interrupt processing control is a process by which the interrupt request currently being processed can be interrupted during processing if there is an interrupt request with a higher priority level, and the higher priority interrupt request is acknowledged and processed first.

If there is an interrupt request with a lower priority level than the interrupt request currently being processed, that interrupt request is held pending.

Maskable interrupt multiple processing control is executed when an interrupt has an enable status (ID = 0). Thus, if multiple interrupts are executed, it is necessary to have an interrupt enable status (ID = 0) even for an interrupt processing routine.

If a maskable interrupt or a software exception is generated in a maskable interrupt or software exception service program, it is necessary to save EIPC and EIPSW.

This is accomplished by the following procedure.

#### (1) To acknowledge maskable interrupts in a service program

Service program of maskable interrupt or exception



← Maskable interrupt acknowledgement

#### (2) To generate an exception in a service program

Service program of maskable interrupt or exception



The priority order for multiple interrupt processing control has 8 levels, from 0 to 7 for each maskable interrupt request (0 is the highest priority), which can be set as desired via software. The priority order level is set with the xxPRn0 to xxPRn2 bits of the interrupt control request register (xxICn), which is provided for each maskable interrupt request. At system reset time, an interrupt request is masked by the xxMKn bit and the priority order is set to level 7 by the xxPRn0 to xxPRn2 bits.

The priority order of maskable interrupts is as follows.

```
(High) Level 0 > Level 1 > Level 2 > Level 3 > Level 4 > Level 5 > Level 6 > Level 7 (Low)
```

Interrupt processing that has been suspended as a result of multiple processing control is resumed after the interrupt processing of the higher priority has been completed and the RETI instruction has been executed. A pending interrupt request is acknowledged after the current interrupt processing has been completed and the RETI instruction has been executed.

# Caution In the non-maskable interrupt processing routine (time until the RETI instruction is executed), maskable interrupts are not acknowledged but are held pending.

## 7.7 Interrupt Latency Time

The following table describes the V850E/MS1 interrupt latency time (from interrupt generation to start of interrupt processing).





| Interru | upt Latency Time (Interna | al System Clock)   | Condition                                                                                                                                                                                |
|---------|---------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Internal interrupt        | External interrupt |                                                                                                                                                                                          |
| Minimum | 5                         | 7                  | The following cases are exceptions.  In IDLE/software STOP mode                                                                                                                          |
| Maximum | 11                        | 13                 | <ul> <li>External bus is accessed</li> <li>Two or more interrupt request non-sample instructions<br/>are executed in succession</li> <li>Access to interrupt control register</li> </ul> |

## 7.8 Periods in Which Interrupt Is Not Acknowledged

An interrupt is acknowledged while an instruction is being executed. However, no interrupt will be acknowledged between an interrupt non-sample instruction and the next instruction.

The interrupt request non-sampling instructions are as follows.

- El instruction
- DI instruction
- LDSR reg2, 0x5 instruction (vs. PSW)
- The store instruction for the interrupt control register (xxICn) and command register (PRCMD)

[MEMO]

## **CHAPTER 8 CLOCK GENERATOR FUNCTIONS**

The clock generator (CG) generates and controls the internal system clock ( $\phi$ ) which is supplied to each internal unit, of which the CPU is the primary unit.

## 8.1 Features

- O Multiplier function using a PLL (phase locked loop) synthesizer
- O Clock Source
  - Oscillation by connecting an oscillator:  $fxx = \phi/5$
  - External clock:  $fxx = 2 \times \phi$ ,  $\phi/5$
- O Power save control
  - HALT mode
  - IDLE mode
  - Software STOP mode
  - Clock output inhibit function
- O Internal system clock output function

## 8.2 Configuration



## 8.3 Input Clock Selection

The clock generator is configured from an oscillator and a PLL synthesizer. If, for example an 8 MHz crystal resonator or ceramic resonator is connected to pins X1 and X2, an internal system clock ( $\phi$ ) of 40 MHz can be generated.

Also, an external clock can be input directly to the oscillator. In this case, input a clock signal to the X1 pin only and leave the X2 pin open.

Two types of mode, a PLL mode and a direct mode, are provided as the basic operation modes for the clock generator. Selection of the operation mode is done by the CKSEL pin. The input of this pin latches at reset time.

| CKSEL | Operation Mode |
|-------|----------------|
| 0     | PLL mode       |
| 1     | Direct mode    |

# Caution Fix the input level of the CKSEL pin before use. If it is switched during operation, there is a possibility of malfunction occurring.

#### 8.3.1 Direct mode

In the direct mode, an external clock with double the internal system clock's frequency is input. Since the oscillator and PLL synthesizer are not operating, a large amount of power can be saved. Mainly, the V850E/MS1 is used in application systems where it operates at relatively low frequencies. In consideration of EMI countermeasures, if the external clock frequency (fxx) is 32 MHz (internal system clock ( $\phi$ ) = 16 MHz) or greater, the PLL mode is recommended.

#### Caution In the direct mode, be sure to input an external clock (do not connect an external resonator).

#### 8.3.2 PLL mode

In the PLL mode, by connecting an external resonator or inputting an external clock and multiplying this clock by the PLL synthesizer, an internal system clock ( $\phi$ ) is generated.

At reset time, an internal system clock ( $\phi$ ) which is 5 times the frequency of the input clock's frequency (fxx) (5 × fxx), is generated.

In the PLL mode, if the clock supply from an external resonator or external clock source stops, the internal system clock ( $\phi$ ) continues to operate based on the self-propelled frequency of the clock generator's internal voltage controlled oscillator (VCO). In this case,  $\phi$  = approx. 1 MHz (target). However, do not devise an application method in which you expect to use this self-propelled frequency.

| System Clock Frequency ( <i>\phi</i> ) [MHz] | External Resonator/External Clock Frequency (fxx) [MHz] |
|----------------------------------------------|---------------------------------------------------------|
| 40.000                                       | 8.0000                                                  |
| 32.768                                       | 6.5536                                                  |
| 25.000                                       | 5.0000                                                  |
| 20.000                                       | 4.0000                                                  |
| 16.384                                       | 3.2768                                                  |

#### Example Clock used when in the PLL mode

#### 8.3.3 Clock control register (CKC)

When in the PLL mode, this is an 8-bit register which controls the internal system clock frequency ( $\phi$ ), and it can be written to only by a specific combination of instruction sequences so that it cannot be rewritten easily by mistake due to program runaway.

This register can be read/written in 8- or 1-bit units.

|                        | /      | 0                  | 5                                                                                         | 4                      | 3      | 2                   |          | 0           | Address     | After rese |  |
|------------------------|--------|--------------------|-------------------------------------------------------------------------------------------|------------------------|--------|---------------------|----------|-------------|-------------|------------|--|
| CKC                    | 0      | 0                  | 0                                                                                         | 0                      | 0      | 0                   | CKDIV1   | CKDIV0      | FFFFF072H   | 00H        |  |
|                        |        |                    |                                                                                           |                        |        |                     |          |             |             |            |  |
| Bit Pos                | sition | Bit Name           |                                                                                           |                        |        |                     | Function | 1           |             |            |  |
| 1, 0 CKDIV1,<br>CKDIV0 |        | Clock I<br>Sets th | Stock Divide<br>Sets the internal system clock frequency ( $\phi$ ) when in the PLL mode. |                        |        |                     |          |             |             |            |  |
|                        |        |                    | CK                                                                                        | DIV1                   | CKDIV0 |                     | Inte     | ernal Syste | m Clock (ø) |            |  |
|                        |        |                    |                                                                                           | 0                      | 0      | $5 \times f_{XX}$   |          |             |             |            |  |
|                        |        |                    |                                                                                           | 0 1 Setting prohibited |        |                     |          |             |             |            |  |
|                        |        |                    |                                                                                           | 1                      | 0      | fxx                 |          |             |             |            |  |
|                        |        |                    |                                                                                           | 1                      | 1      | fxx/2               |          |             |             |            |  |
|                        |        |                    |                                                                                           | 1                      | 1      | fxx           fxx/2 |          |             |             |            |  |

#### Caution When in the direct mode, do not change the setting of this register.

The sequence of setting data to this register is the same as for the power save control register (PSC). However, the restrictions shown in **Remark 2** of **3.4.9 Specific registers** do not apply. For details, refer to **8.5.2 Control registers**.

#### **Example** Clock generator setting

| Operation<br>Mode | CKSEL Pin        | CKC Register |            | Input Clock<br>(fxx) | Internal System<br>Clock (φ) |
|-------------------|------------------|--------------|------------|----------------------|------------------------------|
|                   |                  | CKDIV1 Bit   | CKDIV0 Bit |                      |                              |
| Direct mode       | High-level input | 0            | 0          | 16 MHz               | 8 MHz                        |
| PLL mode          | Low-level input  | 0            | 0          | 8 MHz                | 40 MHz                       |
|                   |                  | 1            | 0          | 8 MHz                | 8 MHz                        |
|                   |                  | 1            | 1          | 8 MHz                | 4 MHz                        |
| Other than abov   | /e               |              |            | Setting prohibited   |                              |

## 8.4 PLL Lockup

Lockup time (frequency stabilization time) is the amount of time from immediately after the software STOP mode is released after the power is turned on, until the phase locks at the proper frequency and becomes stable. The state until this stabilization occurs is called the unlocked state and the stabilized state is called the locked state.

There is an UNLOCK flag which reflects the PLL's frequency stabilization state, and a PRERR flag which shows when a protection error occurs, in the system status register (SYS).

This register can be read/written in 8- or 1-bit units.

| SYS   | 0        | 0    | 0    | PRERR                                                    | 0                                                                                | 0                                                                               | 0                                                | UNLOCK                                                            | Address<br>FFFFF078H                                         | After reset<br>0000000×B |  |
|-------|----------|------|------|----------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|--------------------------|--|
| Bit F | Position | Bit  | Name |                                                          |                                                                                  |                                                                                 |                                                  | Function                                                          |                                                              |                          |  |
|       | 0        | UNLO | СК   | Unlock<br>This is<br>As long<br>when s<br>0: Ir<br>1: Ir | Status Fl<br>an exclus<br>as the lo<br>ystem res<br>ndicates the<br>ndicates the | ag<br>sive read fla<br>sckup state<br>set occurs.<br>nat the PLL<br>nat the PLL | ag and sl<br>is maint<br>is in a lo<br>is not lo | nows the PLL<br>ained, it is ke<br>ocked state.<br>ocked (in an u | 's unlocked state.<br>pt at 0, and is not<br>nlocked state). | initialized              |  |

If the clock stops, the power fails, or some other factor occurs to cause the unlocked state, in control processing which depends on software execution speed such as real-time processing, be sure to begin processing after judging the UNLOCK flag by software immediately after operation starts, and after waiting for the clock to stabilize again.

On the other hand, for static processing such as setting of internal hardware, or initialization of register data and memory data, it is possible to execute these without waiting for the UNLOCK flag to be reset.

The relationship between the oscillation stabilization time (the time from when the resonator starts to oscillate until the input waveform stabilizes) when a resonator is used, and the PLL lockup time (the time until the frequency is stabilized) is shown below.

Oscillation stabilization time < PLL lockup time

## 8.5 Power Saving Control

## 8.5.1 Outline

The V850E/MS1 standby function comprises the following three modes:

#### (1) HALT mode

In this mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but the CPU's operation clock stops. Supply of the clock to the other internal peripheral functions is continued. Through intermittent operation by combining with the normal operating mode, the system's total power consumption can be reduced.

The system is switched to the HALT mode via an exclusive instruction (the HALT instruction).

#### (2) IDLE mode

In this mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but supply of the internal system clock is stopped, which causes the system overall to stop.

When releasing the system from the IDLE mode, it is not necessary to secure the oscillation stabilization time of the oscillator, so it is possible to switch to normal operation at high speed.

The system enters the IDLE mode in accordance with the settings in the PSC register (specific register).

The IDLE mode is positioned midway between the software STOP mode and the HALT mode in relation to clock stabilization time and current consumption and is used for cases where the low current consumption mode is used and where it is desired to eliminate the clock stabilization time after it is released.

## (3) Software STOP mode

In this mode, the clock generator (oscillator and PLL synthesizer) is stopped and the system overall is stopped, thus entering an ultra-low power consumption state where only leak current is lost. It is possible to enter the software STOP mode by setting the PSC register (specific register).

#### (a) When in the PLL Mode

By setting the register by software, you can enter the software STOP mode. At the same time the oscillator stops, the PLL synthesizer's clock output stops. After releasing the software STOP mode, it is necessary to secure oscillation stabilization time for the oscillator for a period of time until the system clock stabilizes. Also, depending on the program, PLL lockup time may be required.

#### (4) Clock output inhibit mode

Internal system clock output from the CLKOUT pin is prohibited.

The operation of the clock generator in normal operation, and in the HALT, IDLE, and software STOP modes is shown in Table 8-1.

By combining each of the modes and by switching modes according to the required usage, it is possible to realize an effective low power consumption system.

| Clo         | ck Source      | Power Save Mode           | Oscillator<br>(OSC) | PLL<br>Synthesizer | Supply of<br>Clock to<br>Internal<br>Peripheral I/O | Supply of<br>Clock to the<br>CPU |
|-------------|----------------|---------------------------|---------------------|--------------------|-----------------------------------------------------|----------------------------------|
| PLL mode    | Oscillation by | (During normal operation) | 0                   | 0                  | 0                                                   | 0                                |
|             | resonator      | HALT mode                 | 0                   | 0                  | 0                                                   | ×                                |
|             |                | IDLE mode                 | 0                   | 0                  | ×                                                   | ×                                |
|             |                | Software STOP mode        | ×                   | ×                  | ×                                                   | ×                                |
|             | External clock | (During normal operation) | ×                   | 0                  | 0                                                   | 0                                |
|             |                | HALT mode                 | ×                   | 0                  | 0                                                   | ×                                |
|             |                | IDLE mode                 | ×                   | 0                  | ×                                                   | ×                                |
|             |                | Software STOP mode        | ×                   | ×                  | ×                                                   | ×                                |
| Direct mode |                | (During normal operation) | ×                   | ×                  | 0                                                   | 0                                |
|             |                | HALT mode                 | ×                   | ×                  | 0                                                   | ×                                |
|             |                | IDLE mode                 | ×                   | ×                  | ×                                                   | ×                                |
|             |                | Software STOP mode        | ×                   | ×                  | ×                                                   | ×                                |

## Table 8-1. Clock Generator Operation by Power Save Control

## O: Operating

 $\times$ : Stopped





## 8.5.2 Control registers

## (1) Power save control register (PSC)

This is an 8-bit register that controls the power save mode.

This is one of the specific registers and is active only when accessed by a specific sequence during a write operation. For details, refer to **3.4.9 Specific registers**.

This register can be read/written in 8- or 1-bit units.

|         |        |          |                    |                                                                      |                                                                                            |                                                                                                      |                                                                                          |                                                                            |                                               | Address                                                        | After rese                            |
|---------|--------|----------|--------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|---------------------------------------|
| PSC     | DCL    | K1       | DCLK0              | TBCS                                                                 | CESEL                                                                                      | 0                                                                                                    | IDLE                                                                                     | SIP                                                                        | 0                                             | FFFFF070H                                                      | 00H                                   |
|         |        |          |                    |                                                                      |                                                                                            |                                                                                                      |                                                                                          |                                                                            |                                               |                                                                |                                       |
| Bit Pos | sition | В        | Bit Name           |                                                                      |                                                                                            |                                                                                                      |                                                                                          | Function                                                                   |                                               |                                                                |                                       |
| 7, 6    | 6      | DC<br>DC | CLK1,<br>CLK0      | Disable<br>This sp                                                   | CLKOU<br>ecifies th                                                                        | T<br>le CLKOUT                                                                                       | pin's opera                                                                              | ating mode                                                                 |                                               |                                                                |                                       |
|         |        |          |                    | DC                                                                   | LK1                                                                                        | DCLK0                                                                                                |                                                                                          |                                                                            | Мо                                            | de                                                             |                                       |
|         |        |          |                    | (                                                                    | )                                                                                          | 0                                                                                                    | Normal                                                                                   | output mod                                                                 | e                                             |                                                                |                                       |
|         |        |          |                    | (                                                                    | )                                                                                          | 1                                                                                                    | RFU (res                                                                                 | served)                                                                    |                                               |                                                                |                                       |
|         |        |          |                    |                                                                      | 1                                                                                          | 0                                                                                                    | RFU (re:                                                                                 | served)                                                                    |                                               |                                                                |                                       |
|         |        |          |                    |                                                                      | 1                                                                                          | 1                                                                                                    | Clock ou                                                                                 | ıtput inhibit                                                              | mode                                          |                                                                |                                       |
|         |        |          |                    |                                                                      |                                                                                            |                                                                                                      |                                                                                          |                                                                            |                                               |                                                                |                                       |
|         |        |          |                    | Selects<br>0: fx<br>1: fx<br>Details                                 | the time<br>x/2 <sup>8</sup><br>x/2 <sup>9</sup><br>are show                               | base coun<br>vn in <b>8.6.2</b> <sup>-</sup>                                                         | ter clock.<br><b>Time base</b>                                                           | counter (1                                                                 | <b>BC</b> ).                                  |                                                                |                                       |
| 4       |        | CE       | SEL                | Crystal<br>Specific<br>0: A<br>1: A<br>If CESE<br>when ir<br>time ba | /External<br>es the fur<br>n oscillat<br>n externa<br>EL = 1, th<br>n the soft<br>se count | Select<br>nction of pir<br>or is conne<br>al clock is c<br>ne oscillator<br>ware STOF<br>er (TBC) af | ns X1 and X<br>cted to pins<br>onnected to<br>'s feedback<br>P mode. Als<br>ter the soft | (2.<br>5 X1 and X<br>5 pin X1.<br>6 loop is cu<br>so, the osc<br>ware STOF | 2.<br>t and curr<br>illation sta<br>o mode is | rent leakage is pr<br>abilization time co<br>released is not c | evented<br>bunt by the<br>arried out. |
| 2       |        | IDI      | _E <sup>Note</sup> | IDLE M<br>Specifie<br>It enter<br>It is aut                          | lode<br>es the ID<br>s the IDL<br>comaticall                                               | LE mode.<br>E state if 1<br>ly reset (0)                                                             | is written.<br>if the IDLE                                                               | mode is re                                                                 | leased.                                       |                                                                |                                       |
| 1       |        | ST       | P <sup>Note</sup>  | STOP I<br>Specifie<br>It enter                                       | Mode<br>es the so<br>s the ST(<br>comatical                                                | ftware STC<br>OP state if<br>ly reset (0)                                                            | P mode.<br>1 is written.<br>if the softwa                                                | are STOP                                                                   | mode is n                                     | eleased.                                                       |                                       |

## 8.5.3 HALT mode

#### (1) Setting and operating state

In this mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but the CPU's operation clock stops. Supply of the clock to other internal peripheral I/O functions is continued and their operation continues. By setting the HALT mode during the time when CPU is idle, the system's total power consumption can be reduced.

Switching to the HALT mode is accomplished by executing the HALT instruction.

In the HALT mode, program execution stops, but all the contents of all the registers, internal RAM, and ports are held in the state they were in just before the HALT mode was entered. Also, internal peripheral I/O (other than the ports) that is not dependent on CPU instruction processing continues operation. The state of each hardware unit when in the HALT mode is shown in Table 8-2.

**Remark** Even after HALT instruction execution, instruction fetch operations continue until the internal instruction prefetch queue becomes full. When the prefetch queue becomes full, it stops in the state shown in Table 8-2.

|                 | Function                                                           | Operating State                                                                                                                                                  |  |  |
|-----------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Clock generator |                                                                    | Operating                                                                                                                                                        |  |  |
| Internal syste  | m clock                                                            | Operating                                                                                                                                                        |  |  |
| CPU             |                                                                    | Stop                                                                                                                                                             |  |  |
| Port            |                                                                    | Hold                                                                                                                                                             |  |  |
| Internal peripl | neral I/O (except ports)                                           | Operating                                                                                                                                                        |  |  |
| Internal data   |                                                                    | All the CPU's registers, status, data, internal RAM contents and other internal data, etc. are retained in the state they were in before entering the HALT mode. |  |  |
| When in         | D0 to D15                                                          | Operating                                                                                                                                                        |  |  |
| external        | A0 to A23                                                          |                                                                                                                                                                  |  |  |
| mode            | $\overline{RD}, \overline{WE}, \overline{OE}, \overline{BCYST}$    |                                                                                                                                                                  |  |  |
|                 | $\overline{LWR}, \overline{UWR}, \overline{IORD}, \overline{IOWR}$ |                                                                                                                                                                  |  |  |
|                 | $\overline{\text{CS0}}$ to $\overline{\text{CS7}}$                 |                                                                                                                                                                  |  |  |
|                 | RAS0 to RAS7                                                       |                                                                                                                                                                  |  |  |
|                 | LCAS, UCAS                                                         |                                                                                                                                                                  |  |  |
|                 | REFRQ                                                              |                                                                                                                                                                  |  |  |
|                 | HLDRQ                                                              |                                                                                                                                                                  |  |  |
|                 | HLDAK                                                              |                                                                                                                                                                  |  |  |
|                 | WAIT                                                               |                                                                                                                                                                  |  |  |
| CLKOUT          |                                                                    | Clock output (when not in clock output inhibit)                                                                                                                  |  |  |

#### Table 8-2. Operating States When in HALT Mode

#### (2) Releasing HALT mode

The HALT mode can be released by NMI pin input, an unmasked maskable interrupt request, or a RESET signal input.

#### (a) Release by NMI pin input, maskable interrupt request

The HALT mode is unconditionally released by NMI pin input or an unmasked maskable interrupt request regardless of the priority. However, if the HALT mode is set in an interrupt processing routine, the operation will differ as follows:

- (i) If an interrupt request with a priority lower than that of the interrupt request under execution is generated, the HALT mode is released, but the newly generated interrupt request is not acknowledged. The new interrupt request will be kept pending.
- (ii) If an interrupt request with a priority higher (including NMI request) than the interrupt request under execution is generated, the HALT mode is released, and the interrupt request is also acknowledged.

#### Table 8-3. Operations after HALT Mode Is Released by Interrupt Request

| Releasing Source           | Interrupt Enable (EI) State                                    | Interrupt Disable (DI) State  |
|----------------------------|----------------------------------------------------------------|-------------------------------|
| NMI request                | Branch to handler address                                      |                               |
| Maskable interrupt request | Branch to the handler address or execute the next instruction. | Execute the next instruction. |

### (b) Release by RESET pin input

This operation is the same as a normal reset operation.

## 8.5.4 IDLE mode

## (1) Settings and operating state

In this mode, the clock generator (oscillator and PLL synthesizer) continues to operate, but supply of the internal system clock is stopped, which causes the system overall to stop.

When releasing the system from the IDLE mode, it is not necessary to secure the oscillation stabilization time of the oscillator, so it is possible to switch to normal operation at high speed.

The IDLE mode is entered by the setting of the PSC register (specific register), set through a store instruction (ST/SST instruction) or a bit operation instruction (SET1/CLR1/NOT1 instruction) (refer to **3.4.9 Specific registers**).

In the IDLE mode, program execution is stopped, but all the contents of all the registers, internal RAM, and ports are held. Operation of the internal peripheral I/O (except the ports) is also stopped.

The state of each hardware unit when in IDLE mode is as shown in Table 8-4.

|                                 | Function                                                                                       | Operating State                                                                                                                                                        |  |
|---------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Clock generator                 |                                                                                                | Operating                                                                                                                                                              |  |
| Internal system clock           |                                                                                                | Stop                                                                                                                                                                   |  |
| CPU                             |                                                                                                | Stop                                                                                                                                                                   |  |
| Port                            |                                                                                                | Hold                                                                                                                                                                   |  |
| Internal peripheral I           | /O (except ports)                                                                              | Stop                                                                                                                                                                   |  |
| Internal data                   |                                                                                                | All the CPU's registers, status, data, internal RAM contents<br>and other internal data, etc. are retained in the state they<br>were in before entering the HALT mode. |  |
| When in external expansion mode | D0 to D15                                                                                      | High-impedance                                                                                                                                                         |  |
|                                 | A0 to A23                                                                                      |                                                                                                                                                                        |  |
|                                 | $\overline{RD}, \overline{WE}, \overline{OE}, \overline{BCYST}$                                |                                                                                                                                                                        |  |
|                                 | $\overline{\text{LWR}}, \overline{\text{UWR}}, \overline{\text{IORD}}, \overline{\text{IOWR}}$ | High-level output                                                                                                                                                      |  |
|                                 | $\overline{\text{CS0}}$ to $\overline{\text{CS7}}$                                             |                                                                                                                                                                        |  |
|                                 | RAS0 to RAS7                                                                                   | Operating                                                                                                                                                              |  |
|                                 | LCAS, UCAS                                                                                     |                                                                                                                                                                        |  |
|                                 | REFRQ                                                                                          |                                                                                                                                                                        |  |
|                                 | HLDRQ                                                                                          | Input (no sampling)                                                                                                                                                    |  |
|                                 | HLDAK                                                                                          | High-impedance                                                                                                                                                         |  |
|                                 | WAIT                                                                                           | Input (no sampling)                                                                                                                                                    |  |
| CLKOUT                          |                                                                                                | Low-level output                                                                                                                                                       |  |

## Table 8-4. Operating States When in IDLE Mode

#### (2) Releasing IDLE mode

The IDLE Mode is released by NMI pin input or RESET pin input.

#### (a) Release by NMI pin input

This is acknowledged as a NMI request together with a release of the IDLE mode.

However, in cases where setting the system in the IDLE mode is included in the NMI processing routine, the IDLE mode is released only, and this interrupt is not acknowledged. The interrupt request itself is held pending.

The interrupt processing that is started when the IDLE mode is released by NMI pin input is treated in the same way as ordinary NMI interrupt processing in an emergency, etc. (since the NMI interrupt handler's address is unique). Consequently, in cases where it is necessary to distinguish between the two in a program, it is necessary to prepare the software status in advance and set the status before setting the PSC register using the store instruction or a bit operation instruction. By checking this status in NMI interrupt processing, it is possible to distinguish it from an ordinary NMI.

## (b) Release by RESET pin input

This is the same as an ordinary reset operation.

#### 8.5.5 Software STOP mode

#### (1) Settings and operating state

In this mode, the clock generator (oscillator and PLL synthesizer) is stopped. The system overall is stopped, and it enters an ultra-low power consumption state where only device leakage current is lost.

It is possible to enter the software STOP mode by setting the PSC register (specific register) using a store instruction (ST/SST instruction) or a bit manipulation instruction (SET1/CLR1/NOT1 instruction) in software (refer to **3.4.9 Specific registers**).

In the case of the PLL mode and oscillator connection mode (CESEL bit of the PSC register = 0), it is necessary to secure the oscillation stabilization of the oscillator after releasing the software STOP mode.

In the software STOP mode, program execution stops, but all the contents of all the registers, internal RAM, and ports are held in the state they were in just before entering the software STOP mode. Operation of the internal peripheral I/O (except the ports) is also stopped.

The status of each hardware unit during the software STOP mode is as shown in Table 8-5.

# Caution In the case of the direct mode (CKSEL pin = 1) or external clock connection mode (CESEL bit of the PSC register = 1), the software STOP mode cannot be used.

|                               | Function                                                           | Operating State                                                                                                                                                     |  |  |  |
|-------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Clock generator               |                                                                    | Stop                                                                                                                                                                |  |  |  |
| Internal system cloc          | :k                                                                 | Stop                                                                                                                                                                |  |  |  |
| CPU                           |                                                                    | Stop                                                                                                                                                                |  |  |  |
| Port <sup>Note</sup>          |                                                                    | Hold                                                                                                                                                                |  |  |  |
| Internal peripheral I         | O (except ports)                                                   | Stop                                                                                                                                                                |  |  |  |
| Internal data <sup>Note</sup> |                                                                    | All the CPU's registers, status, data, internal RAM contents,<br>other internal data, etc. are retained in the state they were<br>in before entering the HALT mode. |  |  |  |
| When in external              | D0 to D15                                                          | High-impedance                                                                                                                                                      |  |  |  |
| expansion mode                | A0 to A23                                                          |                                                                                                                                                                     |  |  |  |
|                               | $\overline{RD}, \overline{WE}, \overline{OE}, \overline{BCYST}$    |                                                                                                                                                                     |  |  |  |
|                               | $\overline{LWR}, \overline{UWR}, \overline{IORD}, \overline{IOWR}$ | High-level output                                                                                                                                                   |  |  |  |
|                               | $\overline{\text{CS0}}$ to $\overline{\text{CS7}}$                 |                                                                                                                                                                     |  |  |  |
|                               | RAS0 to RAS7                                                       | Operating                                                                                                                                                           |  |  |  |
|                               | LCAS, UCAS                                                         |                                                                                                                                                                     |  |  |  |
|                               | REFRQ                                                              |                                                                                                                                                                     |  |  |  |
|                               | HLDRQ                                                              | Input (no sampling)                                                                                                                                                 |  |  |  |
|                               | HLDAK                                                              | High-impedance                                                                                                                                                      |  |  |  |
|                               | WAIT                                                               | Input (no sampling)                                                                                                                                                 |  |  |  |
| CLKOUT                        |                                                                    | Low-level output                                                                                                                                                    |  |  |  |

#### Table 8-5. Operating States When in Software STOP Mode

**Note** If the V<sub>DD</sub> value is within the operable range.

However, even when it drops below the minimum operable voltage, if the data hold voltage VDDDR is maintained, the contents of internal RAM only are held.

#### (2) Releasing software STOP mode

The software STOP mode is released by NMI pin input or RESET pin input.

Also, when releasing the software STOP mode in the PLL mode and the oscillator connection mode (CESEL bit of the PSC register = 0), it is necessary to secure oscillation stabilization time for the oscillator.

Note that depending on the program, PLL lockup time may also be necessary. For details, refer to **8.4 PLL** Lockup.

## (a) Release by NMI Pin Input

An NMI pin input is acknowledged as an NMI request as well as a release of the software STOP mode. However, if setting in the software STOP mode is included in an NMI processing routine, the software STOP mode only is released and the interrupt is not acknowledged. The interrupt request itself is held pending.

The interrupt processing started when the STOP mode is released by an NMI pin input is treated in the same way as ordinary NMI interrupt processing in an emergency, etc. (since the NMI interrupt handler address is unique). Consequently, in cases where it is necessary to distinguish between the two, it is necessary to prepare the software status in advance and set the status before setting the PSC register using the store instruction or a bit operation instruction. By checking this status in NMI interrupt processing, it is possible to distinguish it from an ordinary NMI.

#### (b) Release by RESET Pin Input

This is the same as an ordinary reset operation.

#### 8.5.6 Clock output inhibit mode

If the DCLK0 bit and DCLK1 bit of the PSC register are set to 1, the system enters the clock output inhibit mode, in which clock output from the CLKOUT pin is disabled.

This is most appropriate in single-chip mode 0 and 1 systems, or in systems which access instruction fetches or data from external expansion devices asynchronously.

In this mode, since the CLKOUT signal output's operation is completely stopped, much lower power consumption and suppression of radiation noise from the CLKOUT pin is possible. Also, by combining this mode with the HALT, IDLE, and software STOP mode, more effective power saving becomes possible (refer to **8.5.2 Control registers**).

| CLKOUT<br>(During normal<br>operation)             |   |                          |
|----------------------------------------------------|---|--------------------------|
| CLKOUT<br>(in the clock<br>output inhibit<br>mode) | L | (Fixed at the low level) |

# **Remark** When in flash memory programming mode, the CLKOUT signal is not output regardless of the PSC register setting.

## 8.6 Securing Oscillation Stabilization Time

#### 8.6.1 Specifying securing of oscillation stabilization time

There are 2 methods for specifying securing of time for stabilizing the oscillator in the stop mode after releasing the software STOP mode.

#### (1) If securing time by the internal time base counter (NMI pin input)

If the active edge of the NMI pin is input, the software STOP mode is released. When the inactive edge is input to the pin, the time base counter (TBC) starts counting, and at that count time, the time until the clock output from the oscillator stabilizes is secured.

Oscillation stabilization time ≅ (Active level width after NMI input active edge detection) + (TBC count time)

After the proper time, start internal system clock output and branch to the NMI interrupt handler address.



The NMI pin should normally be set at the inactive level (for example, so that it changes to high level when the active edge is specified to be falling).

Furthermore, if an operation is executed which sets the system in the STOP mode for a time until an interrupt is received from the CPU from the NMI active edge input timing, the software STOP mode is quickly released. In the case of the PLL mode and the resonator connection mode (CESEL bit of PSC register = 0), program execution starts after the oscillation stabilization time is secured by the time base counter after input of the NMI pin's inactive edge.

## (2) If securing time by the signal level width ( $\overline{RESET}$ pin input)

By inputting the falling edge to the RESET pin, the software STOP mode is released.

At the signal low level width input to the pin, enough time is secured until the clock output from the oscillator stabilizes.

After inputting the rising edge to the RESET pin, supply of the internal system clock begins and the system branches to the handler address that was set at system reset time.



## 8.6.2 Time base counter (TBC)

The time base counter (TBC) is used to secure the oscillation stabilization time of the oscillator when the software STOP mode is released.

#### • Resonator connection time (PLL Mode, and CESEL bit of the PSC Register = 0)

After releasing the software STOP mode, the oscillation stabilization time is counted by the TBC and after counting is ended, program execution begins.

The TBC count clock is selected by the TBCS bit in the PSC register, and it is possible to set the following count times (refer to **8.5.2 (1)** Power save control register (PSC)).

| TBCS Bit | Count Clock        | Count Time       |                  |                  |                             |  |
|----------|--------------------|------------------|------------------|------------------|-----------------------------|--|
|          |                    | fxx = 3.2768 MHz | fxx = 5.0000 MHz | fxx = 6.5536 MHz | fxx = 8.0000 MHz            |  |
|          |                    | φ = 16.384 MHz   | φ = 25.000 MHz   | φ = 32.768 MHz   | $\phi = 40.000 \text{ MHz}$ |  |
| 0        | fxx/2 <sup>8</sup> | 20.0 ms          | 13.1 ms          | 10.0 ms          | 8.1 ms                      |  |
| 1        | fxx/2 <sup>9</sup> | 40.0 ms          | 26.2 ms          | 20.0 ms          | 16.3 ms                     |  |

#### Table 8-6. Example of Count Time ( $\phi = 5 \times fxx$ )

fxx: External resonator frequency

φ: Internal system clock frequency

## CHAPTER 9 TIMER/COUNTER FUNCTION (REAL-TIME PULSE UNIT)

## 9.1 Features

O Measures the pulse interval and frequency and outputs a programmable pulse.

- 16-bit measurements are possible.
- Pulse multiple states can be generated (interval pulse, one shot pulse)

O Timer 1

- 16-bit timer/event counter
- Count clock sources: 2 types (internal system clock division selection, external pulse input)
- Capture/compare common registers: 24
- Count clear pins: TCLR10 to TCLR15
- Interrupt sources: 30 types
- External pulse outputs: 12
- O Timer 4
  - 16-bit interval timer
  - The count clock is selected from the internal system clock divisions.
  - Compare registers: 2
  - Interrupt sources: 2 types

# 9.2 Basic Configuration

The basic configuration is shown below.

| Table 9-1. | RPU | Configuration | List |
|------------|-----|---------------|------|
|------------|-----|---------------|------|

| Timer   | Count Clock    | Register | Read/Write | Interrupt Signals<br>Generated | Capture<br>Trigger | Timer<br>Output S/R | Other Functions                 |
|---------|----------------|----------|------------|--------------------------------|--------------------|---------------------|---------------------------------|
| Timer 1 | <i>ф</i> /2    | TM10     | Read       | INTOV10                        |                    |                     | External clear                  |
|         | φ/ <b>4</b>    | CC100    | Read/write | INTCC100                       | INTP100            | TO100 (S)           |                                 |
|         | φ/8            | CC101    | Read/write | INTCC101                       | INTP101            | TO100 (R)           |                                 |
|         | φ/16<br>φ/32   | CC102    | Read/write | INTCC102                       | INTP102            | TO101 (S)           |                                 |
|         | φ/64           | CC103    | Read/write | INTCC103                       | INTP103            | TO101 (R)           |                                 |
|         | TI1n Pin Input | TM11     | Read       | INTOV11                        |                    |                     | External clear                  |
|         | (n = 0 to 5)   | CC110    | Read/write | INTCC110                       | INTP110            | TO110 (S)           | A/D conversion<br>start trigger |
|         |                | CC111    | Read/write | INTCC111                       | INTP111            | TO110 (R)           | A/D conversion<br>start trigger |
|         |                | CC112    | Read/write | INTCC112                       | INTP112            | TO111 (S)           | A/D conversion<br>start trigger |
|         |                | CC113    | Read/write | INTCC113                       | INTP113            | TO111 (R)           | A/D conversion<br>start trigger |
|         |                | TM12     | Read       | INTOV12                        | _                  |                     | External clear                  |
|         |                | CC120    | Read/write | INTCC120                       | INTP120            | TO120 (S)           | —                               |
|         |                | CC121    | Read/write | INTCC121                       | INTP121            | TO120 (R)           | —                               |
|         |                | CC122    | Read/write | INTCC122                       | INTP122            | TO121 (S)           | —                               |
|         |                | CC123    | Read/write | INTCC123                       | INTP123            | TO121 (R)           |                                 |
|         |                | TM13     | Read       | INTOV13                        | _                  | —                   | External clear                  |
|         |                | CC130    | Read/write | INTCC130                       | INTP130            | TO130 (S)           |                                 |
|         |                | CC131    | Read/write | INTCC131                       | INTP131            | TO130 (R)           | —                               |
|         |                | CC132    | Read/write | INTCC132                       | INTP132            | TO131 (S)           | —                               |
|         |                | CC133    | Read/write | INTCC133                       | INTP133            | TO131 (R)           | —                               |
|         |                | TM14     | Read       | INTOV14                        | _                  | —                   | External clear                  |
|         |                | CC140    | Read/write | INTCC140                       | INTP140            | TO140 (S)           | —                               |
|         |                | CC141    | Read/write | INTCC141                       | INTP141            | TO140 (R)           | —                               |
|         |                | CC142    | Read/write | INTCC142                       | INTP142            | TO141 (S)           | —                               |
|         |                | CC143    | Read/write | INTCC143                       | INTP143            | TO141 (R)           | —                               |
|         |                | TM15     | Read       | INTOV15                        |                    | _                   | External clear                  |
|         |                | CC150    | Read/write | INTCC150                       | INTP150            | TO150 (S)           | —                               |
|         |                | CC151    | Read/write | INTCC151                       | INTP151            | TO150 (R)           | —                               |
|         |                | CC152    | Read/write | INTCC152                       | INTP152            | TO151 (S)           |                                 |
|         |                | CC153    | Read/write | INTCC153                       | INTP153            | TO151 (R)           | —                               |
| Timer 4 | φ/32           | TM40     | Read       | —                              |                    |                     |                                 |
|         | φ/64<br>¢/128  | CM40     | Read/write | INTCM40                        | —                  | —                   | —                               |
|         | ψ/120<br>ø/256 | TM41     | Read       |                                |                    |                     |                                 |
|         | <i>p</i> ===   | CM41     | Read/write | INTCM41                        | —                  |                     | —                               |

**Remark**  $\phi$ : Internal system clock

S/R: Set/reset



#### (1) Timer 1 (16-bit timer/event counter)

## (2) Timer 4 (16-bit interval timer)



### 9.2.1 Timer 1

## (1) Timers 10 to 15 (TM10 to TM15)

TM1n functions as a 16-bit free running timer or as an event counter for an external signal. Mainly, besides period measurement and frequency measurement, it can be used as a pulse output (n = 0 to 5). TM1n is read-only, in 16-bit units.

| TM10 | 15 | 0 | Address<br>FFFFF250H | After reset<br>0000H |
|------|----|---|----------------------|----------------------|
| TM11 |    |   | FFFF270H             | 0000H                |
| TM12 |    |   | FFFF290H             | 0000H                |
| TM13 |    |   | FFFF2B0H             | 0000H                |
| TM14 |    |   | FFFF2D0H             | 0000H                |
| TM15 |    |   | FFFF2F0H             | 0000H                |

TM1n carries out count-up operations of the internal count clock or of an external count clock. Starting and stopping of the timer is controlled by the CE1n bit of timer control register 1n (TMC1n). Selection of internal or external count clocks is performed by the TMC1n register.

#### (a) Selection of an external count clock

TM1n operates as an event counter. The active edge is specified by the timer unit mode register 1n (TUM1n) and through input of pin TI1n, TM1n is counted up.

#### (b) Selection of an internal count clock

TM1n operates as a free running timer. The counter clock can be selected from among the divisions performed by the prescaler,  $\phi/2$ ,  $\phi/4$ ,  $\phi/8$ ,  $\phi/16$ ,  $\phi/32$ , or  $\phi/64$ , through the TMC1n register.

If the timer overflows, an overflow interrupt can be generated. Also, the timer can be stopped after an overflow through the TUM1n register specification.

The timer can also be cleared and started using the external input TCLR1n. When this is done, the prescaler is cleared at the same time, so the time from TCLR1n input to timer count-up is constant corresponding to the prescaler's dividing ratio. The operation setting is carried out by the TUM1n register.

#### Caution The count clock cannot be changed during timer operation.

#### (2) Capture/compare registers 1n0 to 1n3 (CC1n0 to CC1n3) (n = 0 to 5)

The capture/compare registers are 16-bit registers to which TM1n is connected. They can be used as either a capture register or a compare register in accordance with the specification in timer unit mode register 1n (TUM1n). These registers can be read/written in 16-bit units.

| 15     0       CC100 to     CC103 | Address<br>FFFFF252H to<br>FFFFF258H | After reset<br>Undefined |
|-----------------------------------|--------------------------------------|--------------------------|
| CC110 to<br>CC113                 | FFFFF272H to<br>FFFFF278H            | Undefined                |
| CC120 to<br>CC123                 | FFFFF292H to<br>FFFFF298H            | Undefined                |
| CC130 to<br>CC133                 | FFFFF2B2H to<br>FFFFF2B8H            | Undefined                |
| CC140 to<br>CC143                 | FFFFF2D2H to<br>FFFFF2D8H            | Undefined                |
| CC150 to<br>CC153                 | FFFFF2F2H to<br>FFFFF2F8H            | Undefined                |

#### (a) Set as a capture register

If set as a capture register, these registers detect the active edge of the corresponding signals in external interrupts INTP1n0 to INTP1n3 as a capture trigger. Timer 1n is synchronized with the capture trigger and latches a count value (capture operation). The capture operation is performed out of synch with the count clock. The latched value is held in the capture register until the next capture operation is performed.

If the capture (latch) timing to the capture register and writing to the register in response to an instruction are in contention, the latter has the priority and the capture operation is disregarded.

Also, specification of the active edge of external interrupts (rising, falling, or both edges) can be selected by the external interrupt mode register (INTM1 to INTM6).

When there is a specification in the capture register, an interrupt is issued when the active edge of INTP1n0 to INTP1n3 signals is detected. When this is done, an interrupt cannot be issued by INTCC1n0 to INTCC1n3, which are the compare register's matching signals.

#### (b) Set as a compare register

If set as a compare register, these registers perform a comparison of the timer and register values at each count clock of the timer, and issue an interrupt if the values match.

The compare registers are provided with a set/reset output function. In synch with matching signal generation, the corresponding timer output (TO1n0, TO1n1) is set or reset.

The interrupt source differs with the function of the register.

If specified a compare register, these registers can be made interrupt signals by selecting, through the specification of the TUM1n register, active edge detection of either the INTCC1n0 to INTCC1n3 signals, which are the matching signals, or the INTP1n0 to INTP1n3 signals.

Furthermore, if the INTP1n0 to INTP1n3 signals are selected, acknowledgement of an external interrupt request and timer output by the compare register's set/reset output function can be carried out in parallel.
# 9.2.2 Timer 4

## (1) Timers 40, 41 (TM40, TM41)

TM4n is a 16-bit timer. It can mainly be used as an interval timer for software (n = 0, 1). TM4n is read-only in 16-bit units.

|      | 15 |  |  |  |  |  |  |  | 0 |                     |                      |
|------|----|--|--|--|--|--|--|--|---|---------------------|----------------------|
| TM40 |    |  |  |  |  |  |  |  |   | Address<br>FFFF550H | After reset<br>0000H |
|      |    |  |  |  |  |  |  |  |   |                     |                      |
| TM41 |    |  |  |  |  |  |  |  |   | FFFFF354H           | 0000H                |
|      | -  |  |  |  |  |  |  |  |   |                     |                      |

Starting and stopping of TM4n is controlled by the CE4n bit of timer control register 4n (TMC4n). The count clock can be selected from  $\phi/32$ ,  $\phi/64$ ,  $\phi/128$ , or  $\phi/256$  divisions of the prescaler via register TMC4n.

Caution Since the timer is cleared at the next count clock after a compare match is issued, when the division ratio is large, even if the timer's value is read immediately after the match interrupt is issued, the timer's value may not be 0.

Also, the count clock cannot be changed during timer operation.

## (2) Compare registers 40, 41 (CM40, CM41)

CM4n is a 16-bit register and is connected to TM4n. This register can be read/written in 16-bit units.

|      | 15 |  |  |  |   |  |   |  | 0 |                      |                          |
|------|----|--|--|--|---|--|---|--|---|----------------------|--------------------------|
| CM40 |    |  |  |  |   |  |   |  |   | Address<br>FFFFF352H | After reset<br>Undefined |
|      |    |  |  |  |   |  |   |  |   |                      |                          |
| CM41 |    |  |  |  |   |  |   |  |   | FFFFF356H            | Undefined                |
|      |    |  |  |  | - |  | • |  |   |                      |                          |

This register compares TM4n and CM4n each TM4n count clock and if they match, issues an interrupt (INTCM4n). TM4n is cleared in synchronization with this match.

# 9.3 Control Registers

# (1) Timer unit mode registers 10 to 15 (TUM10 to TUM15)

The TUM1n register is a register which controls the operation of timer 1 and specifies the capture/compare register operation mode (n = 0 to 5).

These registers can be read/written in 16-bit units.

|       | 15 | 14 | 13   | 12         | 11         | 10         | 9          | 8          | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |                      |                      |
|-------|----|----|------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------------|----------------------|
| TUM10 | 0  | 0  | OST0 | ECLR<br>10 | TES<br>101 | TES<br>100 | CES<br>101 | CES<br>100 | CMS<br>103 | CMS<br>102 | CMS<br>101 | CMS<br>100 | IMS<br>103 | IMS<br>102 | IMS<br>101 | IMS<br>100 | Address<br>FFFFF240H | After reset<br>0000H |
|       |    |    |      |            |            |            |            |            |            |            |            |            |            |            |            |            |                      |                      |
| TUM11 | 0  | 0  | OST1 | ECLR<br>11 | TES<br>111 | TES<br>110 | CES<br>111 | CES<br>110 | CMS<br>113 | CMS<br>112 | CMS<br>111 | CMS<br>110 | IMS<br>113 | IMS<br>112 | IMS<br>111 | IMS<br>110 | FFFF260H             | 0000H                |
|       |    |    |      |            |            |            |            |            |            |            |            |            |            |            |            |            |                      |                      |
| TUM12 | 0  | 0  | OST2 | ECLR<br>12 | TES<br>121 | TES<br>120 | CES<br>121 | CES<br>120 | CMS<br>123 | CMS<br>122 | CMS<br>121 | CMS<br>120 | IMS<br>123 | IMS<br>122 | IMS<br>121 | IMS<br>120 | FFFF280H             | 0000H                |
|       |    |    |      |            |            |            |            |            |            |            |            |            |            |            |            |            |                      |                      |
| TUM13 | 0  | 0  | OST3 | ECLR<br>13 | TES<br>131 | TES<br>130 | CES<br>131 | CES<br>130 | CMS<br>133 | CMS<br>132 | CMS<br>131 | CMS<br>130 | IMS<br>133 | IMS<br>132 | IMS<br>131 | IMS<br>130 | FFFFF2A0H            | 0000H                |
|       |    |    |      |            |            |            |            |            |            |            |            |            |            |            |            |            |                      |                      |
| TUM14 | 0  | 0  | OST4 | ECLR<br>14 | TES<br>141 | TES<br>140 | CES<br>141 | CES<br>140 | CMS<br>143 | CMS<br>142 | CMS<br>141 | CMS<br>140 | IMS<br>143 | IMS<br>142 | IMS<br>141 | IMS<br>140 | FFFF2C0H             | 0000H                |
|       |    |    |      |            |            |            |            |            |            |            |            |            |            |            |            |            |                      |                      |
| TUM15 | 0  | 0  | OST5 | ECLR<br>15 | TES<br>151 | TES<br>150 | CES<br>151 | CES<br>150 | CMS<br>153 | CMS<br>152 | CMS<br>151 | CMS<br>150 | IMS<br>153 | IMS<br>152 | IMS<br>151 | IMS<br>150 | FFFF2E0H             | 0000H                |

| Bit Position | Bit Name | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13           | OSTn     | <ul> <li>Overflow Stop</li> <li>Specifies the timer's operation after overflow. This flag is valid only in TM1n.</li> <li>0: Timer continues to count up after timer overflow.</li> <li>1: Timer holds 0000H and is in the stopped state after timer overflow.</li> <li>When this happens, the CE1 bit in the TMC1n register remains at 1.</li> <li>Counting up resumes with the next operation.</li> <li>When ECLR1n = 0: 1 write operation to the CE1n bit.</li> <li>When ECLR1n = 1: Trigger input to the timer clear pin (TCLR1n).</li> </ul> |
| 12           | ECLR1n   | <ul> <li>External Input Timer Clear</li> <li>Clearing of the timer is enabled by the TM1n external clear input (TCLR1n).</li> <li>0: Timer is not cleared by an external input.</li> <li>1: TM1n is cleared by an external input.</li> <li>Counting up starts after clearing.</li> </ul>                                                                                                                                                                                                                                                          |

**Remark** n = 0 to 5

| Bit Position | Bit Name               |                                                                                                                                                                                                                                                                  |                                                                                     | Function                                                                                                                                                                        |             |  |  |  |  |   |
|--------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|---|
| 11, 10       | TES1n1,<br>TES1n0      | TI1n Edge Sel<br>Specifies the a                                                                                                                                                                                                                                 | ect<br>active edge of                                                               | the external clock input (TI1n).                                                                                                                                                |             |  |  |  |  |   |
|              |                        | TES1n1                                                                                                                                                                                                                                                           | TES1n0                                                                              | Active Edge                                                                                                                                                                     |             |  |  |  |  |   |
|              |                        | 0                                                                                                                                                                                                                                                                | 0                                                                                   | Falling edge                                                                                                                                                                    |             |  |  |  |  |   |
|              |                        | 0                                                                                                                                                                                                                                                                | 1                                                                                   | Rising edge                                                                                                                                                                     |             |  |  |  |  |   |
|              |                        | 1                                                                                                                                                                                                                                                                | 0                                                                                   | RFU (reserved)                                                                                                                                                                  |             |  |  |  |  |   |
|              |                        | 1                                                                                                                                                                                                                                                                | 1                                                                                   | Both the rising and falling edges                                                                                                                                               |             |  |  |  |  |   |
| 9, 8         | CES1n1,<br>CES1n0      | TCLR1n Edge<br>Specifies the a                                                                                                                                                                                                                                   | Select<br>active edge of                                                            | the external clear input (TCLR1n).                                                                                                                                              |             |  |  |  |  |   |
|              |                        | CES1n1                                                                                                                                                                                                                                                           | CES1n0                                                                              | Active Edge                                                                                                                                                                     |             |  |  |  |  |   |
|              |                        | 0                                                                                                                                                                                                                                                                | 0                                                                                   | Falling edge                                                                                                                                                                    |             |  |  |  |  |   |
|              |                        |                                                                                                                                                                                                                                                                  | 0                                                                                   | 1                                                                                                                                                                               | Rising edge |  |  |  |  |   |
|              |                        |                                                                                                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                 |             |  |  |  |  | 1 |
|              |                        | 1                                                                                                                                                                                                                                                                | 1                                                                                   | Both the rising and falling edges                                                                                                                                               |             |  |  |  |  |   |
| 7 to 4       | CMS1nm<br>(m = 3 to 0) | Capture/Comp<br>Selects the ca<br>0: Operates<br>specified<br>register =<br>1: Operates                                                                                                                                                                          | pare Mode Se<br>pture/compar<br>as a capture<br>as a capture<br>= 1.<br>as a compar | lect<br>e register's (CC1nm) operation mode.<br>register. However, the capture operation when it is<br>register is performed only when the CE1n bit of the TMC1r<br>e register. |             |  |  |  |  |   |
| 3 to 0       | IMS1nm<br>(m = 3 to 0) | Interrupt Mode Select<br>Selects either INTP1nm or INTCC1nm as the interrupt source.<br>0: Makes the compare register's matching signal INTCC1nm the interrupt request<br>signal.<br>1: It makes the external input signal INTP1nm the interrupt request signal. |                                                                                     |                                                                                                                                                                                 |             |  |  |  |  |   |

- Remarks 1. If the A/D converter is set in the timer trigger mode, the compare register's match interrupt becomes the A/D conversion start trigger, starting the conversion operation. When this happens, the compare register's match interrupt functions as a compare register match interrupt to the CPU. In order for a compare register match interrupt not to be issued to the CPU, disable interrupts with the interrupt mask bits (P11MK0 to P11MK3) of the interrupt control register (P11IC0 to P11IC3).
  - 2. If the A/D converter is set in the external trigger mode, the external trigger input becomes the A/D converter starting trigger, starting the conversion operation. When this happens, the external trigger input also functions as Timer 1's capture trigger and as an external interrupt. In order for it not to issue capture triggers or external interrupts, set Timer 1 in the compare register and disable interrupts with the interrupt control register's interrupt mask bit.

If Timer 1 is not set in the compare register, and if interrupts are not disabled in the interrupt control register, the following will happen.

#### (a) If the TUM15 register's interrupt mask bit (IMS153) is 0

It also functions as the compare register's match interrupt with respect to the CPU.

#### (b) If the TUM15 register's interrupt mask bit (IMS153) is 1

The A/D converter's external trigger input also functions as an external interrupt to the CPU.

# (2) Timer control registers 10 to 15 (TMC10 to TMC15)

TMC10 to 15 control the respective operations of TM10 to TM15. These registers can be read/written in 8- or 1-bit units.

|        | 7      | 6      | 5   | 4                                                                                                                                                                                                              | 3                                                                                                            | 2                                                                                                  | 1                                                                                     | 0                                                                                       |                                                                                                                      |                                                       |  |  |  |
|--------|--------|--------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
| TMC10  | CE10   | 0      | 0   | ETI10                                                                                                                                                                                                          | PRS101                                                                                                       | PRS100                                                                                             | PRM101                                                                                | 0                                                                                       | Address<br>FFFFF242H                                                                                                 | After reset<br>00H                                    |  |  |  |
|        |        |        |     | 1                                                                                                                                                                                                              | 1                                                                                                            | 1                                                                                                  |                                                                                       |                                                                                         |                                                                                                                      |                                                       |  |  |  |
| TMC11  | CE11   | 0      | 0   | ETI11                                                                                                                                                                                                          | PRS111                                                                                                       | PRS110                                                                                             | PRM111                                                                                | 0                                                                                       | FFFF262H                                                                                                             | 00H                                                   |  |  |  |
|        |        |        |     |                                                                                                                                                                                                                | 1                                                                                                            |                                                                                                    |                                                                                       |                                                                                         |                                                                                                                      |                                                       |  |  |  |
| TMC12  | CE12   | 0      | 0   | ETI12                                                                                                                                                                                                          | PRS121                                                                                                       | PRS120                                                                                             | PRM121                                                                                | 0                                                                                       | FFFFF282H                                                                                                            | 00H                                                   |  |  |  |
|        |        |        |     |                                                                                                                                                                                                                |                                                                                                              |                                                                                                    | 1                                                                                     |                                                                                         |                                                                                                                      |                                                       |  |  |  |
| TMC13  | CE13   | 0      | 0   | ETI13                                                                                                                                                                                                          | PRS131                                                                                                       | PRS130                                                                                             | PRM131                                                                                | 0                                                                                       | FFFFF2A2H                                                                                                            | 00H                                                   |  |  |  |
|        |        |        |     | 1                                                                                                                                                                                                              |                                                                                                              |                                                                                                    |                                                                                       |                                                                                         |                                                                                                                      |                                                       |  |  |  |
| TMC14  | CE14   | 0      | 0   | ETI14                                                                                                                                                                                                          | PRS141                                                                                                       | PRS140                                                                                             | PRM141                                                                                | 0                                                                                       | FFFFF2C2H                                                                                                            | 00H                                                   |  |  |  |
|        |        |        |     |                                                                                                                                                                                                                | 1                                                                                                            |                                                                                                    |                                                                                       |                                                                                         |                                                                                                                      |                                                       |  |  |  |
| TMC15  | CE15   | 0      | 0   | ETI15                                                                                                                                                                                                          | PRS151                                                                                                       | PRS150                                                                                             | PRM151                                                                                | 0                                                                                       | FFFFF2E2H                                                                                                            | 00H                                                   |  |  |  |
| Bit Po | sition | Bit Na | ame | Function                                                                                                                                                                                                       |                                                                                                              |                                                                                                    |                                                                                       |                                                                                         |                                                                                                                      |                                                       |  |  |  |
| 7      |        | CE1n   |     | Count En<br>Controls<br>0: The<br>1: The<br>the<br>TCL<br>When the<br>the count<br>1, the tim                                                                                                                  | timer opera<br>timer is st<br>timer perf<br>TUM1n reg<br>R1n input<br>ECLR1n<br>t start trigg<br>er will not | ation.<br>copped in th<br>orms a cou<br>gister is 1,<br>bit is 0, the<br>er. Thus, a<br>start even | ne 0000H s<br>unt operatic<br>the timer d<br>operation<br>after the CE<br>if the ECLF | tate and do<br>on. Howev<br>oes not sta<br>of setting (<br>E1n bit is s<br>R1n bit is r | bes not operate.<br>er, when the ECLF<br>art counting up unt<br>(1) in the CE1n bit<br>et (1) when the EC<br>nade 0. | R1n bit of<br>il there is a<br>becomes<br>CLR1n bit = |  |  |  |
| 4      |        | ETI1n  |     | <ul> <li>External TI1n Input</li> <li>Specifies whether switching of the count clock is external or internal.</li> <li>0: Specifies the φ system (internal).</li> <li>1: Specifies TI1n (external).</li> </ul> |                                                                                                              |                                                                                                    |                                                                                       |                                                                                         |                                                                                                                      |                                                       |  |  |  |

Caution Do not change the count clock during timer operation.

**Remark** n = 0 to 5

| Bit Position | Bit Name          |                                                                                                                                                 | Function |                      |  |  |  |  |  |  |  |
|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|--|--|--|--|--|--|--|
| 3, 2         | PRS1n1,<br>PRS1n0 | Prescaler Clock Select<br>Selects the internal count clock ( $\phi$ m is the intermediate clock).                                               |          |                      |  |  |  |  |  |  |  |
|              |                   | PRS1n1                                                                                                                                          | PRS1n0   | Internal Count Clock |  |  |  |  |  |  |  |
|              |                   | 0                                                                                                                                               | 0        | φm                   |  |  |  |  |  |  |  |
|              |                   | 0                                                                                                                                               | 1        | <i>φ</i> m/4         |  |  |  |  |  |  |  |
|              |                   | 1                                                                                                                                               | 0        | <i>φ</i> m/8         |  |  |  |  |  |  |  |
|              |                   | 1                                                                                                                                               | 1        | <i>φ</i> m/16        |  |  |  |  |  |  |  |
|              |                   |                                                                                                                                                 |          |                      |  |  |  |  |  |  |  |
| 1            | PRM1n1            | Prescaler Clock Mode<br>Selects the intermediate count clock ( $\phi$ m). ( $\phi$ is the internal system clock).<br>0: $\phi/2$<br>1: $\phi/4$ |          |                      |  |  |  |  |  |  |  |

Caution Do not change the count clock during timer operation.

Remark n = 0 to 5

# (3) Timer control registers 40, 41 (TMC40, TMC41)

TMC40 and TMC41 control the operation of TM40 and TM41, respectively. These registers can be read/written in 8- or 1-bit units.

|          |      | 7          | 6             | 5                                                       | 4                                                                                                                                           | 3                                   | 2                        | 1         | 0            |                      |                   |  |  |  |
|----------|------|------------|---------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|-----------|--------------|----------------------|-------------------|--|--|--|
| MC40     | CE   | 40         | 0             | 0                                                       | 0                                                                                                                                           | 0                                   | PRS400                   | PRM401    | PRM400       | Address<br>FFFFF342H | After rese<br>00H |  |  |  |
| FMC41    | CE   | 41         | 0             | 0                                                       | 0                                                                                                                                           | 0                                   | PRS410                   | PRM411    | PRM410       | FFFFF346H            | 00H               |  |  |  |
| Bit Posi | tion | Bi         | t Name        |                                                         |                                                                                                                                             |                                     |                          | Function  |              |                      |                   |  |  |  |
| 7        |      | CE         | 4n            | Count E<br>Controls<br>0: The<br>1: The                 | nable<br>timer ope<br>timer is s<br>timer per                                                                                               | rations.<br>topped in<br>forms a ce | the 0000H<br>ount operat | state and | does not op  | erate.               |                   |  |  |  |
| 2        |      | PRS4n0     |               | Prescale<br>Selects<br>0: <i>φ</i> m/<br>1: <i>φ</i> m/ | Prescaler Clock Select<br>Selects the internal count clock ( <i>φ</i> m is the intermediate clock).<br>0: <i>φ</i> m/16<br>1: <i>φ</i> m/32 |                                     |                          |           |              |                      |                   |  |  |  |
| 1, 0     |      | PRI<br>PRI | M4n1,<br>M4n0 | Prescale<br>Selects                                     | er Clock M<br>the interm                                                                                                                    | ode<br>ediate cou                   | unt clock ((¢            | òm). (φis | the internal | system clock).       |                   |  |  |  |
|          |      |            |               | PRM                                                     | 4n1 P                                                                                                                                       | RM4n0                               |                          |           | φm           |                      |                   |  |  |  |
|          |      |            |               | 0                                                       |                                                                                                                                             | 0                                   | φ/2                      |           |              |                      |                   |  |  |  |
|          |      |            |               | 0                                                       |                                                                                                                                             | 1                                   | φ/4                      |           |              |                      |                   |  |  |  |
|          |      |            |               | 1                                                       |                                                                                                                                             | 0                                   | φ/8                      |           |              |                      |                   |  |  |  |
|          |      |            |               | 11                                                      | 1                                                                                                                                           | 4                                   |                          | n         |              |                      |                   |  |  |  |

Caution Do not change the count clock during timer operation.

 $\textbf{Remark} \quad n=0,\ 1$ 

## (4) Timer output control registers 10 to 15 (TOC10 to TOC15)

The TOC1n register controls the timer output from the TO1n0 and TO1n1 pins (n = 0 to 5). These registers can be read/written in 8- or 1-bit units.

|        | 7       | 6                  | 5       | 4                                                                                                 | 3                                                                                                                                                 | 2                                                                                                                        | 1                                                                                                                             | 0                                                                                                                              |                                                                                                                                                                           |                                                                                               |
|--------|---------|--------------------|---------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| TOC10  | ENTO101 | ALV101             | ENTO100 | ALV100                                                                                            | 0                                                                                                                                                 | 0                                                                                                                        | 0                                                                                                                             | 0                                                                                                                              | Address<br>FFFFF244H                                                                                                                                                      | After reset<br>00H                                                                            |
|        |         |                    | 1       |                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                                               |                                                                                                                                |                                                                                                                                                                           |                                                                                               |
| TOC11  | ENTO111 | ALV111             | ENTO110 | ALV110                                                                                            | 0                                                                                                                                                 | 0                                                                                                                        | 0                                                                                                                             | 0                                                                                                                              | FFFF264H                                                                                                                                                                  | 00H                                                                                           |
|        | <b></b> |                    | 1       |                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                                               |                                                                                                                                |                                                                                                                                                                           |                                                                                               |
| TOC12  | ENTO121 | ALV121             | ENTO120 | ALV120                                                                                            | 0                                                                                                                                                 | 0                                                                                                                        | 0                                                                                                                             | 0                                                                                                                              | FFFF284H                                                                                                                                                                  | 00H                                                                                           |
|        |         |                    |         |                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                                               |                                                                                                                                |                                                                                                                                                                           |                                                                                               |
| TOC13  | ENTO131 | ALV131             | ENTO130 | ALV130                                                                                            | 0                                                                                                                                                 | 0                                                                                                                        | 0                                                                                                                             | 0                                                                                                                              | FFFFF2A4H                                                                                                                                                                 | 00H                                                                                           |
|        |         |                    |         |                                                                                                   |                                                                                                                                                   |                                                                                                                          |                                                                                                                               |                                                                                                                                |                                                                                                                                                                           |                                                                                               |
| TOC14  | ENTO141 | ALV141             | ENTO140 | ALV140                                                                                            | 0                                                                                                                                                 | 0                                                                                                                        | 0                                                                                                                             | 0                                                                                                                              | FFFFF2C4H                                                                                                                                                                 | 00H                                                                                           |
| TOC15  |         |                    |         |                                                                                                   | 0                                                                                                                                                 | 0                                                                                                                        | 0                                                                                                                             | 0                                                                                                                              |                                                                                                                                                                           |                                                                                               |
| 10015  | ENTOIST | ALVIST             | ENTOTSO | ALV150                                                                                            | 0                                                                                                                                                 | 0                                                                                                                        | 0                                                                                                                             | 0                                                                                                                              | FFFFF2E4H                                                                                                                                                                 | 00H                                                                                           |
| Bit Po | sition  | Bit Na             | ame     |                                                                                                   |                                                                                                                                                   |                                                                                                                          | Func                                                                                                                          | tion                                                                                                                           |                                                                                                                                                                           |                                                                                               |
| 7,     | 5       | ENTO1n1<br>ENTO1n0 | I,<br>) | Enable To<br>Enables of<br>0: Tim<br>ALV<br>if a<br>leve<br>1: Tim<br>corr<br>time<br>the<br>outp | O pin<br>putput of ea<br>er output i<br>/1n0 and A<br>match sigr<br>el of the TC<br>er output<br>responding<br>er that time<br>reverse ph<br>put. | ach corres<br>s disablec<br>LV1n1 bit:<br>nal is gene<br>01n0 and T<br>is enable<br>compare<br>er output i<br>nase level | ponding tir<br>d. The rev<br>s is output<br>erated by t<br>rO1n1 pins<br>ed. If a<br>register, t<br>s enabled<br>(inactive le | ner (TO1n)<br>rerse phase<br>from the T<br>he corresp<br>does not o<br>match sig<br>the timer's<br>until match<br>evel) of the | D, TO1n1).<br>e level (inactive le<br>O1n0 and TO1n1 p<br>onding compare re<br>change.<br>gnal is generated<br>output changes.<br>h signals are first o<br>ALV1n0 and ALV | vel) of the<br>bins. Even<br>gister, the<br>from the<br>From the<br>generated,<br>1n1 bits is |
| 6,     | 4       | ALV1n1,            | ALV1n0  | Active Le<br>Specifies<br>0: The<br>1: The                                                        | vel TO pin<br>the timer of<br>active leve<br>active leve                                                                                          | output's ac<br>el is the lo<br>el is the hi                                                                              | ctive level.<br>w level.<br>gh level.                                                                                         |                                                                                                                                |                                                                                                                                                                           |                                                                                               |

**Remarks 1.** The TO1n0 and TO1n1 output flip-flop is reset priority. **2.** n = 0 to 5

Caution The TO1n0 and TO1n1 output is not changed by an external interrupt signal (INTP1n0 to INTP1n3). When the TO1n0 and TO1n1 signals are used, specify the capture/compare register as the compare register (CMS1n0 to CMS1n3 bit of the TUM1n register = 1).

## (5) External interrupt mode registers 1 to 6 (INTM1 to INTM6)

If CC1n0 to CC1n3 of TM1n are used as a capture register, the active edge of the external interrupt INTP1n0 to INTP1n3 signals is detected as a capture trigger (for details, refer to **CHAPTER 7 INTERRUPT/EXCEPTION PROCESSING FUNCTION**) (n = 0 to 5).

## (6) Timer overflow status register (TOVS)

This interrupts overflow flags from TM10 to TM15, TM40, and TM41.

The register can be read/written in 8- or 1-bit units.

By setting and resetting the TOVS register through software, polling of overflow occurrences can be accomplished.

|        | 7       | 6        | 5                 | 4                                               | 3                                                                                                                 | 2                                                                                                                                              | 1                                                                                                  | 0                                                                                          |                                                                                               |                                                            |  |  |
|--------|---------|----------|-------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|
| TOVS   | OVF41   | OVF40    | OVF15             | OVF14                                           | OVF13                                                                                                             | OVF12                                                                                                                                          | OVF11                                                                                              | OVF10                                                                                      | Address After res<br>FFFFF230H 00H                                                            |                                                            |  |  |
|        |         |          |                   |                                                 |                                                                                                                   |                                                                                                                                                |                                                                                                    |                                                                                            |                                                                                               |                                                            |  |  |
| Bit Po | osition | Bit Na   | ame               |                                                 |                                                                                                                   |                                                                                                                                                | Fun                                                                                                | ction                                                                                      |                                                                                               |                                                            |  |  |
| 7 t    | 0 0     | OVF41, C | DVF40,<br>0 OVF10 | Overflow<br>This is th<br>0: No<br>1: Ove       | Flag<br>e overflow is<br>overflow is get<br>Interrup<br>generat<br>interrup<br>overflov<br>just like<br>At this f | flag for TM<br>s generated<br>enerated.<br>et requests<br>ed in synd<br>t operatio<br>w flag (OV<br>e other ove<br>time, the in<br>n is not af | M41, TM40<br>d.<br>ch with an<br>ons and th<br>F1n) from<br>erflow flag<br>nterrupt ro<br>ffected. | ) and TM1n.<br>n) for the in<br>overflow f<br>e TOVS reg<br>TM1n can<br>ls.<br>equest flag | nterrupt controll<br>rom TM1n, but b<br>jister are indepe<br>be operated by<br>(OVF1n) corres | er are<br>because<br>endent, the<br>software<br>ponding to |  |  |
|        |         |          |                   | During C<br>Therefore<br>register,<br>operation | PU acces<br>e, even if<br>the flag's<br>n.                                                                        | s interval,<br>an overflo<br>value doe                                                                                                         | transfers<br>w is gene<br>s not cha                                                                | to the TOV<br>rated during<br>nge and it i                                                 | S register canno<br>g a readout from<br>s reflected in th                                     | ot be made<br>in the TOVS<br>e next read                   |  |  |

## 9.4 Timer 1 Operation

## 9.4.1 Count operation

Timer 1 functions as a 16-bit free-running timer or an event counter for an external signal.

Whether the timer operates as a free-running timer or event counter is specified by timer control register 1n (TMC1n) (n = 0 to 5).

When it is used as a free-running timer, and when the count values of TM1n match with the value of any of the CC1n0 to CC1n3 registers, an interrupt signal is generated, and timer output signal TO1n0 and TO1n1 can be set/reset. In addition, a capture operation that holds the current count value of TM1n and loads it into one of the four registers CC1n0 to CC1n3, is performed in synchronization with the valid edge detected from the corresponding external interrupt request pin as an external trigger. The captured value is retained until the next capture trigger is generated.

Figure 9-1. Basic Operation of Timer 1



## 9.4.2 Count clock selection

The count clock input to Timer 1 is either internal or external, and can be selected by the ETI1n bit in the TMC1n register (n = 0 to 5).

#### Caution Do not change the count clock during timer operation.

## (1) Internal count clock (ETI1n bit = 0)

An internal count clock can be selected from among 6 possible clock rates,  $\phi/2$ ,  $\phi/4$ ,  $\phi/8$ ,  $\phi/16$ ,  $\phi/32$ , or  $\phi/64$ , by the setting of the PRS1n1, PRS1n0, and PRM1n1 bits of the TMC1n register.

| PRS1n1 | PRS1n0 | PRM1n1 | Internal Count Clock |
|--------|--------|--------|----------------------|
| 0      | 0      | 0      | <i>ф</i> /2          |
| 0      | 0      | 1      | <i>ф</i> /4          |
| 0      | 1      | 0      | <i>ф</i> /8          |
| 0      | 1      | 1      | <i>ф</i> /16         |
| 1      | 0      | 0      | <i>ф</i> /16         |
| 1      | 0      | 1      | <i>ф</i> /32         |
| 1      | 1      | 0      | <i>ф</i> /32         |
| 1      | 1      | 1      | <i>ф</i> /64         |

**Remark** n = 0 to 5

# (2) External count clock (ETI1n bit = 1)

This counts the signals input to the TI1n pin. At this time, Timer 1 can be operated as an event counter. The TI1n active edge can be set by the TES1n1 and TES1n0 bits of the TUM1n register.

| TES1n1 | TES1n0 | Active Edge                       |
|--------|--------|-----------------------------------|
| 0      | 0      | Rising edge                       |
| 0      | 1      | Falling edge                      |
| 1      | 0      | RFU (reserved)                    |
| 1      | 1      | Both the rising and falling edges |

Remark n = 0 to 5

## 9.4.3 Overflow

When the TM1n register counts the count clock to FFFFH and overflow occurs as a result, a flag is set in the OVF1n bit of the TOVS register and an overflow interrupt (INTOV1n) is generated (n = 0 to 5).

Also, by setting the OSTn bit (1) in the TUM1n register, the timer can be stopped after overflow. If the timer is stopped due to an overflow, the count operation does not resume until the CE1n bit in the TMC1n register is set (1). Note that even if the CE1n bit is set (1) during a count operation, it has no influence on operation.





## 9.4.4 Clearing/starting timer by TCLR1n signal input

Timer 1 ordinarily starts a counting operation when the CE1n bit in the TMC1n register is set (1), but TM1n can be cleared and a count operation started by input of the TCLR1n signal (n = 0 to 5).

If the ECLR1n bit of the TUM1n register is set to 1, and the OSTn bit is set to 0, if the active edge is input to the TCLR1n signal after the CE1n bit is set (1), the counting operation starts. Also, if the active edge is input to the TCLR1n signal during operation, the TM1n's value is cleared and the count operation resumes (refer to **Figure 9-3**).

If the ECLR1n bit of the TUM1n register is set to 1, and the OSTn bit is set to 1, the counting operation starts if the active edge is input to the TCLR1n signal after the CE1n bit is set (1). If TM1n overflows, the count operation stops once and it does not resume the count operation until the active edge is input again to the TCLR1n signal. If the active edge of the TCLR1n signal is detected during a counting operation, TM1n is cleared and the count operation continues (refer to **Figure 9-4**). Note that if the CE1n bit is set (1) after an overflow, the count operation does not resume.



Figure 9-3. Timer Clear/Start Operation by TCLR1n Signal Input (If ECLR1n = 1 and OSTn = 0)



Figure 9-4. Relationship Between Clear/Start by TCLR1n Signal Input and Overflow Operation (If ECLR1n = 1 and OSTn = 1)

#### 9.4.5 Capture operation

In synch with an external trigger, a capture operation is performed in which the TM1n count value is captured and held in the capture register asynchronous to the count clock (n = 0 to 5). The active edge detected from external interrupt request input pins INTP1n0 to INTP1n3 is used as the external trigger (capture trigger). In synch with that capture trigger signal, the count value of TM1n, as it is counting, is captured and held in the capture register. The value in the capture register is held until the next capture trigger is generated.

Also, interrupt requests (INTCC1n0 to INTCC1n3) are generated from the INTP1n0 to INTP1n3 signal inputs.

| Capture Register | Capture Trigger Signal |
|------------------|------------------------|
| CC1n0            | INTP1n0                |
| CC1n1            | INTP1n1                |
| CC1n2            | INTP1n2                |
| CC1n3            | INTP1n3                |

Table 9-2. Capture Trigger Signals (TM1n) to 16-Bit Capture Registers

- **Remarks 1.** CC1n0 to CC1n3 are the capture/compare registers. Which register is used is specified in timer unit mode register 1n (TUM1n).
  - **2.** n = 0 to 5

The capture trigger's active edge is set by the external interrupt mode register (INTM1 to INTM6). If both the rising and falling edges are made capture triggers, the input pulse width from an external source can be measured. Also, if the edge from one side is used as the capture trigger, the input pulse's period can be measured.



Figure 9-5. Example of Capture Operation



Figure 9-6. Example of TM11 Capture Operation (When Both Edges Are Specified)

## 9.4.6 Compare operation

Compare operations in which the value set in the compare register is compared with the TM1n count value are performed (n = 0 to 5).

If the TM1n count value matches the value that has been previously set in the compare register, a match signal is sent to the output control circuit (refer to **Figure 9-7**). The timer output pins (TO1n0, TO1n1) are changed by the match signal and simultaneously issue interrupt request signals.

| Compare Register | Interrupt Request Signal |
|------------------|--------------------------|
| CC1n0            | INTCC1n0                 |
| CC1n1            | INTCC1n1                 |
| CC1n2            | INTCC1n2                 |
| CC1n3            | INTCC1n3                 |

# Table 9-3. Interrupt Request Signals (TM1n) from 16-Bit Compare Registers

- **Remarks 1.** CC1n0 to CC1n3 are capture/compare registers. Which register will be used is specified by the timer unit mode register 1n (TUM1n).
  - **2.** n = 0 to 5



Figure 9-7. Example of Compare Operation

Timer 1 has 12 timer output pins (TO1n0, TO1n1).

The TM1n count value and the CC1n0 value are compared and if they match, the output level of the TO1n0 pin is set. Also, the TM1n count value and the CC1n1 value are compared, and if they match, the TO1n0 pin's output level is reset.

In the same way, the TM1n count value and the CC1n2 value are compared, and if they match, the TO1n1 pin's output level is set. Also, the TM1n counter value and the CC1n3 value are compared, and if they match, the TO1n1 pin's output level is set.

The output level of pins TO1n0 and TO1n1 can also be specified by the TOC1n register.



Figure 9-8. Example of TM11 Compare Operation (Set/Reset Output Mode)

## 9.5 Timer 4 Operation

#### 9.5.1 Count operation

Timer 4 functions as a 16-bit interval timer. Setting of its operation is specified in timer control register 4n (TMC4n) (n = 0, 1).

In a timer 4 count operation, the internal count clock ( $\phi$ /32 to  $\phi$ /256) specified by the PRS4n0, PRM4n1, and PRM4n0 bits of the TMC4n register is counted up.

If the count results in TM4n match the value in CM4n, TM4n is cleared. At the same time, a matching interrupt (INTCM4n) is generated.

Figure 9-9. Basic Operation of Timer 4



#### 9.5.2 Count clock selection

Using the setting of the TMC4n register's PRS4n0, PRM4n1, and PRM4n0 bits, one of four possible internal count clocks,  $\phi/32$ ,  $\phi/64$ ,  $\phi/128$  or  $\phi/256$ , can be selected (n = 0, 1).

| PRS4n0 | PRM4n1 | PRM4n0 | Internal Count Clock |
|--------|--------|--------|----------------------|
| 0      | 0      | 0      | <i>ф</i> /32         |
| 0      | 0      | 1      | <i>ф</i> /64         |
| 0      | 1      | 0      | <i>ф</i> /128        |
| 0      | 1      | 1      | RFU (reserved)       |
| 1      | 0      | 0      | <i>ф</i> /64         |
| 1      | 0      | 1      | <i>ф</i> /128        |
| 1      | 1      | 0      | <i>ф</i> /256        |
| 1      | 1      | 1      | RFU (reserved)       |

#### Caution Do not change the count clock during timer operation.

#### 9.5.3 Overflow

If the TM4n overflows as a result of counting the internal count clock, the OVF4n bit of the TOVS register is set (1) (n = 0, 1).

Remark n = 0, 1

## 9.5.4 Compare operation

In Timer 4, a compare operation which compares the value set in the compare register (CM4n) with the TM4n count value is performed (n = 0, 1).

If values are found to match in the compare operation, an interrupt (INTCM4n) is issued. By issuing an interrupt, TM4n is cleared (0) with the following timing (refer to **Figure 9-10 (a)**). Through this function, Timer 4 is used as an interval timer.

CM4n can also be set to 0. In this case, if TM4n overflows and becomes 0, a value match is detected and INTCM4n is issued. Using the following count timing, the TM4n value is cleared (0), but with this match, INTCM4n is not issued (refer to **Figure 9-10 (b)**).



Figure 9-10. Example of TM40 Compare Operation (1/2)



Figure 9-10. Example of TM40 Compare Operation (2/2)

# 9.6 Application Example

## (1) Operation as an interval timer (Timer 4)

In this example, timer 4 is used as an interval timer that repeatedly issues an interrupt at intervals specified by the count time preset in the compare register (CM4n) (n = 0, 1).





Figure 9-12. Example of Interval Timer Operation Setting Procedure



#### (2) Operation for pulse width measurement (Timer 1)

In measuring the pulse width, timer 1 is used.

Here, an example is given of measurement of high level or low level width of an external pulse input to the INTP112 pin.

As shown in Figure 9-13, in synch with the active edge (specified as both the rising edge and falling edge) of the INTP112 pin's input, the value of the counting timer 1 (TM11) is fetched to and held in the capture/compare register (CC112).

The pulse width is calculated by determining the difference between the count value of TM11 captured in the CC112 register through active edge detection the nth time and the count value (Dn - 1) captured through active edge detection the (n - 1)th time, then multiplying this value by the count clock.



Figure 9-13. Example of Pulse Measurement Timing



Figure 9-14. Example of Pulse Width Measurement Setting Procedure





## (3) Operation as a PWM output (Timer 1)

Through a combination of timer 1 and the timer output function, the desired rectangular wave can be output to the timer output pins (TO1n0, TO1n1) and used as a PWM output (n = 0 to 5).

Here an example is shown using the capture/compare registers CC100 and CC101.

In this case, a PWM signal with 16-bit precision can be output from the TO100 pin. The timing is shown in Figure 9-16.

If used as a 16-bit timer, the PWM output's rise timing set in the capture/compare register (CC100) is determined as shown in Figure 9-16, and the fall timing is determined by the value set in the capture/compare register (CC101).



Figure 9-16. Example of PWM Output Timing









## (4) Operation for frequency measurement (Timer 1)

Timer 1 can measure the frequency of an external pulse's input to pins INTP1n0 to INTP1n3 (n = 0 to 5). Here, an example is shown where timer 1 and the capture/compare register CC110 are combined to measure the frequency of an external pulse input to the INTP110 pin with 16-bit precision.

The active edge of the INTP110 input signal is specified to be the rising edge by the INTM2 register.

The frequency is calculated by determining the difference between the TM11 count value (Dn) captured in the CC110 register from the nth rising edge, and the count value (Dn–1) captured from the rising edge the (n - 1)th time, then multiplying this value by the count clock.



Figure 9-19. Example of Frequency Measurement Timing



Figure 9-20. Example of Frequency Measurement Setting Procedure





# 9.7 Precaution

Match detection by the compare register is always performed immediately after timer count up. In the following cases, a match does not occur.

# (1) When rewriting the compare register (TM10 to TM15, TM40, TM41)



# (2) During external clear (TM10 to TM15)

| Count clock            |                           |
|------------------------|---------------------------|
| Timer value            |                           |
| External clear input   |                           |
| Compare register value | 0000H                     |
| Match detection        | L<br>Match does not occur |

(3) When the timer is cleared (TM40, TM41)



**Remark** When operating timer 1 as the free-running timer, the timer's value becomes 0 when timer overflow occurs.



# CHAPTER 10 SERIAL INTERFACE FUNCTION

# 10.1 Features

Two types of serial interfaces with 6 transmit/receive channels are provided as the serial interface function, and up to 4 channels can be used simultaneously.

The following two types of interface configuration are provided.

- (1) Asynchronous serial interface (UART0, UART1): 2 channels
- (2) Clocked serial interface (CSI0 to CSI3): 4 channels

UART0 and UART1 use the method of transmitting and receiving 1 byte of serial data following the start bit, and full duplex communication is possible.

CSI0 to CSI3 carry out data transfer with 3 types of signal lines, a serial clock (SCK0 to SCK3), serial input (SI0 to SI3), and serial output (SO0 to SO3) (3-wire serial I/O).

# Caution UART0 and CSI0, and UART1 and CSI1 share the same pins, the use of which is specified with the ASIM00 and ASIM10 registers.

# 10.2 Asynchronous Serial Interfaces 0, 1 (UART0, UART1)

# 10.2.1 Features

- O Transfer rate 150 bps to 76,800 bps (using the exclusive baud rate generator when the internal system clock is 33 MHz)
  - Maximum 4.125 Mbps (using the  $\phi/2$  clock when the internal system clock is 33 MHz)
- O Full duplex communication On-chip receive buffer (RXBn)
- O 2-pin configuration TXDn: Transmit data output pin

RXDn: Receive data input pin

- O Receive error detection functions
  - Parity error
  - Framing error
  - Overrun error
- O Interrupt sources: 3 types
  - Receive error interrupt (INTSERn)
  - Reception complete interrupt (INTSRn)
  - Transmission complete interrupt (INTSTn)
- O The character length of transmit/receive data is specified by the ASIMn0 and ASIMn1 registers.
- O Character length 7, 8 bits

9 bits (when adding an expansion bit)

- O Parity function: odd, even, 0, none
- O Transmission stop bit: 1, 2 bits
- O On-chip dedicated baud rate generator
- O Serial clock (SCKn) output function

**Remark** n = 0, 1

## 10.2.2 Configuration

UARTn is controlled by the asynchronous serial interface mode registers (ASIMn0, ASIMn1) and the asynchronous serial interface status registers (ASISn) (n = 0, 1). Receive data is held in the receive buffer (RXBn) and transmit data is written in the transmit shift registers (TXSn).

The asynchronous serial interface is configured as shown in Figure 10-1.

## (1) Asynchronous serial interface mode registers (ASIM00, ASIM01, ASIM10, ASIM11)

The ASIMn0 and ASIMn1 registers are 8-bit registers that specify asynchronous serial interface operations.

## (2) Asynchronous serial interface status registers (ASIS0, ASIS1)

The ASISn registers are registers of flags that show the contents of errors when a receive error occurs and transmission status flags. Each receive error flag is set (1) when a receive error occurs and is cleared (0) by reading of data from the receive buffer (RXBn) or reception of the next new data (if there is an error in the next data, that error flag will not be cleared (0) but left set (1)).

The transmit status flag is set (1) when transmission starts and is cleared (0) when transmission ends.

#### (3) Receive control parity check

Receive operations are controlled according to the contents set in the ASIMn0 and ASIMn1 registers. Also, errors such as parity errors are checked during receive operations. If an error is detected, a value corresponding to the error content is set in the ASISn register.

## (4) Receive shift register

This is a shift register that converts serial data input to the RXDn pin to parallel data. When 1 byte of data is received, the receive data is transferred to the receive buffer. This register cannot be directly manipulated.

# (5) Receive buffers (RXB0, RXB0L, RXB1, RXB1L)

RXBn are 9-bit buffer registers that hold receive data, and when 7 or 8-bit character data is received, a 0 is stored in the higher bits.

During 16-bit access of these registers, specify RXB0 and RXB1, and during lower 8-bit access, specify RXB0L and RXB1L.

In the receive enabled state, 1 frame of receive data is transmitted to the receive buffer from the receive shift register in synchronization with the termination of shift-in processing.

Also, a reception complete interrupt request (INTSRn) is generated when data is transmitted to the receive buffer.

## (6) Transmit shift register (TXS0, TXS0L, TXS1, TXS1L)

TXSn are 9-bit shift registers for transmit processing. Writing of data to these registers starts a transmit operation.

A transmission complete interrupt request (INTSTn) is generated in synchronization with termination of transmission of 1 frame, which includes TXSn data.

During 16-bit access of these registers, specify TXS0 and TXS1, and during lower 8-bit access, specify TXS0L and TXS1L.

## (7) Adding transmit control parity

In accordance with the contents set in the ASIMn0 and ASIMn1 registers, start bits, parity bits, stop bits, etc. are added to the data written to the TXSn or TXSnL register, and transmit operation control is carried out.

## (8) Selector

This selects the serial clock source.



# Figure 10-1. Block Diagram of Asynchronous Serial Interface

## 10.2.3 Control registers

(1) Asynchronous serial interface mode registers 00, 01, 10, 11 (ASIM00, ASIM01, ASIM10, ASIM11) These registers specify the UART0 and UART1 transfer mode. These registers can be read/written in 8- or 1-bit units.

|   |                    | 7     |                                    | 6                                                                                                | 5                                                                                                                 | 4                                                                                                                                                                           | 3                                                                                                                           | 2                                                                                                                         | 1                                                                                                                           | 0                                                                                                                                                                                      |                                               |                    |                    |  |
|---|--------------------|-------|------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------|--------------------|--|
| A | SIM00              | TXE   | 0                                  | RXE0                                                                                             | PS01                                                                                                              | PS00                                                                                                                                                                        | CL0                                                                                                                         | SL0                                                                                                                       | SCLS01                                                                                                                      | SCLS00                                                                                                                                                                                 | Address<br>FFFFF0C0H                          | After reset<br>80H |                    |  |
|   |                    |       |                                    |                                                                                                  |                                                                                                                   |                                                                                                                                                                             |                                                                                                                             |                                                                                                                           | 1                                                                                                                           |                                                                                                                                                                                        |                                               |                    |                    |  |
| A | SIM10              | TXE1  |                                    | RXE1                                                                                             | PS11                                                                                                              | PS11 PS10                                                                                                                                                                   |                                                                                                                             | SL1                                                                                                                       | SCLS11                                                                                                                      | SCLS10                                                                                                                                                                                 | FFFFF0D0H                                     | 80H                |                    |  |
|   |                    |       |                                    |                                                                                                  | 1                                                                                                                 |                                                                                                                                                                             |                                                                                                                             |                                                                                                                           |                                                                                                                             |                                                                                                                                                                                        |                                               |                    |                    |  |
|   | Bit Pos            | ition | E                                  | Bit Name                                                                                         |                                                                                                                   |                                                                                                                                                                             |                                                                                                                             |                                                                                                                           | Function                                                                                                                    |                                                                                                                                                                                        |                                               |                    |                    |  |
|   | 7, 6 TXEn,<br>RXEn |       | Transm<br>Specifie                 | Transmit/Receive Enable<br>Specifies the transmission/reception enable status/disable status.    |                                                                                                                   |                                                                                                                                                                             |                                                                                                                             |                                                                                                                           |                                                                                                                             |                                                                                                                                                                                        |                                               |                    |                    |  |
|   |                    |       |                                    |                                                                                                  | ТХ                                                                                                                | En                                                                                                                                                                          | RXEn                                                                                                                        | Operation                                                                                                                 |                                                                                                                             |                                                                                                                                                                                        |                                               |                    |                    |  |
|   |                    |       |                                    |                                                                                                  |                                                                                                                   |                                                                                                                                                                             |                                                                                                                             | C                                                                                                                         | 0                                                                                                                           | Transm                                                                                                                                                                                 | ission/rece                                   | ption disabl       | ed (CSIn selected) |  |
|   |                    |       |                                    |                                                                                                  | (                                                                                                                 | C                                                                                                                                                                           | 1                                                                                                                           | Recepti                                                                                                                   | on enabled                                                                                                                  | l                                                                                                                                                                                      |                                               |                    |                    |  |
|   |                    |       |                                    |                                                                                                  |                                                                                                                   | 1                                                                                                                                                                           | 0                                                                                                                           | Transm                                                                                                                    | ission enat                                                                                                                 | oled                                                                                                                                                                                   |                                               |                    |                    |  |
|   |                    |       | 1 1 Transmission/reception enabled |                                                                                                  |                                                                                                                   |                                                                                                                                                                             |                                                                                                                             |                                                                                                                           |                                                                                                                             |                                                                                                                                                                                        |                                               |                    |                    |  |
|   |                    |       |                                    | When r<br>receive<br>receive<br>While in<br>synchro<br>receive<br>Also, th<br>transmi<br>transmi | eception<br>buffer of<br>buffer h<br>in the reconstruction<br>d, the c<br>ine reception<br>ission to<br>ission is | n is disabled,<br>contents are l<br>being perform<br>ception enable<br>n with detection<br>ontents of the<br>otion complete<br>to the receive<br>disabled and<br>e enabled. | the receiv<br>held witho<br>hed.<br>led state, t<br>on of the s<br>e receive s<br>e interrupt<br>buffer. Th<br>d a high let | re shift regi<br>ut shift-in p<br>he receive<br>start bit anc<br>hift registe<br>(INTSRn) i<br>e TXDn pir<br>vel is outpu | ster does n<br>rocessing c<br>shift operat<br>l after 1 frar<br>r are transn<br>s generated<br>n becomes<br>it if it is not | ot detect the start b<br>or transmit processin<br>tion is started in<br>me of data has been<br>nitted to the receive<br>d in synchronization<br>high impedance wh<br>transmitting when | it. The<br>ng to the<br>buffer.<br>with<br>en |                    |                    |  |

**Remark** n = 0, 1

| Bit Position | Bit Name                                                                                                                                                                                                                                                                                                      | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                    |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 5, 4         | PSn1, PSn0                                                                                                                                                                                                                                                                                                    | Parity Select<br>Specifies the parity bit length.                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                                                                                                                    |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                               | PSn1 PSn0 Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                                                    |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0              | No parity, expansion bit operation                                                                                                                 |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1              | Specifies 0 parity<br>Transmission side → Transmits with parity bit at 0.<br>Reception side → Does not generate parity errors<br>during receiving. |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0              | Specifies odd parity.                                                                                                                              |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1              | Specifies even parity.                                                                                                                             |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                               | <ul> <li>Odd parity         This is the opposite of even parity, with the number of bits in the transmit data are parity bit being controlled so that it is an odd number.         During receiving, if the number of bits in the receive data and parity bit which are turns out to be an even number, a parity error is generated.     </li> <li>O parity         During transmission, the parity bit is cleared (0) regardless of the transmit data.     </li> </ul> |                |                                                                                                                                                    |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                    |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                               | During rece                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ption, since n | to parity bit check is performed, no parity error is generated.                                                                                    |  |  |  |  |
|              | <ul> <li>No parity         No parity bit is added to transmit data.         During reception, data are received as having no parity bit. Since there is no paribit, parity errors are not generated.         Expansion bit operations can be specified with the EBSn bit in the ASIMn1 regist     </li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                    |  |  |  |  |
| 3            | CLn                                                                                                                                                                                                                                                                                                           | Character Length<br>Specifies the character length of 1 frame.<br>0: 7 bits<br>1: 8 bits                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                    |  |  |  |  |

**Remark** n = 0, 1
| Bit Position | Bit Name          | Function                                                              |                                                           |                                              |                                      |                                  |  |  |  |  |  |
|--------------|-------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------|--|--|--|--|--|
| 2            | SLn               | Stop Bit Length<br>Specifies the stop bit le<br>0: 1 bit<br>1: 2 bits | ength.                                                    |                                              |                                      |                                  |  |  |  |  |  |
| 1, 0         | SCLSn1,<br>SCLSn0 | Serial Clock Source<br>Specifies the serial clo                       | ck.                                                       |                                              |                                      |                                  |  |  |  |  |  |
|              |                   | SCI Sn1 SCI S                                                         | n0                                                        |                                              | Serial Clock                         |                                  |  |  |  |  |  |
|              |                   | 0 0                                                                   | Baud ra                                                   | te generator ou                              | utput                                |                                  |  |  |  |  |  |
|              |                   | 0 1                                                                   | φ/2 (× 1                                                  | 6 sampling rate                              | 2)                                   |                                  |  |  |  |  |  |
|              |                   | 1 0                                                                   | φ/2 (× 8                                                  | sampling rate)                               | ,                                    |                                  |  |  |  |  |  |
|              |                   | 1 1                                                                   | φ/2 (× 4                                                  | sampling rate)                               |                                      |                                  |  |  |  |  |  |
|              |                   | Based on the formul<br>clock is used is show                          | a above, the ba<br>⁄n below.<br>npling Rate <sup>∾œ</sup> | ×16<br>(01)                                  | ×8<br>(10)                           | ×4<br>(11)                       |  |  |  |  |  |
|              |                   | System Clock ( <i>\phi</i> )                                          |                                                           | (- )                                         | ( - )                                | ( )                              |  |  |  |  |  |
|              |                   | 40 MHz                                                                |                                                           | 1,250 K                                      | 2,500 K                              | _                                |  |  |  |  |  |
|              |                   | 33 MHz                                                                |                                                           | 1,031 K                                      | 2,062 K                              | 4,125 K                          |  |  |  |  |  |
|              |                   | 25 MHz                                                                |                                                           | 781 K                                        | 1,562 K                              | 3,125 K                          |  |  |  |  |  |
|              |                   | 20 MHz                                                                |                                                           | 625 K                                        | 1,250 K                              | 2,500 K                          |  |  |  |  |  |
|              |                   | 16 MHz                                                                |                                                           | 500 K                                        | 1,000 K                              | 2,000 K                          |  |  |  |  |  |
|              |                   |                                                                       |                                                           | 390 K                                        | 781 K                                | 1,562 K                          |  |  |  |  |  |
|              |                   | 8 MHz                                                                 |                                                           | 250 K                                        | 500 K                                | 1,230 K                          |  |  |  |  |  |
|              |                   | 5 MHz                                                                 |                                                           | 156 K                                        | 312 K                                | 625 K                            |  |  |  |  |  |
|              |                   | Note Values in ( ) are                                                | the set values                                            | for the SCLSn                                | 1 and SCLSn0 b                       | its                              |  |  |  |  |  |
|              |                   | The baud rate gener<br>concerning the baud<br>0 to 2 (BRG0 to BR      | ator output is s<br>rate generator<br><b>G2)</b> .        | elected as the s<br>, refer to <b>10.4 [</b> | serial clock sourd<br>Dedicated Baud | ce. For details<br>Rate Generato |  |  |  |  |  |

Caution UARTn operation is not guaranteed if this register is changed during UARTn transmission or reception. Furthermore, if this register is changed during UARTn transmission or reception, a transmission complete interrupt (INTSTn) is generated during transmission, and a reception complete interrupt (INTSRn) is generated during reception.

**Remark** n = 0, 1

|                           | 7                                   | 6                      | 5                                                                                                                             | 4                                                                                                                                                                   | 3                                                                                                                                               | 2                                                                                                           | 1                                                                                    | 0                                                                                        |                                                                                                                       |                              |
|---------------------------|-------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------|
| ASIM01                    | 0                                   | 0                      | 0                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                                               | 0                                                                                                           | 0                                                                                    | EBS0                                                                                     | Address<br>FFFFF0C2H                                                                                                  | After reset<br>00H           |
|                           |                                     | ŀ                      | •                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                 |                                                                                                             |                                                                                      |                                                                                          |                                                                                                                       |                              |
| ASIM11                    | 0                                   | 0                      | 0                                                                                                                             | 0                                                                                                                                                                   | 0                                                                                                                                               | 0                                                                                                           | 0                                                                                    | EBS1                                                                                     | FFFFF0D2H                                                                                                             | 00H                          |
| Bit Positi                | on l                                | Bit Name               |                                                                                                                               |                                                                                                                                                                     |                                                                                                                                                 |                                                                                                             | Function                                                                             |                                                                                          |                                                                                                                       |                              |
| 0                         | E                                   | 3Sn                    | Extende<br>Specifies<br>specifies<br>0: Exp<br>1: Exp<br>When ex<br>transmit/<br>Expansio<br>been sp<br>specifies<br>operatio | d Bit Select<br>s transmit/<br>d (PSn1, P-<br>pansion bit<br>pansion bit<br>pansion bit<br>(receive da<br>on bit oper<br>ecified in t<br>d, the EBS<br>on is not pe | et<br>receive dat<br>Sn0 = 00).<br>operation<br>operation<br>it is specifi<br>ta, and co<br>ation is en<br>he ASIMn(<br>n bit speci<br>rformed. | ta expansi<br>disabled.<br>enabled.<br>ied, 1 data<br>mmunicati<br>abled only<br>D register.<br>fication is | on bit oper<br>bit is adde<br>ons by 9-b<br>in the cas<br>If 0 parity,<br>made inval | ation when<br>ed to the hig<br>it data are o<br>e where no<br>or even/od<br>id and the o | no parity operation<br>gh-order of 8-bit<br>enabled.<br>parity operations<br>ld parity operation<br>expansion bit add | on is<br>have<br>i is<br>ing |
| Caution L<br>is<br>Remark | <b>JARTn</b><br>s not g<br>n = 0, 1 | operation<br>uaranteed | when thi                                                                                                                      | is registe                                                                                                                                                          | er has be                                                                                                                                       | en chanç                                                                                                    | ged durin                                                                            | ıg UARTn                                                                                 | transmission/                                                                                                         | reception                    |

#### (2) Asynchronous serial interface status registers 0, 1 (ASIS0, ASIS1)

These registers are configured with 3-bit error flags (PEn, FEn, OVEn), which show the error status when UARTn reception is terminated, and a transmit status flag (SOTn) (n = 0,1).

The status flag that shows a receive error always shows the state of the error that occurred most recently. That is, if the same error occurred several times before reading of receive data, this flag would hold the status of the error that occurred most recently.

If a receive error occurs, after reading the ASISn register, read the receive buffer (RXBn or RXBnL) and clear the error flag.

These are read-only registers in 8- or 1-bit units.

|        | <u> </u> |       | 0                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                           | 3 | 2   | 1       |      |                      |                   |  |  |  |  |
|--------|----------|-------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---------|------|----------------------|-------------------|--|--|--|--|
| ASIS0  | SOT      | D     | 0                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                           | 0 | PE0 | FE0     | OVE0 | Address<br>FFFFF0C4H | After rese<br>00H |  |  |  |  |
|        |          |       |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                             |   |     |         |      |                      |                   |  |  |  |  |
| ASIS1  | SOT      | 1     | 0                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                           | 0 | PE1 | FE1     | OVE1 | FFFFF0D4H            | 00H               |  |  |  |  |
| Bit Po | sition   | Bit I | Name                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                             |   |     | Functio | n    |                      |                   |  |  |  |  |
| 7      | 7 SOTn   |       |                                                                | Status<br>This is<br>Set<br>Clea<br>When<br>writing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Status Of Transmission<br>This is a status flag that shows the transmission operation's state.<br>Set (1): Transmission start timing (writing to the TXSn or TXSnL register)<br>Clear (0): Transmission end timing (generation of the INTSTn interrupt)<br>When about to start serial data transmission, use this as a means of judging whether<br>writing to the transmit shift register is explaid or pat |   |     |         |      |                      |                   |  |  |  |  |
| 2      | 2        | PEn   |                                                                | Parity<br>This is<br>Set<br>Clea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Parity Error<br>This is a status flag that shows a parity error.<br>Set (1): When transmit parity and receive parity do not match.<br>Clear (0): Data are read from the receive buffer and processed.                                                                                                                                                                                                       |   |     |         |      |                      |                   |  |  |  |  |
| 1      |          | FEn   |                                                                | Framir<br>This is<br>Set<br>Clea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Framing Error<br>This is a status flag that shows a framing error.<br>Set (1): When a stop bit was not detected.<br>Clear (0): Data are read from the receive buffer and processed.                                                                                                                                                                                                                         |   |     |         |      |                      |                   |  |  |  |  |
| C      | 0 OVEn   |       | Overru<br>This is<br>Set<br>Clea<br>Furthe<br>conter<br>overru | Overrun Error         This is a status flag that shows an overrun error.         Set (1):       When UARTn has finished the next receiving processing before fetching receive data from the receive buffer.         Clear (0):       Data are read from the receive buffer and processed.         Furthermore, due to the configuration where 1 frame at a tie is received, then the contents of the receive shift register are transmitted to the receive buffer, when an overrun error has occurred, the next receive data is written over the data existing in the |                                                                                                                                                                                                                                                                                                                                                                                                             |   |     |         |      |                      |                   |  |  |  |  |

## (3) Receive buffers 0, 0L, 1, 1L (RXB0, RXB0L, RXB1, RXB1L)

RXBn are 9-bit buffer registers that hold receive data, with a 0 stored in the higher bits when 7 or 8-bit character data is received (n = 0, 1).

During 16-bit access of these registers, specify RXB0 and RXB1, and during lower 8-bit access, specify RXB0L and RXB1L.

While in the reception enabled state, receive data is transmitted from the receive shift register to the receive buffer in synchronization with the end of shift-in processing of 1 frame.

Also, a reception complete interrupt request (INTSRn) is generated by transfer of receive data to the receive buffer.

In the reception disabled state, transmission of receive data to the receive buffer is not performed even if shiftin processing of 1 frame is completed, and the contents of the receive buffer are held.

Also, a reception complete interrupt request is not generated.

RXB0 and RXB1 are read-only registers in 16-bit units, and RXB0L and RXB1L are read-only registers in 8- or 1-bit units.



## (4) Transmit shift registers 0, 0L, 1, 1L (TXS0, TXS0L, TXS1, TXS1L)

TXSn are 9-bit shift registers for transmission processing and when transmission is enabled, transmission operations are started (n = 0, 1) by writing of data to these registers.

When transmission is disabled, the values are disregarded even if writing is performed.

A transmission complete interrupt request (INTSTn) is generated in synchronization with the end of transmission of 1 frame including TXS data.

During 16-bit access of these registers, specify TXS0 and TXS1, and during lower 8-bit access, specify TXS0L and TXS1L.

TXS0 and TXS1 are write-only registers in 16-bit units, and TXS0L and TXS1L are write-only registers in 8-bit units.



### 10.2.4 Interrupt request

UARTn generates the following three types of interrupt requests (n = 0, 1).

- Receive error interrupt (INTSERn)
- Reception complete interrupt (INTSRn)
- Transmission complete interrupt (INTSTn)

The priority order of these three interrupts is, from high to low: receive error interrupt, reception complete interrupt, transmission complete interrupt.

| Interrupt             | Priority |
|-----------------------|----------|
| Receive error         | 1        |
| Reception complete    | 2        |
| Transmission complete | 3        |

#### Table 10-1. Default Priority of Interrupt

#### (1) Receive error interrupt (INTSERn)

In the reception enabled state, a receive error interrupt is generated by ORing the three receive errors. In the reception disabled state, no receive error interrupt is generated.

#### (2) Reception completion interrupt (INTSRn)

In the reception enabled state, a reception complete interrupt is generated when data is shifted into the receive shift register and transferred to the receive buffer.

This reception complete interrupt request is also generated when a receive error has occurred, but the receive error interrupt has a higher servicing priority.

In the reception disabled state, no reception complete interrupt is generated.

#### (3) Transmission completion interrupt (INTSTn)

As this UARTn has no transmit buffer, a transmission complete interrupt is generated when one frame of transmit data containing a 7-, 8-, or 9-bit character is shifted out of the transmit shift register.

A transmission complete interrupt is output at the start of transmission of the last bit of transmit data.

#### 10.2.5 Operation

#### (1) Data format

Transmission and reception of full duplex serial data are performed.

As shown in Figure 10-2, 1 data frame consists of a start bit, character bits, a parity bit, and a stop bit as the format of transmit/receive data.

Specification of the character bit length within 1 data frame, parity selection and specification of the stop bit length are performed by the asynchronous serial interface mode register (ASIMn0, ASIMn1) (n = 0, 1).





#### (2) Transmission

Transmission starts when data is written to the transmit shift register (TXSn or TXSnL). With the transmission complete interrupt (INTSTn) processing routine, the next data is written to the TXSn or TXSnL register (n = 0, 1).

## (a) Transmit enable state

This is set with the TXEn bit of the ASIMn0 register.

TXEn = 1: Transmit enabled state TXEn = 0: Transmit disabled state

However, when setting the transmit enabled state, be sure to set both the CTXEn and CRXEn bits of the clocked serial interface mode register (CSIMn) of the channel in use to 0.

Note that since UARTn does not have CTS (transmit enabled signal) input pins, when the opposite party wants to confirm the reception enabled state, use a port.

#### (b) Starting a transmit operation

In the transmit enabled state, if data is written to the transmit shift register (TXSn or TXSnL), the transmit operation starts. Transmit data is transmitted from the start bit to the LSB header. A start bit, parity/expansion bit and stop bit are added automatically.

In the transmit disabled state, data is not written to the transmit shift register. Even if writing is done, the values are disregarded.

#### (c) Transmission interrupt request

If the transmit shift register (TXSn or TXSnL) becomes empty, a transmission complete interrupt request (INTSTn) is generated.

If the next transmit data is not written to the TXSn or TXSnL register, the transmit operation is interrupted. After 1 transmission is ended, the transmission rate drops if the next transmit data is not written to the TXSn or TSXnL register immediately.

- Cautions 1. Normally, when the transmit shift register (TXSn or TXSnL) has become empty, a transmission complete interrupt (INTSTn) is generated. However, when RESET is input, if the transmit shift register (TXSn or TXSnL) has become empty, a transmission complete interrupt (INTSTn) is not generated.
  - 2. During a transmit operation before INTSTn generation, even if data is written to the TXSn or TXSnL register, the written data is invalid.

## Figure 10-3. Asynchronous Serial Interface Transmission Completion Interrupt Timing



#### (3) Reception

If reception is enabled, sampling of the RXDn pin is started and if a start bit is detected, data reception begins. When 1 frame of data reception is completed, the reception complete interrupt (INTSRn) is generated. Normally, with this interrupt processing, receive data is transmitted from the receive buffer (RXBn or RXBnL) to memory (n = 0, 1).

#### (a) Receive enabled state

Reception is enabled when the RXEn bit of the ASIMn0 register is set to 1.

RXEn = 1: Receive enabled state

RXEn = 0: Receive disabled state

However, when reception is enabled, be sure to set both the CTXEn and CRXEn bits of the clocked serial interface mode register (CSIMn) of the channel in use to 0.

In the receive disabled state, the reception hardware stands by in the initial state.

At this time, no reception complete interrupts or reception error interrupts are generated, and the contents of the receive buffer are retained.

#### (b) Start of receive operation

The receive operation is started by detection of the start bit.

The RXDn pin is sampled using the serial clock from the baud rate generator (BRGn). When an RXDn pin low level is detected, the RXDn pin is sampled again after 8 serial clock cycles. If it is low this is recognized as a start bit, the receive operation is started and the RXDn pin input is subsequently sampled at intervals of 16 serial clock cycles.

If the RXDn pin input is found to be high when sampled again 8 serial clock cycles after an RXDn pin low level is detected, this low level is not recognized as a start bit, the operation is stopped by initializing the serial clock counter for sample timing generation, and the unit waits for the next low-level input.

## (c) Reception complete interrupt request

When RXEn = 1, after one frame of data has been received, the receive data in the shift register is transferred to RXBn and RXBnL a reception complete interrupt request (INTSRn) is generated.

Also, even if an error occurs, the receive data where the error occurred is transmitted to the receive buffer (RXBn or RXBnL) and a reception complete interrupt (INTSRn) and receive error interrupt (INTSERn) are generated simultaneously.

Furthermore, if the RXEn bit is reset (0) during a receive operation, the receive operation is stopped immediately. At this time, the contents of the receive buffer (RXBn or RXBnL) and the asynchronous serial interface status register (ASISn) do not change and the reception complete interrupt (INTSRn) and receive error interrupt (INTSERn) are not generated.

When RXEn = 0 and reception is disabled, a reception complete interrupt request is not generated.





## (d) Receive error flag

In synchronization with the receive operation, three types of error flags, the parity error flag, framing error flag, and overrun error flag, are affected.

A receive error interrupt request is generated by ORing these three error flags.

By reading out the contents of the ASISn register in the receive error interrupt (INTSERn), which error occurred during reception can be detected.

As for the contents of the ASISn register, either the receive buffer (RXBn or RXBnL) are read or it is reset (0) by reception of the next data (if there is an error in the next receive data, that error flag is set).

| Receiving Error | Cause                                                                                            |
|-----------------|--------------------------------------------------------------------------------------------------|
| Parity error    | The parity specification during transmission does not match with the parity of the receive data. |
| Framing error   | A stop bit was not detected.                                                                     |
| Overrun error   | Reception of the next data was completed before data was read from the receive buffer.           |

#### Figure 10-5. Receive Error Timing



### 10.3 Clocked Serial Interfaces 0 to 3 (CSI0 to CSI3)

#### 10.3.1 Features

O High transfer rate Max. 10 Mbps (when the internal system clock is operating at 40 MHz)

... µPD703100-40, 703100A-40

Max. 8.25 Mbps (when the internal system clock is operating at 33 MHz)

... other than above

O Half-duplex communications

O Character length: 8 bits

- O It is possible to switch MSB first or LSB first for data.
- O Either external serial clock input or internal serial clock output can be selected.
- O 3-wire type SOn: Serial data output

SIn: Serial data input

SCKn: Serial clock input/output

O Interrupt source 1 type

• Transmission/reception complete interrupt (INTCSIn)

**Remark** n = 0 to 3

# 10.3.2 Configuration

CSIn are controlled by the clocked serial interface mode registers (CSIMn). Transmission/reception data can be read from and written to the SIOn registers (n = 0 to 3).

# (1) Clocked serial interface mode registers (CSIM0 to CSIM3)

The CSIMn registers are 8-bit registers that specify CSIn operations.

# (2) Serial I/O shift registers (SIO0 to SIO3)

The SIOn registers are 8-bit registers that convert serial data to parallel data. SIOn is used for both transmission and reception.

Data is shifted in (received) or shifted out (transmitted) either from the MSB side or the LSB side. Actual transmitting/receiving operations are controlled by reading from or writing to SIOn.

# (3) Selector

This selects the serial clock to be used.

# (4) Serial clock controller

This performs control of supply to the serial clock shift register. Also, when the internal clock is used, it controls the clock that outputs to the  $\overline{SCKn}$  pin.

## (5) Serial clock counter

Counts the serial clock that outputs, or is input during transmit/receive operations, and determines if 8-bit data were transmitted or received.

# (6) Interrupt control circuit

This circuit controls whether or not an interrupt request is generated when the serial clock counter counts 8 clocks.





## 10.3.3 Control registers

# (1) Clocked serial interface mode registers 0 to 3 (CSIM0 to CSIM3)

These registers specify the basic operation mode of CSI0 to CSI3.

These registers can be read/written in 8- or 1-bit units (however, for bit 5, only reading is possible).

|        | 7       |       | 6                                                                    | 5                                                                                                                     | 4                                                                                                                                                              | 3                                                                                                                                                         | 2                                                                                                                          | 1                                                              | 0                                                    |                                                                     |                        |
|--------|---------|-------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|------------------------|
| CSIM0  | CTXE    | Ξ0    | CRXE0                                                                | CSOT0                                                                                                                 | 0                                                                                                                                                              | 0                                                                                                                                                         | MOD0                                                                                                                       | CLS01                                                          | CLS00                                                | Address<br>FFFFF088H                                                | After reset<br>00H     |
|        |         |       |                                                                      |                                                                                                                       |                                                                                                                                                                |                                                                                                                                                           |                                                                                                                            | 1                                                              | ·                                                    |                                                                     |                        |
| CSIM1  | CTXE    | CRXE1 |                                                                      | CSOT1                                                                                                                 | 0                                                                                                                                                              | 0                                                                                                                                                         | MOD1                                                                                                                       | CLS11                                                          | CLS10                                                | FFFFF098H                                                           | 00H                    |
|        |         |       |                                                                      |                                                                                                                       |                                                                                                                                                                |                                                                                                                                                           |                                                                                                                            |                                                                |                                                      |                                                                     |                        |
| CSIM2  | CTXE    | 2     | CRXE2                                                                | CSOT2                                                                                                                 | 0                                                                                                                                                              | 0                                                                                                                                                         | MOD2                                                                                                                       | CLS21                                                          | CLS20                                                | FFFFF0A8H                                                           | 00H                    |
| 001140 |         | -0    |                                                                      | 00073                                                                                                                 | 0                                                                                                                                                              | 0                                                                                                                                                         | MODO                                                                                                                       | 01.004                                                         | CI 620                                               |                                                                     | 0011                   |
| CSIM3  | CIXE    | -3    | CRXE3                                                                | 05013                                                                                                                 | 0                                                                                                                                                              | 0                                                                                                                                                         | MOD3                                                                                                                       | CLS31                                                          | CLS30                                                | FFFF0B8H                                                            | UUH                    |
| Bit Po | osition | I     | Bit Name                                                             |                                                                                                                       |                                                                                                                                                                |                                                                                                                                                           |                                                                                                                            | Function                                                       | ו                                                    |                                                                     |                        |
| 6      | 6       | C     | RXEn                                                                 | CSI Ir<br>Specifi<br>0: T<br>1: T<br>When<br>CSI Re<br>Specifi<br>0: F<br>1: F<br>When<br>being i<br>If rece<br>becom | ansmit En<br>les the tran<br>transmissi<br>CTXEn = (<br>ecceive Ena<br>ceception of<br>Reception of<br>transmissi<br>nput, 0 is<br>potion is dis<br>e undefine | able<br>nsmit enable<br>on disable<br>on enable<br>0, the impe-<br>able<br>eive enable<br>disabled st<br>on is enable<br>input to the<br>abled (CR<br>ed. | edd state/d<br>d state<br>d state<br>edance of t<br>ed/disable<br>tate<br>ate<br>oled (CTXE<br>e shift regis<br>XEn = 0) v | both the SC<br>d state.<br>n = 1) and<br>ster.<br>while receiv | ate.<br>On and SIn<br>reception is<br>ring data, th  | pins becomes high<br>s disabled, if a seria<br>he SIOn register's c | al clock is<br>ontents |
|        | 5 CSOTn |       | CSI St<br>Shows<br>Set<br>Clea<br>If set in<br>serial of<br>serial I | atus Of Tr<br>that a trai<br>(1): T<br>ar (0): T<br>n the trans<br>data transr<br>/O shift re                         | ansmissio<br>nsmit oper<br>ransmit sta<br>ransmit en<br>mission er<br>nission, th<br>gister n (S                                                               | n<br>ation is in j<br>art timing (v<br>d timing (II<br>nabled stat<br>is is used a<br>IOn) is ena                                                         | progress.<br>writing to the<br>NTCSIn ge<br>e (CTXEn<br>as a means<br>bled.                                                | ne SIOn reg<br>nerated)<br>= 1), when<br>s of judging          | ister)<br>the attempt is made<br>whether or not writ | e to start<br>ing to                                                |                        |
|        | -       |       |                                                                      | Specifi<br>0: N<br>1: L                                                                                               | es the ope<br>ISB first<br>SB first                                                                                                                            | erating mo                                                                                                                                                | de.                                                                                                                        |                                                                |                                                      |                                                                     |                        |

**Remark** n = 0 to 3

| Bit Position | Bit Name        | Function                    |                                                      |                                                      |                                                                                                               |             |  |  |  |  |  |  |
|--------------|-----------------|-----------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|--|
| 1, 0         | CLSn1,<br>CLSn0 | Clock Sourc<br>Specifies th | Clock Source<br>Specifies the serial clock.          |                                                      |                                                                                                               |             |  |  |  |  |  |  |
|              |                 | CLSn1                       | CLSn0                                                | S                                                    | Serial Clock Specification                                                                                    |             |  |  |  |  |  |  |
|              |                 | 0                           | 0                                                    | External clo                                         | Input                                                                                                         |             |  |  |  |  |  |  |
|              |                 | 0                           | 1                                                    | Internal<br>clock                                    | Specified by the BPRMm register <sup>Note 1</sup>                                                             | Output      |  |  |  |  |  |  |
|              |                 | 1                           | 0                                                    |                                                      | φ/4 <sup>Note 2</sup>                                                                                         | Output      |  |  |  |  |  |  |
|              |                 | 1                           | 1                                                    |                                                      | $\phi/2^{Note 2}$                                                                                             | Output      |  |  |  |  |  |  |
|              |                 | Notes 1.<br>2.              | Refer to <b>10.</b><br>concerning s<br>¢/4 and ¢/2 a | 4 Dedicated E<br>setting of the E<br>are divider sig | Baud Rate Generators 0 to 2 (BR<br>BPRMm registers (m = 0 to 2).<br>nals ( <i>φ</i> : Internal system clock). | G0 to BRG2) |  |  |  |  |  |  |

- Cautions 1. When setting the CLSn1 and CLSn0 bits, do so in the transmission/reception disabled (CTXEn bit = CRXEn bit = 0) state. If the CLSn1 and CLSn0 bits are set in a state other than transmission/reception disabled, subsequent operation may not be normal.
  - 2. If the values set in bits 0 to 2 of these registers are changed while CSIn is transmitting or receiving, the operation of CSIn is not guaranteed.

**Remark** n = 0 to 3

#### (2) Serial I/O shift registers 0 to 3 (SIO0 to SIO3)

These registers convert 8-bit serial data to 8-bit parallel data and convert 8-bit parallel data to 8-bit serial data. The actual transmit/receive operation is controlled by reading from or writing to the SIOn registers. Shift operation is performed when CTXEn = 1 or CRXEn = 1. These registers can be read/written in 8- or 1-bit units.

7 6 5 4 3 2 1 0 Address After reset SIO0 SIO07 SIO06 SIO05 SIO04 SIO03 SIO02 SIO01 SIO00 FFFFF08AH Undefined SIO1 SIO17 SIO16 SIO15 SIO14 SIO13 SIO12 SIO11 SIO10 FFFFF09AH Undefined SIO24 SIO2 SIO27 SIO26 SIO25 SIO23 SIO22 SIO21 SIO20 **FFFFF0AAH** Undefined SIO3 SIO37 SIO36 SIO35 SIO34 SIO33 SIO32 SIO31 SIO30 **FFFFF0BAH** Undefined **Bit Position** Bit Name Function SIOn7 to Serial I/O 7 to 0 SIOn0 Data shift in (receiving) or shift out (transmitting) from the MSB or from the LSB. (n = 0 to 3) Caution CSIn operation is not guaranteed if this register is changed during CSIn operation.

### 10.3.4 Basic operation

## (1) Transfer format

CSIn transmits/receives data with three lines: one clock line and two data lines (n = 0 to 3). A serial transfer starts when an instruction that writes transfer data to the SIOn register is executed. In the case of transmission, data is output from the SOn pin at each falling edge of SCKn. In the case of reception, data is latched through the SIn pin at each rising edge of SCKn. SCKn stops when the serial clock counter overflows (at the rising edge of the 8th count), and SCKn remains high until the next data transmission or reception is started. At the same time, a transmission/reception

complete interrupt (INTCSIn) is generated.

# Caution Even if CTXEn bit is changed from 0 to 1 after the transmit data is written to the SIOnL registers, serial transfer will not begin.



#### (2) Transmission/reception enabled

CSIn each have only one 8-bit shift register and do not have any buffers, so basically, they conduct transmission and reception simultaneously (n = 0 to 3).

#### (a) Transmission/reception enable conditions

Setting of the CSIn transmission and reception enable conditions is accomplished by the CTXEn and CRXEn bits of the CSIMn registers.

However, it is necessary to set TXE0 bit = RXE0 bit = 0 in the ASIM00 register in the case of CSI0 and to set TXE1 bit = RXE1 bit = 0 in the ASIM10 register in the case of CSI1.

| CTXEn | CRXEn | Transmit/Receive Operation      |
|-------|-------|---------------------------------|
| 0     | 0     | Transmission/reception disabled |
| 0     | 1     | Reception enabled               |
| 1     | 0     | Transmission enabled            |
| 1     | 1     | Transmission/reception enabled  |

Remark n = 0 to 3

**Remarks 1.** If the CTXEn bit = 0, CSIn becomes as follows.

- CSI0, CSI1: The serial output becomes high impedance or UARTn output (TXDn).
- CSI2, CSI3: The serial output becomes high impedance.
  - If the CTXEn bit = 1, the shift register data is output.
- **2.** If the CRXEn bit = 0, the shift register input becomes 0.
  - If the CRXEn bit = 1, the serial input is input to the shift register.
- In order to receive transmit data itself and check if a bus conflict is occurring, set CTXEn bit = CRXEn bit = 1.

#### (3) Starting transmit/receive operations

Transmit or receive operations are started by reading/writing the SIOn registers. Transmission/reception start control is carried out by setting the CTXEn and CRXEn bits of the CSIMn registers as shown below (n = 0 to 3).

| CTXEn | CRXEn             | Start Condition             |
|-------|-------------------|-----------------------------|
| 0     | 0                 | Doesn't start               |
| 0     | 1                 | Reads the SIOn register     |
| 1     | 0                 | Writes to the SIOn register |
| 1     | 1                 | Writes to the SIOn register |
| 0     | $0 \rightarrow 1$ | Rewrites the CRXEn bit      |

**Remark** n = 0 to 3

When the CTXEn bit is 0, the SIOn register is read/write, and even if it is set (1) afterward, transfer does not start.

Also, when the CTXEn bit is 0, if the CRXEn bit is changed from 0 to 1, the serial clock is generated and receive operation starts.

## 10.3.5 Transmission by CSI0 to CSI3

After changing the settings to enable transmission by clocked serial interface mode register n (CSIMn), writing to the SIOn registers starts the transmit operation (n = 0 to 3).

#### (1) Starting the transmit operation

Starting the transmit operation is accomplished by setting the CTXEn bit of clocked serial interface mode register n (CSIMn) (setting the CRXEn bit to 0), and writing transmit data to shift register n (SIOn). Note that when the CTXEn bit = 0, the impedance of the SOn pin becomes high.

## (2) Transmitting data in synchronization with the serial clock

#### (a) If the internal clock is selected as the serial clock

When transmission is started, the serial clock is output from the SCKn pin and at the same time, data from the SIOn register is output sequentially to the SOn pin in synchronization with the fall of the serial clock.

#### (b) If an external clock is selected as the serial clock

When transmission is started, data from the SIOn register is output sequentially to the SOn pin in synchronization with the fall of the serial clock input to the  $\overline{SCKn}$  pin after transmission starts. When transmission is not started, the shift operation is not performed even if the serial clock is input to the  $\overline{SCKn}$  pin and the SOn pin's output level does not change.



#### Figure 10-7. Timing of 3-Wire Serial I/O Mode (Transmission)

#### 10.3.6 Reception by CSI0 to CSI3

When the reception disabled setting is changed to reception enabled for clocked serial interface mode register n (CSIMn), and data is read from the SIOn register in the reception enabled state, a receive operation is started (n = 0 to 3).

## (1) Starting the receive operation

The following 2 methods can be used to start receive operations.

- <1> If the CRXEn bit of the CSIMn register is changed from the reception disabled state (0) to the reception enabled state (1)
- <2> If the CRXEn bit of the CSIMn register reads receive data from shift register n (SIOn) when in the reception enabled state (1)

When the CRXEn bit of the CSIMn register is set (1), even if 1 is written again, a receive operation is not started. Note that when the CRXEn bit = 0, the shift register input becomes 0.

## (2) Receiving data in synchronization with the serial clock

#### (a) If the internal clock is selected as the serial clock

When reception is started, the serial clock is output from the SCKn pin and at the same time, data from the SIn pin is fetched sequentially to the SIOn register in synchronization with the rise of the serial clock.

## (b) If an external clock is selected as the serial clock

When reception is started, data from the SIn pin is fetched sequentially to the SIOn register in synchronization with the rise of the serial clock input to the  $\overline{SCKn}$  pin after reception starts. When reception has not started, the shift operation is not performed even if the serial clock is input to the  $\overline{SCKn}$  pin.





#### 10.3.7 Transmission and reception by CSI0 to CSI3

If both transmission and reception by clocked serial interface mode register n (CSIMn) are enabled, transmit and receive operations can be carried out simultaneously (n = 0 to 3).

### (1) Starting transmit and receive operations

When both the CTXEn bit and CRXEn bit of clocked serial interface mode register n (CSIMn) are set (1), both transmit operations and receive operations can be performed simultaneously (transmit/receive operations). Transmit and receive operations are started when both the CTXEn and CRXEn bits of the CSIMn register are set to 1, enabling transmission and reception and when transmit data is written to shift register n (SIOn). If the CRXEn bit of the CSIMn register is 1, even if data is written again, a transmit/receive operation is not started.

#### (2) Transmitting data in synchronization with the serial clock

#### (a) If the internal clock is selected as the serial clock

When transmission/reception is started, the serial clock is output from the SCKn pin and at the same time, data from the SIOn register is output sequentially to the SOn pin in synchronization with the fall of the serial clock. Also, data from the SIn pin is fetched sequentially to the SIOn register in synchronization with the rise of the serial clock.

## (b) If an external clock is selected as the serial clock

When transmission/reception is started, data from the SIOn register is output sequentially to the SOn pin in synchronization with the fall of the serial clock input to the  $\overline{SCKn}$  pin after transmission/reception starts. Also, data from the SIn pin is fetched sequentially to the SIOn register in synchronization with the rise of the serial clock. When transmission/reception is not started, even if the serial clock is input to the  $\overline{SCKn}$  pin, shift operations are not performed and the output level of the SOn pin does not change.



Figure 10-9. Timing of 3-Wire Serial I/O Mode (Transmission/Reception)

## 10.3.8 Example of system configuration

Using 3 signal lines, the serial clock ( $\overline{SCKn}$ ), serial input (SIn) and serial output (SOn), transfer of 8-bit data is carried out. This is effective in cases where connections are made to peripheral I/O with the old type of clocked serial interface built in, or with a display controller, etc. (n = 0 to 3).

If connecting to multiple devices, a line for handshake is necessary.

Since either the MSB or the LSB can be selected as the communication's header bit, it is possible to communicate with various types of device.



Figure 10-10. Example of CSI System Configuration

## 10.4 Dedicated Baud Rate Generators 0 to 2 (BRG0 to BRG2)

## 10.4.1 Configuration and function

A dedicated baud rate generator output or the internal system clock ( $\phi$ ) can be selected for the serial interface serial clock for each channel.

The serial clock source is specified with the ASIM00 and ASIM10 registers for UART0 and UART1, and with the CSIM0 to CSIM3 registers for CSI0 to CSI3.

If the dedicated baud rate generator output is specified, BRG0 to BRG2 are selected as the clock source.

Since 1 serial clock is used in common for 1 channel of transmission and reception, the baud rate is the same for both transmission and for reception.



Figure 10-11. Block Diagram of Dedicated Baud Rate Generator

#### (1) Dedicated baud rate generators 0 to 2 (BRG0 to BRG2)

Dedicated baud rate generator BRGn (n = 0 to 2) consists of a dedicated 8-bit timer (TMBRGn) which generates the transmission/reception shift clock plus a compare register (BRGCn) and prescaler.

#### (a) Input clock

Internal system clock ( $\phi$ ) is input to the BRGn.

#### (b) Value set to BRGn

#### (i) UART0, UART1

When the dedicated baud rate generator is specified as the serial source clock with the UART0, UART1, a sampling rate of  $\times$ 16 is used, and therefore the baud rate is given by the following expression.

Baud rate =  $\frac{\phi}{2 \times j \times 2^k \times 16 \times 2}$  [bps]

 $\phi$  Internal system clock frequency [Hz]

- j: Timer count value = BRGCn register setting value ( $1 \le j \le 256^{Note}$ )
- k: Prescaler setting value = BPRMn register setting value (k = 0, 1, 2, 3, 4)

**Note** The j = 256 setting results in writing 0 to the BRGCn register.

#### (ii) CSI0 to CSI3

If BRG0 to BRG2 are specified as the serial clock source in CSI0 to CSI3, the actual baud rate is expressed by the following formula.

Baud rate =  $\frac{\phi}{2 \times j \times 2^k \times 2}$  [bps]

φ: Internal system clock frequency [Hz]

- j: Timer count value = BRGCn register setting value ( $1 \le j \le 256^{Note}$ )
- k: Prescaler setting value = BPRMn register setting value (k = 0, 1, 2, 3, 4)

**Note** The j = 256 setting results in writing 0 to the BRGCn register.

BRGn setting values when representative clock frequencies are used are shown below.

| Baud Ra                                                                                                                            | ate [bps]                                                                                                                                               | φ = 33 MHz                   |                                                                                                                                          |                                                                                                                                                                                                 | φ = 25 MHz                                                                               |                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                        | φ = 16 N                                                                                          | /Hz                                                                          | φ = 12.5 MHz                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UART0,<br>UART1                                                                                                                    | CSI0 to<br>CSI3                                                                                                                                         | BPR                          | BRG                                                                                                                                      | Error                                                                                                                                                                                           | BPR                                                                                      | BRG                                                                                                                                            | Error                                                                                                                                                                                                               | BPR                                                                                                                    | BRG                                                                                               | Error                                                                        | BPR                                                                                        | BRG                                                                                        | Error                                                                                                                                                                                                                                                                                    |
| 110                                                                                                                                | 1,760                                                                                                                                                   | —                            |                                                                                                                                          | _                                                                                                                                                                                               | 4                                                                                        | 222                                                                                                                                            | 0.02%                                                                                                                                                                                                               | 4                                                                                                                      | 142                                                                                               | 0.03%                                                                        | 3                                                                                          | 222                                                                                        | 0.02%                                                                                                                                                                                                                                                                                    |
| 150                                                                                                                                | 2,400                                                                                                                                                   | 4                            | 215                                                                                                                                      | 0.07%                                                                                                                                                                                           | 4                                                                                        | 163                                                                                                                                            | 0.15%                                                                                                                                                                                                               | 3                                                                                                                      | 208                                                                                               | 0.16%                                                                        | 3                                                                                          | 163                                                                                        | 0.15%                                                                                                                                                                                                                                                                                    |
| 300                                                                                                                                | 4,800                                                                                                                                                   | 3                            | 215                                                                                                                                      | 0.07%                                                                                                                                                                                           | 3                                                                                        | 163                                                                                                                                            | 0.15%                                                                                                                                                                                                               | 2                                                                                                                      | 208                                                                                               | 0.16%                                                                        | 2                                                                                          | 163                                                                                        | 0.15%                                                                                                                                                                                                                                                                                    |
| 600                                                                                                                                | 9,600                                                                                                                                                   | 2                            | 215                                                                                                                                      | 0.07%                                                                                                                                                                                           | 2                                                                                        | 163                                                                                                                                            | 0.15%                                                                                                                                                                                                               | 1                                                                                                                      | 208                                                                                               | 0.16%                                                                        | 1                                                                                          | 163                                                                                        | 0.15%                                                                                                                                                                                                                                                                                    |
| 1,200                                                                                                                              | 19,200                                                                                                                                                  | 1                            | 215                                                                                                                                      | 0.07%                                                                                                                                                                                           | 1                                                                                        | 163                                                                                                                                            | 0.15%                                                                                                                                                                                                               | 0                                                                                                                      | 208                                                                                               | 0.16%                                                                        | 0                                                                                          | 163                                                                                        | 0.15%                                                                                                                                                                                                                                                                                    |
| 2,400                                                                                                                              | 38,400                                                                                                                                                  | 0                            | 215                                                                                                                                      | 0.07%                                                                                                                                                                                           | 0                                                                                        | 163                                                                                                                                            | 0.15%                                                                                                                                                                                                               | 0                                                                                                                      | 104                                                                                               | 0.16%                                                                        | 0                                                                                          | 81                                                                                         | 0.47%                                                                                                                                                                                                                                                                                    |
| 4,800                                                                                                                              | 768,00                                                                                                                                                  | 0                            | 107                                                                                                                                      | 0.39%                                                                                                                                                                                           | 0                                                                                        | 81                                                                                                                                             | 0.47%                                                                                                                                                                                                               | 0                                                                                                                      | 52                                                                                                | 0.16%                                                                        | 0                                                                                          | 41                                                                                         | 0.76%                                                                                                                                                                                                                                                                                    |
| 9,600                                                                                                                              | 153,600                                                                                                                                                 | 0                            | 54                                                                                                                                       | 0.54%                                                                                                                                                                                           | 0                                                                                        | 41                                                                                                                                             | 0.76%                                                                                                                                                                                                               | 0                                                                                                                      | 26                                                                                                | 0.16%                                                                        | 0                                                                                          | 20                                                                                         | 1.73%                                                                                                                                                                                                                                                                                    |
| 10,400                                                                                                                             | 166,400                                                                                                                                                 | 0                            | 50                                                                                                                                       | 0.84%                                                                                                                                                                                           | 0                                                                                        | 38                                                                                                                                             | 1.16%                                                                                                                                                                                                               | 0                                                                                                                      | 24                                                                                                | 0.16%                                                                        | 0                                                                                          | 19                                                                                         | 1.16%                                                                                                                                                                                                                                                                                    |
| 19,200                                                                                                                             | 307,200                                                                                                                                                 | 0                            | 27                                                                                                                                       | 0.54%                                                                                                                                                                                           | 0                                                                                        | 20                                                                                                                                             | 1.73%                                                                                                                                                                                                               | 0                                                                                                                      | 13                                                                                                | 0.16%                                                                        | 0                                                                                          | 10                                                                                         | 1.73%                                                                                                                                                                                                                                                                                    |
| 38,400                                                                                                                             | 614,400                                                                                                                                                 | 0                            | 13                                                                                                                                       | 3.29%                                                                                                                                                                                           | 0                                                                                        | 10                                                                                                                                             | 1.73%                                                                                                                                                                                                               | 0                                                                                                                      | 7                                                                                                 | 6.99% <sup>Note</sup>                                                        | 0                                                                                          | 5                                                                                          | 1.73%                                                                                                                                                                                                                                                                                    |
| 76,800                                                                                                                             | 1,228,800                                                                                                                                               | 0                            | 7                                                                                                                                        | 4.09%                                                                                                                                                                                           | 0                                                                                        | 5                                                                                                                                              | 1.73%                                                                                                                                                                                                               | _                                                                                                                      | _                                                                                                 | _                                                                            | 0                                                                                          | 3                                                                                          | 15.2% <sup>Note</sup>                                                                                                                                                                                                                                                                    |
| 153,600                                                                                                                            | 2,457,600                                                                                                                                               | 0                            | 3                                                                                                                                        | 11.90% <sup>Note</sup>                                                                                                                                                                          | 0                                                                                        | 2                                                                                                                                              | 27.2% <sup>Note</sup>                                                                                                                                                                                               | _                                                                                                                      | _                                                                                                 | _                                                                            | _                                                                                          | _                                                                                          | _                                                                                                                                                                                                                                                                                        |
|                                                                                                                                    |                                                                                                                                                         |                              |                                                                                                                                          |                                                                                                                                                                                                 |                                                                                          |                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                   |                                                                              |                                                                                            |                                                                                            |                                                                                                                                                                                                                                                                                          |
|                                                                                                                                    |                                                                                                                                                         |                              | -                                                                                                                                        |                                                                                                                                                                                                 |                                                                                          |                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                   |                                                                              |                                                                                            |                                                                                            |                                                                                                                                                                                                                                                                                          |
| Baud Ra                                                                                                                            | ate [bps]                                                                                                                                               |                              | φ = 40 N                                                                                                                                 | 1Hz                                                                                                                                                                                             |                                                                                          | φ = 20 N                                                                                                                                       | ИНz                                                                                                                                                                                                                 | $\phi$ :                                                                                                               | = 14.764                                                                                          | MHz                                                                          | φ =                                                                                        | = 12.288                                                                                   | 3 MHz                                                                                                                                                                                                                                                                                    |
| Baud Ra<br>UART0,<br>UART1                                                                                                         | ate [bps]<br>CSI0 to<br>CSI3                                                                                                                            | BPR                          | φ = 40 M<br>BRG                                                                                                                          | /Hz<br>Error                                                                                                                                                                                    | BPR                                                                                      | φ = 20 M<br>BRG                                                                                                                                | 1Hz<br>Error                                                                                                                                                                                                        | φ:<br>BPR                                                                                                              | = 14.764<br>BRG                                                                                   | MHz<br>Error                                                                 | φ=<br>BPR                                                                                  | = 12.288<br>BRG                                                                            | 3 MHz<br>Error                                                                                                                                                                                                                                                                           |
| Baud Ra<br>UART0,<br>UART1<br>110                                                                                                  | ate [bps]<br>CSI0 to<br>CSI3<br>1,760                                                                                                                   | BPR                          | φ = 40 N<br>BRG                                                                                                                          | /Hz<br>Error<br>—                                                                                                                                                                               | BPR<br>4                                                                                 | φ = 20 N<br>BRG<br>178                                                                                                                         | 1Hz<br>Error<br>0.25%                                                                                                                                                                                               | φ:<br>BPR<br>4                                                                                                         | = 14.764<br>BRG<br>131                                                                            | MHz<br>Error<br>0.07%                                                        | φ=<br>BPR<br>3                                                                             | = 12.288<br>BRG<br>218                                                                     | B MHz<br>Error<br>0.08%                                                                                                                                                                                                                                                                  |
| Baud Ra<br>UART0,<br>UART1<br>110<br>150                                                                                           | ate [bps]<br>CSI0 to<br>CSI3<br>1,760<br>2,400                                                                                                          | BPR                          | φ = 40 N<br>BRG<br>                                                                                                                      | /Hz<br>Error<br>—                                                                                                                                                                               | BPR<br>4<br>4                                                                            | φ = 20 N<br>BRG<br>178<br>130                                                                                                                  | 1Hz<br>Error<br>0.25%<br>0.16%                                                                                                                                                                                      | φ:<br>BPR<br>4<br>3                                                                                                    | = 14.764<br>BRG<br>131<br>192                                                                     | MHz<br>Error<br>0.07%<br>0.0%                                                | φ =<br>BPR<br>3<br>3                                                                       | = 12.288<br>BRG<br>218<br>160                                                              | 3 MHz<br>Error<br>0.08%<br>0.0%                                                                                                                                                                                                                                                          |
| Baud R:<br>UART0,<br>UART1<br>110<br>150<br>300                                                                                    | ate [bps]<br>CSI0 to<br>CSI3<br>1,760<br>2,400<br>4,800                                                                                                 | BPR<br>—<br>4                | φ = 40 M<br>BRG<br>—<br>—<br>130                                                                                                         | /Hz<br>Error<br>—<br>0.16%                                                                                                                                                                      | BPR<br>4<br>4<br>3                                                                       | φ = 20 N<br>BRG<br>178<br>130<br>130                                                                                                           | 1Hz<br>Error<br>0.25%<br>0.16%<br>0.16%                                                                                                                                                                             | φ:<br>BPR<br>4<br>3<br>2                                                                                               | = 14.764<br>BRG<br>131<br>192<br>192                                                              | MHz<br>Error<br>0.07%<br>0.0%                                                | φ =<br>BPR<br>3<br>3<br>2                                                                  | = 12.288<br>BRG<br>218<br>160<br>160                                                       | MHz<br>Error<br>0.08%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                    |
| Baud Ra<br>UART0,<br>UART1<br>110<br>150<br>300<br>600                                                                             | ate [bps]<br>CSI0 to<br>CSI3<br>1,760<br>2,400<br>4,800<br>9,600                                                                                        | BPR<br>—<br>4                | φ = 40 M<br>BRG<br>—<br>130<br>65                                                                                                        | /Hz<br>Error<br>—<br>0.16%<br>0.16%                                                                                                                                                             | BPR<br>4<br>3<br>2                                                                       | <ul> <li>φ = 20 M</li> <li>BRG</li> <li>178</li> <li>130</li> <li>130</li> <li>130</li> </ul>                                                  | 1Hz<br>Error<br>0.25%<br>0.16%<br>0.16%<br>0.16%                                                                                                                                                                    | φ:<br>BPR<br>4<br>3<br>2<br>1                                                                                          | = 14.764<br>BRG<br>131<br>192<br>192<br>192                                                       | MHz<br>Error<br>0.07%<br>0.0%<br>0.0%                                        | φ =<br>BPR<br>3<br>3<br>2<br>1                                                             | = 12.288<br>BRG<br>218<br>160<br>160                                                       | B MHz<br>Error<br>0.08%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                          |
| Baud R:<br>UART0,<br>UART1<br>110<br>150<br>300<br>600<br>1,200                                                                    | ate [bps]<br>CSI0 to<br>CSI3<br>1,760<br>2,400<br>4,800<br>9,600<br>19,200                                                                              | BPR 4 3                      | φ = 40 M<br>BRG<br>—<br>130<br>65<br>65                                                                                                  | HHZ<br>Error<br>—<br>0.16%<br>0.16%<br>0.16%                                                                                                                                                    | BPR<br>4<br>4<br>3<br>2<br>1                                                             | <ul> <li>φ = 20 M</li> <li>BRG</li> <li>178</li> <li>130</li> <li>130</li> <li>130</li> <li>130</li> </ul>                                     | IHz<br>Error<br>0.25%<br>0.16%<br>0.16%<br>0.16%                                                                                                                                                                    | φ:<br>BPR<br>4<br>3<br>2<br>1<br>0                                                                                     | = 14.764<br>BRG<br>131<br>192<br>192<br>192<br>192                                                | MHz<br>Error<br>0.07%<br>0.0%<br>0.0%<br>0.0%                                | φ =<br>BPR<br>3<br>3<br>2<br>1<br>0                                                        | = 12.288<br>BRG<br>218<br>160<br>160<br>160                                                | B HHz<br>Error<br>0.08%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                  |
| Baud R:<br>UART0,<br>UART1<br>110<br>150<br>300<br>600<br>1,200<br>2,400                                                           | ate [bps]<br>CSI0 to<br>CSI3<br>1,760<br>2,400<br>4,800<br>9,600<br>19,200<br>38,400                                                                    | BPR<br>—<br>4<br>4<br>3<br>2 | <ul> <li>φ = 40 M</li> <li>BRG</li> <li></li> <li>130</li> <li>65</li> <li>65</li> <li>65</li> </ul>                                     | AHz<br>Error<br>—<br>0.16%<br>0.16%<br>0.16%                                                                                                                                                    | BPR<br>4<br>4<br>3<br>2<br>1<br>0                                                        | <ul> <li>φ = 20 N</li> <li>BRG</li> <li>178</li> <li>130</li> <li>130</li> <li>130</li> <li>130</li> <li>130</li> <li>130</li> </ul>           | HHZ<br>Error<br>0.25%<br>0.16%<br>0.16%<br>0.16%<br>0.16%                                                                                                                                                           | φ:<br>BPR<br>4<br>3<br>2<br>1<br>0<br>0                                                                                | = 14.764<br>BRG<br>131<br>192<br>192<br>192<br>192<br>96                                          | MHz<br>Error<br>0.07%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                        | φ =<br>BPR<br>3<br>3<br>2<br>1<br>0<br>0                                                   | = 12.288<br>BRG<br>218<br>160<br>160<br>160<br>80                                          | B MHz<br>Error<br>0.08%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                          |
| Baud Ra<br>UART0,<br>UART1<br>110<br>150<br>300<br>600<br>1,200<br>2,400<br>4,800                                                  | ate [bps]<br>CSI0 to<br>CSI3<br>1,760<br>2,400<br>4,800<br>9,600<br>19,200<br>38,400<br>76,800                                                          | BPR<br>                      | <ul> <li>φ = 40 M</li> <li>BRG</li> <li>—</li> <li>—</li> <li>130</li> <li>65</li> <li>65</li> <li>65</li> <li>65</li> </ul>             | IHz           Error           —           0.16%           0.16%           0.16%           0.16%           0.16%                                                                                 | BPR<br>4<br>4<br>3<br>2<br>1<br>0<br>0                                                   | <ul> <li>φ = 20 N</li> <li>BRG</li> <li>178</li> <li>130</li> <li>130</li> <li>130</li> <li>130</li> <li>130</li> <li>65</li> </ul>            | IHz           Error           0.25%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%                                                                                 | φ<br>BPR<br>4<br>3<br>2<br>1<br>0<br>0<br>0                                                                            | = 14.764<br>BRG<br>131<br>192<br>192<br>192<br>192<br>96<br>48                                    | MHz<br>Error<br>0.07%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                | φ =<br>BPR<br>3<br>3<br>2<br>1<br>0<br>0<br>0                                              | = 12.288<br>BRG<br>218<br>160<br>160<br>160<br>160<br>80<br>40                             | B MHz<br>Error<br>0.08%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                          |
| Baud R:<br>UART0,<br>UART1<br>110<br>150<br>300<br>600<br>1,200<br>2,400<br>4,800<br>9,600                                         | ate [bps]<br>CSI0 to<br>CSI3<br>1,760<br>2,400<br>4,800<br>9,600<br>19,200<br>38,400<br>76,800<br>153,600                                               | BPR<br>                      | <ul> <li>φ = 40 M</li> <li>BRG</li> <li></li> <li>130</li> <li>65</li> <li>65</li> <li>65</li> <li>65</li> <li>65</li> <li>65</li> </ul> | IHz           Error              0.16%           0.16%           0.16%           0.16%           0.16%           0.16%                                                                          | BPR<br>4<br>4<br>3<br>2<br>1<br>0<br>0<br>0<br>0                                         | <ul> <li>φ = 20 N</li> <li>BRG</li> <li>178</li> <li>130</li> <li>130</li> <li>130</li> <li>130</li> <li>65</li> <li>33</li> </ul>             | HHZ<br>Error<br>0.25%<br>0.16%<br>0.16%<br>0.16%<br>0.16%<br>0.16%<br>1.36%                                                                                                                                         | φ<br>BPR<br>4<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0                                                                  | = 14.764<br>BRG<br>131<br>192<br>192<br>192<br>192<br>96<br>48<br>24                              | MHz<br>Error<br>0.07%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                | φ =<br>BPR<br>3<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0                                    | = 12.288<br>BRG<br>218<br>160<br>160<br>160<br>160<br>80<br>40<br>20                       | <ul> <li>HHz</li> <li>Error</li> <li>0.08%</li> <li>0.0%</li> <li>0.0%</li> <li>0.0%</li> <li>0.0%</li> <li>0.0%</li> <li>0.0%</li> <li>0.0%</li> </ul>                                                                                                                                  |
| Baud Ra<br>UART0,<br>UART1<br>110<br>150<br>300<br>600<br>1,200<br>2,400<br>4,800<br>9,600<br>10,400                               | ate [bps]<br>CSI0 to<br>CSI3<br>1,760<br>2,400<br>4,800<br>9,600<br>19,200<br>38,400<br>76,800<br>153,600<br>166,400                                    | BPR<br>                      | $\phi = 40 \text{ M}$<br>BRG<br>                                                                                                         | IHz           Error           —           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%                                                 | BPR<br>4<br>4<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0                                    | <ul> <li>φ = 20 N</li> <li>BRG</li> <li>178</li> <li>130</li> <li>130</li> <li>130</li> <li>130</li> <li>65</li> <li>33</li> <li>30</li> </ul> | IHz           Error           0.25%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16% | φ<br>BPR<br>4<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | = 14.764<br>BRG<br>131<br>192<br>192<br>192<br>192<br>96<br>48<br>24<br>22                        | MHz<br>Error<br>0.07%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0 | φ =<br>BPR<br>3<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | = 12.288<br>BRG<br>218<br>160<br>160<br>160<br>80<br>40<br>20<br>18                        | B MHz<br>Error<br>0.08%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0                                                                                                                                                                                                           |
| Baud R:<br>UART0,<br>UART1<br>110<br>150<br>300<br>600<br>1,200<br>2,400<br>4,800<br>9,600<br>10,400<br>19,200                     | ate [bps]<br>CSI0 to<br>CSI3<br>1,760<br>2,400<br>4,800<br>9,600<br>19,200<br>38,400<br>76,800<br>153,600<br>166,400<br>307,200                         | BPR<br>                      | $\phi = 40 \text{ M}$<br>BRG<br>                                                                                                         | HHz           Error           —           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16% | BPR<br>4<br>4<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | $\phi = 20 \text{ N}$<br>BRG<br>178<br>130<br>130<br>130<br>130<br>130<br>65<br>33<br>30<br>16                                                 | Hz<br>Error<br>0.25%<br>0.16%<br>0.16%<br>0.16%<br>0.16%<br>1.36%<br>0.16%<br>1.36%<br>0.16%                                                                                                                        | φ:<br>BPR<br>4<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                             | = 14.764<br>BRG<br>131<br>192<br>192<br>192<br>192<br>96<br>48<br>24<br>22<br>12                  | MHz<br>Error<br>0.07%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0 | φ =<br>BPR<br>3<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | = 12.288<br>BRG<br>218<br>160<br>160<br>160<br>160<br>80<br>40<br>20<br>18<br>10           | HHz         Error         0.08%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%                |
| Baud R:<br>UART0,<br>UART1<br>110<br>150<br>300<br>600<br>1,200<br>2,400<br>4,800<br>9,600<br>10,400<br>19,200<br>38,400           | ate [bps]<br>CSI0 to<br>CSI3<br>1,760<br>2,400<br>4,800<br>9,600<br>19,200<br>38,400<br>76,800<br>153,600<br>166,400<br>307,200<br>614,400              | BPR<br>                      | $\phi = 40 \text{ M}$<br>BRG<br>                                                                                                         | HHz           Error           —           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           1.73%           1.73%                                 | BPR<br>4<br>4<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | $\phi = 20 \text{ N}$<br>BRG<br>178<br>130<br>130<br>130<br>130<br>130<br>65<br>33<br>30<br>16<br>8                                            | IHz           Error           0.25%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           1.36%           0.16%           1.73%                 | φ<br>BPR<br>4<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | = 14.764<br>BRG<br>131<br>192<br>192<br>192<br>192<br>96<br>48<br>24<br>22<br>12<br>6             | MHz<br>Error<br>0.07%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0 | φ =<br>BPR<br>3<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | = 12.288<br>BRG<br>218<br>160<br>160<br>160<br>160<br>80<br>40<br>20<br>18<br>10<br>5      | B MHz         Error         0.08%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0%         0.0% |
| Baud R:<br>UART0,<br>UART1<br>110<br>150<br>300<br>600<br>1,200<br>2,400<br>4,800<br>9,600<br>10,400<br>19,200<br>38,400<br>76,800 | ate [bps]<br>CSI0 to<br>CSI3<br>1,760<br>2,400<br>4,800<br>9,600<br>19,200<br>38,400<br>76,800<br>153,600<br>166,400<br>307,200<br>614,400<br>1,228,800 | BPR<br>                      | $\phi = 40 \text{ M}$<br>BRG<br>                                                                                                         | IHz           Error           —           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           1.73%           1.73%                                 | BPR<br>4<br>4<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $\phi = 20 \text{ N}$<br>BRG<br>178<br>130<br>130<br>130<br>130<br>130<br>65<br>33<br>30<br>16<br>8<br>4                                       | IHz           Error           0.25%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           0.16%           1.36%           0.16%           1.73%           1.73% | φ<br>BPR<br>4<br>3<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | = 14.764<br>BRG<br>131<br>192<br>192<br>192<br>192<br>192<br>96<br>48<br>24<br>22<br>12<br>6<br>3 | MHz<br>Error<br>0.07%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0 | <pre></pre>                                                                                | = 12.288<br>BRG<br>218<br>160<br>160<br>160<br>160<br>80<br>40<br>20<br>18<br>10<br>5<br>3 | B MHz<br>Error<br>0.08%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>2.6%<br>0.0%<br>0.0%<br>16.7% <sup>Note</sup>                                                                                                                                                                 |

| Table 10-2 | Raud Rate | Generator | Satun | Values |
|------------|-----------|-----------|-------|--------|
|            |           | Generator | Selup | values |

Note Cannot be used because the error is too great.

**Remark** BPR: Prescaler setting value (Set in the BPRMn register (n = 0 to 2))

BRG: Timer count value (Set in the BRGCn register (n = 0 to 2))

*φ*: Internal system clock frequency

## (c) Baud rate error

The baud rate generator error is calculated as follows:

Error [%] =  $\left(\frac{\text{Actual baud rate (baud rate with error)}}{\text{Desired baud rate (normal baud rate)}} - 1\right) \times 100$ Example: (9,520/9,600 - 1) × 100 = -0.833 [%] (5,000/4,800 - 1) × 100 = +4.167 [%]

#### (2) Allowable error range of baud rate

The allowable error range depends on the number of bits of one frame.

The basic limit is  $\pm 5\%$  of baud rate error and  $\pm 4.5\%$  of sample timing with an accuracy of 16 bits. However, the practical limit should be  $\pm 2.3\%$  of baud rate error, assuming that both the transmission and reception sides contain an error.

#### 10.4.2 Baud rate generator compare registers 0 to 2 (BRGC0 to BRGC2)

These are 8-bit compare registers used to set the timer count value for the BRG0 to BRG2. These registers can be read/written in 8- or 1-bit units.

7 6 5 4 3 2 0 1 Address After reset BRG05 BRG04 BRG03 BRGC0 BRG07 BRG06 BRG02 BRG01 BRG00 FFFFF084H Undefined BRGC1 BRG17 BRG16 BRG15 BRG14 BRG13 BRG12 BRG11 BRG10 FFFFF094H Undefined BRGC2 BRG27 BRG26 BRG25 BRG24 BRG23 BRG22 BRG21 BRG20 FFFFF0A4H Undefined Caution Do not change the values in the BRGCn (n = 0 to 2) register by software during a transmit/receive operation, because writing this register causes the internal timer (TMBRGn) to be cleared.

# 10.4.3 Baud rate generator prescaler mode registers 0 to 2 (BPRM0 to BPRM2)

These registers control BRG0 to BRG2 timer count operations and select the count clock. These registers can be read/written in 8- or 1-bit units.

|        | 7         |                                                                                                                                                                                                                                                                                                                                                                                         | 6        |                                | 5    | 4   | 3        | 2          | 1              | 1      | 0                    |                  |     |
|--------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|------|-----|----------|------------|----------------|--------|----------------------|------------------|-----|
| BPRM0  | BRCE0 0   |                                                                                                                                                                                                                                                                                                                                                                                         |          | 0                              |      | 0   | BPRO     | 2 BPF      | R01            | BPR00  | Address<br>FFFFF086H | After res<br>00H |     |
| 3PRM1  | 1 BRCE1 0 |                                                                                                                                                                                                                                                                                                                                                                                         |          | 0 0 0 BPR12 BPR11 BPR10 FFFFf0 |      |     |          |            |                |        |                      | 00H              |     |
| PRM2   | BRC       | E2                                                                                                                                                                                                                                                                                                                                                                                      | 0        |                                | 0    | 0   | 0        | BPR2       | 2 BPF          | R21    | BPR20                | FFFF0A6H         | 00H |
| Bit Po | sition    | В                                                                                                                                                                                                                                                                                                                                                                                       | Bit Name |                                |      |     |          |            | Fun            | oction |                      |                  |     |
| 2 to   | o 0       | BRCEn       Baud Rate Generator Count Enable         Controls the BRGn count operations.       Controls the BRGn count operations.         0:       Stops count operations in the cleared state.         1:       Enables the count operation.         BPRn2 to       Baud Rate Generator Prescaler         BPRn0       Specifies the count clock input to the internal timer (TMBRGn). |          |                                |      |     |          |            |                |        |                      |                  |     |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                         |          |                                | BPRn | 2 B | PRn1     | BPRn0      |                |        | Cou                  | unt Clock        |     |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                         |          |                                | 0    |     | 0        | 0          | <i>φ</i> /2 (n | n = 0) | )                    |                  |     |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                         |          |                                | 0    |     | 0        | 1          | <i>ф</i> /4 (m | n = 1) | )                    |                  |     |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                         |          |                                | 0    |     | 1        | 0          | <i>ф</i> /8 (m | n = 2) | )                    |                  |     |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                         |          |                                | 0    |     | 1        | 1          | <i>ф</i> /16 ( | (m = 3 | 3)                   |                  |     |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                         |          |                                | 1    | dor | n't care | don't care | <i>ф</i> /32 ( | (m = 4 | 4)                   |                  |     |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                         |          |                                |      |     |          |            |                |        |                      |                  |     |

**Remark** n = 0 to 2

# CHAPTER 11 A/D CONVERTER

# 11.1 Features

- O Analog input: 8 channels
- O 10-bit A/D converter
- $\odot\,$  On-chip A/D conversion result register (ADCR0 to ADCR7) 10 bits  $\times\,8$
- A/D conversion trigger mode
   A/D trigger mode
   Timer trigger mode
   External trigger mode
- O Successive approximation method

# 11.2 Configuration

The A/D converter of the V850E/MS1 adopts the successive approximation method, and uses the A/D converter mode registers (ADM0, ADM1), and ADCRn register to perform A/D conversion operations (n = 0 to 7).

# (1) Input circuit

Selects the analog input (ANI0 to ANI7) according to the mode set to the ADM0 and ADM1 registers and sends the input to the sample and hold register.

## (2) Sample and hold circuit

The sample and hold circuit samples each of the analog input signals sequentially sent from the input circuit, and sends the sample to the voltage comparator. This circuit also holds the sampled analog input signal voltage during A/D conversion.

#### (3) Voltage comparator

The voltage comparator compares the analog input signal with the output voltage of the series resistor string.

#### (4) Series resistor string

The series resistor string is used to generate voltages to match analog inputs.

The series resistor string is connected between the reference voltage pin (AVREF) for the A/D converter and the GND pin (AVss) for the A/D converter. To make 1,024 equal voltage steps between these 2 pins, it is configured from 1,023 equal resistors and 2 resistors with 1/2 of the resistance value.

The voltage tap of the series resistor string is selected by a tap selector controlled by a successive approximation register (SAR).

#### (5) Successive approximation register (SAR)

The SAR is a 10-bit register in which is set series resistor string voltage tap data, which have values that match analog input voltage values, 1 bit at a time beginning with the most significant bit (MSB). If the data is set in the SAR all the way to the least significant bit (LSB) (A/D conversion completed), the contents of that SAR (conversion results) are held in the A/D conversion results register (ADCRn).

#### (6) A/D conversion results register (ADCRn)

The ADCR is a 10-bit register that holds A/D conversion results. Each time A/D conversion is completed, conversion results are loaded from the successive approximation register (SAR). RESET input makes its contents undefined.

## (7) Controller

Selects the analog input, generates the sample and hold circuit operation timing, and controls the conversion trigger according to the mode set to the ADM0 and ADM1 registers.

# (8) ANI0 to ANI7 pins

8-channel analog input pin for the A/D converter. Inputs the analog signal to be A/D converted.

Caution Make sure that the voltages input to ANI0 through ANI7 do not exceed the rated values. If a voltage higher than V<sub>DD</sub> or lower than V<sub>SS</sub> (even within the range of the absolute maximum ratings) is input to a channel, the conversion value of the channel is undefined, and the conversion values of the other channels may also be affected.

#### (9) AVREF pin

Pin for inputting the reference voltage of the A/D converter. Converts signals input to the ANIn pin to digital signals based on the voltage applied between AVREF and AVss.



Figure 11-1. A/D Converter Block Diagram

Cautions 1. When noise is generated from the analog input pins (ANI0 to ANI7) and the reference voltage input pin (AVREF), it may cause an illegal conversion result. In order to avoid this illegal conversion result influencing the system, software processing is required.

An example of the necessary software processing is as follows.

- Use the average value of the A/D conversion results after obtaining several A/D conversion results.
- When an exceptional conversion result is obtained after performing A/D conversion several times consecutively, omit it and use the rest of the conversion results.
- When an A/D conversion result that indicates a system malfunction is obtained, be sure to recheck the abnormal generation before performing malfunction processing.
- 2. Make sure not to append the voltage that extends the value between AVss to AVREF to the pins used as A/D converter input pins.

# **11.3 Control Registers**

# (1) A/D converter mode register 0 (ADM0)

The ADM0 register is an 8-bit register that executes the selection of the analog input pin, specification of operation mode, and conversion operations.

This register can be read/written in 8- or 1-bit units, However, when the data is written to the ADM0 register during A/D conversion operations, the conversion operation is initialized and conversion is executed from the beginning. Bit 6 cannot be written and writing executed is ignored.

|          | 7    | ,                                                                                                  | 6                                                                                           | 5                                                                                                            | 4       | 3     | 2                   | 1                                                                    | 0                          | 7                   |                                                      |  |  |
|----------|------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|-------|---------------------|----------------------------------------------------------------------|----------------------------|---------------------|------------------------------------------------------|--|--|
| ADM0     | С    | E                                                                                                  | CS                                                                                          | BS                                                                                                           | MS      | 0     | ANIS2               | ANIS1                                                                | ANIS0                      | Addre<br>FFFFF3     | ss After rese<br>80H 00H                             |  |  |
| Bit Posi | tion | В                                                                                                  | t Name                                                                                      |                                                                                                              |         |       |                     | Function                                                             |                            |                     |                                                      |  |  |
| 7        |      | CE                                                                                                 |                                                                                             | Convert Enable<br>Enables or disables A/D conversion operation.<br>0: Disabled<br>1: Enabled                 |         |       |                     |                                                                      |                            |                     |                                                      |  |  |
| 6        |      | CS                                                                                                 |                                                                                             | Converter Status<br>Indicates the status of A/D converter. This bit is read only.<br>0: Stops<br>1: Operates |         |       |                     |                                                                      |                            |                     |                                                      |  |  |
| 5 BS     |      | Buffer Select<br>Specifies buffer mode in the select mode.<br>0: 1-buffer mode<br>1: 4-buffer mode |                                                                                             |                                                                                                              |         |       |                     |                                                                      |                            |                     |                                                      |  |  |
| 4 MS     |      |                                                                                                    | Mode Select<br>Specifies operation mode of A/D converter.<br>0: Scan mode<br>1: Select mode |                                                                                                              |         |       |                     |                                                                      |                            |                     |                                                      |  |  |
| 2 to 0   |      | AN<br>AN                                                                                           | IS2 to<br>IS0                                                                               | Analog Input Select<br>Specifies analog input pin to A/D convert.                                            |         |       |                     |                                                                      |                            |                     |                                                      |  |  |
|          |      |                                                                                                    |                                                                                             | ANIS                                                                                                         | 2 ANIS1 | ANIS0 | Seleo               | ct Mode                                                              |                            | Scan                | Mode                                                 |  |  |
|          |      |                                                                                                    |                                                                                             |                                                                                                              |         |       | A/D trigger<br>mode | Timer trig<br>mode                                                   | gger /                     | A/D trigger<br>mode | Timer trigger<br>mode <sup>∾₀™</sup>                 |  |  |
|          |      |                                                                                                    |                                                                                             | 0                                                                                                            | 0       | 0     | ANI0                | ANI0                                                                 | AI                         | NI0                 | 1                                                    |  |  |
|          |      |                                                                                                    |                                                                                             | 0                                                                                                            | 0       | 1     | ANI1                | ANI1                                                                 | AI                         | NIO, ANI1           | 2                                                    |  |  |
|          |      |                                                                                                    |                                                                                             | 0                                                                                                            | 1       | 0     | ANI2                | ANI2                                                                 | AI                         | NI0 to ANI2         | 3                                                    |  |  |
|          |      |                                                                                                    |                                                                                             | 0                                                                                                            | 1       | 1     | ANI3                | ANI3                                                                 | AI                         | NI0 to ANI3         | 4                                                    |  |  |
|          |      |                                                                                                    |                                                                                             |                                                                                                              | 0       |       | A N II 4            |                                                                      |                            |                     |                                                      |  |  |
|          |      |                                                                                                    |                                                                                             | 1                                                                                                            | 0       | 0     | ANI4                | Setting<br>prohibite                                                 | d                          |                     | 4 + ANI4                                             |  |  |
|          |      |                                                                                                    |                                                                                             | 1                                                                                                            | 0       | 1     | ANI4<br>ANI5        | Setting<br>prohibite<br>Setting<br>prohibite                         | d Al                       | NIO to ANI4         | 4 + ANI4<br>4 + ANI4,<br>ANI5                        |  |  |
|          |      |                                                                                                    |                                                                                             |                                                                                                              | 0       | 0     | ANI5<br>ANI6        | Setting<br>prohibite<br>Setting<br>prohibite<br>Setting<br>prohibite | d Al<br>Al<br>d Al<br>d Al | NIO to ANI4         | 4 + ANI4<br>4 + ANI4,<br>ANI5<br>4 + ANI4 to<br>ANI6 |  |  |

- **Note** In the timer trigger mode (4-trigger mode) during the scan mode, because the scanning sequence of the ANI0 to ANI3 pins is specified by the sequence in which the match signals are generated from the compare register, the number of trigger inputs should be specified instead of a certain analog input pin. When ANIS2 is set to 1, the scan mode shifts to A/D trigger mode after counting the trigger four times, and then starts converting.
- Cautions1. When the CE bit is 1 in the timer trigger mode and external trigger mode, the trigger signal standby state is set. To clear the CE bit, write 0 or reset.
  - In the A/D trigger mode, the conversion trigger is set by writing 1 to the CE bit. After the operation, when the mode is changed to the timer trigger mode or external trigger mode without clearing the CE bit, the trigger input standby state is set immediately after the change.
  - 2. It takes 3 clocks for CS bit to become 1 after A/D conversion starts.

# (2) A/D converter mode register 1 (ADM1)

The ADM1 register is an 8-bit register that specifies the conversion operation time and trigger mode. This register can be read/written in 8- or 1-bit units. However, when the data is written to the ADM1 register during an A/D conversion operation, the conversion operation is initialized and conversion is executed from the beginning again.

|         | 7     | 7               | 6         | 5                                                                                                                                                                                             | 4                                   | 1      | 3             | 2               | 1                           | 0                                          |                      |                   |  |
|---------|-------|-----------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------|---------------|-----------------|-----------------------------|--------------------------------------------|----------------------|-------------------|--|
| ADM1    | C     | )               | TRG2      | TRG1                                                                                                                                                                                          | TR                                  | G0     | 0             | FR2             | FR1                         | FR0                                        | Address<br>FFFFF382H | After rese<br>07H |  |
| Bit Pos | ition | В               | it Name   |                                                                                                                                                                                               |                                     |        |               |                 | Function                    |                                            |                      |                   |  |
| 6 to 4  |       | TRG2 to<br>TRG0 |           | Trigger Mode<br>Specifies trigger mode.                                                                                                                                                       |                                     |        |               |                 |                             |                                            |                      |                   |  |
|         |       |                 |           | TRG                                                                                                                                                                                           | TRG2 TRG1 TRG0 Trigger Mode         |        |               |                 |                             |                                            |                      |                   |  |
|         |       |                 |           | 0 0 don't A/D trigger mode care                                                                                                                                                               |                                     |        |               |                 |                             |                                            |                      |                   |  |
|         |       |                 |           | 0                                                                                                                                                                                             |                                     | 1      | 0             | Timer t         | igger mode (1-trigger mode) |                                            |                      |                   |  |
|         |       |                 |           | 0 1 1 Timer trigger mode (4-trigger mode                                                                                                                                                      |                                     |        |               |                 |                             |                                            | mode)                |                   |  |
|         |       |                 |           | 1                                                                                                                                                                                             | 1 1 0 External trigger mode         |        |               |                 |                             |                                            |                      |                   |  |
|         |       |                 |           | Othe                                                                                                                                                                                          | Other than above Setting prohibited |        |               |                 |                             |                                            |                      |                   |  |
| 2 to    | 0     | FR<br>FR        | 2 to<br>0 | registers 1 to 6 (INTM1 to INTM6).         Frequency       Specifies conversion operation time. These bits control the conversion time to be sam value irrespective of oscillation frequency. |                                     |        |               |                 |                             |                                            |                      |                   |  |
|         |       |                 |           | FR2                                                                                                                                                                                           | FR1                                 | FR0    | FR0 Number of |                 |                             | Conversion Operation Time $(\mu s)^{Note}$ |                      |                   |  |
|         |       |                 |           |                                                                                                                                                                                               |                                     |        | Conv<br>Clo   | version<br>ocks | φ =<br>40 MH2               | φ =<br>33 MH                               | φ =<br>z 25 MHz      | φ =<br>16 MHz     |  |
|         |       |                 |           | 0                                                                                                                                                                                             | 0                                   | 0      | 48 c          | locks           | _                           | _                                          | _                    | —                 |  |
|         |       |                 |           | 0                                                                                                                                                                                             | 0                                   | 1      | 72 c          | locks           | _                           |                                            |                      | —                 |  |
|         |       |                 |           | 0                                                                                                                                                                                             | 1                                   | 0      | 96 c          | locks           |                             |                                            |                      | 6.00              |  |
|         |       |                 |           | 0                                                                                                                                                                                             | 1                                   | 1      | 120           | clocks          |                             |                                            |                      | 7.50              |  |
|         |       |                 |           | 1                                                                                                                                                                                             | 0                                   | 0      | 168           | clocks          |                             | 5.09                                       | 6.72                 | —                 |  |
|         |       |                 |           |                                                                                                                                                                                               | 0                                   | 1      | 192           |                 | -                           | 5.82                                       | 7.68                 | —                 |  |
|         |       |                 |           | 1                                                                                                                                                                                             | 1                                   | 1      | 240           | clocks          | 0.00<br>8.40                | 1.21                                       | 9.60                 |                   |  |
|         |       |                 |           |                                                                                                                                                                                               | Figure                              |        |               |                 | otion Time                  |                                            |                      |                   |  |
|         |       |                 |           | Remai                                                                                                                                                                                         |                                     | Intern | al system     | olock fro       |                             |                                            |                      |                   |  |

# (3) A/D conversion result registers (ADCR0 to ADCR7, ADCR0H to ADCR7H)

The ADCRn register is a 10-bit register holding the A/D conversion results. It is provided with eight 10-bit registers (n = 0 to 7).

This register is read-only, in 16- or 8-bit units.

During 16-bit access to this register, the ADCRn register is specified, and during higher 8-bit access, the ADCRnH register is specified.

When reading the 10-bit data of A/D conversion results from the ADCRn register, only the lower 10 bits are valid and the higher 6 bits are always read as 0.



The correspondence between each analog input pin and the ADCRn register (except the 4-buffer mode) is shown below.

| Analog Input Pin | ADCRn Register |  |  |  |  |
|------------------|----------------|--|--|--|--|
| ANIO             | ADCR0, ADCR0H  |  |  |  |  |
| ANI1             | ADCR1, ADCR1H  |  |  |  |  |
| ANI2             | ADCR2, ADCR2H  |  |  |  |  |
| ANI3             | ADCR3, ADCR3H  |  |  |  |  |
| ANI4             | ADCR4, ADCR4H  |  |  |  |  |
| ANI5             | ADCR5, ADCR5H  |  |  |  |  |
| ANI6             | ADCR6, ADCR6H  |  |  |  |  |
| ANI7             | ADCR7, ADCR7H  |  |  |  |  |

Figure 11-2 shows the relationship between the analog input voltage and the A/D conversion results.



Figure 11-2. Relationship Between Analog Input Voltage and A/D Conversion Results

## 11.4 A/D Converter Operation

#### 11.4.1 Basic operation of A/D converter

A/D conversion is executed in the following order.

(1) The selection of the analog input and specification of the operation mode, trigger mode, etc. should be set in the ADM0 and ADM1 registers<sup>Note 1</sup>.

When the CE bit of the ADM0 register is set (1), A/D conversion starts in the A/D trigger mode. In the timer trigger mode and external trigger mode, the trigger standby state<sup>Note 2</sup> is set.

- (2) The voltage generated from the voltage tap of the series resistor string and analog input are compared by the comparator.
- (3) When the comparison of the 10 bits ends, the conversion results are stored in the ADCRn register. When A/D conversion is performed for the specified number of times, the A/D conversion end interrupt (INTAD) is generated (n = 0 to 7).
- **Notes 1.** When the ADM0 and ADM1 registers are changed during an A/D conversion operation, the A/D conversion operation before the change is stopped and the conversion results are not stored in the ADCRn register.
  - **2.** In the timer trigger mode and external trigger mode, if the CE bit of the ADM0 register is set to 1, the mode changes to the trigger standby state. The A/D conversion operation is started by the trigger signal, and the trigger standby state is returned when the A/D conversion operation ends.

# 11.4.2 Operation mode and trigger mode

The A/D converter can specify various conversion operations by specifying the operation mode and trigger mode. The operation mode and trigger mode are set by the ADM0 and ADM1 registers.

The following shows the relationship between the operation mode and trigger mode.

| Trigger M        | lode       | Operatio | on Mode   | Setting       | Analog Input  |              |
|------------------|------------|----------|-----------|---------------|---------------|--------------|
|                  |            |          |           | ADM0 register | ADM1 register |              |
| A/D trigger      |            | Select   | 1 buffer  | xx010xxxB     | 000x0xxxB     | ANI0 to ANI7 |
|                  |            |          | 4 buffers | xx110xxxB     | 000x0xxxB     |              |
|                  |            | Scan     |           | xxx00xxxB     | 000x0xxxB     |              |
| Timer trigger    | 1 trigger  | Select   | 1 buffer  | xx010xxxB     | 00100xxxB     | ANI0 to ANI3 |
|                  |            |          | 4 buffers | xx110xxxB     | 00100xxxB     |              |
|                  |            | Scan     |           | xxx00xxxB     | 00100xxxB     |              |
|                  | 4 triggers | Select   | 1 buffer  | xx010xxxB     | 00110xxxB     |              |
|                  |            |          | 4 buffers | xx110xxxB     | 00110xxxB     |              |
|                  |            | Scan     |           | xxx00xxxB     | 00110xxxB     |              |
| External trigger |            | Select   | 1 buffer  | xx010xxxB     | 01100xxxB     |              |
|                  |            |          | 4 buffers | xx110xxxB     | 01100xxxB     |              |
|                  |            | Scan     |           | xxx00xxxB     | 01100xxxB     |              |

# (1) Trigger mode

There are three types of trigger modes that serve as the start timing of the A/D conversion processing: A/D trigger mode, timer trigger mode, and external trigger mode. The ANI0 to ANI3 pins are able to specify all of these modes, but pins ANI4 to ANI7 can only specify the A/D trigger mode. The timer trigger mode consists of the 1-trigger mode and 4-trigger mode as the sub-trigger mode. These trigger modes are set by the ADM1 register.

# (a) A/D trigger mode

Generates the conversion timing of the analog input for the ANI0 to ANI7 pins inside the A/D converter unit. ANI4 to ANI7 pins are always set in this mode.

# (b) Timer trigger mode

Specifies the conversion timing of the analog input set for the ANI0 to ANI3 pins using the values set to the TM11 compare register. This mode can only be specified by pins ANI0 to ANI3.

This register creates the analog input conversion timing by generating the match interrupts of the four capture/compare registers (CC110 to CC113) connected to the 16-bit TM11.

There are two types of sub-trigger modes: 1-trigger mode and 4-trigger mode.
## • 1-trigger mode

Mode that uses one match interrupt from timer 11 as the A/D conversion start timing.

### • 4-trigger mode

Mode that uses four match interrupts from timer 11 as the A/D conversion start timing.

### (c) External trigger mode

Mode that specifies the conversion timing of the analog input to the ANI0 to ANI3 pins using the ADTRG pin. This mode can be specified only with ANI0 to ANI3 pins.

### (2) Operation mode

There are two types of operation modes that set the ANI0 to ANI7 pins: select mode and scan mode. The select mode has sub-modes including the 1-buffer mode and 4-buffer mode. These modes are set by the ADM0 register.

### (a) Select mode

One analog input specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input (ANIn). For this mode, the 1-buffer mode and 4-buffer mode are provided for storing the A/D conversion results (n = 0 to 7).

### • 1-buffer mode

One analog input specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input (ANIn). The ANIn and ADCRn registers correspond one to one, and an A/D conversion end interrupt (INTAD) is generated each time one A/D conversion ends.







# • 4-buffer mode

 $\bigcirc$ 

 $\bigcirc$ 

0

ANI4

ANI5 ANI6

ANI7

One analog input is A/D converted four times and the results are stored in the ADCR0 to ADCR3 registers. The A/D conversion end interrupt (INTAD) is generated when the four A/D conversions end.



ADCR4

ADCR5

ADCR6

ADCR7

Figure 11-4. Select Mode Operation Timing: 4-Buffer Mode (ANI6)

# (b) Scan mode

Selects the analog inputs specified by the ADM0 register sequentially from the ANI0 pin, and A/D conversion is executed. The A/D conversion results are stored in the ADCRn register corresponding to the analog input. When the conversion of the specified analog input ends, the INTAD interrupt is generated.





# 11.5 Operation in A/D Trigger Mode

When the CE bit of the ADM0 register is set to 1, A/D conversion starts.

### 11.5.1 Select mode operations

The analog input specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input. For the select mode, the 1-buffer mode and 4-buffer mode are supported according to the storing method of the A/D conversion results (n = 0 to 7).

### (1) 1-buffer mode (A/D trigger select: 1-buffer)

One analog input is A/D converted once. The conversion results are stored in one ADCRn register. The analog input and ADCRn register correspond one to one.

Each time an A/D conversion is executed, an INTAD interrupt is generated and the AD conversion terminates.

| Analog Input | A/D Conversion Results Register |              |
|--------------|---------------------------------|--------------|
| ANIn         | ADCRn                           | (n = 0 to 7) |

If 1 is written to the CE bit of the ADM0 register, A/D conversion can be restarted. This is most appropriate for applications in which the results of each first time A/D conversion are read.





### (2) 4-buffer mode (A/D trigger select: 4-buffer)

One analog input is A/D converted four times and the results are stored in the four ADCR0 to ADCR3 registers. When four A/D conversions end, an INTAD interrupt is generated and A/D conversion terminates.

| Analog Input | A/D Conversion Result Register |             |
|--------------|--------------------------------|-------------|
| ANIn         | ADCR0                          |             |
| ANIn         | ADCR1                          |             |
| ANIn         | ADCR2                          |             |
| ANIn         | ADCR3                          | (n = 0 to 7 |

If 1 is written in the CE bit of the ADM0 register, A/D conversion can be restarted.

This is most appropriate for applications that determine the average A/D conversion results.



Figure 11-7. Example of 4-Buffer Mode (A/D Trigger Select 4-Buffer) Operation

### 11.5.2 Scan mode operations

The analog inputs specified by the ADM0 register are selected sequentially from the ANI0 pin, and A/D conversion is executed. The A/D conversion results are stored in the ADCRn register corresponding to the analog input (n = 0 to 7).

When the conversion of all the specified analog input ends, the INTAD interrupt is generated, and A/D conversion terminates.

| Analog Input         | A/D Conversion Result Register |              |
|----------------------|--------------------------------|--------------|
| ANIn                 | ADCR0                          |              |
|                      |                                |              |
| ANIn <sup>Note</sup> | ADCRn                          | (n = 0 to 7) |

Note Set in the ANIS0 to ANIS2 bits of the ADM0 register.

If 1 is written in the CE bit of the ADM0 register, A/D conversion can be restarted.

This is most appropriate for applications that are constantly monitoring multiple analog inputs.



### Figure 11-8. Example of Scan Mode (A/D Trigger Scan) Operation

# 11.6 Operation in Timer Trigger Mode

The A/D converter is the match interrupt signal of the TM11 compare register, and can set conversion timings to a maximum of four channel analog inputs (ANI0 to ANI3).

TM11 and four capture/compare registers (CC110 to CC113) are used for the timer for specifying the analog conversion trigger.

The following two modes are provided according to the value set in the TUM11 register.

### (1) 1-shot mode

To use the 1-shot mode, the OST bit of the TUM11 register should be set to 1 (1-shot mode).

When the A/D conversion period is longer than the TM11 period, the TM11 generates an overflow, holds 0000H, and stops. Thereafter, TM11 does not output the match interrupt signal (A/D conversion trigger) of the compare register, and the A/D converter also enters the A/D conversion standby state. The TM11 count operation restarts when the valid edge of the TCLR11 pin input is detected or when 1 is written to the CE11 bit of the TMC11 register.

## (2) Loop mode

To use the loop mode, the OST bit of the TUM11 register should be set to 0 (normal mode).

When the TM11 generates an overflow, the TM11 starts counting from 0000H again, and the match interrupt signal (A/D conversion trigger) of the compare register is repeatedly output and A/D conversion is also repeated.

# 11.6.1 Select mode operations

One analog input (ANI0 to ANI3) specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input. For the select mode, the 1-buffer mode and 4-buffer mode are provided according to the storing method of the A/D conversion results (n = 0 to 3).

# (1) 1-buffer mode operations (Timer trigger select: 1-buffer)

One analog input is A/D converted once and the conversion results are stored in one ADCRn register. There are two modes in 1-buffer modes, the 1-trigger mode and 4-trigger mode, according to the number of triggers.

# (a) 1-trigger mode (Timer trigger select: 1-buffer, 1-trigger)

One analog input is A/D converted once using the trigger of the match interrupt signal (INTCC110) and the results are stored in one ADCRn register.

An INTAD interrupt is generated for each A/D conversion and A/D conversion terminates.

| Trigger            | Analog Input | A/D Conversion Result Register |              |
|--------------------|--------------|--------------------------------|--------------|
| INTCC110 interrupt | ANIn         | ADCRn                          | (n = 0 to 3) |

When the TM11 is set to the 1-shot mode, A/D conversion ends after one conversion. To restart A/D conversion, input the valid edge to the TCLR11 pin or write 1 to the CE11 bit of the TMC11 register. When set to the loop mode, unless the CE bit of the ADM0 register is set to 0, A/D conversion is repeated each time the match interrupt is generated.





## (b) 4-trigger mode (Timer trigger select: 1-buffer, 4-trigger)

One analog input is A/D converted four times using four match interrupt signals (INTCC110 to INTCC113) as triggers and the results are stored in one ADCRn register. The INTAD interrupt is generated with each A/D conversion, and the CS bit of the ADM0 register is reset (0). The results of one A/D conversion are held by the ADCRn register until the next A/D conversion ends. Perform transmission of the conversion results to the memory and other operations using the INTAD interrupt after each A/D conversion ends.

| Trigger            | Analog Input | A/D Conversion Result Register |        |
|--------------------|--------------|--------------------------------|--------|
| INTCC110 interrupt | ANIn         | ADCRn                          |        |
| INTCC111 interrupt | ANIn         | ADCRn                          |        |
| INTCC112 interrupt | ANIn         | ADCRn                          |        |
| INTCC113 interrupt | ANIn         | ADCRn                          | (n = 0 |

When the TM11 is set to the 1-shot mode, A/D conversion ends after four conversions. To restart A/D conversion, input the valid edge to the TCLR11 pin or write 1 to the CE11 bit of the TMC11 register to restart the TM11. When the first match interrupt after TM11 is restarted is generated, the CS bit is set (1) and A/D conversion is started.

When set to the loop mode, unless the CE bit of the ADM0 register is set to 0, A/D conversion is repeated each time the match interrupt is generated.

The match interrupts (INTCC110 to INTCC113) can be generated in any order. The same trigger, even when it enters several times consecutively, is accepted as a trigger each time.



## Figure 11-10. Example of 4-Trigger Mode (Timer Trigger Select 1-Buffer 4-Trigger) Operation

- (3) ANI2 A/D conversion
- (4) Conversion result is stored in ADCR2

(2) CC112 compare generation (random)

- (5) INTAD interrupt generation
- (6) CC111 compare generation (random)
- (7) ANI2 A/D conversion
- (8) Conversion result is stored in ADCR2
- INTAD interrupt generation (9)

- (10) CC113 compare generation (random)
- (11) ANI2 A/D conversion
- (12) Conversion result is stored in ADCR2
- (13) INTAD interrupt generation
- (14) CC110 compare generation (random)
- (15) ANI2 A/D conversion
- (16) Conversion result is stored in ADCR2
- (17) INTAD interrupt generation

### (2) 4-buffer mode operations (Timer trigger select: 4-buffer)

One analog input is A/D converted four times, and the results are stored in the ADCR0 to ADCR3 registers. There are two 4-buffer modes, 1-trigger mode and 4-trigger mode, according to the number of triggers. This mode is suitable for applications that calculate the average of the A/D conversion result.

# (a) 1-trigger mode

One analog input is A/D converted four times using the match interrupt signal (INTCC110) as a trigger, and the results are stored in the ADCR0 to ADCR3 registers.

An INTAD interrupt is generated when the four A/D conversions end and A/D conversion terminates.

| Trigger            | Analog Input | A/D Conversion Result Register |              |
|--------------------|--------------|--------------------------------|--------------|
| INTCC110 interrupt | ANIn         | ADCR0                          |              |
| INTCC110 interrupt | ANIn         | ADCR1                          |              |
| INTCC110 interrupt | ANIn         | ADCR2                          |              |
| INTCC110 interrupt | ANIn         | ADCR3                          | (n = 0 to 3) |

When the TM11 is set to the 1-shot mode, and less than four match interrupts are generated, if the CE bit is set to 0, the INTAD interrupt is not generated and the standby state is set.





### (b) 4-trigger mode

One analog input is A/D converted four times using four match interrupt signals (INTCC110 to INTCC113) as triggers and the results are stored in four ADCRn registers. The INTAD interrupt is generated when the four A/D conversions end, the CS bit is reset (0), and A/D conversion terminates.

| Trigger            | Analog Input | A/D Conversion Result Register |              |
|--------------------|--------------|--------------------------------|--------------|
| INTCC110 interrupt | ANIn         | ADCR0                          |              |
| INTCC111 interrupt | ANIn         | ADCR1                          |              |
| INTCC112 interrupt | ANIn         | ADCR2                          |              |
| INTCC113 interrupt | ANIn         | ADCR3                          | (n = 0 to 3) |

When the TM11 is set to the 1-shot mode, A/D conversion ends after four conversions. To restart A/D conversion, input the valid edge to the TCLR11 pin or write 1 to the CE11 bit of the TMC11 register to restart the TM11. When the first match interrupt after TM11 is restarted is generated, the CS bit is set (1) and A/D conversion is started.

When set to the loop mode, unless the CE bit is set to 0, A/D conversion is repeated each time the match interrupt is generated.

Whichever the order of occurrence of match interrupts (INTCC110 to INTCC113), there is no problem, and the conversion results are stored in the ADCRn register corresponding to the input trigger. Also, even in cases where the same trigger is input continuously, it is received as a trigger.





### 11.6.2 Scan mode operations

The analog inputs specified by the ADM0 register are selected sequentially from the ANI0 pin and A/D converted for the specified number of times using the match interrupt signal as a trigger.

In the conversion operation, first the analog input lower channels (ANI0 to ANI3) are A/D converted for the specified number of times. In the ADM0 register, if the lower channels (ANI0 to ANI3) of the analog input are set so that they are scanned, and when the set number of A/D conversions ends, the INTAD interrupt is generated and A/D conversion ends.

When the higher channels (ANI4 to ANI7) of the analog input are set so that they are scanned in the ADM0 register, after the conversion of the lower channel ends, the mode is shifted to the A/D trigger mode, and the remaining A/D conversions are executed.

The conversion results are stored in the ADCRn register corresponding to the analog input. When the conversion of all the specified analog inputs has ended, the INTAD interrupt is generated and A/D conversion terminates (n = 0 to 7).

There are two scan modes, 1-trigger mode and 4-trigger mode, according to the number of triggers. This is most appropriate for applications that are constantly monitoring multiple analog inputs.

### (1) 1-trigger mode (Timer trigger scan: 1-trigger)

The analog inputs are A/D converted for the specified number of times using the match interrupt signal (INTCC110) as a trigger.

The analog input and ADCRn register correspond one to one.

When all the A/D conversions specified have ended, the INTAD interrupt is generated and A/D conversion ends.

| Trigger            | Analog Input | A/D Conversion Result Register |
|--------------------|--------------|--------------------------------|
| INTCC110 interrupt | ANI0         | ADCR0                          |
| INTCC110 interrupt | ANI1         | ADCR1                          |
| INTCC110 interrupt | ANI2         | ADCR2                          |
| INTCC110 interrupt | ANI3         | ADCR3                          |
| (A/D trigger mode) | ANI4         | ADCR4                          |
|                    | ANI5         | ADCR5                          |
|                    | ANI6         | ADCR6                          |
|                    | ANI7         | ADCR7                          |

When the match interrupt is generated after all the specified A/D conversions end, A/D conversion is restarted. When the TM11 is set to the 1-shot mode, and less than a specified number of match interrupts are generated, if the CE bit is set to 0, the INTAD interrupt is not generated and the standby state is set.





# (2) 4-trigger mode

The analog inputs are A/D converted for the number of times specified using the match interrupt signal (INTCC110 to INTCC113) as a trigger.

The analog input and ADCRn register correspond one to one.

When all the A/D conversions specified have ended, the INTAD interrupt is generated and A/D conversion ends.

| Trigger            | Analog Input | A/D Conversion Result Register |
|--------------------|--------------|--------------------------------|
| INTCC110 interrupt | ANI0         | ADCR0                          |
| INTCC111 interrupt | ANI1         | ADCR1                          |
| INTCC112 interrupt | ANI2         | ADCR2                          |
| INTCC113 interrupt | ANI3         | ADCR3                          |
| (A/D trigger mode) | ANI4         | ADCR4                          |
|                    | ANI5         | ADCR5                          |
|                    | ANI6         | ADCR6                          |
|                    | ANI7         | ADCR7                          |

To restart conversion when TM11 is set to the 1-shot mode, restart TM11. If set to the loop mode and the CE bit is 1, A/D conversion is restarted when a match interrupt is generated after conversion ends.

The match interrupt can be generated in any order. However, because the trigger signal and the analog input correspond one to one, the scanning sequence is determined according to the order in which the match signals of the compare register are generated.



#### Figure 11-14. Example of 4-Trigger Mode (Timer Trigger Scan 4-Trigger) Operation

# 11.7 Operation in External Trigger Mode

In the external trigger mode, the analog inputs (ANI0 to ANI3) are A/D converted by the ADTRG pin input timing.

The ADTRG pin is also used as the P127 and INTP153 pins. To set the external trigger mode, set the PMC127 bit of the PMC12 register to 1 and bits TRG2 to TRG0 of the ADM1 register to 110.

For the valid edge of the external input signal in the external trigger mode, the rising edge, falling edge, or both rising and falling edges can be specified using bits ES531 and ES530 of the INTM6 register. For details, refer to **7.3.8** (1) External interrupt mode registers 1 to 6 (INTM1 to INTM6).

### 11.7.1 Select mode operations (external trigger select)

One analog input (ANI0 to ANI3) specified by the ADM0 register is A/D converted. The conversion results are stored in the ADCRn register corresponding to the analog input. There are two select modes, 1-buffer mode and 4-buffer mode, storing the conversion results (n = 0 to 3).

### (1) 1-buffer mode (External trigger select: 1-buffer)

One analog input is A/D converted using the ADTRG signal as a trigger. The conversion results are stored in one ADCRn register. The analog input and the A/D conversion results register correspond one to one. INTAD interrupts are generated after each A/D conversion, and A/D conversion ends.

| Trigger      | Analog Input | A/D Conversion Result Register |              |
|--------------|--------------|--------------------------------|--------------|
| ADTRG signal | ANIn         | ADCRn                          | (n = 0 to 3) |

While the CE bit of the ADM0 register is 1, the A/D conversion is repeated every time a trigger is input from the ADTRG pin.

This is most appropriate for applications that read the results each time there is an A/D conversion.



Figure 11-15. Example of 1-Buffer Mode (External Trigger Select 1-Buffer) Operation

## (2) 4-buffer mode (External trigger select: 4-buffer)

One analog input is A/D converted four times using the ADTRG signal as a trigger and the results are stored in the ADCR0 to ADCR3 registers. The INTAD interrupt is generated and conversion ends when the four A/D conversions end.

| Trigger      | Analog Input | A/D Conversion Result Register |
|--------------|--------------|--------------------------------|
| ADTRG signal | ANIn         | ADCR0                          |
| ADTRG signal | ANIn         | ADCR1                          |
| ADTRG signal | ANIn         | ADCR2                          |
| ADTRG signal | ANIn         | ADCR3                          |

While the CE bit of the ADM0 register is 1, A/D conversion is repeated every time a trigger is input from the ADTRG pin.

This is most appropriate for applications that determine the average A/D conversion results.



Figure 11-16. Example of 4-Buffer Mode (External Trigger Select 4-Buffer) Operation

### 11.7.2 Scan mode operations (external trigger scan)

The analog inputs specified by the ADM0 register are selected sequentially from the ANI0 pin using the ADTRG signal as a trigger, and A/D converted. The A/D conversion results are stored in the ADCRn register corresponding to the analog input (n = 0 to 7).

When the lower 4 channels (ANI0 to ANI3) of the analog input are set so that they are scanned in the ADM0 register, the INTAD interrupt is generated when the number of A/D conversions specified end, and A/D conversion ends.

When the higher 4 channels (ANI4 to ANI7) of the analog input are set so that they are scanned in the ADM0 register, after the conversion of the lower 4 channels ends, the mode is shifted to the A/D trigger mode, and the remaining A/D conversions are executed. The conversion results are stored in the ADCRn register corresponding to the analog input.

| Trigger            | Analog Input | A/D Conversion Result Register |
|--------------------|--------------|--------------------------------|
| ADTRG signal       | ANI0         | ADCR0                          |
| ADTRG signal       | ANI1         | ADCR1                          |
| ADTRG signal       | ANI2         | ADCR2                          |
| ADTRG signal       | ANI3         | ADCR3                          |
| (A/D trigger mode) | ANI4         | ADCR4                          |
|                    | ANI5         | ADCR5                          |
|                    | ANI6         | ADCR6                          |
|                    | ANI7         | ADCR7                          |

When the conversion of all the specified analog inputs ends, the INTAD interrupt is generated and A/D conversion ends.

When a trigger is input to the ADTRG pin while the CE bit of the ADM0 register is 1, the A/D conversion is started again.

This is most appropriate for applications that are constantly monitoring multiple analog inputs.





## **11.8 Operating Precautions**

### 11.8.1 Stopping conversion operation

When 0 is written to the CE bit of the ADM0 register during a conversion operation, the conversion operation stops and the conversion results are not stored in the ADCRn register (n = 0 to 7).

### 11.8.2 External/timer trigger interval

Set the interval (input time interval) of the trigger in the external or timer trigger mode longer than the conversion time specified by the FR2 to FR0 bits of the ADM1 register.

### (1) When interval = 0

When several triggers are input simultaneously, the analog input with the smaller ANIn pin number is converted. The other trigger signals input simultaneously are ignored, and the number of trigger inputs is not counted. Therefore, the generation of interrupts and storage of results in the ADCRn register will become abnormal (n = 0 to 7).

### (2) When $0 < interval \le conversion operation time$

When the timer trigger is input during a conversion operation, the conversion operation stops and the conversion starts according to the last timer trigger input.

When a conversion operation stops, the conversion results are not stored in the ADCRn register. However, the number of trigger inputs is counted, and when the interrupt is generated, the value at which conversion ended is stored in the ADCRn register.

#### 11.8.3 Operation of standby mode

### (1) HALT mode

The A/D conversion operation continues. When released by the NMI input, the ADM0 and ADM1 registers and ADCRn register hold the value (n = 0 to 7).

### (2) IDLE mode, STOP mode

As clock supply to the A/D converter is stopped, no conversion operations are performed. When these modes are released using the NMI input, the ADM0 and ADM1 registers and the ADCRn register hold the value. However, when the IDLE and software STOP modes are set during a conversion operation, the conversion operation stops. At this time, if released using the NMI input, the conversion operation results, but the conversion result written to the ADCRn register will become undefined.

In the IDLE and software STOP modes, operation of the comparator is also stopped to reduce the power consumption, and to further reduce current consumption, set the voltage of the AVREF to Vss.

#### 11.8.4 Compare match interrupt when in timer trigger mode

The compare register's match interrupt becomes an A/D conversion start trigger and starts the conversion operation. When this happens, the compare register's match interrupt functions even if it is a compare register match interrupt directed to the CPU. In order to prevent match interrupts from the compare register being directed to the CPU, disable interrupts by the interrupt mask bits (P11MK0 to P11MK3) of the interrupt control register (P11IC0 to P11IC3).

### 11.8.5 Timer 1 functions when in external trigger mode

The external trigger input becomes an A/D conversion start trigger. At this time, the external trigger input also functions as a timer 15 (TM15) capture trigger external interrupt. In order to prevent it from generating capture trigger external interrupts, set TM15 as a compare register and disable interrupts by the interrupt mask bit of the interrupt control register.

The operation if TM15 is not set as a compare register and interrupts are not disabled by the interrupt control register is as follows.

## (a) If the TUM15 register's interrupt mask bit (IMS153) is 0

It also functions to generate compare register match interrupts to the CPU.

# (b) If the TUM15 register's interrupt mask bit (IMS153) is 1

The A/D converter's external trigger input also functions as an external interrupt to the CPU.





# CHAPTER 12 PORT FUNCTIONS

# 12.1 Features

• Number of ports Input-only ports 9

I/O ports 114

- Function alternately as the input/output pins of other peripheral functions.
- It is possible to specify input and output in bit units.

# 12.2 Port Configuration



This product incorporates a total of 123 input/output ports (including 9 input-only ports) named ports 0 through 12, and A, B and X. The port configuration is shown below.

## (1) Function of each port

\*

The port functions of this product are shown below.

8/1-bit operations are possible on all ports, allowing various kinds of control to be performed. In addition to their port functions, these pins also function as internal peripheral I/O input/output pins in the control mode.

| Port Name | Pin Name     | Port Function             | Function in Control Mode                                                                                             | Block Type <sup>Note</sup> |
|-----------|--------------|---------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------|
| Port 0    | P00 to P07   | 8-bit I/O                 | Input/output of real-time pulse unit (RPU)<br>External interrupt input<br>DMA control (DMAC) input                   | A, B, M                    |
| Port 1    | P10 to P17   | 8-bit I/O                 | Input/output of real-time pulse unit (RPU)<br>External interrupt input<br>DMA control (DMAC) output                  | A, B, K                    |
| Port 2    | P20 to P27   | 1-bit input,<br>7-bit I/O | NMI input<br>Serial interface (UART0/CSI0, UART1/CSI1)<br>input/output                                               | C, D, I, J, Q              |
| Port 3    | P30 to P37   | 8-bit I/O                 | Input/output of real-time pulse unit (RPU)<br>External interrupt input<br>Serial interface (CSI2) input/output       | A, B, K, M, N              |
| Port 4    | P40 to P47   | 8-bit I/O                 | External data bus (D0 to D7)                                                                                         | E                          |
| Port 5    | P50 to P57   | 8-bit I/O                 | External data bus (D8 to D15)                                                                                        | E                          |
| Port 6    | P60 to P67   | 8-bit I/O                 | External address bus (A16 to A23)                                                                                    | F                          |
| Port 7    | P70 to P77   | 8-bit input               | A/D converter (ADC) analog input                                                                                     | G                          |
| Port 8    | P80 to P87   | 8-bit I/O                 | External bus interface control signal output                                                                         | O, P                       |
| Port 9    | P90 to P97   | 8-bit I/O                 | External bus interface control signal input/output                                                                   | H, O                       |
| Port 10   | P100 to P107 | 8-bit I/O                 | Input/output of real-time pulse unit (RPU)<br>External interrupt input<br>DMA control (DMAC) output                  | A, B, K                    |
| Port 11   | P110 to P117 | 8-bit I/O                 | Input/output of real-time pulse unit (RPU)<br>External interrupt input<br>Serial interface (CSI3) input/output       | A, B, K, M, N              |
| Port 12   | P120 to P127 | 8-bit I/O                 | Input/output of real-time pulse unit (RPU)<br>External interrupt input<br>A/D converter (ADC) external trigger input | А, В                       |
| Port A    | PA0 to PA7   | 8-bit I/O                 | External address bus (A0 to A7)                                                                                      | F                          |
| Port B    | PB0 to PB7   | 8-bit I/O                 | External address bus (A8 to A15)                                                                                     | F                          |
| Port X    | PX5 to PX7   | 3-bit I/O                 | Refresh request signal output<br>Wait insertion signal input<br>Internal system clock output                         | A, L                       |

Note Refer to 12.2 (3) Block diagram of port.

- Caution When switching to the control mode, be sure to set ports that operate as output pins, or as input/output pins in the control mode, by the following procedure.
  - <1> Set the inactive level for the signal output in the control mode in the relevant bits of port n (Pn) (n = 0 to 6, 8 to 12, A, B, X).
  - <2> Switch to the control mode from the port n mode control register (PMCn).

If <1> above is not performed, when switching from the port mode to the control mode, the contents of port n (Pn) will be output instantaneously.

| Port NamePrin Function After KesetRegister Which Register Which Single-chip Mode 0ROM-less Mode 0ROM-less Mode 0Register Which Mode 0Port 0P00 (input mode)ROM-less Mode 0ROM-less Mode 0Sels the Mode 0P01/T0101P01 (input mode)P01/T0101P01 (input mode)P01/T0101P01/T0101P01 (input mode)P02/T0LR0P03 (input mode)P01/T010P01/T0100P03 (input mode)P01/T0100P03 (input mode)P01/T0100P01/T0100P03 (input mode)P01/T0100P05 (input mode)P01/T0100P01/T0100P05 (input mode)P01/T0110P10 (input mode)P01/T0111P11/T0111P11 (input mode)P01/T0111P11 (input mode)P11/T0111P12 (input mode)P01/T0111P12 (input mode)P11/T0111P13 (input mode)P01/T0111P14 (input mode)P11/T0111P13 (input mode)P01/T0111P14 (input mode)P11/T0111P13 (input mode)P01/T0111P12/T0LR11P12 (input mode)P01/T0110P11/T0111/D0MAAK3P17 (input mode)P01/T0110P11/T0111/D0MAAK3P17 (input mode)P01/T0110P11/T0111/D0MAAK3P12 (input mode)P01/T0110P21P21 (input mode)P01/T0110P21P22 (input mode)P01/T0110P21P22 (input mode)P01/T0110P21P22 (input mode)P01/T0110P21P22 (input mode)P01/T0110P21P22 (input mode)P01/T0100P21<                                                                                                                                                                                                                                                                                                                               |              | <b>D</b> : 11      |                                  |                            |                    |                    |      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|----------------------------------|----------------------------|--------------------|--------------------|------|--|--|
| Number         Single-chip<br>Mode 1         ROM-less<br>Mode 1         ROM-less<br>Mode 1         ROM-less<br>Mode 1           Port 0         P00/T0100         P00 (input mode)         Mode 1         Mode 0         Mode 1         Mode 1 </td <td rowspan="2">Port<br/>Name</td> <td>Pin Name</td> <td></td> <td>Register Which</td> | Port<br>Name | Pin Name           |                                  | Register Which             |                    |                    |      |  |  |
| P010100P00 (input mode)PMC0P017O101P01 (input mode)P02TCLR10P02 (input mode)P03/TI0100/MARC0P03 (input mode)P04/INP100/DMARC0P06 (input mode)P06/INP101/DMARC1P06 (input mode)P07/INTP103/DMARC0P06 (input mode)P07/INTP103/DMARC0P07 (input mode)P07/INTP103/DMARC0P07 (input mode)P11/TO111P11 (input mode)P13/TI11P12 (input mode)P13/TI11P13 (input mode)P13/TI11P13 (input mode)P13/TI11P13 (input mode)P13/TI11/DMARK1P16 (input mode)P13/TI11/DMARK2P16 (input mode)P13/TI11/DMARK2P16 (input mode)P13/TI11/DMARK2P16 (input mode)P13/TI11/DMARK2P16 (input mode)P13/TI11/DMARK3P17 (input mode)P12/TONP13/DMARC0P16 (input mode)P13/TI11/DMARK4P16 (input mode)P13/TI11/DMARK4P16 (input mode)P13/TI11/DMARK4P16 (input mode)P13/TI11/DMARK4P16 (input mode)P13/TI13/DMARK5P12 (input mode)P13/TI13/DMARK5P1                                                                                                                                                                                                                                                                                                                         |              |                    | Single-chip<br>Mode 0            | Single-chip<br>Mode 1      | ROM-less<br>Mode 0 | ROM-less<br>Mode 1 |      |  |  |
| P01/T0101P01 (input mode)P02/TCLR10P02 (input mode)P03/T110P03 (input mode)P04/INTP100/DMARC0P04 (input mode)P06/INTP101/DMARC1P05 (input mode)P06/INTP101/DMARC2P06 (input mode)P06/INTP101/DMARC3P07 (input mode)P01/TO110P11 (input mode)P01/TO110P11 (input mode)P11/TO111P11 (input mode)P12/TCLR11P12 (input mode)P13/T111P13 (input mode)P14/INTP110/DMARC3P14 (input mode)P15/INTP111/DMARA4P15 (input mode)P15/INTP111/DMARA5P16 (input mode)P15/INTP111/DMARA5P16 (input mode)P17/INTP13DMARC3P17 (input mode)P17/INTP13DMARC4P16 (input mode)P12/TD0500P22 (input mode)P17/INTP13DMARA5P17 (input mode)P21P22 (input mode)P21P22 (input mode)P21/TD0500P22 (input mode)P21/TD0500P22 (input mode)P21/TD0500P22 (input mode)P21/TD13DMAR5P23 (input mode)P21/TD13DP23 (input mode)P22/TXD1501P25 (input mode)P21/TD131P26 (input mode)P21/TD131P32 (input mode)P31/T0131P33 (input mode)P31/T0131<                                                                                                                                                                                                                                                                                                                                                                  | Port 0       | P00/TO100          | P00 (input mo                    | PMC0                       |                    |                    |      |  |  |
| P02/TCLR10         P02 (input mode)           P03/T110         P03 (input mode)           P03/T110         P03 (input mode)           P04/INTP100/DMARC0         P04 (input mode)           P05/INTP101/DMARC1         P05 (input mode)           P06/INTP102/DMARC2         P06 (input mode)           P07/INTP103/DMARC3         P07 (input mode)           P07/INTP103/DMARC3         P07 (input mode)           P11/T0111         P11 (input mode)           P11/T0111         P12 (input mode)           P13/T011         P12 (input mode)           P14/INTP110/DMARC3         P14 (input mode)           P14/INTP110/DMARC4         P15 (input mode)           P14/INTP110/DMARC5         P16 (input mode)           P14/INTP110/DMARC5         P16 (input mode)           P14/INTP110/DMARC5         P16 (input mode)           P15/INTP111/DMARC5         P16 (input mode)           P15/INTP111/DMARC5         P16 (input mode)           P12/TXD0/S00         P23 (input mode)           P21/TXD1/S01         P23 (input mode)           P22/TXD0/S00         P23 (input mode)           P22/TXD1/S01         P23 (input mode)           P23/TXD1/S01         P23 (input mode)           P24/TXD1/S01         P25 (input mode)                                                                                                                                                                                           |              | P01/TO101          | P01 (input mo                    |                            |                    |                    |      |  |  |
| P03/T110         P03 (input mode)         PMAC2           P04/INTP100/DMARQ0         P04 (input mode)         PMC0, PCS0***           P05/INTP101/DMARQ1         P05 (input mode)         PMC0, PCS0***           P06/INTP102/DMARQ2         P06 (input mode)         PMC0, PCS0***           P07/INTP103/DMARQ3         P07 (input mode)         PMC1, PCS1***           P07/INTP103/DMARQ3         P07 (input mode)         PMC1           P10/T011         P11 (input mode)         PMC1           P13/T11         P12 (input mode)         PMC1           P13/T111         P13 (input mode)         PMC1, PCS1***           P15/INTP111/DMAAK3         P15 (input mode)         PMC1, PCS1***           P15/INTP111/DMAAK3         P16 (input mode)         PMC1, PCS1***           P15/INTP111/DMAAK3         P16 (input mode)         PMC1, PCS1***           P16/INTP112/DMAAK3         P16 (input mode)         PMC1, PCS1***           P17/INTP13/DMAK45         P16 (input mode)         PMC1, PCS1***           P21         P21 (input mode)         PMC2, ASIM00           P22/TXD0/S00         P22 (input mode)         PMC2, ASIM00           P23/RXD0/S10         P23 (input mode)         PMC2, ASIM10           P26/RXD1/S11         P26 (input mode)         PMC2***                                                                                                                                              |              | P02/TCLR10         | P02 (input mo                    |                            |                    |                    |      |  |  |
| P04/INTP100/DMARQ0P04 (input mode)PMC0, PCS0***P05/INTP101/DMARQ1P05 (input mode)P06/INTP102/DMARQ2P06 (input mode)P07/INTP103/DMARQ3P07 (input mode)P07/INTP103/DMARQ3P07 (input mode)P10/T0110P10 (input mode)P11/T0111P11 (input mode)P12/TCLR11P12 (input mode)P13/T111P13 (input mode)P14/INTP110/DMARC4P15 (input mode)P14/INTP110/DMARC5P16 (input mode)P14/INTP113/DMARC5P16 (input mode)P12/INTP113/DMARC5P16 (input mode)P12/INTP113/DMARC5P16 (input mode)P012P22 (input mode)P012P22 (input mode)P12/INTP13/DMARC5P22 (input mode)P012P22 (input mode)P012P22 (input mode)P24/SCK0P24 (input mode)P25/TXD1/S01P25 (input mode)P27/SCK1P26 (input mode)P27/SCK1P27 (input mode)P31/T013P31 (input mode)P31/T013P31 (input mode)P31/T013P31 (input mode)P31/T013P31 (input mode)P34(INTP130P34 (input mode)P36(INTP131/SO2P36 (input mode)P36(INTP131/SO2P36 (input mode) <t< td=""><td></td><td>P03/TI10</td><td>P03 (input mo</td></t<>                                                                                                                                                                                                                                                                     |              | P03/TI10           | P03 (input mo                    |                            |                    |                    |      |  |  |
| P05/INTP101/DMARQ1P05 (input mode)P06/INTP102/DMARQ2P06 (input mode)P07/INTP103/DMARQ3P07 (input mode)P07/INTP103/DMARQ3P07 (input mode)P10/T0110P10 (input mode)P11/T0111P11 (input mode)P12/TCLR11P12 (input mode)P13/TI11P13 (input mode)P14/INTP110/DMARK0P14 (input mode)P15/INTP111/DMARK1P15 (input mode)P16/INTP112/DMARK2P16 (input mode)P17/INTP113/DMARK3P17 (input mode)P17/INTP113/DMARK3P17 (input mode)P17/INTP113/DMARK3P17 (input mode)P17/INTP113/DMARK3P17 (input mode)P21P21 (input mode)P21P21 (input mode)P21/TDN1SOLP22 (input mode)P22/TXDN/SOLP22 (input mode)P23/RXDN/SI0P23 (input mode)P24/SCK0P24 (input mode)P24/SCK1P26 (input mode)P27/SCK1P26 (input mode)P27/SCK1P26 (input mode)P27/SCK1P26 (input mode)P37/INT9130P30 (input mode)P37/INT9130P30 (input mode)P37/INT9130P30 (input mode)P37/INT9130P30 (input mode)P37/INTP133/SCK2P36 (input mode)P37/INTP133/SCK2P36 (input mode)P37/INTP133/SCK2P37 (input mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | P04/INTP100/DMARQ0 | P04 (input mo                    | PMC0, PCS0 <sup>Note</sup> |                    |                    |      |  |  |
| P06/INTP102/DMARQ2P06 (nput mode)P07/INTP103/DMARQ3P07 (nput mode)P011P10/T0110P10 (nput mode)P11/T0111P11 (input mode)P12/TCLR11P12 (nput mode)P13/T111P13 (nput mode)P14/INTP110/DMARK0P14 (input mode)P16/INTP111/DMARK0P14 (input mode)P16/INTP111/DMARK1P15 (input mode)P16/INTP111/DMARK1P15 (input mode)P17/INTP113/DMARK3P17 (input mode)P17/INTP113/DMARK3P17 (input mode)P17/INTP113/DMARK3P17 (input mode)P17/INTP113/DMARK3P17 (input mode)P12/TCLR1P21 (input mode)P22/TXD0/SO0P22 (input mode)P23/RXD0/SI0P22 (input mode)P24/SCK0P24 (input mode)P24/SCK1P26 (input mode)P27/SCK1P26 (input mode)P27/SCK1P26 (input mode)P27/SCK1P26 (input mode)P37/T0130P30 (input mode)P37/T0130P30 (input mode)P37/T0130P30 (input mode)P37/T0131P31 (input mode)P37/T0131P33 (input mode)P37/T0131P34 (input mode)P37/T01                                                                                                                                                                                                                                                                                                                                                                      |              | P05/INTP101/DMARQ1 | P05 (input mo                    |                            |                    |                    |      |  |  |
| P07/INTP103/DMARQ3P07 (input mode)Port 1P10 (input mode)PMC1P11/T0111P11 (input mode)PMC1P12/TCLR11P12 (input mode)PMC1, PCS1****P13/T111P13 (input mode)PMC1, PCS1****P15/INTP111/DMAAK0P14 (input mode)PMC1, PCS1****P15/INTP111/DMAAK1P15 (input mode)PMC1, PCS1****P15/INTP111/DMAAK3P17 (input mode)PMC1, PCS1****P17/INTP113/DMAAK3P17 (input mode)PMC1, PCS1****P21P21 (input mode)PMC2, ASIMOP21P21 (input mode)PMC2, ASIMOP21/TDD/SOOP22 (input mode)PMC2, ASIMOP23/RXD0/SIOP23 (input mode)PMC2, ASIMOP24/SCK0P24 (input mode)PMC2, ASIMOP24/SCK0P24 (input mode)PMC2, ASIMOP27/SCK1P25 (input mode)PMC2, ASIMOP27/SCK1P27 (input mode)PMC2, ASIMOP31/T0131P31 (input mode)PMC3, PS3P31/T0131P33 (input mode)PMC3, PS3P31/T0131/SO2P35 (input mode)PMC3, PS3P31/T0131/SO2P35 (input mode)PMC3, PS3P31/T0131/SO2P36 (input mode)PMC3, PS3P31/T0131/SO2P36 (input mode)PMC3, PS3P31/T0131/SO2P36 (input mode)PMC3, PS3P                                                                                                                                                                                                                                                                                                                                                             |              | P06/INTP102/DMARQ2 | P06 (input mo                    |                            |                    |                    |      |  |  |
| Port 1<br>P10/T0110P10 (input mode)PMC1<br>P11 (input mode)P11/T0111P11 (input mode)P12/TCLR11P12 (input mode)P13/T111P13 (input mode)P14/INTP110/DMAAK0P14 (input mode)P15/INTP1111/DMAAK1P15 (input mode)P16/INTP1112/DMAAK2P16 (input mode)P17/INTP1112/DMAAK3P17 (input mode)P17/INTP113/DMAAK3P17 (input mode)P20/NMINMIP21P21 (input mode)P21/TXD0/SOOP22 (input mode)P24/SCK0P24 (input mode)P24/SCK0P24 (input mode)P24/SCK1P25 (input mode)P27/SCK1P27 (input mode)P27/SCK1P27 (input mode)P07/SCK1P27 (input mode)P17/INTP130P30 (input mode)P31/T0131P31 (input mode)P31/T0131/SO2P36 (input mo                                                                                                                                                                                                                                                                                                                                                                                 |              | P07/INTP103/DMARQ3 | P07 (input mo                    |                            |                    |                    |      |  |  |
| P11/TO111         P11 (input mode)           P12/TCLR11         P12 (input mode)           P13/T11         P13 (input mode)           P13/T11         P13 (input mode)           P14/INTP110/DMAAK0         P14 (input mode)           P15/INTP111/DMAAK1         P15 (input mode)           P16/INTP111/DMAAK1         P15 (input mode)           P16/INTP111/DMAAK1         P16 (input mode)           P17/INTP113/DMAAK2         P16 (input mode)           P17/INTP113/DMAAK3         P17 (input mode)           P20/NMI         NMI           P21         P21 (input mode)           P21/TXD0/SOO         P22 (input mode)           P23/RXD0/SIO         P23 (input mode)           P24/SCK0         P24 (input mode)           P25/TXD1/SO1         P25 (input mode)           P26/RXD1/SI1         P26 (input mode)           P27/SCK1         P27 (input mode)           P27/SCK1         P27 (input mode)           P31/TO131         P31 (input mode)           P31/TO131         P31 (input mode)           P32/TI13         P33 (input mode)           P33/TI13         P33 (input mode)           P34/INTP130         P34 (input mode)           P36/INTP132/SI2         P36 (input mode)                                                                                                                                                                                                                             | Port 1       | P10/TO110          | P10 (input mo                    | de)                        |                    |                    | PMC1 |  |  |
| P12/TCLR11         P12 (input mode)           P13/T11         P13 (input mode)           P13/T110/DMAAK0         P14 (input mode)           P14/INTP110/DMAAK0         P14 (input mode)           P15/INTP111/DMAAK1         P15 (input mode)           P16/INTP112/DMAAK2         P16 (input mode)           P17/INTP113/DMAAK3         P17 (input mode)           P17/INTP113/DMAAK3         P17 (input mode)           P20/NMI         NMI           P21         P21 (input mode)           P21/TD0/SO0         P22 (input mode)           P23/RXD0/SI0         P23 (input mode)           P23/RXD0/SI0         P24 (input mode)           P24/SCK0         P24 (input mode)           P27/SCK1         P26 (input mode)           P27/SCK1         P27 (input mode)           P27/SCK1         P27 (input mode)           P31/T0131         P31 (input mode)           P31/T0131         P31 (input mode)           P31/T0131         P32 (input mode)           P32/TSLR13         P32 (input mode)           P31/T0131         P31 (input mode)           P31/T0131         P31 (input mode)           P31/T0131         P33 (input mode)           P32/TSLR13         P33 (input mode)                                                                                                                                                                                                                                       |              | P11/TO111          | P11 (input mo                    | -                          |                    |                    |      |  |  |
| P13/T11         P13 (input mode)           P14/INTP110/DMAAK0         P14 (input mode)         PMC1, PCS1***           P15/INTP111/DMAAK1         P15 (input mode)         PMC1, PCS1***           P16/INTP112/DMAAK2         P16 (input mode)         PMC1, PCS1***           P17/INTP113/DMAAK3         P17 (input mode)         PMC1, PCS1***           P17/INTP113/DMAAK3         P17 (input mode)         PMC2, ASIM0           P20/NMI         NMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | P12/TCLR11         | P12 (input mo                    |                            |                    |                    |      |  |  |
| P14/INTP110/DMAAK0         P14 (input mode)         PMC1, PCS1 <sup>Mm</sup> P15/INTP111/DMAAK1         P15 (input mode)         P16/INTP112/DMAAK2         P16 (input mode)           P16/INTP112/DMAAK2         P16 (input mode)         P17/INTP113/DMAAK3         P17 (input mode)           Pot 2         P20/NMI         NMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | P13/TI11           | P13 (input mode)                 |                            |                    |                    |      |  |  |
| P15/INTP111/DMAAK1         P15 (input mode)           P16/INTP112/DMAAK2         P16 (input mode)           P17/INTP113/DMAAK3         P17 (input mode)           P17/INTP113/DMAAK3         P17 (input mode)           P20/NMI         NMI           P21         P21 (input mode)           P21/C2_CXD0/S00         P22 (input mode)           P23/RXD0/S10         P23 (input mode)           P24/SCK0         P24 (input mode)           P24/SCK0         P24 (input mode)           P26/RXD1/S01         P25 (input mode)           P26/RXD1/S01         P25 (input mode)           P26/RXD1/S01         P26 (input mode)           P26/RXD1/S01         P26 (input mode)           P27/SCK1         P27 (input mode)           P27/SCK1         P27 (input mode)           P31/T0131         P31 (input mode)           P32/TLR13         P32 (input mode)           P32/TLR13         P33 (input mode)           P32/TLR13         P33 (input mode)           P34/INTP130         P34 (input mode)           P34/INTP131/SO2         P35 (input mode)           P36/INTP132/SI2         P36 (input mode)           P36/INTP133/SCK2         P37 (input mode)                                                                                                                                                                                                                                                                  |              | P14/INTP110/DMAAK0 | /INTP110/DMAAK0 P14 (input mode) |                            |                    |                    |      |  |  |
| P16/INTP112/DMAAK2         P16 (input mode)           P17/INTP113/DMAAK3         P17 (input mode)           Pot 2         P20/NMI         NMI           P21         P21 (input mode)         PMC2, ASIM00           P22/TXD0/SO0         P22 (input mode)         PMC2, ASIM00           P23/RXD0/SI0         P23 (input mode)         PMC2, ASIM00           P24/SCK0         P24 (input mode)         PMC2, ASIM00           P26/RXD1/S01         P25 (input mode)         PMC2, ASIM10           P26/RXD1/S01         P25 (input mode)         PMC2, ASIM10           P26/RXD1/S11         P26 (input mode)         PMC2, ASIM10           P27/SCK1         P27 (input mode)         PMC2, ASIM10           P27/SCK1         P27 (input mode)         PMC2, ASIM10           P31/T0130         P30 (input mode)         PMC3           P33/T13         P32 (input mode)         PMC3           P33/T113         P33 (input mode)         PMC3           P34/INTP130         P34 (input mode)         PMC3, PCS3           P36/INTP131/SO2         P36 (input mode)         PMC3, PCS3           P36/INTP132/SI2         P36 (input mode)         PMC3, PCS3           P36/INTP133/SCK2         P37 (input mode)         PMC3, PCS3                                                                                                                                                                                               |              | P15/INTP111/DMAAK1 | P15 (input mo                    | -                          |                    |                    |      |  |  |
| P17/INTP113/DMAAK3P17 (input mode)Port 2P20/NMINMIP21P21 (input mode)—P21P21 (input mode)PMC2, ASIM00P22/TXD0/SO0P22 (input mode)PMC2, ASIM00P23/RXD0/SI0P23 (input mode)PMC2, ASIM00P24/SCK0P24 (input mode)PMC2****P25/TXD1/SO1P25 (input mode)PMC2, ASIM10P26/RXD1/SI1P26 (input mode)PMC2****P27/SCK1P27 (input mode)PMC2****P21/TO130P30 (input mode)PMC3***P31/TO131P31 (input mode)PMC3P33/TI13P33 (input mode)PMC3P34/INTP130P34 (input mode)PMC3P35/INTP131/SO2P35 (input mode)PMC3, PCS3P36/INTP132/SI2P36 (input mode)PMC3, PCS3P37/INTP133/SCK2P37 (input mode)PMC3, PCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | P16/INTP112/DMAAK2 | P16 (input mo                    |                            |                    |                    |      |  |  |
| Pot 2<br>P20/NMIP20/NMINMI———P21P21 (input mode)P21 (input mode)PMC2, ASIM00P22/TXD0/SO0P22 (input mode)PMC2, ASIM00P23/RXD0/SI0P23 (input mode)PMC2*****P24/SCK0P24 (input mode)PMC2*****P25/TXD1/SO1P25 (input mode)PMC2, ASIM10P26/RXD1/SI1P26 (input mode)PMC2, ASIM10P27/SCK1P27 (input mode)PMC2*****P07 f3P30 (input mode)PMC2*****P31/T0131P31 (input mode)PMC3*****P32/TCLR13P32 (input mode)PMC3P33/II13P33 (input mode)PMC3P34 (input mode)P34 (input mode)PMC3, PCS3P36/INTP131/SO2P36 (input mode)PMC3, PCS3P36/INTP133/SCK2P37 (input mode)PMC3, PCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | P17/INTP113/DMAAK3 | P17 (input mo                    |                            |                    |                    |      |  |  |
| P21         P21 (input mode)           P22/TXD0/S00         P22 (input mode)         PMC2, ASIM00           P23/RXD0/S10         P23 (input mode)         PMC2, ASIM00           P24/SCK0         P24 (input mode)         PMC2, ASIM00           P25/TXD1/S01         P25 (input mode)         PMC2, ASIM10           P26/RXD1/S11         P26 (input mode)         PMC2, ASIM10           P26/RXD1/S11         P26 (input mode)         PMC2, ASIM10           P27/SCK1         P27 (input mode)         PMC2, ASIM10           P27/SCK1         P27 (input mode)         PMC2, ASIM10           P30/T0130         P30 (input mode)         PMC3           P31/T0131         P31 (input mode)         PMC3           P33/T113         P32 (input mode)         PMC3, PCS3           P36/INTP131/SO2         P35 (input mode)         PMC3, PCS3           P36/INTP132/S12         P36 (input mode)         PMC3, PCS3           P37/INTP133/SCK2         P37 (input mode)         PMC3, PCS3                                                                                                                                                                                                                                                                                                                                                                                                                                      | Port 2       | P20/NMI            | NMI                              |                            |                    |                    | _    |  |  |
| P22/TXD0/S00         P22 (input mode)         PMC2, ASIM00           P23/RXD0/S10         P23 (input mode)         PMC2, MSIM00           P24/SCK0         P24 (input mode)         PMC2, MSIM0           P24/SCK0         P24 (input mode)         PMC2, ASIM00           P25/TXD1/S01         P25 (input mode)         PMC2, ASIM10           P26/RXD1/S11         P26 (input mode)         PMC2, ASIM10           P27/SCK1         P27 (input mode)         PMC2, MSIM1           P30/T0130         P30 (input mode)         PMC3           P31/T0131         P31 (input mode)         PMC3           P33/T113         P32 (input mode)         PMC3           P34/INTP130         P33 (input mode)         PMC3           P35/INTP131/SO2         P36 (input mode)         PMC3, PCS3           P36/INTP132/SI2         P36 (input mode)         PMC3, PCS3           P37/INTP133/SCK2         P37 (input mode)         PMC3, PCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | P21                | P21 (input mo                    |                            |                    |                    |      |  |  |
| P23/RXD0/SI0         P23 (input mode)         PMC2 <sup>Hote</sup> P24/SCK0         P24 (input mode)         PMC2 <sup>Hote</sup> P25/TXD1/S01         P25 (input mode)         PMC2, ASIM10           P26/RXD1/SI1         P26 (input mode)         PMC2, ASIM10           P27/SCK1         P27 (input mode)         PMC2 <sup>Hote</sup> P017         P30/T0130         P30 (input mode)         PMC3           P31/T0131         P31 (input mode)         PMC3           P32/TCLR13         P32 (input mode)         PMC3           P33/T113         P33 (input mode)         PMC3           P34/INTP130         P34 (input mode)         PMC3           P36/INTP131/SO2         P35 (input mode)         PMC3, PCS3           P36/INTP132/SI2         P36 (input mode)         PMC3, PCS3           P37/INTP133/SCK2         P37 (input mode)         PMC3, PCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | P22/TXD0/SO0       | P22 (input mo                    | PMC2, ASIM00               |                    |                    |      |  |  |
| P24/SCK0         P24 (input mode)         PMC2 <sup>Note</sup> P25/TXD1/S01         P25 (input mode)         PMC2, ASIM10           P26/RXD1/S11         P26 (input mode)         PMC2, ASIM10           P27/SCK1         P27 (input mode)         PMC2 <sup>Note</sup> P0rt 3         P30/T0130         P30 (input mode)         PMC3           P31/T0131         P31 (input mode)         PMC3           P32/TCLR13         P32 (input mode)         PMC3           P34/INTP130         P34 (input mode)         PMC3, PCS3           P36/INTP132/S12         P36 (input mode)         PMC3, PCS3           P36/INTP133/SCK2         P37 (input mode)         PMC3, PCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | P23/RXD0/SI0       | P23 (input mo                    | ]                          |                    |                    |      |  |  |
| P25/TXD1/SO1         P25 (input mode)         PMC2, ASIM10           P26/RXD1/SI1         P26 (input mode)         PMC2/VIC           P27/SCK1         P27 (input mode)         PMC2 <sup>Note</sup> Port 3         P30/TO130         P30 (input mode)         PMC3           P31/TO131         P31 (input mode)         PMC3           P32/TCLR13         P32 (input mode)         PMC3           P33/TI13         P33 (input mode)         PMC3, PCS3           P35/INTP131/SO2         P35 (input mode)         PMC3, PCS3           P36/INTP132/SI2         P36 (input mode)         PMC3, PCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | P24/SCK0           | P24 (input mo                    | PMC2 <sup>Note</sup>       |                    |                    |      |  |  |
| P26/RXD1/SI1         P26 (input mode)           P27/SCK1         P27 (input mode)         PMC2 <sup>Note</sup> Port 3         P30/T0130         P30 (input mode)         PMC3           P31/T0131         P31 (input mode)         PMC3           P32/TCLR13         P32 (input mode)         P43/IT13           P33/TI13         P33 (input mode)         P34 (input mode)           P34/INTP130         P34 (input mode)         PMC3, PCS3           P36/INTP132/SI2         P36 (input mode)         PMC3, PCS3           P37/INTP133/SCK2         P37 (input mode)         PMC3, PCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | P25/TXD1/SO1       | P25 (input mo                    | PMC2, ASIM10               |                    |                    |      |  |  |
| P27/SCK1         P27 (input mode)         PMC2 <sup>Note</sup> Port 3         P30/T0130         P30 (input mode)         PMC3           P31/T0131         P31 (input mode)         PMC3           P32/TCLR13         P32 (input mode)         P33/T113           P33/T113         P33 (input mode)         P34/INTP130           P34/INTP130         P35 (input mode)         PMC3, PCS3           P36/INTP132/SI2         P36 (input mode)         PMC3, PCS3           P37/INTP133/SCK2         P37 (input mode)         PMC3, PCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | P26/RXD1/SI1       | P26 (input mo                    | ]                          |                    |                    |      |  |  |
| Port 3         P30/TO130         P30 (input mode)         PMC3           P31/TO131         P31 (input mode)         P32/TCLR13         P32 (input mode)           P33/T113         P33 (input mode)         P33/TI13         P33 (input mode)           P34/INTP130         P34 (input mode)         P35/INTP131/SO2         P35 (input mode)           P36/INTP132/SI2         P36 (input mode)         PMC3, PCS3           P37/INTP133/SCK2         P37 (input mode)         PMC3, PCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | P27/SCK1           | P27 (input mo                    | PMC2 <sup>Note</sup>       |                    |                    |      |  |  |
| P31/TO131         P31 (input mode)           P32/TCLR13         P32 (input mode)           P33/TI13         P33 (input mode)           P34/INTP130         P34 (input mode)           P35/INTP131/SO2         P35 (input mode)           P36/INTP132/SI2         P36 (input mode)           P37/INTP133/SCK2         P37 (input mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Port 3       | P30/TO130          | P30 (input mo                    | PMC3                       |                    |                    |      |  |  |
| P32/TCLR13         P32 (input mode)           P33/T113         P33 (input mode)           P34/INTP130         P34 (input mode)           P35/INTP131/SO2         P35 (input mode)           P36/INTP132/SI2         P36 (input mode)           P37/INTP133/SCK2         P37 (input mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | P31/TO131          | P31 (input mo                    |                            |                    |                    |      |  |  |
| P33/TI13         P33 (input mode)           P34/INTP130         P34 (input mode)           P35/INTP131/SO2         P35 (input mode)           P36/INTP132/SI2         P36 (input mode)           P37/INTP133/SCK2         P37 (input mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | P32/TCLR13         | P32 (input mo                    |                            |                    |                    |      |  |  |
| P34/INTP130         P34 (input mode)           P35/INTP131/SO2         P35 (input mode)           P36/INTP132/SI2         P36 (input mode)           P37/INTP133/SCK2         P37 (input mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | P33/TI13           | P33 (input mo                    |                            |                    |                    |      |  |  |
| P35/INTP131/SO2         P35 (input mode)         PMC3, PCS3           P36/INTP132/SI2         P36 (input mode)         P37/INTP133/SCK2           P37/INTP133/SCK2         P37 (input mode)         P37 (input mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | P34/INTP130        | P34/INTP130 P34 (input mode)     |                            |                    |                    |      |  |  |
| P36/INTP132/SI2         P36 (input mode)           P37/INTP133/SCK2         P37 (input mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | P35/INTP131/SO2    | 131/SO2 P35 (input mode)         |                            |                    |                    |      |  |  |
| P37/INTP133/SCK2 P37 (input mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | P36/INTP132/SI2    | P36 (input mode)                 |                            |                    |                    | ]    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | P37/INTP133/SCK2   | P37 (input mo                    |                            |                    |                    |      |  |  |

# (2) Function when each port's pins are reset and register which sets the port/control mode

**Note** Selects the pin function when in the control mode.

| Port<br>Name | Pin Name             |                            | Register Which                  |                    |                            |                            |
|--------------|----------------------|----------------------------|---------------------------------|--------------------|----------------------------|----------------------------|
|              |                      | Single-chip<br>Mode 0      | Single-chip<br>Mode 1           | ROM-less<br>Mode 0 | ROM-less<br>Mode 1         | Sets the Mode              |
| Port 4       | P40/D0 to P47/D7     | P40 to P47<br>(input mode) | D0 to D7                        |                    |                            | MM                         |
| Port 5       | P50/D8 to P57/D15    | P50 to P57<br>(input mode) | D8 to D15                       |                    | P50 to P57<br>(input mode) | MM                         |
| Port 6       | P60/A16 to P67/A23   | P60 to P67<br>(input mode) | A16 to A23                      |                    | MM                         |                            |
| Port 7       | P70/ANI0 to P77/ANI7 | P70/ANI0 to P77/AI         | P70/ANI0 to P77/ANI7            |                    |                            |                            |
| Port 8       | P80/CS0/RAS0         | P80 (input mode)           | node) CS0/RAS0                  |                    |                            | PMC8                       |
|              | P81/CS1/RAS1         | P81 (input mode)           | (input mode) CS1/RAS1           |                    |                            |                            |
|              | P82/CS2/RAS2         | P82 (input mode)           | uput mode) CS2/RAS2             |                    |                            |                            |
|              | P83/CS3/RAS3         | P83 (input mode)           | (input mode) CS3/RAS3           |                    |                            |                            |
|              | P84/CS4/RAS4/IOWR    | P84 (input mode) CS4/RAS4  |                                 |                    |                            | PMC8, PCS8 <sup>Note</sup> |
|              | P85/CS5/RAS5/IORD    | P85 (input mode)           | mode) CS5/RAS5                  |                    |                            |                            |
|              | P86/CS6/RAS6         | P86 (input mode)           | de) CS6/RAS6                    |                    |                            | PMC8                       |
|              | P87/CS7/RAS7         | P87 (input mode)           | CS7/RAS7                        |                    |                            |                            |
| Port 9       | P90/LCAS/LWR         | P90 (input mode) LCAS/LWR  |                                 |                    |                            | PMC9                       |
|              | P91/UCAS/UWR         | P91 (input mode)           | node) UCAS/UWR                  |                    |                            | _                          |
|              | P92/RD               | P92 (input mode)           | RD                              |                    |                            |                            |
|              | P93/WE               | P93 (input mode)           | ) WE                            |                    |                            |                            |
|              | P94/BCYST            | P94 (input mode)           | node) BCYST                     |                    |                            | PMC9                       |
|              | P95/OE               | P95 (input mode) OE        |                                 | PMC9               |                            |                            |
|              | P96/HLDAK            | P96 (input mode) HLDAK     |                                 |                    |                            |                            |
|              | P97/HLDRQ            | P97 (input mode) HLDRQ     |                                 |                    |                            |                            |
| Port 10      | P100/TO120           | P100 (input mode)          |                                 |                    |                            | PMC10                      |
|              | P101/TO121           | P101 (input mode)          |                                 |                    |                            |                            |
|              | P102/TCLR12          | P102 (input mode)          |                                 |                    |                            |                            |
|              | P103/TI12            | P103 (input mode)          |                                 |                    |                            |                            |
|              | P104/INTP120/TC0     | P104 (input mode)          | PMC10,<br>PCS10 <sup>Note</sup> |                    |                            |                            |
|              | P105/INTP121/TC1     | P105 (input mode)          |                                 |                    |                            |                            |
|              | P106/INTP122/TC2     | P106 (input mode)          |                                 |                    |                            |                            |
|              | P107/INTP123/TC3     | P107 (input mode)          |                                 |                    |                            |                            |

**Note** Selects the pin function when in the control mode.

|         | -                                  |                                      |                                |                    |                    | (3/3)          |  |
|---------|------------------------------------|--------------------------------------|--------------------------------|--------------------|--------------------|----------------|--|
| Port    | Pin Name                           |                                      | Pin Function A                 | fter Reset         |                    | Register Which |  |
| Name    |                                    | Single-chip<br>Mode 0                | Single-chip<br>Mode 1          | ROM-less<br>Mode 0 | ROM-less<br>Mode 1 | Sets the Mode  |  |
| Port 11 | P110/TO140                         | P110 (input mode)                    | PMC11                          |                    |                    |                |  |
|         | P111/TO141                         | P111 (input mode)                    |                                |                    |                    |                |  |
|         | P112/TCLR14                        | P112 (input mode)                    |                                |                    |                    |                |  |
|         | P113/TI14                          | P113 (input mode)                    |                                |                    |                    |                |  |
|         | P114/INTP140                       |                                      |                                |                    |                    |                |  |
|         | P115/INTP141/SO3                   | P115 (input mode)                    | PMC11,                         |                    |                    |                |  |
|         | P116/INTP142/SI3                   | PCS11 <sup>Note</sup>                |                                |                    |                    |                |  |
|         | P117/INTP143/SCK3                  | P117 (input mode)                    | ]                              |                    |                    |                |  |
| Port 12 | P120/TO150                         | P120 (input mode)                    | PMC12                          |                    |                    |                |  |
|         | P121/TO151                         | P121 (input mode)                    |                                |                    |                    |                |  |
|         | P122/TCLR15                        | P122 (input mode)                    |                                |                    |                    |                |  |
|         | P123/TI15                          | P123 (input mode)                    |                                |                    |                    |                |  |
|         | P124/INTP150                       | P150 P124 (input mode)               |                                |                    |                    |                |  |
|         | P125/INTP151                       | P125 (input mode)                    |                                |                    |                    |                |  |
|         | P126/INTP152                       |                                      |                                |                    |                    |                |  |
|         | P127/INTP153/ADTRG                 | P127 (input mode)                    | PMC12,<br>ADM1 <sup>Note</sup> |                    |                    |                |  |
| Port A  | PA0/A0 to PA7/A7                   | PA0 to PA7 A0 to A7 (input mode)     |                                |                    | MM                 |                |  |
| Port B  | PB0/A8 to PB7/A15                  | PB0 to PB7 A8 to A15<br>(input mode) |                                | MM                 |                    |                |  |
| Port X  | PX5/REFRQ                          | PX5 (input mode)                     | REFRQ                          | PMCX               |                    |                |  |
|         | PX6/WAIT                           | PX6 (input mode) WAIT                |                                |                    |                    |                |  |
|         | PX7/CLKOUT PX7 (input mode) CLKOUT |                                      |                                |                    |                    |                |  |

Note Selects the pin function when in the control mode.

# (3) Block diagram of port



Figure 12-1. Type A Block Diagram





Figure 12-3. Type C Block Diagram

\*









Figure 12-5. Type E Block Diagram



Figure 12-6. Type F Block Diagram







Figure 12-8. Type H Block Diagram





Figure 12-10. Type J Block Diagram




Figure 12-11. Type K Block Diagram







Figure 12-13. Type M Block Diagram



Figure 12-14. Type N Block Diagram



Figure 12-15. Type O Block Diagram



Figure 12-16. Type P Block Diagram

Figure 12-17. Type Q Block Diagram

\*



# 12.3 Port Pin Functions

# 12.3.1 Port 0

Port 0 is an 8-bit input/output port that can be set to input or output in 1-bit units.

|          | 7        | 6      | 5           | 4                | 3                | 2   | 1   | 0       |                      |                          |
|----------|----------|--------|-------------|------------------|------------------|-----|-----|---------|----------------------|--------------------------|
| P0       | P07      | P06    | P05         | P04              | P03              | P02 | P01 | P00     | Address<br>FFFFF000H | After reset<br>Undefined |
|          |          |        |             |                  |                  |     |     |         |                      |                          |
| Bit      | Position | Bi     | t Name      |                  |                  |     | F   | unction |                      |                          |
|          | 7 to 0   | P0n (r | n = 7 to 0) | Port (<br>Input/ | )<br>'output por | t   |     |         |                      |                          |
| <u>.</u> |          |        |             |                  |                  |     |     |         |                      |                          |

In addition to their function as port pins, the port 0 pins can also operate as real-time pulse unit (RPU) inputs/outputs, external interrupt request inputs, and DMA request inputs in the control mode.

#### (1) Operation in control mode

|        | Port                                          | Control Mode                        | Remark                                             | Block Type |
|--------|-----------------------------------------------|-------------------------------------|----------------------------------------------------|------------|
| Port 0 | P00         TO100           P01         TO101 |                                     | Real-time pulse unit (RPU) output                  | A          |
|        |                                               |                                     |                                                    |            |
|        | P02                                           | TCLR10                              | Real-time pulse unit (RPU) input                   | В          |
|        | P03                                           | TI10                                |                                                    |            |
|        | P04 to P07                                    | INTP100/DMARQ0 to<br>INTP103/DMARQ3 | External interrupt request input/DMA request input | М          |

#### (2) Input/output mode/control mode setting

Port 0 input/output mode setting is performed by means of the port 0 mode register (PM0), and control mode setting is performed by means of the port 0 mode control register (PMC0) and port/control select register 0 (PCS0).

#### (a) Port 0 mode register (PM0)

|     | 7                        | 6    | 5    | 4                                   | 3                                              | 2                                         | 1                                   | 0    |                      |                    |  |  |  |
|-----|--------------------------|------|------|-------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------|------|----------------------|--------------------|--|--|--|
| PM0 | PM07                     | PM06 | PM05 | PM04                                | PM03                                           | PM02                                      | PM01                                | PM00 | Address<br>FFFFF020H | After reset<br>FFH |  |  |  |
|     |                          |      |      |                                     |                                                |                                           |                                     |      |                      |                    |  |  |  |
|     | Bit Position Bit Name    |      |      | Function                            |                                                |                                           |                                     |      |                      |                    |  |  |  |
| 7   | 7 to 0 PM0n (n = 7 to 0) |      |      | Port Mo<br>Specifi<br>0: O<br>1: In | ode<br>es the inpu<br>utput mode<br>put mode ( | ut/output m<br>e (output b<br>(output buf | ode of pin<br>uffer ON)<br>fer OFF) | P0n. |                      |                    |  |  |  |

# (b) Port 0 mode control register (PMC0)

|          | 7       | 6                    | 5     | 4                                                                                                                                                                                                                                          | 3                                                     | 2                               | 1     | 0     |                      |                    |  |  |
|----------|---------|----------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------|-------|-------|----------------------|--------------------|--|--|
| PMC0     | PMC07   | PMC06                | PMC05 | PMC04                                                                                                                                                                                                                                      | PMC03                                                 | PMC02                           | PMC01 | PMC00 | Address<br>FFFFF040H | After reset<br>00H |  |  |
|          |         |                      |       |                                                                                                                                                                                                                                            |                                                       |                                 |       |       |                      |                    |  |  |
| Bit Po   | sition  | Bit N                | ame   |                                                                                                                                                                                                                                            |                                                       |                                 | Fun   | ction |                      |                    |  |  |
| 7 to 4 F |         | PMC0n<br>(n = 7 to - | 4)    | Port Mode Control<br>Specifies the operation mode of pin P0n. Sets in combination with the<br>register.<br>0: Input/output port mode<br>1: External interrupt request (INTP103 to INTP100) input mode/DM/<br>(DMARQ3 to DMARQ0) input mode |                                                       |                                 |       |       |                      |                    |  |  |
| 3        | 3       | PMC03                |       | Port Mode Control<br>Sets operation mode of P03 pin.<br>0: Input/output port mode<br>1: TI10 input mode                                                                                                                                    |                                                       |                                 |       |       |                      |                    |  |  |
| 2        | 2 PMC02 |                      |       | Port Mod<br>Sets ope<br>0: Input<br>1: TCLI                                                                                                                                                                                                | e Control<br>ration moc<br>:/output po<br>R10 input i | le of P02 p<br>ort mode<br>mode | in.   |       |                      |                    |  |  |
| 1        | 1 PMC01 |                      |       | Port Mode Control<br>Sets operation mode of P01 pin.<br>0: Input/output port mode<br>1: TO101 output mode                                                                                                                                  |                                                       |                                 |       |       |                      |                    |  |  |
| C        | 0 PMC00 |                      |       | Port Mode Control<br>Sets operation mode of P00 pin.<br>0: Input/output port mode<br>1: TO100 output mode                                                                                                                                  |                                                       |                                 |       |       |                      |                    |  |  |

# (c) Port/control select register 0 (PCS0)

This register can be read/written in 8- or 1-bit units. However, bits 3 to 0 are fixed at 0, so even if 1 is written, it is disregarded.

|       | 7        | 6     | 5     | 4                                                                                                                                         | 3                                                                                                                                         | 2                                         | 1         | 0            |                     |                    |  |  |  |
|-------|----------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|--------------|---------------------|--------------------|--|--|--|
| PCS0  | PCS07    | PCS06 | PCS05 | PCS04                                                                                                                                     | 0                                                                                                                                         | 0                                         | 0         | 0            | Address<br>FFFF580H | After reset<br>00H |  |  |  |
| ·     |          |       |       |                                                                                                                                           |                                                                                                                                           |                                           |           |              |                     |                    |  |  |  |
| Bit F | Position | Bit   | Name  |                                                                                                                                           |                                                                                                                                           |                                           |           |              |                     |                    |  |  |  |
|       | 7 PCS07  |       |       |                                                                                                                                           | Port Control Select<br>Specifies the operating mode when pin P07 is in the control mode.<br>0: INTP103 input mode<br>1: DMARQ3 input mode |                                           |           |              |                     |                    |  |  |  |
|       | 6        | PCS06 |       | Port Control Select<br>Specifies the operating mode when pin P06 is in the control mode.<br>0: INTP102 input mode<br>1: DMARQ2 Input mode |                                                                                                                                           |                                           |           |              |                     |                    |  |  |  |
|       | 5 PCS05  |       |       |                                                                                                                                           | ontrol Sele<br>es the ope<br>TP101 inp<br>MARQ1 inj                                                                                       | ect<br>erating mod<br>ut mode<br>out mode | le when p | in P05 is in | the control mode.   |                    |  |  |  |
|       | 4 PCS04  |       |       |                                                                                                                                           | Port Control Select<br>Specifies the operating mode when pin P04 is in the control mode.<br>0: INTP100 input mode<br>1: DMARQ0 input mode |                                           |           |              |                     |                    |  |  |  |

Caution When the port mode is specified by the PMC0 register, the settings of this register are ignored.

# 12.3.2 Port 1

Port 1 is an 8-bit input/output port that can be set to input or output in 1-bit units.

|     | 7                     | 6   | 5           | 4                | 3          | 2   | 1   | 0       |                      |                          |
|-----|-----------------------|-----|-------------|------------------|------------|-----|-----|---------|----------------------|--------------------------|
| P1  | P17                   | P16 | P15         | P14              | P13        | P12 | P11 | P10     | Address<br>FFFFF002H | After reset<br>Undefined |
| Bit | Bit Position Bit Name |     |             |                  |            |     | F   | unction |                      |                          |
| -   | 7 to 0                |     | n = 7 to 0) | Port 1<br>Input/ | output por | t   |     |         |                      |                          |

In addition to their function as port pins, the port 1 pins can also operate as real-time pulse unit (RPU) inputs/outputs, external interrupt request inputs, and DMA acknowledge outputs in the control mode.

#### (1) Operation in control mode

|        | Port                                           | Control Mode | Remark                                          | Block Type |
|--------|------------------------------------------------|--------------|-------------------------------------------------|------------|
| Port 1 | P10         TO110           P11         TO111  |              | Real-time pulse unit (RPU) output               | A          |
|        |                                                |              |                                                 |            |
|        | P12                                            | TCLR11       | Real-time pulse unit (RPU) input                | В          |
|        | P13                                            | TI11         |                                                 |            |
|        | P14 to P17 INTP110/DMAAK0 to<br>INTP113/DMAAK3 |              | External interrupt input/DMA acknowledge output | К          |

#### (2) Input/output mode/control mode setting

Port 1 input/output mode setting is performed by means of the port 1 mode register (PM1), and control mode setting is performed by means of the port 1 mode control register (PMC1) and port/control select register 1 (PCS1).

### (a) Port 1 mode register (PM1)

|                                | 7    | 6      | 5            | 4                                   | 3                                              | 2                                         | 1                            | 0    |                      |                    |
|--------------------------------|------|--------|--------------|-------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------|------|----------------------|--------------------|
| PM1                            | PM17 | PM16   | PM15         | PM14                                | PM13                                           | PM12                                      | PM11                         | PM10 | Address<br>FFFFF022H | After reset<br>FFH |
| Bit Position Bit Name Function |      |        |              |                                     |                                                |                                           |                              |      |                      |                    |
| 7 to 0                         |      | PM1n ( | (n = 7 to 0) | Port M<br>Sets P<br>0: Ot<br>1: Int | ode<br>1n in input<br>utput mode<br>out mode ( | /output mo<br>e (output bu<br>output buff | de.<br>uffer ON)<br>fer OFF) |      |                      |                    |

# (b) Port 1 mode control register (PMC1)

|       | 7       | 6     | 5     | 4                                           | 3                                                                                                                                                                                                                                                                          | 2                                      | 1     | 0      |                      |                    |  |  |  |  |
|-------|---------|-------|-------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|--------|----------------------|--------------------|--|--|--|--|
| PMC1  | PMC17   | PMC16 | PMC15 | PMC14                                       | PMC13                                                                                                                                                                                                                                                                      | PMC12                                  | PMC11 | PMC10  | Address<br>FFFFF042H | After reset<br>00H |  |  |  |  |
|       |         |       |       | -                                           |                                                                                                                                                                                                                                                                            |                                        |       |        |                      |                    |  |  |  |  |
| Bit F | osition | Bit N | Name  |                                             |                                                                                                                                                                                                                                                                            |                                        | Fu    | nction |                      |                    |  |  |  |  |
| 7     | 7 to 4  |       | o 4)  | Port Mc<br>Sets op<br>0: Inp<br>1: Ex<br>DM | <ul> <li>Port Mode Control</li> <li>Sets operation mode of P1n pin. Set in combination with PCS1.</li> <li>0: Input/output port mode</li> <li>1: External interrupt request (INTP113 to INTP110) input mode/<br/>DMA acknowledge (DMAAK3 to DMAAK0) output mode</li> </ul> |                                        |       |        |                      |                    |  |  |  |  |
|       | 3 PMC13 |       |       |                                             | Port Mode Control<br>Sets operation mode of P13 pin.<br>0: Input/output port mode<br>1: TI11 input mode                                                                                                                                                                    |                                        |       |        |                      |                    |  |  |  |  |
|       | 2 PMC12 |       |       | Port Mc<br>Sets op<br>0: Inp<br>1: TC       | de Contro<br>eration mo<br>ut/output p<br>LR11 inpu                                                                                                                                                                                                                        | l<br>ode of P12<br>oort mode<br>t mode | pin.  |        |                      |                    |  |  |  |  |
|       | 1 PMC11 |       |       | Port Mc<br>Sets op<br>0: Inp<br>1: TO       | Port Mode Control<br>Sets operation mode of P11 pin.<br>0: Input/output port mode                                                                                                                                                                                          |                                        |       |        |                      |                    |  |  |  |  |
|       | 0 PMC10 |       |       |                                             | Port Mode Control<br>Sets operation mode of P10 pin.<br>0: Input/output port mode<br>1: TO110 output mode                                                                                                                                                                  |                                        |       |        |                      |                    |  |  |  |  |

#### (c) Port/control select register 1 (PCS1)

This register can be read/written in 8- or 1-bit units. However, bits 3 to 0 are fixed at 0, so even if 1 is written, it is disregarded.

|              | 7       | 6     | 5                                    | 4                                                                                                                                          | 3                                                                                                                                                 | 2 | 1 | 0 | 1                   |                    |  |  |  |
|--------------|---------|-------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---------------------|--------------------|--|--|--|
| PCS1         | PCS17   | PCS16 | PCS15                                | PCS14                                                                                                                                      | 0                                                                                                                                                 | 0 | 0 | 0 | Address<br>FFFF582H | After reset<br>00H |  |  |  |
|              |         | 1     |                                      | 1                                                                                                                                          |                                                                                                                                                   |   |   |   |                     |                    |  |  |  |
| Bit Position |         | Bit   | Name                                 |                                                                                                                                            | Function                                                                                                                                          |   |   |   |                     |                    |  |  |  |
|              | 7 PCS17 |       | Port Co<br>Specifi<br>0: IN<br>1: DN | Port Control Select<br>Specifies the operating mode when pin P17 is in the control mode.<br>0: INTP113 input mode<br>1: DMAAK3 output mode |                                                                                                                                                   |   |   |   |                     |                    |  |  |  |
| 6 PCS16      |         |       |                                      | Port Co<br>Specifi<br>0: <u>IN</u><br>1: DN                                                                                                | Port Control Select<br>Specifies the operating mode when pin P16 is in the control mode.<br>0: <u>INTP112</u> input mode<br>1: DMAAK2 output mode |   |   |   |                     |                    |  |  |  |
|              | 5 PCS15 |       | Port Co<br>Specifi<br>0: IN<br>1: DN | Port Control Select<br>Specifies the operating mode when pin P15 is in the control mode.<br>0: INTP111 input mode<br>1: DMAAK1 output mode |                                                                                                                                                   |   |   |   |                     |                    |  |  |  |
|              | 4 PCS14 |       |                                      | Port Co<br>Specifi<br>0: IN<br>1: DN                                                                                                       | Port Control Select<br>Specifies the operating mode when pin P14 is in the control mode.<br>0: INTP110 input mode<br>1: DMAAK0 output mode        |   |   |   |                     |                    |  |  |  |

User's Manual U12688EJ4V0UM00

# 12.3.3 Port 2

Port 2 is an 8-bit input/output port that can be set to input or output in 1-bit units. However, P20 always operates as an NMI input if the edge is input.

|    | _                       | 7      | 6                | 5               | 4      | 3                      | 2   | 1   | 0        |                      |                          |  |  |
|----|-------------------------|--------|------------------|-----------------|--------|------------------------|-----|-----|----------|----------------------|--------------------------|--|--|
| P2 | 2                       | P27    | P26              | P25             | P24    | P23                    | P22 | P21 | P20      | Address<br>FFFFF004H | After reset<br>Undefined |  |  |
|    |                         |        |                  |                 |        |                        |     |     |          |                      | i                        |  |  |
|    | Bit Po                  | sition | Bi               | t Name          |        |                        |     | F   | Function |                      |                          |  |  |
|    | 7 to 1 P2n (n = 7 to 1) |        | Port 2<br>Input/ | e<br>output por | t      |                        |     |     |          |                      |                          |  |  |
|    | 0 P20                   |        |                  |                 | Fix to | Fix to NMI input mode. |     |     |          |                      |                          |  |  |

In addition to their function as port pins, the port 2 pins can also operate as serial interface (UART0/CSI0, UART1/CSI1) inputs/outputs in the control mode. Note that pin P21 does not have an alternate function and operates only in the port mode.

|   | Port     |              | Control Mode | Remark                               | Block Type |
|---|----------|--------------|--------------|--------------------------------------|------------|
|   | Port 2   | P20          | NMI          | Non-maskable interrupt request input | Ι          |
|   |          | P21          | —            | Fixed to port mode                   | J          |
| * |          | P22          | TXD0/SO0     | Input/output for serial interface    | Q          |
|   |          | P23 RXD0/SI0 |              | (UART0/CSI0, UART1/CSI1)             | D          |
|   |          | P24          | SCK0         |                                      | С          |
| * |          | P25          | TXD1/SO1     |                                      | Q          |
|   |          | P26          | RXD1/SI1     |                                      | D          |
|   | P27 SCK1 |              | SCK1         |                                      | С          |

Port 2 input/output mode setting is performed by means of the port 2 mode register (PM2), and control mode setting is performed by means of the port 2 mode control register (PMC2). Pin P20 is fixed to NMI input mode.

# (a) Port 2 mode register (PM2)

This register can be read/written in 8- or 1-bit units. However, bit 0 is fixed at 1 by hardware, so writing 0 to this bit is ignored.

| PM2   | PM27     | PM26   | 1            | Address<br>FFFFF024H                | After rese<br>FFH                              |                                           |                             |        |  |  |
|-------|----------|--------|--------------|-------------------------------------|------------------------------------------------|-------------------------------------------|-----------------------------|--------|--|--|
| Bit F | Position | Bit    | Name         |                                     |                                                |                                           | Fu                          | nction |  |  |
| 7     | to 1     | PM2n ( | (n = 7 to 1) | Port M<br>Sets P<br>0: Ou<br>1: Inj | ode<br>2n in input<br>utput mode<br>out mode ( | /output mo<br>e (output bu<br>output buff | de.<br>uffer ON)<br>er OFF) |        |  |  |

| When UART0 is used: | PM22         |
|---------------------|--------------|
| When UART1 is used: | PM25         |
| When CSI0 is used:  | PM24 to PM22 |
| When CSI1 is used:  | PM27 to PM25 |

## (b) Port 2 mode control register (PMC2)

This register can be read/written in 8- or 1-bit units. However, bit 0 is fixed to 1 by hardware, so writing 0 to this bit is ignored. Bit 1 is fixed to 0, so writing 1 to this bit is ignored.

|       | 7       | 6     | 5     | 4                                                                                                              | 3                                                                                                              | 2     | 1   | 0      |                      |                    |  |  |  |  |
|-------|---------|-------|-------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|-----|--------|----------------------|--------------------|--|--|--|--|
| PMC2  | PMC27   | PMC26 | PMC25 | PMC24                                                                                                          | PMC23                                                                                                          | PMC22 | 0   | 1      | Address<br>FFFFF044H | After reset<br>01H |  |  |  |  |
| Bit P | osition | Bit N | ame   |                                                                                                                |                                                                                                                |       | Fur | nction |                      |                    |  |  |  |  |
|       | 7       | PMC27 |       | Port Moo<br>Sets ope<br>0: Inpu<br>1: SCk                                                                      | Port Mode Control<br>Sets operation mode of P27 pin.<br>0: Input/output port mode<br>1: SCK1 input/output mode |       |     |        |                      |                    |  |  |  |  |
|       | 6       | PMC26 |       | Port Moc<br>Sets ope<br>0: Inpu<br>1: RXD                                                                      | Port Mode Control<br>Sets operation mode of P26 pin.<br>0: Input/output port mode<br>1: RXD1/SI1 input mode    |       |     |        |                      |                    |  |  |  |  |
|       | 5       | PMC25 |       | Port Mode Control<br>Sets operation mode of P25 pin.<br>0: Input/output port mode<br>1: TXD1/SO1 output mode   |                                                                                                                |       |     |        |                      |                    |  |  |  |  |
|       | 4       | PMC24 |       | Port Mode Control<br>Sets operation mode of P24 pin.<br>0: Input/output port mode<br>1: SCK0 input/output mode |                                                                                                                |       |     |        |                      |                    |  |  |  |  |
|       | 3       | PMC23 |       | Port Mode Control<br>Sets operation mode of P23 pin.<br>0: Input/output port mode<br>1: RXD0/SI0 input mode    |                                                                                                                |       |     |        |                      |                    |  |  |  |  |
|       | 2       | PMC22 |       | Port Moo<br>Sets ope<br>0: Inpu<br>1: TXD                                                                      | Port Mode Control<br>Sets operation mode of P22 pin.<br>0: Input/output port mode<br>1: TXD0/SO0 output mode   |       |     |        |                      |                    |  |  |  |  |

**Remark** UART0 and CSI0, and UART1 and CSI1 share the same pins respectively. Either one of these is selected according to the ASIM00 and ASIM10 registers (refer to **10.2.3 Control registers**).

### 12.3.4 Port 3

Port 3 is an 8-bit input/output port that can be set to input or output in 1-bit units.

| P3         P36         P35         P34         P33         P32         P31         P30         Address<br>FFFF006H         After rese<br>Undefined           Bit Position         Bit Name         Function         Function         Function           7 to 0         P3n (n = 7 to 0)         Port 3         Port 3         Function         Function |     | 7                     | 6   | 5           | 4                | 3                           | 2   | 1   | 0        |                      |                          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------|-----|-------------|------------------|-----------------------------|-----|-----|----------|----------------------|--------------------------|--|
| Bit Position     Bit Name     Function       7 to 0     P3n (n = 7 to 0)     Port 3                                                                                                                                                                                                                                                                     | P3  | P37                   | P36 | P35         | P34              | P33                         | P32 | P31 | P30      | Address<br>FFFFF006H | After reset<br>Undefined |  |
| Bit Position         Bit Name         Function           7 to 0         P3n (n = 7 to 0)         Port 3                                                                                                                                                                                                                                                 |     |                       |     |             |                  |                             |     |     |          |                      |                          |  |
| 7 to 0 P3n (n = 7 to 0) Port 3                                                                                                                                                                                                                                                                                                                          | Bit | Bit Position Bit Name |     |             |                  |                             |     | F   | Function |                      |                          |  |
| Input/output port                                                                                                                                                                                                                                                                                                                                       |     | 7 to 0                |     | n = 7 to 0) | Port 3<br>Input/ | Port 3<br>Input/output port |     |     |          |                      |                          |  |

In addition to their function as port pins, the port 3 pins can also operate as the input/output signals of the real-time pulse unit (RPU), the input signals of external interrupt, and the input/output lines of the serial interface (CSI2) when in the control mode.

|        | Port                                                       | Control Mode | Remark                            | Block Type |
|--------|------------------------------------------------------------|--------------|-----------------------------------|------------|
| Port 3 | P30                                                        | TO130        | Real-time pulse unit (RPU) output | А          |
|        | P31                                                        | TO131        |                                   |            |
|        | P32                                                        | TCLR13       | Real-time pulse unit (RPU) input  | В          |
|        | P33 TI13                                                   |              |                                   |            |
|        | P34                                                        | INTP130      | External interrupt input          |            |
|        | P35                                                        | INTP131/SO2  | External interrupt input/serial   | к          |
|        | P36         INTP132/SI2           P37         INTP133/SCK2 |              | interface (CSI2) input/output     | Μ          |
|        |                                                            |              |                                   | Ν          |

Port 3 input/output mode setting is performed by means of the port 3 mode register (PM3), and control mode setting is performed by means of the port 3 mode control register (PMC3) and port/control select register 3 (PCS3).

# (a) Port 3 mode register (PM3)

\*

| PM3                            | PM37 | PM36   | PM35         | PM34 PM33 PM32 PM31 PM30 Adi                                                                             |  |  |  |  |  | After reset<br>FFH |  |  |
|--------------------------------|------|--------|--------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--------------------|--|--|
| Bit Position Bit Name Function |      |        |              |                                                                                                          |  |  |  |  |  |                    |  |  |
| 7                              | to 0 | PM3n ( | (n - 7 to 0) | Port Mode                                                                                                |  |  |  |  |  |                    |  |  |
|                                |      |        | (1 - 7 (0 0) | Sets P3n in input/output mode.<br>0: Output mode (output buffer ON)<br>1: Input mode (output buffer OFF) |  |  |  |  |  |                    |  |  |

# (b) Port 3 mode control register (PMC3)

| PMC3   | 7<br>PMC37 | 6<br>PMC36           | 5<br>PMC35 | 4<br>PMC34                                                                                                 | 3<br>PMC33                                                                                                                                                                                                                  | 2<br>PMC32 | 1<br>PMC31 | 0<br>PMC30 | Address   | After reset |  |  |  |
|--------|------------|----------------------|------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|-----------|-------------|--|--|--|
|        |            |                      |            |                                                                                                            |                                                                                                                                                                                                                             |            |            |            | FFFFF046H | 00H         |  |  |  |
| Bit Po | sition     | Bit N                | ame        |                                                                                                            |                                                                                                                                                                                                                             |            | Fun        | ction      |           |             |  |  |  |
| 7 to   | o 5        | PMC3n<br>(n = 7 to s | 5)         | Port Mod<br>Sets oper<br>0: Inpu<br>1: Exte<br>SI2,                                                        | Port Mode Control<br>Sets operation mode of P3n pin. Set in combination with PCS3.<br>0: Input/output port mode<br>1: External interrupt request (INTP133 to INTP131) input mode/CSI2 (SCK2,<br>SI2, SO2) input/output mode |            |            |            |           |             |  |  |  |
| 4      | ŀ          | PMC34                |            | Port Mode Control<br>Sets operation mode of P34 pin.<br>0: Input/output port mode<br>1: INTP130 input mode |                                                                                                                                                                                                                             |            |            |            |           |             |  |  |  |
| 3      | 5          | PMC33                |            | Port Mode Control<br>Sets operation mode of P33 pin.<br>0: Input/output port mode<br>1: TI13 input mode    |                                                                                                                                                                                                                             |            |            |            |           |             |  |  |  |
| 2      | 2          | PMC32                |            | Port Mode Control<br>Sets operation mode of P32 pin.<br>0: Input/output port mode<br>1: TCLR13 input mode  |                                                                                                                                                                                                                             |            |            |            |           |             |  |  |  |
| 1      |            | PMC31                |            | Port Mode Control<br>Sets operation mode of P31 pin.<br>0: Input/output port mode<br>1: TO131 output mode  |                                                                                                                                                                                                                             |            |            |            |           |             |  |  |  |
| C      | )          | PMC30                |            | Port Mode Control<br>Sets operation mode of P30 pin.<br>0: Input/output port mode<br>1: TO130 output mode  |                                                                                                                                                                                                                             |            |            |            |           |             |  |  |  |

# (c) Port/control select register 3 (PCS3)

This register can be read/written in 8- or 1-bit units. However, except for bit 5, all the bits are fixed at 0, so even if 1 is written, it is disregarded.

| PCS3  | 0       | 0    | PC S25 |                                   | 0                                                                                             |                                                                                                   | 0                                                             | 0            | Address              | After rese |  |  |  |  |
|-------|---------|------|--------|-----------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------|----------------------|------------|--|--|--|--|
|       | 0       | 0    | PC335  |                                   | 0                                                                                             | 0                                                                                                 | 0                                                             | 0            | FFFF586H             | 00H        |  |  |  |  |
| Bit F | osition | Bi   | t Name |                                   | Function                                                                                      |                                                                                                   |                                                               |              |                      |            |  |  |  |  |
|       | 5       | PCS3 | 5      | Port C<br>Specifi<br>0: 1<br>1: 5 | ontrol Sele<br>ies the ope<br>NTP133 ir<br>NTP132 ir<br>NTP131 ir<br>SCK2 inpu<br>SI2 input n | ect<br>Prating mon<br>put mode<br>put mode<br>put mode<br>t/output m<br>node (P36)<br>t mode (P2) | de when p<br>(P37)<br>(P36)<br>(P35)<br>ode (P37)<br>)<br>35) | ins P37 to I | P35 are in the contr | ol mode.   |  |  |  |  |

# 12.3.5 Port 4

Port 4 is an 8-bit input/output port that can be set to input or output in 1-bit units.

| P4  | 7<br>P47              | 6<br>P46 | 6 5<br>P46 P45 |                  | 3<br>P43    | 2<br>P42 | 1<br>P41 | 0<br>P40 | Address<br>FFFFF008H | After reset<br>Undefined |
|-----|-----------------------|----------|----------------|------------------|-------------|----------|----------|----------|----------------------|--------------------------|
| Bit | Bit Position Bit Name |          |                |                  |             |          | F        | unction  |                      |                          |
| -   | 7 to 0                |          | n = 7 to 0)    | Port 4<br>Input/ | output port |          |          |          |                      |                          |

In addition to their function as port pins, the port 4 pins can also operate in the control mode (external expansion mode) as a data bus used when memory is expanded externally.

|        | Port Control Mode |          | Remark                       | Block Type |
|--------|-------------------|----------|------------------------------|------------|
| Port 4 | P40 to P47        | D0 to D7 | Data bus in memory expansion | E          |

Port 4 input/output mode setting is performed by means of the port 4 mode register (PM4), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0 to MODE3) and the memory expansion mode register (MM: refer to **3.4.6 (1)**).

### (a) Port 4 mode register (PM4)

This register can be read/written in 8- or 1-bit units.

|                                | 7      | 6      | 5            | 4                                   | 4 3 2 1 0                                      |                                           |                             |  |  |  |  |  |  |  |  |
|--------------------------------|--------|--------|--------------|-------------------------------------|------------------------------------------------|-------------------------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| PM4                            | PM47   | PM46   | PM45         | PM44                                | Address<br>FFFFF028H                           | After reset<br>FFH                        |                             |  |  |  |  |  |  |  |  |
|                                |        |        |              |                                     |                                                |                                           |                             |  |  |  |  |  |  |  |  |
| Bit Position Bit Name Function |        |        |              |                                     |                                                |                                           |                             |  |  |  |  |  |  |  |  |
|                                | 7 to 0 | PM4n ( | (n = 7 to 0) | Port M<br>Sets P<br>0: Ou<br>1: Inj | ode<br>4n in input<br>utput mode<br>put mode ( | /output mo<br>e (output bu<br>output buff | de.<br>uffer ON)<br>er OFF) |  |  |  |  |  |  |  |  |

### (b) Operation mode of port 4

|       | Bit of MM | l Register |     |                     |     |     | Operation | n Mode  |     |     |     |  |  |
|-------|-----------|------------|-----|---------------------|-----|-----|-----------|---------|-----|-----|-----|--|--|
| MM3   | MM2       | MM1        | MM0 | P40                 | P41 | P42 | P43       | P44     | P45 | P46 | P47 |  |  |
| don't | 0         | 0          | 0   |                     |     |     | Port (P40 | to P47) |     |     |     |  |  |
| care  | 0         | 0          | 1   |                     |     |     |           |         |     |     |     |  |  |
|       | 0         | 1          | 0   |                     |     |     |           |         |     |     |     |  |  |
|       | 0         | 1          | 1   | Data bus (D0 to D7) |     |     |           |         |     |     |     |  |  |
|       | 1         | 0          | 0   |                     |     |     |           |         |     |     |     |  |  |
|       | 1         | 0          | 1   |                     |     |     |           |         |     |     |     |  |  |
|       | 1         | 1          | 0   |                     |     |     |           |         |     |     |     |  |  |
|       | 1         | 1          | 1   |                     |     |     |           |         |     |     |     |  |  |

For the details of mode selection by the MODE0 to MODE3 pins, refer to **3.3.2 Operating mode specification**.

In ROM-less modes 0 or 1, or single-chip mode 1, the MM0 to MM3 bits are initialized to  $111\times$  at system reset, enabling the external expansion mode. External expansion can be disabled by programming the MM0 to MM3 bits and setting the port mode. If MM0 to MM3 are set to  $000\times$ , the subsequent external instruction cannot be fetched.

**Remark** ×: don't care

# 12.3.6 Port 5

Port 5 is an 8-bit input/output port that can be set to input or output in 1-bit units.

| P5  | 7<br>P57           | 6<br>P56     | 5<br>P55              | 4<br>P54 | 3<br>P53    | 2<br>P52 | 1<br>P51 | 0<br>P50 | Address<br>FFFFF00AH | After reset<br>Undefined |
|-----|--------------------|--------------|-----------------------|----------|-------------|----------|----------|----------|----------------------|--------------------------|
| Bit | Position<br>7 to 0 | Bi<br>P5n (r | t Name<br>n = 7 to 0) | Port 5   | 5           |          | F        | Function |                      |                          |
|     |                    |              |                       | Input/   | output port | 1        |          |          |                      |                          |

In addition to their function as port pins, the port 5 pins can also operate in the control mode (external expansion mode) as a data bus used when memory is expanded externally.

| Port   |            | Control Mode | Remark                       | Block Type |
|--------|------------|--------------|------------------------------|------------|
| Port 5 | P50 to P57 | D8 to D15    | Data bus in memory expansion | E          |

Port 5 input/output mode setting is performed by means of the port 5 mode register (PM5), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0 to MODE3) and the memory expansion mode register (MM: refer to **3.4.6 (1)**).

### (a) Port 5 mode register (PM5)

This register can be read/written in 8- or 1-bit units.

|                                | 7    | 6      | 5            | 4                                                                                                                     | 3    | 2    | 1    | 0    |                      |                    |
|--------------------------------|------|--------|--------------|-----------------------------------------------------------------------------------------------------------------------|------|------|------|------|----------------------|--------------------|
| PM5                            | PM57 | PM56   | PM55         | PM54                                                                                                                  | PM53 | PM52 | PM51 | PM50 | Address<br>FFFFF02AH | After reset<br>FFH |
| Bit Position Bit Name Function |      |        |              |                                                                                                                       |      |      |      |      |                      |                    |
| 7                              | to 0 | PM5n ( | (n = 7 to 0) | Port Mode<br>Sets P5n in input/output mode.<br>0: Output mode (output buffer ON)<br>1: Input mode (output buffer OFF) |      |      |      |      |                      |                    |

# (b) Operation mode of port 5

|     | Bit of MN  | 1 Register |     |                                 |  |   | Operation   | Mode      |  |  |  |  |
|-----|------------|------------|-----|---------------------------------|--|---|-------------|-----------|--|--|--|--|
| MM3 | MM2        | MM1        | MM0 | P50 P51 P52 P53 P54 P55 P56 P57 |  |   |             |           |  |  |  |  |
| 0   | 0          | 0          | 0   | Port (P50 to P57)               |  |   |             |           |  |  |  |  |
| 0   | 0          | 0          | 1   |                                 |  |   |             |           |  |  |  |  |
| 0   | 0          | 1          | 0   |                                 |  |   |             |           |  |  |  |  |
| 0   | 0          | 1          | 1   |                                 |  |   |             |           |  |  |  |  |
| 0   | 1          | 0          | 0   |                                 |  | Γ | Data bus (D | 8 to D15) |  |  |  |  |
| 0   | 1          | 0          | 1   |                                 |  |   |             |           |  |  |  |  |
| 0   | 1          | 1          | 0   |                                 |  |   |             |           |  |  |  |  |
| 0   | 1          | 1          | 1   |                                 |  |   |             |           |  |  |  |  |
| 1   | don't care | 9          |     | Port (50 to P57)                |  |   |             |           |  |  |  |  |

For the details of mode selection by the MODE0 to MODE3 pins, refer to **3.3.2 Operating mode specification**.

In ROM-less mode 0 or single-chip mode 1, the MM0 to MM3 bits are initialized to 1110 at system reset, enabling the external expansion mode. External expansion can be disabled by programming the MM0 to MM3 bits and setting the port mode. If MM0 to MM3 are set to ×××1 or 0000, the subsequent external instruction cannot be fetched.

Remark ×: don't care

# 12.3.7 Port 6

Port 6 is an 8-bit input/output port that can be set to input or output in 1-bit units.

|     | 7        | 6      | 5           | 4                | 3          | 2   | 1   | 0       |                      |                          |
|-----|----------|--------|-------------|------------------|------------|-----|-----|---------|----------------------|--------------------------|
| P6  | P67      | P66    | P65         | P64              | P63        | P62 | P61 | P60     | Address<br>FFFFF00CH | After reset<br>Undefined |
|     |          |        |             |                  |            |     |     |         |                      |                          |
| Bit | Position | Bi     | t Name      |                  |            |     | F   | unction |                      |                          |
|     | 7 to 0   | P6n (r | n = 7 to 0) | Port 6<br>Input/ | output por | t   |     |         |                      |                          |

In addition to their function as port pins, the port 6 pins can also operate in the control mode (external expansion mode) as an address bus used when memory is expanded externally.

|        | Port       | Control Mode | Remark                          | Block Type |
|--------|------------|--------------|---------------------------------|------------|
| Port 6 | P60 to P67 | A16 to A23   | Address bus in memory expansion | F          |

Port 6 input/output mode setting is performed by means of the port 6 mode register (PM6), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0 to MODE3) and the memory expansion mode register (MM: refer to **3.4.6 (1)**).

# (a) Port 6 mode register (PM6)

This register can be read/written in 8- or 1-bit units.

| PM6   | 7<br>PM67 | 6<br>PM66 | 5<br>PM65    | 4<br>PM64                           | 3<br>PM63                                                                                                             | 2<br>PM62 | 1<br>PM61 | 0<br>PM60 | Address<br>FFFFF02CH | After reset<br>FFH |  |  |
|-------|-----------|-----------|--------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|----------------------|--------------------|--|--|
| Bit I | Position  | Bit       | Name         |                                     | Function                                                                                                              |           |           |           |                      |                    |  |  |
| 7     | ' to 0    | PM6n (    | (n = 7 to 0) | Port M<br>Sets P<br>0: Ou<br>1: Inj | Port Mode<br>Sets P6n in input/output mode.<br>0: Output mode (output buffer ON)<br>1: Input mode (output buffer OFF) |           |           |           |                      |                    |  |  |

#### (b) Operation mode of port 6

|       | Bit of MM | 1 Register |     |     |     |     | Operation  | Mode    |     |     |     |
|-------|-----------|------------|-----|-----|-----|-----|------------|---------|-----|-----|-----|
| MM3   | MM2       | MM1        | MM0 | P60 | P61 | P62 | P63        | P64     | P65 | P66 | P67 |
| don't | 0         | 0          | 0   |     |     |     |            |         |     |     |     |
| care  | 0         | 0          | 1   |     |     |     | Dort (DCO) |         |     |     |     |
|       | 0         | 1          | 0   |     |     |     | P011 (P60  | 10 P67) |     |     |     |
|       | 0         | 1          | 1   |     |     |     |            |         |     |     |     |
|       | 1         | 0          | 0   | A16 | A17 | P62 | P63        | P64     | P65 | P66 | P67 |
|       | 1         | 0          | 1   |     |     | A18 | A19        |         |     |     |     |
|       | 1         | 1          | 0   |     |     |     |            | A20     | A21 |     |     |
|       | 1         | 1          | 1   |     |     |     |            |         |     | A22 | A23 |

For the details of mode selection by the MODE0 to MODE3 pins, refer to **3.3.2 Operating mode specification**.

In ROM-less modes 0 or 1, or single-chip mode 1, the MM0 to MM3 bits are initialized to  $111 \times$  at system reset, enabling the external expansion mode. External expansion can be disabled by programming the MM0 to MM3 bits and setting the port mode.

**Remark** ×: don't care

# 12.3.8 Port 7

Port 7 is an 8-bit input only port and all pins of port 7 are fixed in the input mode.

| P7 P77 P76 P75 P74 P73 P72 P71 P70 Address After res |    | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |                      |                          |
|------------------------------------------------------|----|-----|-----|-----|-----|-----|-----|-----|-----|----------------------|--------------------------|
| FFFF00EH Undefin                                     | P7 | P77 | P76 | P75 | P74 | P73 | P72 | P71 | P70 | Address<br>FFFFF00EH | After reset<br>Undefined |

In addition to their function as port pins, the port 7 pins can also operate as analog inputs for A/D converter.

This port is used also as the analog input pins (ANI0 to ANI7), but the port and analog input pins cannot be switched. By reading the port, the state of each pin can be read.

| Port   |            | Control Mode | Remark                         | Block Type |
|--------|------------|--------------|--------------------------------|------------|
| Port 7 | P70 to P77 | ANI0 to ANI7 | Analog input for A/D converter | G          |

### 12.3.9 Port 8

Port 8 is an 8-bit input/output port that can be set to input or output in 1-bit units.

|     | 7        | 6      | 5           | 4                | 3               | 2   | 1   | 0       |                      |                          |
|-----|----------|--------|-------------|------------------|-----------------|-----|-----|---------|----------------------|--------------------------|
| P8  | P87      | P86    | P85         | P84              | P83             | P82 | P81 | P80     | Address<br>FFFFF010H | After reset<br>Undefined |
| Bit | Position | Bi     | it Name     |                  |                 |     | F   | unction |                      |                          |
| -   | 7 to 0   | P8n (r | n = 7 to 0) | Port 8<br>Input/ | s<br>output por | t   |     |         |                      |                          |

In addition to their function as port pins, in the control mode, the port 8 pins operate as chip select signal outputs, row address strobe signal outputs for DRAM, and read/write strobe signal outputs for external I/O.

|        | Port              | Control Mode         | Remark                                                                               | Block Type |
|--------|-------------------|----------------------|--------------------------------------------------------------------------------------|------------|
| Port 8 | P80 to P83        | CS0/RAS0 to CS3/RAS3 | Chip select signal output<br>Row address signal output                               | 0          |
|        | P84 CS4/RAS4/IOWR |                      | Chip select signal output<br>Row address signal output<br>Write strobe signal output | Ρ          |
|        | P85               | CS5/RAS5/IORD        | Chip select signal output<br>Row address signal output<br>Read strobe signal output  |            |
|        | P86, P87          | CS6/RAS6, CS7/RAS7   | Chip select signal output<br>Row address signal output                               | 0          |

Port 8 input/output mode setting is performed by means of the port 8 mode register (PM8), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0 to MODE3) and the port 8 mode control register (PMC8).

#### (a) Port 8 mode register (PM8)

|       | 7        | 6      | 5           | 4                                   | 3                                               | 2                           | 1                             | 0       |                      |                    |
|-------|----------|--------|-------------|-------------------------------------|-------------------------------------------------|-----------------------------|-------------------------------|---------|----------------------|--------------------|
| PM8   | PM87     | PM86   | PM85        | PM84                                | PM83                                            | PM82                        | PM81                          | PM80    | Address<br>FFFFF030H | After reset<br>FFH |
| Bit F | Position | Bit    | Name        |                                     |                                                 |                             | Fu                            | unction |                      |                    |
| 7     | ' to 0   | PM8n ( | n = 7 to 0) | Port M<br>Sets P<br>0: Ou<br>1: Inj | ode<br>8n pin in ir<br>utput mode<br>out mode ( | nput/output<br>(output buff | mode.<br>uffer ON)<br>er OFF) |         |                      |                    |

# (b) Port 8 mode control register (PMC8)

|                  | 7                                      | 6                               | 5                        | 4                                                                                                                                                           | 3                                                                                                            | 2                                           | 1           | 0       |                      |                     |  |  |  |  |
|------------------|----------------------------------------|---------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|---------|----------------------|---------------------|--|--|--|--|
| PMC8             | PMC87                                  | PMC86                           | PMC85                    | PMC84                                                                                                                                                       | PMC83                                                                                                        | PCM82                                       | PMC81       | PMC80   | Address<br>FFFFF050H | After reset<br>Note |  |  |  |  |
| Note S<br>S<br>F | Single-chij<br>Single-chij<br>ROM-less | p mode 0<br>p mode 1<br>mode 0, | : 00H<br>: FFH<br>1: FFH |                                                                                                                                                             |                                                                                                              |                                             |             |         |                      |                     |  |  |  |  |
| Bit F            | Position                               | Bit                             | Name                     |                                                                                                                                                             |                                                                                                              |                                             | F           | unction |                      |                     |  |  |  |  |
|                  | 7                                      | PMC87                           |                          | Port M<br>Sets of<br>0: In<br>1: C                                                                                                                          | Port Mode Control<br>Sets operation mode of P87 pin.<br>0: Input/output port mode<br>1: CS7/RAS7 output mode |                                             |             |         |                      |                     |  |  |  |  |
|                  | 6                                      | PMC86                           | i                        | Port M<br>Sets of<br>0: Inp<br>1: CS                                                                                                                        | ode Contro<br>peration m<br>put/output<br>66/RAS6 o                                                          | ol<br>ode of P86<br>port mode<br>utput mode | ) pin.<br>e |         |                      |                     |  |  |  |  |
|                  | 5                                      | PMC85                           | 5 pin. Set<br>e/IORD ou  | in combina<br>Itput mode                                                                                                                                    | tion with PCS8.                                                                                              |                                             |             |         |                      |                     |  |  |  |  |
|                  | 4                                      | PMC84                           |                          | Port Mode Control<br>Sets operation mode of P84 pin. Set in combination with PCS8.<br>0: Input/output port mode<br>1: CS4/RAS4 output mode/IOWR output mode |                                                                                                              |                                             |             |         |                      |                     |  |  |  |  |
|                  | 3                                      | PMC83                           |                          | Port M<br>Sets of<br>0: Inp<br>1: CS                                                                                                                        | ode Contro<br>peration m<br>put/output<br>33/RAS3 o                                                          | ol<br>ode of P83<br>port mode<br>utput mode | 3 pin.<br>e |         |                      |                     |  |  |  |  |
|                  | 2                                      | PMC82                           |                          | Port M<br>Sets of<br>0: Inp<br>1: CS                                                                                                                        | ode Contro<br>peration m<br>put/output<br>52/RAS2 o                                                          | ol<br>ode of P82<br>port mode<br>utput mode | 2 pin.<br>e |         |                      |                     |  |  |  |  |
|                  |                                        |                                 |                          |                                                                                                                                                             |                                                                                                              |                                             |             |         |                      |                     |  |  |  |  |
|                  | 0                                      | PMC80                           |                          | Port M<br>Sets of<br>0: Inp<br>1: CS                                                                                                                        | ode Contro<br>peration m<br>put/output<br>60/RAS0 o                                                          | ol<br>ode of P80<br>port mode<br>utput mode | ) pin.<br>e |         |                      |                     |  |  |  |  |

# (c) Port/control select register 8 (PCS8)

This register can be read/written in 8- or 1-bit units. However, all the bits except for bits 5 and 4 are fixed at 0, so even if 1 is written, it is disregarded.

| PCS8                                                                                                                                                                                                                                                          | 0        | 0     | PCS85 | 4<br>PCS84                            | 0                                                 | 0                                          | 0               | 0            | Address<br>FFFFF590H | After reset<br>00H |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|---------------------------------------|---------------------------------------------------|--------------------------------------------|-----------------|--------------|----------------------|--------------------|
| Bit F                                                                                                                                                                                                                                                         | Position | Bit   | Name  |                                       |                                                   |                                            | F               | unction      |                      |                    |
| Bit Position         Bit Name         Function           5         PCS85         Port Control Select           Specifies the operating mode when pin P85 is in the control mode         0: CS5/RAS5 output mode           1: IORD output mode         1: IORD |          |       |       |                                       |                                                   |                                            |                 |              | the control mode.    |                    |
|                                                                                                                                                                                                                                                               | 4        | PCS84 |       | Port Co<br>Specifie<br>0: CS<br>1: IO | ontrol Sele<br>es the ope<br>4/RAS4 o<br>WR outpu | ect<br>erating mo<br>output moc<br>it mode | de when p<br>le | in P84 is in | the control mode.    |                    |

#### 12.3.10 Port 9

Port 9 is an 8-bit input/output port that can be set to input or output in 1-bit units.

|     | 7        | 6      | 5           | 4                | 3           | 2   | 1   | 0       |                      |                          |
|-----|----------|--------|-------------|------------------|-------------|-----|-----|---------|----------------------|--------------------------|
| P9  | P97      | P96    | P95         | P94              | P93         | P92 | P91 | P90     | Address<br>FFFFF012H | After reset<br>Undefined |
|     |          |        |             |                  |             |     |     |         |                      |                          |
| Bit | Position | Bi     | t Name      |                  |             |     | F   | unction |                      |                          |
| 7   | 7 to 0   | P9n (r | n = 7 to 0) | Port 9<br>Input/ | output port | t   |     |         |                      |                          |

In addition to their function as port pins, the port 9 pins can also operate in the control mode (external expansion mode) as control signal outputs and bus hold control signal output used when memory is expanded externally.

|        | Port | Control Mode | Remark                             | Block Type |
|--------|------|--------------|------------------------------------|------------|
| Port 9 | P90  | LWR/LCAS     | Control signal output in memory    | 0          |
|        | P91  | UWR/UCAS     | expansion                          |            |
|        | P92  | RD           |                                    |            |
|        | P93  | WE           |                                    |            |
|        | P94  | BCYST        |                                    |            |
|        | P95  | ŌĒ           |                                    |            |
|        | P96  | HLDAK        | Bus hold acknowledge signal output |            |
|        | P97  | HLDRQ        | Bus hold request signal input      | Η          |

Port 9 input/output mode setting is performed by means of the port 9 mode register (PM9), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0 to MODE3) and the port 9 mode control register (PMC9).

### (a) Port 9 mode register (PM9)

|     | 7        | 6      | 5            | 4                                   | 3                                               | 2                                          | 1                              | 0       |                      |                    |
|-----|----------|--------|--------------|-------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------|---------|----------------------|--------------------|
| PM9 | PM97     | PM96   | PM95         | PM94                                | PM93                                            | PM92                                       | PM91                           | PM90    | Address<br>FFFFF032H | After reset<br>FFH |
| Bit | Position | Bit    | Name         |                                     |                                                 |                                            | Fi                             | unction |                      |                    |
| 7   | ' to 0   | PM9n ( | (n = 7 to 0) | Port M<br>Sets P<br>0: Ou<br>1: Inj | ode<br>9n pin in ir<br>utput mode<br>out mode ( | nput/output<br>e (output bu<br>output buff | mode.<br>uffer ON)<br>fer OFF) |         |                      |                    |

# (b) Port 9 mode control register (PMC9)

|                  | 7                                   | 6                               | 5                        | 4                                    | 3                                                                                                      | 2                                           | 1            | 0       |                      |                            |  |  |  |
|------------------|-------------------------------------|---------------------------------|--------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------|---------|----------------------|----------------------------|--|--|--|
| PMC9             | PMC97                               | PMC96                           | PMC95                    | PMC94                                | PMC93                                                                                                  | PCM92                                       | PMC91        | PMC90   | Address<br>FFFFF052H | After reset<br><b>Note</b> |  |  |  |
| Note S<br>S<br>R | ingle-chij<br>ingle-chij<br>OM-less | o mode 0<br>o mode 1<br>mode 0, | : 00H<br>: FFH<br>1: FFH |                                      |                                                                                                        |                                             |              |         |                      |                            |  |  |  |
| Bit P            | osition                             | Bit                             | Name                     |                                      |                                                                                                        |                                             | F            | unction |                      |                            |  |  |  |
|                  | 7                                   | PMC97                           |                          | Port M<br>Sets of<br>0: In<br>1: H   | ode Contro<br>peration m<br>put/output<br>_DRQ inpu                                                    | ol<br>ode of P97<br>port mode<br>it mode    | ' pin.       |         |                      |                            |  |  |  |
|                  | 6                                   | PMC96                           |                          | Port M<br>Sets of<br>0: Inp<br>1: HL | ode Contro<br>peration m<br>put/output<br>DAK outp                                                     | ol<br>ode of P96<br>port mode<br>ut mode    | ) pin.       |         |                      |                            |  |  |  |
|                  | 5                                   | PMC95                           |                          | Port M<br>Sets of<br>0: Inp<br>1: OF | Port Mode Control<br>Sets operation mode of P95 pin.<br>0: Input/output port mode<br>1: OE output mode |                                             |              |         |                      |                            |  |  |  |
|                  | 4                                   | PMC94                           |                          | Port M<br>Sets of<br>0: Inp<br>1: BC | ode Contro<br>peration m<br>put/output<br>CYST outp                                                    | ol<br>ode of P94<br>port mode<br>ut mode    | l pin.       |         |                      |                            |  |  |  |
|                  | 3                                   | PMC93                           |                          | Port M<br>Sets of<br>0: Inp<br>1: W  | ode Contro<br>peration m<br>put/output<br>Ē output m                                                   | ol<br>ode of P93<br>port mode<br>node       | 3 pin.       |         |                      |                            |  |  |  |
|                  | 2                                   | PMC92                           |                          | Port M<br>Sets of<br>0: Inp<br>1: RE | ode Contro<br>peration m<br>put/output<br>out/output m                                                 | ol<br>ode of P92<br>port mode<br>ode        | 2 pin.       |         |                      |                            |  |  |  |
|                  | 1                                   | PMC91                           |                          | Port M<br>Sets of<br>0: Inf<br>1: UV | ode Contro<br>peration m<br>put/output<br>VR/UCAS                                                      | ol<br>ode of P91<br>port mode<br>output mo  | ∣pin.<br>de  |         |                      |                            |  |  |  |
|                  | 0                                   | PMC90                           |                          | Port M<br>Sets of<br>0: Inp<br>1: LV | ode Contro<br>peration m<br>put/output<br>VR/LCAS                                                      | ol<br>ode of P9(<br>port mode<br>output mod | ) pin.<br>Ie |         |                      |                            |  |  |  |

### 12.3.11 Port 10

Port 10 is an 8-bit input/output port that can be set to input or output in 1-bit units.

|     | 7        | 6      | 5           | 4                  | 3                | 2    | 1    | 0       |                      |                          |
|-----|----------|--------|-------------|--------------------|------------------|------|------|---------|----------------------|--------------------------|
| P10 | P107     | P106   | P105        | P104               | P103             | P102 | P101 | P100    | Address<br>FFFFF014H | After reset<br>Undefined |
|     |          |        |             |                    |                  |      |      |         |                      |                          |
| Bit | Position | Bit    | Name        |                    |                  |      | F    | unction |                      |                          |
| 7   | ' to 0   | P10n ( | n = 7 to 0) | Port 10<br>Input/c | )<br>putput port |      |      |         |                      |                          |

In addition to their function as port pins, the port 10 pins can also operate as real-time pulse unit (RPU) inputs/outputs, external interrupt inputs, and DMA (terminal count) outputs in the control mode.

#### (1) Operation in control mode

|         | Port            | Control Mode                  | Remark                                                  | Block Type |
|---------|-----------------|-------------------------------|---------------------------------------------------------|------------|
| Port 10 | P100            | TO120                         | Real-time pulse unit (RPU) output                       | A          |
|         | P101            | TO121                         |                                                         |            |
|         | P102            | TCLR12                        | Real-time pulse unit (RPU) input                        | В          |
|         | P103            | TI12                          |                                                         |            |
|         | P104 to<br>P107 | INTP120/TC0 to<br>INTP123/TC3 | External interrupt input/DMA<br>(terminal count) output | К          |

# (2) Input/output mode/control mode setting

Port 10 input/output mode setting is performed by means of the port 10 mode register (PM10), and control mode setting is performed by means of the port 10 mode control register (PMC10) and port/control select register 10 (PCS10).

#### (a) Port 10 mode register (PM10)

|       | 7        | 6                  | 5     | 4                                                 | 3                                                | 2                                        | 1                              | 0       |                      |                    |
|-------|----------|--------------------|-------|---------------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------|---------|----------------------|--------------------|
| PM10  | PM107    | PM106              | PM105 | PM104                                             | PM103                                            | PM102                                    | PM101                          | PM100   | Address<br>FFFFF034H | After reset<br>FFH |
|       |          |                    |       |                                                   |                                                  |                                          |                                |         |                      |                    |
| Bit I | Position | Bit                | Name  |                                                   |                                                  |                                          | Fu                             | Inction |                      |                    |
| 7     | to 0     | PM10n<br>(n = 7 to | o 0)  | Port Mo<br>Sets P <sup>2</sup><br>0: Ou<br>1: Inp | ode<br>10n pin in i<br>itput mode<br>out mode (o | nput/outpu<br>(output bu<br>output buffe | t mode.<br>ffer ON)<br>er OFF) |         |                      |                    |

# (b) Port 10 mode control register (PMC10)

|        | 7       | 6                     | 5      | 4                                                                                                                                                                                                                                                                     | 3                                                     | 2                             | 1      | 0      |                      |                    |  |  |  |  |
|--------|---------|-----------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------|--------|--------|----------------------|--------------------|--|--|--|--|
| PMC10  | PMC107  | PMC106                | PMC105 | PMC104                                                                                                                                                                                                                                                                | PMC103                                                | PMC102                        | PMC101 | PMC100 | Address<br>FFFFF054H | After reset<br>00H |  |  |  |  |
|        |         |                       |        |                                                                                                                                                                                                                                                                       |                                                       |                               |        |        |                      |                    |  |  |  |  |
| Bit Po | osition | Bit Na                | ame    |                                                                                                                                                                                                                                                                       |                                                       |                               | Fund   | ction  |                      |                    |  |  |  |  |
| 7 t    | o 4     | PMC10n<br>(n = 7 to 4 | ·)     | <ul> <li>Port Mode Control</li> <li>Sets operation mode of P10n pin. Set in combination with PCS10.</li> <li>0: Input/output port mode</li> <li>1: External interrupt request (INTP123 to INTP120) input mode/DMA terminal signal (TC3 to TC0) output mode</li> </ul> |                                                       |                               |        |        |                      |                    |  |  |  |  |
| ć      | 3       | PMC103                |        | Port Mode Control<br>Sets operation mode of P103 pin.<br>0: Input/output port mode<br>1: TI12 input mode                                                                                                                                                              |                                                       |                               |        |        |                      |                    |  |  |  |  |
| 2      | 2       | PMC102                |        | Port Mode Control<br>Sets operation mode of P102 pin.<br>0: Input/output port mode                                                                                                                                                                                    |                                                       |                               |        |        |                      |                    |  |  |  |  |
|        | I       | PMC101                |        | Port Mode Control<br>Sets operation mode of P101 pin.<br>0: Input/output port mode<br>1: TO121 output mode                                                                                                                                                            |                                                       |                               |        |        |                      |                    |  |  |  |  |
| (      | )       | PMC100                |        | Port Mode<br>Sets oper<br>0: Input<br>1: TO12                                                                                                                                                                                                                         | e Control<br>ation mode<br>/output por<br>20 output n | e of P100 p<br>t mode<br>node | oin.   |        |                      |                    |  |  |  |  |

# (c) Port/control select register 10 (PCS10)

This register can be read/written in 8- or 1-bit units. However, bits 3 to 0 are fixed at 0, so even if 1 is written, it is disregarded.

|       | 7       | 6      | 5      | 4                                        | 3                                                                                                                                        | 2                                   | 1         | 0            |                      |                    |  |  |  |  |  |
|-------|---------|--------|--------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|--------------|----------------------|--------------------|--|--|--|--|--|
| PCS10 | PCS107  | PCS106 | PCS105 | PCS104                                   | 0                                                                                                                                        | 0                                   | 0         | 0            | Address<br>FFFFF594H | After reset<br>00H |  |  |  |  |  |
| Bit P | osition | Bit    | Name   |                                          | Function                                                                                                                                 |                                     |           |              |                      |                    |  |  |  |  |  |
|       | 7       | PCS10  | 7      | Port Cor<br>Specifie<br>0: INT<br>1: TC  | ntrol Sele<br>s the ope<br>P123 inp<br>3 output r                                                                                        | ct<br>rating mod<br>ut mode<br>node | e when pi | n P107 is ir | n the control mode.  |                    |  |  |  |  |  |
|       | 6       | PCS10  | 6      | Port Cor<br>Specifie<br>0: INT<br>1: TC2 | Port Control Select<br>Specifies the operating mode when pin P106 is in the control mode.<br>0: INTP122 input mode<br>1: TC2 output mode |                                     |           |              |                      |                    |  |  |  |  |  |
|       | 5       | PCS10  | 5      | Port Con<br>Specifie<br>0: INT<br>1: TC1 | Port Control Select<br>Specifies the operating mode when pin P105 is in the control mode.<br>0: INTP121 input mode                       |                                     |           |              |                      |                    |  |  |  |  |  |
|       | 4       | PCS104 | 4      | Port Cor<br>Specifie<br>0: INT<br>1: TCC | Port Control Select<br>Specifies the operating mode when pin P104 is in the control mode.<br>0: INTP120 input mode<br>1: TC0 output mode |                                     |           |              |                      |                    |  |  |  |  |  |

Caution When the port mode is specified by the PMC10 register, the settings of this register are ignored.
# 12.3.12 Port 11

Port 11 is an 8-bit input/output port that can be set to input or output in 1-bit units.

|     | 7                        | 6    | 5                 | 4                            | 3    | 2    | 1    | 0    |                      |                          |  |
|-----|--------------------------|------|-------------------|------------------------------|------|------|------|------|----------------------|--------------------------|--|
| P11 | P117                     | P116 | P115              | P114                         | P113 | P112 | P111 | P110 | Address<br>FFFFF016H | After reset<br>Undefined |  |
|     |                          |      |                   |                              |      |      |      |      |                      |                          |  |
| Bit | Bit Position Bit Name    |      |                   | Function                     |      |      |      |      |                      |                          |  |
| 7   | 7 to 0 P11n (n = 7 to 0) |      | Port 1<br>Input/c | Port 11<br>Input/output port |      |      |      |      |                      |                          |  |
|     |                          | 1    |                   |                              |      |      |      |      |                      |                          |  |

In addition to their function as port pins, the port 11 pins can also operate as real-time pulse unit (RPU) inputs/outputs, external interrupt request inputs, and serial interface (CSI3) inputs/outputs in the control mode.

### (1) Operation in control mode

|         | Port | Control Mode | Remark                            | Block Type |
|---------|------|--------------|-----------------------------------|------------|
| Port 11 | P110 | TO140        | Real-time pulse unit (RPU) output | А          |
|         | P111 | TO141        |                                   |            |
|         | P112 | TCLR14       | Real-time pulse unit (RPU) input  | В          |
|         | P113 | TI14         |                                   |            |
|         | P114 | INTP140      | External interrupt input          |            |
|         | P115 | INTP141/SO3  | External interrupt input/serial   | К          |
|         | P116 | INTP142/SI3  | interface (CSI3) input/output     | Μ          |
|         | P117 | INTP143/SCK3 |                                   | Ν          |

# (2) Input/output mode/control mode setting

Port 11 input/output mode setting is performed by means of the port 11 mode register (PM11), and control mode setting is performed by means of the port 11 mode control register (PMC11) and port/control select register 11 (PCS11).

# (a) Port 11 mode register (PM11)

 $\star$ 

This register can be read/written in 8- or 1-bit units.

|                                | 7     | 6                  | 5     | 4                                                 | 3                                               | 2                                        | 1                              | 0     |                      |                    |
|--------------------------------|-------|--------------------|-------|---------------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------|-------|----------------------|--------------------|
| PM11                           | PM117 | PM116              | PM115 | PM114                                             | PM113                                           | PM112                                    | PM111                          | PM110 | Address<br>FFFFF036H | After reset<br>FFH |
| Bit Position Bit Name Function |       |                    |       |                                                   |                                                 |                                          |                                |       |                      |                    |
| 7                              | to 0  | PM11n<br>(n = 7 to | o 0)  | Port Mo<br>Sets P <sup>2</sup><br>0: Ou<br>1: Inp | ode<br>11n pin in i<br>tput mode<br>out mode (o | nput/outpu<br>(output bu<br>output buffe | t mode.<br>ffer ON)<br>er OFF) |       |                      |                    |

# (b) Port 11 mode control register (PMC11)

This register can be read/written in 8- or 1-bit units.

|        | 7                             | 6      | 5      | 4                                                                                                           | 3                                                                                                                                                                                                                                                                | 2      | 1      | 0      |                      |                    |  |  |  |  |
|--------|-------------------------------|--------|--------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|----------------------|--------------------|--|--|--|--|
| PMC11  | PMC117                        | PMC116 | PMC115 | PMC114                                                                                                      | PMC113                                                                                                                                                                                                                                                           | PMC112 | PMC111 | PMC110 | Address<br>FFFFF056H | After reset<br>00H |  |  |  |  |
|        |                               |        |        |                                                                                                             |                                                                                                                                                                                                                                                                  |        |        |        |                      |                    |  |  |  |  |
| Bit Po | sition                        | Bit Na | ame    | Function                                                                                                    |                                                                                                                                                                                                                                                                  |        |        |        |                      |                    |  |  |  |  |
| 7 tc   | 7 to 5 PMC11n<br>(n = 7 to 5) |        |        |                                                                                                             | <ul> <li>Port Mode Control</li> <li>Sets operation mode of P11n pin. Set in combination with PCS11.</li> <li>0: Input/output port mode</li> <li>1: External interrupt request (INTP143 to INTP141) input mode/CSI3 (SCK3, SI3, SO3) input/output mode</li> </ul> |        |        |        |                      |                    |  |  |  |  |
| 4      |                               | PMC114 |        | Port Mode Control<br>Sets operation mode of P114 pin.<br>0: Input/output port mode<br>1: INTP140 input mode |                                                                                                                                                                                                                                                                  |        |        |        |                      |                    |  |  |  |  |
| 3      |                               | PMC113 |        | Port Mode Control<br>Sets operation mode of P113 pin.<br>0: Input/output port mode<br>1: TI14 input mode    |                                                                                                                                                                                                                                                                  |        |        |        |                      |                    |  |  |  |  |
| 2      |                               | PMC112 |        | Port Mode Control<br>Sets operation mode of P112 pin.<br>0: Input/output port mode<br>1: TCLR14 input mode  |                                                                                                                                                                                                                                                                  |        |        |        |                      |                    |  |  |  |  |
| 1      |                               | PMC111 |        | Port Mode Control<br>Sets operation mode of P111 pin.<br>0: Input/output port mode<br>1: TO141 output mode  |                                                                                                                                                                                                                                                                  |        |        |        |                      |                    |  |  |  |  |
| 0      |                               | PMC110 |        | Port Mode Control<br>Sets operation mode of P110 pin.<br>0: Input/output port mode<br>1: TO140 output mode  |                                                                                                                                                                                                                                                                  |        |        |        |                      |                    |  |  |  |  |

# (c) Port/control select register 11 (PCS11)

This register can be read/written in 8- or 1-bit units. However, except for bit 5, all bits are fixed at 0, so even if 1 is written, it is disregarded.

| PCS11                          | 0 | 0     | PCS115 | 0                                                 | 0                                                                                             | 0                                                                                     | 0                                                   | 0          | Address<br>FFFF596H | After rese<br>00H |  |
|--------------------------------|---|-------|--------|---------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------|------------|---------------------|-------------------|--|
|                                |   |       |        |                                                   |                                                                                               |                                                                                       |                                                     |            |                     |                   |  |
| Bit Position Bit Name Function |   |       |        |                                                   |                                                                                               |                                                                                       |                                                     |            |                     |                   |  |
|                                | 5 | PCS11 | 5      | Port Cc<br>Specifie<br>0: IN<br>IN<br>1: SC<br>SI | ontrol Sele<br>es the ope<br>TP143 inp<br>TP142 inp<br>TP141 inp<br>CK3 input/o<br>3 input mo | ct<br>rating mod<br>ut mode (F<br>ut mode (F<br>ut mode (F<br>putput mod<br>de (P116) | le when pil<br>2117)<br>2116)<br>2115)<br>le (P117) | ns P117 to | P115 are in the cor | ntrol mode.       |  |

# 12.3.13 Port 12

Port 12 is an 8-bit input/output port that can be set to input or output in 1-bit units.

|     | 7                    | 6    | 5           | 4                 | 3                            | 2    | 1    | 0       |                      |                          |  |  |  |
|-----|----------------------|------|-------------|-------------------|------------------------------|------|------|---------|----------------------|--------------------------|--|--|--|
| P12 | P127                 | P126 | P125        | P124              | P123                         | P122 | P121 | P120    | Address<br>FFFFF018H | After reset<br>Undefined |  |  |  |
|     |                      |      |             |                   |                              |      |      |         |                      |                          |  |  |  |
| Bit | Bit Position Bit Nar |      | Name        |                   |                              |      | F    | unction |                      |                          |  |  |  |
| 7   | 7 to 0               |      | n = 7 to 0) | Port 1<br>Input/c | Port 12<br>Input/output port |      |      |         |                      |                          |  |  |  |

In addition to their function as port pins, the port 12 pins can also operate as real-time pulse unit (RPU) inputs/outputs, external interrupt request inputs, and A/D converter trigger input in the control mode.

### (1) Operation in control mode

|         | Port                                                                                                                                   | Control Mode | Remark                                                          | Block Type |
|---------|----------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------|------------|
| Port 12 | P120                                                                                                                                   | TO150        | Real-time pulse unit (RPU) output                               | А          |
|         | P121 TO151                                                                                                                             |              |                                                                 |            |
|         | P122         TCLR15           P123         TI15           P124 to P126         INTP150 to INTP152           P127         INTP153/ADTRG |              | Real-time pulse unit (RPU) input                                | В          |
|         |                                                                                                                                        |              |                                                                 |            |
|         |                                                                                                                                        |              | External interrupt input                                        |            |
|         |                                                                                                                                        |              | External interrupt input/AD converter<br>external trigger input |            |

#### (2) Input/output mode/control mode setting

Port 12 input/output mode setting is performed by means of the port 12 mode register (PM12), and control mode setting is performed by means of the port 12 mode control register (PMC12).

#### (a) Port 12 mode register (PM12)

This register can be read/written in 8- or 1-bit units.



# (b) Port 12 mode control register (PMC12)

This register can be read/written in 8- or 1-bit units.

|        | 7        | 6                     | 5      | 4                                                                                                                                                   | 3                                                                                                                                                                                                             | 2      | 1      | 0      |                      |                    |  |  |  |  |
|--------|----------|-----------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|----------------------|--------------------|--|--|--|--|
| PMC12  | PMC127   | PMC126                | PMC125 | PMC124                                                                                                                                              | PMC123                                                                                                                                                                                                        | PMC122 | PMC121 | PMC120 | Address<br>FFFFF058H | After reset<br>00H |  |  |  |  |
|        |          |                       |        |                                                                                                                                                     |                                                                                                                                                                                                               |        |        |        |                      |                    |  |  |  |  |
| Bit Po | sition   | Bit Na                | ame    | Function                                                                                                                                            |                                                                                                                                                                                                               |        |        |        |                      |                    |  |  |  |  |
| 7      | 7 PMC127 |                       |        |                                                                                                                                                     | Port Mode Control<br>Sets operation mode of P127 pin.<br>0: Input/output port mode<br>1: External interrupt request (INTP153) input mode<br>A/D converter external trigger (ADRTG) input mode <sup>Note</sup> |        |        |        |                      |                    |  |  |  |  |
| 6 tc   | 0 4      | PMC12n<br>(n = 6 to 4 | ŀ)     | Port Mode Control<br>Sets operation mode of P12n pin.<br>0: Input/output port mode<br>1: External interrupt request (INTP152 to INTP150) input mode |                                                                                                                                                                                                               |        |        |        |                      |                    |  |  |  |  |
| 3      |          | PMC123                |        | Port Mode Control<br>Sets operation mode of P123 pin.<br>0: Input/output port mode<br>1: TI15 input mode                                            |                                                                                                                                                                                                               |        |        |        |                      |                    |  |  |  |  |
| 2      |          | PMC122                |        | Port Mode Control<br>Sets operation mode of P122 pin.<br>0: Input/output port mode<br>1: TCLR15 input mode                                          |                                                                                                                                                                                                               |        |        |        |                      |                    |  |  |  |  |
| 1      |          | PMC121                |        | Port Mode Control<br>Sets operation mode of P121 pin.<br>0: Input/output port mode<br>1: TO151 output mode                                          |                                                                                                                                                                                                               |        |        |        |                      |                    |  |  |  |  |
| 0      |          | PMC120                |        | Port Mode Control<br>Sets operation mode of P120 pin.<br>0: Input/output port mode<br>1: TO150 output mode                                          |                                                                                                                                                                                                               |        |        |        |                      |                    |  |  |  |  |

**Note** If the TRG bit of the A/D converter mode register (ADM1) is set in the external trigger mode when bit PMC127 = 1, it functions as an A/D converter external trigger input (ADTRG).

### 12.3.14 Port A

Port A is an 8-bit input/output port that can be set to input or output in 1-bit units.

|     | 7                       | 6   | 5                | 4                           | 3   | 2   | 1        | 0   |                      |                          |  |  |
|-----|-------------------------|-----|------------------|-----------------------------|-----|-----|----------|-----|----------------------|--------------------------|--|--|
| PA  | PA7                     | PA6 | PA5              | PA4                         | PA3 | PA2 | PA1      | PA0 | Address<br>FFFFF01CH | After reset<br>Undefined |  |  |
|     |                         |     |                  |                             |     |     |          |     |                      |                          |  |  |
| Bit | Bit Position Bit Name   |     |                  |                             |     | F   | Function |     |                      |                          |  |  |
| 7   | 7 to 0 PAn (n = 7 to 0) |     | Port A<br>Input/ | Port A<br>Input/output port |     |     |          |     |                      |                          |  |  |

In addition to their function as port pins, the port A pins can also operate in the control mode (external expansion mode) as an address bus used when memory is expanded externally.

#### (1) Operation in control mode

|        | Port       | Control Mode | Remark                          | Block Type |  |  |
|--------|------------|--------------|---------------------------------|------------|--|--|
| Port A | PA0 to PA7 | A0 to A7     | Address bus in memory expansion | F          |  |  |

### (2) Input/output mode/control mode setting

Port A input/output mode setting is performed by means of the port A mode register (PMA), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0 to MODE3) and the memory expansion mode register (MM: refer to **3.4.6 (1)**).

#### (a) Port A mode register (PMA)

This register can be read/written in 8- or 1-bit units.

| PMA                                    | 7<br>PMA7 | 6<br>PMA6        | 5<br>PMA5 | 4<br>PMA4                           | 3<br>PMA3                                                                                                                 | 2<br>PMA2 | 1<br>PMA1 | 0<br>PMA0 | Address<br>FFFFF03CH | After reset<br>FFH |  |  |  |  |
|----------------------------------------|-----------|------------------|-----------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|----------------------|--------------------|--|--|--|--|
| Bit Position     Bit Name     Function |           |                  |           |                                     |                                                                                                                           |           |           |           |                      |                    |  |  |  |  |
| 7                                      | to 0      | PMAn<br>(n = 7 t | o 0)      | Port M<br>Sets P<br>0: Ou<br>1: Inp | Port Mode<br>Sets PAn pin in input/output mode.<br>0: Output mode (output buffer ON)<br>1: Input mode (output buffer OEE) |           |           |           |                      |                    |  |  |  |  |

# (b) Operation mode of port A

|       | Bit of MN | l Register |     | Operation Mode |     |     |            |            |     |     |     |  |  |
|-------|-----------|------------|-----|----------------|-----|-----|------------|------------|-----|-----|-----|--|--|
| MM3   | MM2       | MM1        | MM0 | PA0            | PA1 | PA2 | PA3        | PA4        | PA5 | PA6 | PA7 |  |  |
| don't | 0         | 0          | 0   |                |     |     | Port (PA0  | to PA7)    |     |     |     |  |  |
| care  | 0         | 0          | 1   |                |     |     |            |            |     |     |     |  |  |
|       | 0         | 1          | 0   |                |     |     |            |            |     |     |     |  |  |
|       | 0         | 1          | 1   | -              |     |     |            |            |     |     |     |  |  |
|       | 1         | 0          | 0   |                |     | Ad  | ddress bus | (A0 to A7) |     |     |     |  |  |
|       | 1         | 0          | 1   |                |     |     |            |            |     |     |     |  |  |
|       | 1         | 1          | 0   |                |     |     |            |            |     |     |     |  |  |
|       | 1         | 1          | 1   |                |     |     |            |            |     |     |     |  |  |

For the details of mode selection by the MODE0 to MODE3 pins, refer to **3.3.2 Operating mode specification**.

In ROM-less modes 0 or 1, or single-chip mode 1, the MM0 to MM3 bits are initialized to  $111\times$  at system reset, enabling the external address output mode. If MM0 to MM3 are set to  $000\times$  by the program, the port mode can be changed to, but the subsequent external instruction cannot be fetched from data bus.

**Remark** ×: don't care

# 12.3.15 Port B

Port B is an 8-bit input/output port that can be set to input or output in 1-bit units.

|     | 7                       | 6   | 5                | 4                | 3   | 2   | 1   | 0   |                      |                          |
|-----|-------------------------|-----|------------------|------------------|-----|-----|-----|-----|----------------------|--------------------------|
| РВ  | PB7                     | PB6 | PB5              | PB4              | PB3 | PB2 | PB1 | PB0 | Address<br>FFFFF01EH | After reset<br>Undefined |
|     |                         |     |                  |                  |     |     |     |     |                      |                          |
| Bit | Bit Position Bit Name   |     |                  | Function         |     |     |     |     |                      |                          |
| 7   | 7 to 0 PBn (n = 7 to 0) |     | Port E<br>Input/ | s<br>output port | t   |     |     |     |                      |                          |

In addition to their function as port pins, the port B pins can also operate in the control mode (external expansion mode) as an address bus used when memory is expanded externally.

#### (1) Operation in control mode

|        | Port       | Control Mode | Remark                          | Block Type |
|--------|------------|--------------|---------------------------------|------------|
| Port B | PB0 to PB7 | A8 to A15    | Address bus in memory expansion | F          |

#### (2) Input/output mode/control mode setting

Port B input/output mode setting is performed by means of the port B mode register (PMB), and control mode (external expansion mode) setting is performed by means of the mode specification pins (MODE0 to MODE3) and the memory expansion mode register (MM: refer to **3.4.6 (1)**).

# (a) Port B mode register (PMB)

This register can be read/written in 8- or 1-bit units.

|       | 7        | 6        | 5    | 4                                 | 3                                 | 2           | 1     | 0       |         |             |  |
|-------|----------|----------|------|-----------------------------------|-----------------------------------|-------------|-------|---------|---------|-------------|--|
| PMB   | PMB7     | PMB6     | PMB5 | PMB4                              | PMB3                              | PMB2        | PMB1  | PMB0    | Address | After reset |  |
|       |          |          |      |                                   |                                   |             |       |         |         |             |  |
| Bit F | Position | Bit      | Name |                                   |                                   |             | Fι    | unction |         |             |  |
| 7     | to 0     | PMBn     |      | Port M                            | ode                               |             |       |         |         |             |  |
|       |          | (n = 7 t | o 0) | Sets P                            | Bn pin in ir                      | nput/output | mode. |         |         |             |  |
|       |          |          |      | 0: Output mode (output buffer ON) |                                   |             |       |         |         |             |  |
|       |          |          |      | 1 Inr                             | 1: Input mode (output buffer OFF) |             |       |         |         |             |  |

### (b) Operation mode of port B

|       | Bit of MM | 1 Register |     |     |     |     | Operatio  | n Mode    |     |     |     |
|-------|-----------|------------|-----|-----|-----|-----|-----------|-----------|-----|-----|-----|
| MM3   | MM2       | MM1        | MM0 | PB0 | PB1 | PB2 | PB3       | PB4       | PB5 | PB6 | PB7 |
| don't | 0         | 0          | 0   |     |     |     | Port (PBC | ) to PB7) |     |     |     |
| care  | 0         | 0          | 1   | A8  | A9  | A10 | A11       | PB4       | PB5 | PB6 | PB7 |
|       | 0         | 1          | 0   |     |     |     |           | A12       | A13 |     |     |
|       | 0         | 1          | 1   |     |     |     |           |           |     | A14 | A15 |
|       | 1         | 0          | 0   |     |     |     |           |           |     |     |     |
|       | 1         | 0          | 1   |     |     |     |           |           |     |     |     |
|       | 1         | 1          | 0   |     |     |     |           |           |     |     |     |
|       | 1         | 1          | 1   |     |     |     |           |           |     |     |     |

For the details of mode selection by the MODE0 to MODE3 pins, refer to **3.3.2 Operating mode specification**.

In ROM-less modes 0 or 1, or single-chip mode 1, the MM0 to MM3 bits are initialized to 111× at system reset, enabling the external address output mode. If MM0 to MM3 are set to 000× by the program, the port mode can be changed to, but the subsequent external instruction cannot be fetched from data bus. Also, if MM0 to MM3 are set to 100x or 010x, the subsequent external address output from port B is disabled.

**Remark** ×: don't care

#### 12.3.16 Port X

Port X is a 3-bit input/output port that can be set to input or output in 1-bit units.

|                       | 7                       | 6   | 5      | 4 | 3 | 2 | 1 | 0        |                      |                          |
|-----------------------|-------------------------|-----|--------|---|---|---|---|----------|----------------------|--------------------------|
| PX                    | PX7                     | PX6 | PX5    | — | _ |   | _ | _        | Address<br>FFFFF41AH | After reset<br>Undefined |
| Bit Position Bit Name |                         |     |        |   |   |   |   | Function |                      |                          |
|                       | 7 to 5 PXn (n = 7 to 5) |     | Port X |   |   |   |   |          |                      |                          |
|                       |                         |     |        |   |   |   |   |          |                      |                          |

In addition to their function as port pins, the port X pins can also operate as DRAM refresh request signal output, wait control input, and internal system clock output in the control mode. Lower 5 bits of port X are always undefined in the case of 8-bit access.

#### (1) Operation in control mode

|        | Port | Control Mode | Remark                             | Block Type |
|--------|------|--------------|------------------------------------|------------|
| Port X | PX5  | REFRQ        | DRAM refresh request signal output | А          |
|        | PX6  | WAIT         | Wait control input                 | L          |
|        | PX7  | CLKOUT       | Internal system clock output       | A          |

#### (2) Input/output mode/control mode setting

Port X input/output mode setting is performed by means of the port X mode register (PMX), and control mode setting is performed by means of the port X mode control register (PMCX).

#### (a) Port X mode register (PMX)

This register is write-only, in 8-bit units. However, the lower 5 bits are fixed at 1 by hardware, so even if 0 is written, it is disregarded.

|     | 7        | 6                | 5    | 4                                    | 3                                                                                                                         | 2 | 1 | 0 |                      |                    |  |  |
|-----|----------|------------------|------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---|---|---|----------------------|--------------------|--|--|
| РМХ | PMX7     | PMX6             | PMX5 | 1                                    | 1                                                                                                                         | 1 | 1 | 1 | Address<br>FFFFF43AH | After reset<br>FFH |  |  |
| Bit | Position | Bit              | Name |                                      | Function                                                                                                                  |   |   |   |                      |                    |  |  |
| 7   | ' to 5   | PMXn<br>(n = 7 t | o 5) | Port Me<br>Sets P<br>0: Ou<br>1: Inp | Port Mode<br>Sets PXn pin in input/output mode.<br>0: Output mode (output buffer ON)<br>1: Input mode (output buffer OFF) |   |   |   |                      |                    |  |  |

Caution Do not change the port mode using a bit manipulation instruction (CLR1, NOT1, SET1, TST1).

\*

\*

# (b) Port X mode control register (PMCX)

\*

\*

This register is write-only, in 8-bit units. However, the lower 5 bits are fixed at 0 by hardware, so even if 1 is written, it is disregarded.

|                         | 7         | 6          | 5     | 4                                                                                                          | 3                                                     | 2                            | 1    | 0      |                      | A. (1              |
|-------------------------|-----------|------------|-------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|------|--------|----------------------|--------------------|
| PMCX                    | PMCX7     | PMCX6      | PMCX5 | 0                                                                                                          | 0                                                     | 0                            | 0    | 0      | Address<br>FFFFF45AH | After rese<br>Note |
|                         |           |            |       |                                                                                                            |                                                       |                              |      |        |                      |                    |
| ote Sir                 | ngle-chip | mode 0:    | 00H   |                                                                                                            |                                                       |                              |      |        |                      |                    |
| Single-chip mode 1: E0H |           |            |       |                                                                                                            |                                                       |                              |      |        |                      |                    |
| RC                      | DM-less n | node 0, 1: | E0H   |                                                                                                            |                                                       |                              |      |        |                      |                    |
| Bit Po                  | sition    | Bit N      | ame   |                                                                                                            |                                                       |                              | Fur  | nction |                      |                    |
| 7                       | ,         | PMCX7      |       | Port Mode Control<br>Sets operation mode of PX7 pin.<br>0: Input/output port mode<br>1: CLKOUT output mode |                                                       |                              |      |        |                      |                    |
| 6                       | ;         | PMCX6      |       | Port Mod<br>Sets ope<br>0: Inpu<br>1: WAI                                                                  | le Control<br>ration mod<br>t/output po<br>T input mo | le of PX6 p<br>rt mode<br>de | bin. |        |                      |                    |
| 5                       | ,         | PMCX5      |       | Port Mode Control<br>Sets operation mode of PX5 pin.<br>0: Input/output port mode<br>1: REFRQ output mode  |                                                       |                              |      |        |                      |                    |

# **CHAPTER 13 RESET FUNCTIONS**

When a low-level signal is input to the RESET pin, a system reset is effected and the hardware is initialized. When the RESET signal level changes from low to high, the reset state is released and program execution is started. Register contents must be initialized as required in the program.

# 13.1 Features

The reset pin ( $\overline{\text{RESET}}$ ) incorporates a noise eliminator which uses analog delay ( $\cong$  60 ns) to prevent malfunction due to noise.

### **13.2 Pin Functions**

During a system reset, most pins (all but the CLKOUT<sup>Note</sup>, RESET, X2, HVpb, Vpb, Vss, CVpb, CVss, AVpb, AVss, and AVREF pins) enter the high impedance state. Therefore, when memory is connected externally, a pull-up or pull-down resistor must be connected to the specified pins of ports 4, 5, 6, 8, 9, A, B, and X. If no resister is connected there, memory contents may be lost when these pins enter high impedance state. For the same reason, the output pins of the internal peripheral I/O functions and output ports should be handled in the same manner.

**Note** In ROM-less modes 0 and 1, and in single-chip mode 1, the CLKOUT signal is output even during reset. In single-chip mode 0, the CLKOUT signal is not output until the PMCX register is set.

Table 13-1 shows the operating state of each output pin and each input/output pin during reset.

|                                                    | Pin Name                                                          |                                | Pin S                          | State                       |                             |  |  |
|----------------------------------------------------|-------------------------------------------------------------------|--------------------------------|--------------------------------|-----------------------------|-----------------------------|--|--|
|                                                    |                                                                   | When in Single-<br>Chip Mode 0 | When in Single-<br>Chip Mode 1 | When in ROM-<br>less Mode 0 | When in ROM-<br>less Mode 1 |  |  |
| D0 to D7, A0 to<br>to RAS7, LCAS,<br>WE, BCYST, OI | A23, CS0 to CS7, RAS0<br>, LWR, UCAS, UWR, RD,<br>E, HLDAK, REFRQ | (Port mode)                    | High-impedance                 |                             |                             |  |  |
| D8 to D15                                          |                                                                   | (Port mode)                    | High-impedance                 |                             | (Port mode)                 |  |  |
| WAIT, HLDRQ                                        |                                                                   | (Port mode)                    | (Input)                        |                             |                             |  |  |
| CLKOUT                                             |                                                                   | (Port mode)                    | Operating                      |                             |                             |  |  |
| Port pin                                           | Port pin Ports 0 to 3, 10 to 12                                   |                                |                                |                             |                             |  |  |
|                                                    | Ports 4, 6, 8, 9, A, B, X                                         | (Input)                        | (Control mode)                 |                             |                             |  |  |
|                                                    | Port 5                                                            | (Input)                        | (Control mode)                 |                             | (Input)                     |  |  |

# Table 13-1. Operating State of Each Pin During Reset

### (1) Receiving the reset signal



#### (2) Reset during power on

In the reset operation during power on (when the power is turned on), in accordance with the low-level width of the RESET signal, it is necessary to secure an oscillation stabilization time of 10 ms or greater from power rise to the reception of the reset.



### 13.3 Initialization

The initial values of the CPU, internal RAM and internal peripheral I/O after reset are shown in Table 13-2. Initialize the contents of each register as necessary during program operation. Particularly, the registers shown below are related to system settings, so set them as necessary.

O Power save control register (PSC): Sets the functions of pins X1 and X2, the operation of the CLKOUT pin, etc.

O Data wait control register (DWC): Sets the number of data wait states.

| Int         | ernal Hardware      | Register Name                                                                                                                                                                                                                                                | Initial Value After Reset |
|-------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| CPU         | Program registers   | General-purpose register (r0)                                                                                                                                                                                                                                | 00000000H                 |
|             |                     | General-purpose registers (r1 to r31)                                                                                                                                                                                                                        | Undefined                 |
|             |                     | Program counter (PC)                                                                                                                                                                                                                                         | 00000000H                 |
|             | System registers    | Status saving register during interrupt (EIPC, EIPSW)                                                                                                                                                                                                        | Undefined                 |
|             |                     | Status saving register during NMI (FEPC, FEPSW)                                                                                                                                                                                                              | Undefined                 |
|             |                     | Interrupt control register (ECR)                                                                                                                                                                                                                             | 00000000H                 |
|             |                     | Program status word (PSW)                                                                                                                                                                                                                                    | 00000020H                 |
|             |                     | Status saving register during CALLT execution (CTPC, CTPSW)                                                                                                                                                                                                  | Undefined                 |
|             |                     | Status saving register during exception trap (DBPC, DBPSW)                                                                                                                                                                                                   | Undefined                 |
|             |                     | CALLT base pointer (CTBP)                                                                                                                                                                                                                                    | Undefined                 |
| Internal R  | АМ                  | _                                                                                                                                                                                                                                                            | Undefined                 |
| Internal pe | eripheral I/O       | Command register (PRCMD)                                                                                                                                                                                                                                     | Undefined                 |
|             | Bus control         | Data wait control register (DWC1)                                                                                                                                                                                                                            | FFFFH                     |
|             | functions           | Data wait control register (DWC2)                                                                                                                                                                                                                            | FFH                       |
|             |                     | Bus cycle control register (BCC)                                                                                                                                                                                                                             | 5555H                     |
|             |                     | Bus cycle type configuration register (BCT)                                                                                                                                                                                                                  | 0000H                     |
|             |                     | Bus size configuration register (BSC)                                                                                                                                                                                                                        | 5555H/0000H               |
|             | Memory control      | DRAM configuration registers (DRC0 to DRC3)                                                                                                                                                                                                                  | 3FC1H                     |
|             | functions           | DRAM type configuration register (DTC)                                                                                                                                                                                                                       | 0000H                     |
|             |                     | Page ROM configuration register (PRC)                                                                                                                                                                                                                        | E0H                       |
|             |                     | Refresh control registers (RFC0 to RFC3)                                                                                                                                                                                                                     | 0000H                     |
|             |                     | Refresh wait control register (RWC)                                                                                                                                                                                                                          | 00H                       |
|             | DMA functions       | Control registers (DADC0 to DADC3)                                                                                                                                                                                                                           | 0000H                     |
|             |                     | Source address registers (DSA0H to DSA3H, DSA0L to DSA3L)                                                                                                                                                                                                    | Undefined                 |
|             |                     | Channel control registers (DCHC0 to DCHC3)                                                                                                                                                                                                                   | 00H                       |
|             |                     | Destination address registers (DDA0H to DDA3H, DDA0L to DDA3L)                                                                                                                                                                                               | Undefined                 |
|             |                     | Trigger factor registers (DTFR0 to DTFR3)                                                                                                                                                                                                                    | 00H                       |
|             |                     | Byte count registers (DBC0 to DBC3)                                                                                                                                                                                                                          | Undefined                 |
|             |                     | Fly-by transfer data wait control register (FDW)                                                                                                                                                                                                             | 00H                       |
|             |                     | DMA disable status register (DDIS)                                                                                                                                                                                                                           | 00H                       |
|             |                     | DMA restart register (DRST)                                                                                                                                                                                                                                  | 00H                       |
|             | Interrupt/exception | In-service priority register (ISPR)                                                                                                                                                                                                                          | 00H                       |
|             | control functions   | External interrupt mode registers (INTM0 to INTM6)                                                                                                                                                                                                           | 00H                       |
|             |                     | Interrupt control registers (OVIC10 to OVIC15, CMIC40, CMIC41, P10IC0 to P10IC3, P11IC0 to P11IC3, P12IC0 to P12IC3, P13IC0 to P13IC3, P14IC0 to P14IC3, P15IC0 to P15IC3, DMAIC0 to DMAIC3, CSIC0 to CSIC3, SEIC0, STIC0, SRIC0, SRIC1, SEIC1, STIC1, ADIC) | 47H                       |

# Table 13-2. Initial Values of CPU, Internal RAM, and Internal Peripheral I/O after Reset (1/2)

| Inte          | ernal Hardware             | Register Name                                                                                                              | Initial Value After Reset |
|---------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Internal      | Clock generator            | System status register (SYS)                                                                                               | 0000000×B                 |
| peri-         | functions                  | Clock control register (CKC)                                                                                               | 00H                       |
| pnerai<br>I/O |                            | Power save control register (PSC)                                                                                          | 00H                       |
|               | Timer/counter<br>functions | Capture/compare registers (CC100 to CC103, CC110 to CC113, CC120 to CC123, CC130 to CC133, CC140 to CC143, CC150 to CC153) | Undefined                 |
|               |                            | Compare registers (CM40, CM41)                                                                                             | Undefined                 |
|               |                            | Timer overflow status register (TOVS)                                                                                      | 00H                       |
|               |                            | Timer control register (TMC10 to TMC15, TMC40, TMC41)                                                                      | 00H                       |
|               |                            | Timer unit mode register (TUM10 to TUM15)                                                                                  | 0000H                     |
|               |                            | Timers (TM10 to TM15, TM40, TM41)                                                                                          | 0000H                     |
|               |                            | Timer output control registers (TOC10 to TOC15)                                                                            | 00H                       |
|               | Serial interface           | Asynchronous serial interface status registers (ASIS0, ASIS1)                                                              | 00H                       |
|               | functions                  | Asynchronous serial interface mode registers (ASIM00, ASIM10)                                                              | 80H                       |
|               |                            | Asynchronous serial interface mode registers (ASIM01, ASIM11)                                                              | 00H                       |
|               |                            | Receive buffers (RXB0, RXB1, RXB0L, RXB1L)                                                                                 | Undefined                 |
|               |                            | Transmit shift registers (TXS0, TXS1, TXS0L, TXS1L)                                                                        | Undefined                 |
|               |                            | Clocked serial interface mode registers (CSIM0 to CSIM3)                                                                   | 00H                       |
|               |                            | Serial I/O shift registers (SIO0 to SIO3)                                                                                  | Undefined                 |
|               |                            | Baud rate generator compare registers (BRGC0 to BRGC2)                                                                     | Undefined                 |
|               |                            | Baud rate generator prescaler mode registers (BPRM0 to BPRM2)                                                              | 00H                       |
|               | A/D converters             | Mode register (ADM0)                                                                                                       | 00H                       |
|               |                            | Mode register (ADM1)                                                                                                       | 07H                       |
|               |                            | A/D conversion result registers (ADCR0 to ADCR7, ADCR0H to ADCR7H)                                                         | Undefined                 |
|               | Port functions             | Ports (P0 to P12, PA, PB, PX)                                                                                              | Undefined                 |
|               |                            | Port/control select registers (PCS0, PCS1, PCS3, PCS8, PCS10, PCS11)                                                       | 00H                       |
|               |                            | Mode registers (PM0 to PM12, PMA, PMB, PMX)                                                                                | FFH                       |
|               |                            | Mode control registers (PMC0, PMC1, PMC3, PMC10 to PMC12)                                                                  | 00H                       |
|               |                            | Mode control register (PMC2)                                                                                               | 01H                       |
|               |                            | Mode control registers (PMC8, PCM9)                                                                                        | 00H/FFH                   |
|               |                            | Mode control register (PMCX)                                                                                               | 00H/E0H                   |
|               |                            | Memory expansion mode register (MM)                                                                                        | 00H/07H/0FH               |

# Table 13-2. Initial Values of CPU, Internal RAM, and Internal Peripheral I/O after Reset (2/2)

Caution "Undefined" in the above table is undefined during power-on reset, or undefined as a result of data destruction when RESET is input and the data writing timing has been synchronized. For other RESETs, data is held in the same state it was in before the RESET operation.

**Remark** ×: Undefined

# CHAPTER 14 FLASH MEMORY (µPD70F3102, 70F3102A)

The  $\mu$ PD70F3102 and 70F3102A are V850E/MS1 on-chip flash memory products with a 128KB flash memory. In the instruction fetch to this flash memory, 4 bytes can be accessed by a single clock, just as in the mask ROM version.

Writing to flash memory can be performed with the device mounted on the target system (on board). A dedicated flash programmer is connected to the target system to perform writing.

The following can be considered as the development environment and applications of flash memory.

- Software can be altered after the V850E/MS1 is solder-mounted on the target system.
- Small-scale production of various models is made easier by differentiating software.
- Data adjustment in starting mass production is made easier.

### 14.1 Features

- 4-byte/1-clock access (in instruction fetch access)
- All area one-shot erase
- Erase in 4KB block units
- Communication through serial interface from the dedicated flash programmer
- Erase/write voltage: VPP = 7.8 V
- On-board programming
- Number of rewrites: 100 times (target)

# 14.2 Writing by Flash Programmer

Writing can be performed either on-board or off-board by the dedicated flash programmer.

#### (1) On-board programming

The contents of the flash memory are rewritten after the V850E/MS1 is mounted on the target system. Mount connectors, etc., on the target system to connect the dedicated flash programmer.

#### (2) Off-board programming

Writing to flash memory is performed by the dedicated program adapter (FA Series), etc., before mounting the V850E/MS1 on the target system.

Remark The FA Series is a product of Naito Densei Machida Mfg. Co., Ltd.

# 14.3 Programming Environment

The following shows the environment required for writing programs to the flash memory of the V850E/MS1.



A host machine is required for controlling the dedicated flash programmer.

UART0 or CSI0 is used for the interface between the dedicated flash programmer and the V850E/MS1 to perform writing, erasing, etc. A dedicated program adapter (FA Series) is required for off-board writing.

### 14.4 Communication System

## (1) UART0

Transfer rate: 4,800 to 76,800 bps (LSB first)



### (2) CSI0

Transfer rate: up to 10 Mbps (MSB first)



The dedicated flash programmer outputs the transfer clock, and the V850E/MS1 operates as a slave.

# 14.5 Pin Handling

When performing on-board writing, install a connector on the target system to connect to the dedicated flash programmer. Also, install a function on-board to switch from the normal operation mode (single-chip modes 0 and 1 or ROM-less modes 0 and 1) to the flash memory programming mode.

When switched to the flash memory programming mode, all the pins not used for the flash memory programming become the same status as that immediately after reset of single-chip mode 0. Therefore, all the ports become output high-impedance status, so that pin handling is required when the external device does not acknowledge the output high-impedance status.

#### 14.5.1 MODE3/VPP pin

In the normal operation mode, 0 V is input to the MODE3/VPP pin. In the flash memory programming mode, 7.8 V writing voltage is supplied to the MODE3/VPP pin. The following shows an example of the connection of the MODE3/VPP pin.



# 14.5.2 Serial interface pin

The following shows the pins used by each serial interface.

| Serial Interface | Pins Used      |  |  |  |  |
|------------------|----------------|--|--|--|--|
| CSI0             | SO0, SI0, SCK0 |  |  |  |  |
| UART0            | TXD0, RXD0     |  |  |  |  |

When connecting a dedicated flash programmer to a serial interface pin that is connected to other devices onboard, care should be taken to avoid the conflict of signals and the malfunction of other devices, etc.

### (1) Conflict of signals

When connecting a dedicated flash programmer (output) to a serial interface pin (input) which is connected to another device (output), conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the other device or set the other device to the output high-impedance status.



# (2) Malfunction of the other device

When connecting a dedicated flash programmer (output or input) to a serial interface pin (input or output) connected to another device (input), the signal output to the other device may cause the device to malfunction. To avoid this, isolate the connection to the other device or make the setting so that the input signal to the other device is ignored.



### 14.5.3 RESET pin

When connecting the reset signals of the dedicated flash programmer to the RESET pin that is connected to the reset signal generation circuit on-board, conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the reset signal generator.

When reset signal is input from the user system during the flash memory programming mode, programming operation will not be performed correctly. Therefore, do not input signals other than the reset signals from the dedicated flash programmer.



#### 14.5.4 NMI pin

Do not change the input signal to the NMI pin during the flash memory programming mode. If the NMI pin is changed during the flash memory programming mode, the programming may not be performed correctly.

#### 14.5.5 MODE0 to MODE2 pins

If MODE0 to MODE2 are set as follows and a write voltage (7.8 V) is applied to the MODE3/VPP pin and reset is canceled, these pins change to the flash memory programming mode.

- MODE0: Low-level input
- MODE1: High-level input
- MODE2: Low-level input

#### 14.5.6 Port pin

When the flash memory programming mode is set, all the port pins except the pins which communicate with the dedicated flash programmer become output high-impedance status. The treatment of these port pins is not necessary. If problems such as disabling output high-impedance status should occur to the external devices connected to the port, connect them to VDD or Vss through resistors.

#### 14.5.7 WAIT pin

Input high- or low-level signals relative to HVDD to WAIT pin.

#### 14.5.8 Other signal pins

Connect X1, X2, and AVREF to the same status as that in the normal operation mode.

### 14.5.9 Power supply

Supply the power supply (VDD, HVDD, VSS, AVDD, AVSS, CVDD, and CVSS) the same as that in normal operation mode. Connect VDD and GND of the dedicated flash programmer to VDD and VSS. (VDD of the dedicated flash programmer is provided with power supply monitoring function.)

# 14.6 Programming Method

# 14.6.1 Flash memory control

The following shows the procedure for manipulating the flash memory.



#### 14.6.2 Flash memory programming mode

When rewriting the contents of flash memory using the dedicated flash programmer, set the V850E/MS1 in the flash memory programming mode. When switching modes, set the MODE0 to MODE2 and MODE3/VPP pins before releasing reset.

When performing on-board writing, change modes using a jumper, etc.

- MODE0: Low-level input
- MODE1: High-level input
- MODE2: Low-level input
- MODE3/Vpp: 7.8 V

|                               |     |    |     | Flash memory programming mode |
|-------------------------------|-----|----|-----|-------------------------------|
| MODE0 to MODE2                | ××0 | _X | 010 |                               |
| 7.8 V<br>MODE3/Vpp 3 V<br>0 V |     |    |     | <br>1 $2$ $n$ $n$             |
| RESET                         |     |    |     |                               |
| <b>Remark</b> ×: don't car    | Э   |    |     |                               |

#### 14.6.3 Selection of communication mode

In the V850E/MS1, a communication mode is selected by inputting pulses (16 pulses max.) to VPP pin after switching to the flash memory programming mode. The VPP pulse is generated by the dedicated flash programmer.

The following shows the relationship between the number of pulses and the communication modes.

| VPP Pulse | Communication Mode | Remarks                                               |
|-----------|--------------------|-------------------------------------------------------|
| 0         | CSI0               | V850E/MS1 performs slave operation, MSB first         |
| 8         | UART0              | Communication rate: 9600 bps (after reset), LSB first |
| Others    | RFU (reserved)     | Setting prohibited                                    |

Caution When UART0 is selected, the receive clock is calculated based on the reset command sent from the dedicated flash programmer after receiving the VPP pulse.

# 14.6.4 Communication command

The V850E/MS1 communicates with the dedicated flash programmer by means of commands. A command sent from the dedicated flash programmer to the V850E/MS1 is called a "command". The response signal sent from the V850E/MS1 to the dedicated flash programmer is called a "response command".



The following shows the commands of the firmware for flash memory control of the V850E/MS1. All of these commands are issued from the dedicated flash programmer, and the V850E/MS1 performs the various processing corresponding to the commands.

| Category                   | Command Name                          | Function                                                                                                                           |
|----------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Verify                     | One-shot verify command               | Compares the contents of the entire memory and the input data.                                                                     |
|                            | Block verify command                  | Compares the contents of the specified memory block and the input data.                                                            |
| Erase                      | One-shot erase command                | Erases the contents of the entire memory.                                                                                          |
|                            | Block erase command                   | Erases the contents of the specified memory block setting 4 Kbytes as one memory block.                                            |
|                            | Write back command                    | Writes back the contents that is over-erased.                                                                                      |
| Blank check                | One-shot blank check command          | Checks the erase state of the entire memory.                                                                                       |
|                            | Block blank check command             | Checks the erase of the specified memory block.                                                                                    |
| Data write                 | High-speed write command              | Writes data by the specification of the write<br>address and the number of bytes to be written,<br>and executes verify check.      |
|                            | Continuous write command              | Writes data from the address following the high-<br>speed write command executed immediately<br>before, and executes verify check. |
| System setting and control | Status read out command               | Acquires the status of operations.                                                                                                 |
|                            | Oscillating frequency setting command | Sets the oscillating frequency.                                                                                                    |
|                            | Erasing time setting command          | Sets the erasing time of one-shot erase.                                                                                           |
|                            | Writing time setting command          | Sets the writing time of data write.                                                                                               |
|                            | Write back time setting command       | Sets the write back time.                                                                                                          |
|                            | Baud rate setting command             | Sets the baud rate when using UART0.                                                                                               |
|                            | Silicon signature command             | Reads outs the silicon signature information.                                                                                      |
|                            | Reset command                         | Escapes from each state.                                                                                                           |

The V850E/MS1 sends back response commands to the commands issued from the dedicated flash programmer. The following shows the response commands the V850E/MS1 sends out.

| Response Command Name | Function                                |
|-----------------------|-----------------------------------------|
| ACK (acknowledge)     | Acknowledges command/data, etc.         |
| NAK (not acknowledge) | Acknowledges illegal command/data, etc. |

[MEMO]

# APPENDIX A REGISTER INDEX

|                 |                                                 |       | (1/8) |
|-----------------|-------------------------------------------------|-------|-------|
| Register Symbol | Register Name                                   | Unit  | Page  |
| ADCR0           | A/D conversion result register 0                | ADC   | 321   |
| ADCR0H          | A/D conversion result register 0H               | ADC   | 321   |
| ADCR1           | A/D conversion result register 1                | ADC   | 321   |
| ADCR1H          | A/D conversion result register 1H               | ADC   | 321   |
| ADCR2           | A/D conversion result register 2                | ADC   | 321   |
| ADCR2H          | A/D conversion result register 2H               | ADC   | 321   |
| ADCR3           | A/D conversion result register 3                | ADC   | 321   |
| ADCR3H          | A/D conversion result register 3H               | ADC   | 321   |
| ADCR4           | A/D conversion result register 4                | ADC   | 321   |
| ADCR4H          | A/D conversion result register 4H               | ADC   | 321   |
| ADCR5           | A/D conversion result register 5                | ADC   | 321   |
| ADCR5H          | A/D conversion result register 5H               | ADC   | 321   |
| ADCR6           | A/D conversion result register 6                | ADC   | 321   |
| ADCR6H          | A/D conversion result register 6H               | ADC   | 321   |
| ADCR7           | A/D conversion result register 7                | ADC   | 321   |
| ADCR7H          | A/D conversion result register 7H               | ADC   | 321   |
| ADIC            | Interrupt control register                      | INTC  | 217   |
| ADM0            | A/D converter mode register 0                   | ADC   | 318   |
| ADM1            | A/D converter mode register 1                   | ADC   | 320   |
| ASIM00          | Asynchronous serial interface mode register 00  | UART0 | 287   |
| ASIM01          | Asynchronous serial interface mode register 01  | UART0 | 290   |
| ASIM10          | Asynchronous serial interface mode register 10  | UART1 | 287   |
| ASIM11          | Asynchronous serial interface mode register 11  | UART1 | 290   |
| ASIS0           | Asynchronous serial interface status register 0 | UART0 | 291   |
| ASIS1           | Asynchronous serial interface status register 1 | UART1 | 291   |
| BCC             | Bus cycle control register                      | BCU   | 117   |
| ВСТ             | Bus cycle type configuration register           | BCU   | 105   |
| BPRM0           | Baud rate generator prescaler mode register 0   | BRG0  | 314   |
| BPRM1           | Baud rate generator prescaler mode register 1   | BRG1  | 314   |
| BPRM2           | Baud rate generator prescaler mode register 2   | BRG2  | 314   |
| BRGC0           | Baud rate generator compare register 0          | BRG0  | 313   |
| BRGC1           | Baud rate generator compare register 1          | BRG1  | 313   |
| BRGC2           | Baud rate generator compare register 2          | BRG2  | 313   |
| BSC             | Bus size configuration register                 | BCU   | 108   |

| Register Symbol | Register Name                            | Unit | Page |
|-----------------|------------------------------------------|------|------|
| CC100           | Capture/compare register 100             | RPU  | 252  |
| CC101           | Capture/compare register 101             | RPU  | 252  |
| CC102           | Capture/compare register 102             | RPU  | 252  |
| CC103           | Capture/compare register 103             | RPU  | 252  |
| CC110           | Capture/compare register 110             | RPU  | 252  |
| CC111           | Capture/compare register 111             | RPU  | 252  |
| CC112           | Capture/compare register 112             | RPU  | 252  |
| CC113           | Capture/compare register 113             | RPU  | 252  |
| CC120           | Capture/compare register 120             | RPU  | 252  |
| CC121           | Capture/compare register 121             | RPU  | 252  |
| CC122           | Capture/compare register 122             | RPU  | 252  |
| CC123           | Capture/compare register 123             | RPU  | 252  |
| CC130           | Capture/compare register 130             | RPU  | 252  |
| CC131           | Capture/compare register 131             | RPU  | 252  |
| CC132           | Capture/compare register 132             | RPU  | 252  |
| CC133           | Capture/compare register 133             | RPU  | 252  |
| CC140           | Capture/compare register 140             | RPU  | 252  |
| CC141           | Capture/compare register 141             | RPU  | 252  |
| CC142           | Capture/compare register 142             | RPU  | 252  |
| CC143           | Capture/compare register 143             | RPU  | 252  |
| CC150           | Capture/compare register 150             | RPU  | 252  |
| CC151           | Capture/compare register 151             | RPU  | 252  |
| CC152           | Capture/compare register 152             | RPU  | 252  |
| CC153           | Capture/compare register 153             | RPU  | 252  |
| СКС             | Clock control register                   | CG   | 233  |
| CM40            | Compare register 40                      | RPU  | 253  |
| CM41            | Compare register 41                      | RPU  | 253  |
| CMIC40          | Interrupt control register               | INTC | 217  |
| CMIC41          | Interrupt control register               | INTC | 217  |
| CSIC0           | Interrupt control register               | INTC | 217  |
| CSIC1           | Interrupt control register               | INTC | 217  |
| CSIC2           | Interrupt control register               | INTC | 217  |
| CSIC3           | Interrupt control register               | INTC | 217  |
| CSIM0           | Clocked serial interface mode register 0 | CSI0 | 301  |
| CSIM1           | Clocked serial interface mode register 1 | CSI1 | 301  |
| CSIM2           | Clocked serial interface mode register 2 | CSI2 | 301  |
| CSIM3           | Clocked serial interface mode register 3 | CSI3 | 301  |

(2/8)

| (3/8) |  |
|-------|--|
|-------|--|

| Register Symbol | Register Name                                 | Unit | Page |
|-----------------|-----------------------------------------------|------|------|
| СТВР            | CALLT base pointer                            | CPU  | 72   |
| CTPC            | Status saving register during CALLT execution | CPU  | 72   |
| CTPSW           | Status saving register during CALLT execution | CPU  | 72   |
| DADC0           | DMA addressing control register 0             | DMAC | 168  |
| DADC1           | DMA addressing control register 1             | DMAC | 168  |
| DADC2           | DMA addressing control register 2             | DMAC | 168  |
| DADC3           | DMA addressing control register 3             | DMAC | 168  |
| DBC0            | DMA byte count register 0                     | DMAC | 167  |
| DBC1            | DMA byte count register 1                     | DMAC | 167  |
| DBC2            | DMA byte count register 2                     | DMAC | 167  |
| DBC3            | DMA byte count register 3                     | DMAC | 167  |
| DBPC            | Status saving register during exception trap  | CPU  | 72   |
| DBPSW           | Status saving register during exception trap  | CPU  | 72   |
| DCHC0           | DMA channel control register 0                | DMAC | 170  |
| DCHC1           | DMA channel control register 1                | DMAC | 170  |
| DCHC2           | DMA channel control register 2                | DMAC | 170  |
| DCHC3           | DMA channel control register 3                | DMAC | 170  |
| DDA0H           | DMA destination address register 0H           | DMAC | 165  |
| DDA0L           | DMA destination address register 0L           | DMAC | 166  |
| DDA1H           | DMA destination address register 1H           | DMAC | 165  |
| DDA1L           | DMA destination address register 1L           | DMAC | 166  |
| DDA2H           | DMA destination address register 2H           | DMAC | 165  |
| DDA2L           | DMA destination address register 2L           | DMAC | 166  |
| DDA3H           | DMA destination address register 3H           | DMAC | 165  |
| DDA3L           | DMA destination address register 3L           | DMAC | 166  |
| DDIS            | DMA disable status register                   | BCU  | 173  |
| DMAIC0          | Interrupt control register                    | INTC | 217  |
| DMAIC1          | Interrupt control register                    | INTC | 217  |
| DMAIC2          | Interrupt control register                    | INTC | 217  |
| DMAIC3          | Interrupt control register                    | INTC | 217  |
| DRC0            | DRAM configuration register 0                 | BCU  | 139  |
| DRC1            | DRAM configuration register 1                 | BCU  | 139  |
| DRC2            | DRAM configuration register 2                 | BCU  | 139  |
| DRC3            | DRAM configuration register 3                 | BCU  | 139  |
| DRST            | DMA restart register                          | BCU  | 173  |
| DSA0H           | DMA source address register 0H                | DMAC | 163  |
| DSA0L           | DMA source address register 0L                | DMAC | 164  |

| (4/0) |
|-------|
|-------|

| Register Symbol | Register Name                             | Unit | Page |
|-----------------|-------------------------------------------|------|------|
| DSA1H           | DMA source address register 1H            | DMAC | 163  |
| DSA1L           | DMA source address register 1L            | DMAC | 164  |
| DSA2H           | DMA source address register 2H            | DMAC | 163  |
| DSA2L           | DMA source address register 2L            | DMAC | 164  |
| DSA3H           | DMA source address register 3H            | DMAC | 163  |
| DSA3L           | DMA source address register 3L            | DMAC | 164  |
| DTC             | DRAM type configuration register          | BCU  | 142  |
| DTFR0           | DMA trigger factor register 0             | DMAC | 171  |
| DTFR1           | DMA trigger factor register 1             | DMAC | 171  |
| DTFR2           | DMA trigger factor register 2             | DMAC | 171  |
| DTFR3           | DMA trigger factor register 3             | DMAC | 171  |
| DWC1            | Data wait control register 1              | BCU  | 113  |
| DWC2            | Data wait control register 2              | BCU  | 113  |
| ECR             | Interrupt source register                 | CPU  | 72   |
| EIPC            | Status saving register during interrupt   | CPU  | 72   |
| EIPSW           | Status saving register during interrupt   | CPU  | 72   |
| FDW             | Flyby transfer data wait control register | BCU  | 174  |
| FEPC            | Status saving register during NMI         | CPU  | 72   |
| FEPSW           | Status saving register during NMI         | CPU  | 72   |
| INTMO           | External interrupt mode register 0        | INTC | 208  |
| INTM1           | External interrupt mode register 1        | INTC | 221  |
| INTM2           | External interrupt mode register 2        | INTC | 221  |
| INTM3           | External interrupt mode register 3        | INTC | 221  |
| INTM4           | External interrupt mode register 4        | INTC | 221  |
| INTM5           | External interrupt mode register 5        | INTC | 221  |
| INTM6           | External interrupt mode register 6        | INTC | 221  |
| ISPR            | In-service priority register              | INTC | 218  |
| MM              | Memory expansion mode register            | Port | 87   |
| OVIC10          | Interrupt control register                | INTC | 216  |
| OVIC11          | Interrupt control register                | INTC | 216  |
| OVIC12          | Interrupt control register                | INTC | 216  |
| OVIC13          | Interrupt control register                | INTC | 217  |
| OVIC14          | Interrupt control register                | INTC | 217  |
| OVIC15          | Interrupt control register                | INTC | 217  |
| P0              | Port 0                                    | Port | 368  |
| P1              | Port 1                                    | Port | 371  |
| P2              | Port 2                                    | Port | 374  |

| (5/8) |  | (5 | /8 | ) |
|-------|--|----|----|---|
|-------|--|----|----|---|

| Register Symbol | Register Name              | Unit | Page |
|-----------------|----------------------------|------|------|
| P3              | Port 3                     | Port | 377  |
| P4              | Port 4                     | Port | 380  |
| P5              | Port 5                     | Port | 382  |
| P6              | Port 6                     | Port | 384  |
| P7              | Port 7                     | Port | 386  |
| P8              | Port 8                     | Port | 387  |
| P9              | Port 9                     | Port | 391  |
| P10             | Port 10                    | Port | 394  |
| P10IC0          | Interrupt control register | INTC | 217  |
| P10IC1          | Interrupt control register | INTC | 217  |
| P10IC2          | Interrupt control register | INTC | 217  |
| P10IC3          | Interrupt control register | INTC | 217  |
| P11             | Port 11                    | Port | 397  |
| P11IC0          | Interrupt control register | INTC | 217  |
| P11IC1          | Interrupt control register | INTC | 217  |
| P11IC2          | Interrupt control register | INTC | 217  |
| P11IC3          | Interrupt control register | INTC | 217  |
| P12             | Port 12                    | Port | 401  |
| P12IC0          | Interrupt control register | INTC | 217  |
| P12IC1          | Interrupt control register | INTC | 217  |
| P12IC2          | Interrupt control register | INTC | 217  |
| P12IC3          | Interrupt control register | INTC | 217  |
| P13IC0          | Interrupt control register | INTC | 217  |
| P13IC1          | Interrupt control register | INTC | 217  |
| P13IC2          | Interrupt control register | INTC | 217  |
| P13IC3          | Interrupt control register | INTC | 217  |
| P14IC0          | Interrupt control register | INTC | 217  |
| P14IC1          | Interrupt control register | INTC | 217  |
| P14IC2          | Interrupt control register | INTC | 217  |
| P14IC3          | Interrupt control register | INTC | 217  |
| P15IC0          | Interrupt control register | INTC | 217  |
| P15IC1          | Interrupt control register | INTC | 217  |
| P15IC2          | Interrupt control register | INTC | 217  |
| P15IC3          | Interrupt control register | INTC | 217  |
| PA              | Port A                     | Port | 403  |
| PB              | Port B                     | Port | 405  |
| PC              | Program counter            | CPU  | 71   |

| Register Symbol | Register Name                   | Unit | Page |
|-----------------|---------------------------------|------|------|
| PCS0            | Port/control select register 0  | Port | 370  |
| PCS1            | Port/control select register 1  | Port | 373  |
| PCS3            | Port/control select register 3  | Port | 380  |
| PCS8            | Port/control select register 8  | Port | 390  |
| PCS10           | Port/control select register 10 | Port | 396  |
| PCS11           | Port/control select register 11 | Port | 400  |
| PM0             | Port 0 mode register            | Port | 368  |
| PM1             | Port 1 mode register            | Port | 371  |
| PM2             | Port 2 mode register            | Port | 375  |
| PM3             | Port 3 mode register            | Port | 378  |
| PM4             | Port 4 mode register            | Port | 381  |
| PM5             | Port 5 mode register            | Port | 383  |
| PM6             | Port 6 mode register            | Port | 385  |
| PM8             | Port 8 mode register            | Port | 388  |
| PM9             | Port 9 mode register            | Port | 392  |
| PM10            | Port 10 mode register           | Port | 394  |
| PM11            | Port 11 mode register           | Port | 398  |
| PM12            | Port 12 mode register           | Port | 401  |
| PMA             | Port A mode register            | Port | 403  |
| PMB             | Port B mode register            | Port | 405  |
| PMC0            | Port 0 mode control register    | Port | 369  |
| PMC1            | Port 1 mode control register    | Port | 372  |
| PMC2            | Port 2 mode control register    | Port | 376  |
| PMC3            | Port 3 mode control register    | Port | 379  |
| PMC8            | Port 8 mode control register    | Port | 389  |
| PMC9            | Port 9 mode control register    | Port | 393  |
| PMC10           | Port 10 mode control register   | Port | 395  |
| PMC11           | Port 11 mode control register   | Port | 399  |
| PMC12           | Port 12 mode control register   | Port | 402  |
| PMCX            | Port X mode control register    | Port | 408  |
| PMX             | Port X mode register            | Port | 407  |
| PRC             | Page ROM configuration register | BCU  | 134  |
| PRCMD           | Command register                | CPU  | 101  |
| PSC             | Power save control register     | CPU  | 237  |
| PSW             | Program status word             | CPU  | 73   |
| PX              | Port X                          | Port | 407  |

(6/8)

٦

CPU

71

r0 to r31

General register

| (1/0) |
|-------|
|-------|

| Register Symbol | Register Name                          | Unit  | Page |
|-----------------|----------------------------------------|-------|------|
| RFC0            | Refresh control register 0             | BCU   | 153  |
| RFC1            | Refresh control register 1             | BCU   | 153  |
| RFC2            | Refresh control register 2             | BCU   | 153  |
| RFC3            | Refresh control register 3             | BCU   | 153  |
| RWC             | Refresh wait control register          | BCU   | 156  |
| RXB0            | Receive buffer 0 (9 bits)              | UART0 | 292  |
| RXB0L           | Receive buffer 0L (Lower order 8 bits) | UART0 | 292  |
| RXB1            | Receive buffer 1 (9 bits)              | UART1 | 292  |
| RXB1L           | Receive buffer 1L (Lower order 8 bits) | UART1 | 292  |
| SEIC0           | Interrupt control register             | INTC  | 217  |
| SEIC1           | Interrupt control register             | INTC  | 217  |
| SIO0            | Serial I/O shift register 0            | CSI0  | 303  |
| SIO1            | Serial I/O shift register 1            | CSI1  | 303  |
| SIO2            | Serial I/O shift register 2            | CSI2  | 303  |
| SIO3            | Serial I/O shift register 3            | CSI3  | 303  |
| SRIC0           | Interrupt control register             | INTC  | 217  |
| SRIC1           | Interrupt control register             | INTC  | 217  |
| STIC0           | Interrupt control register             | INTC  | 217  |
| STIC1           | Interrupt control register             | INTC  | 217  |
| SYS             | System status register                 | CPU   | 102  |
| TM10            | Timer 10                               | RPU   | 251  |
| TM11            | Timer 11                               | RPU   | 251  |
| TM12            | Timer 12                               | RPU   | 251  |
| TM13            | Timer 13                               | RPU   | 251  |
| TM14            | Timer 14                               | RPU   | 251  |
| TM15            | Timer 15                               | RPU   | 251  |
| TM40            | Timer 40                               | RPU   | 253  |
| TM41            | Timer 41                               | RPU   | 253  |
| TMC10           | Timer control register 10              | RPU   | 257  |
| TMC11           | Timer control register 11              | RPU   | 257  |
| TMC12           | Timer control register 12              | RPU   | 257  |
| TMC13           | Timer control register 13              | RPU   | 257  |
| TMC14           | Timer control register 14              | RPU   | 257  |
| TMC15           | Timer control register 15              | RPU   | 257  |
| TMC40           | Timer control register 40              | RPU   | 259  |
| TMC41           | Timer control register 41              | RPU   | 259  |
| TOC10           | Timer output control register 10       | RPU   | 260  |

# (8/8)

| Register Symbol | Register Name                                   | Unit  | Page |
|-----------------|-------------------------------------------------|-------|------|
| TOC11           | Timer output control register 11                | RPU   | 260  |
| TOC12           | Timer output control register 12                | RPU   | 260  |
| TOC13           | Timer output control register 13                | RPU   | 260  |
| TOC14           | Timer output control register 14                | RPU   | 260  |
| TOC15           | Timer output control register 15                | RPU   | 260  |
| TOVS            | Timer overflow status register                  | RPU   | 261  |
| TUM10           | Timer unit mode register 10                     | RPU   | 254  |
| TUM11           | Timer unit mode register 11                     | RPU   | 254  |
| TUM12           | Timer unit mode register 12                     | RPU   | 254  |
| TUM13           | Timer unit mode register 13                     | RPU   | 254  |
| TUM14           | Timer unit mode register 14                     | RPU   | 254  |
| TUM15           | Timer unit mode register 15                     | RPU   | 254  |
| TXS0            | Transmit shift register 0 (9 bits)              | UART0 | 293  |
| TXS0L           | Transmit shift register 0L (Lower order 8 bits) | UART0 | 293  |
| TXS1            | Transmit shift register 1 (9 bits)              | UART1 | 293  |
| TXS1L           | Transmit shift register 1L (Lower order 8 bits) | UART1 | 293  |

# **B.1 General Examples**

# (1) Register symbols used to describe operands

| Register Symbol | Explanation                                                                                                                                   |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| reg1            | General registers (r0 to r31): Used as source registers.                                                                                      |
| reg2            | General registers (r0 to r31): Used mainly as destination registers.                                                                          |
| reg3            | General registers (r0 to r31): Used mainly to store the remainders of division results and the higher order 3 bits of multiplication results. |
| immX            | X bit immediate                                                                                                                               |
| dispX           | X bit displacement                                                                                                                            |
| regID           | System register number                                                                                                                        |
| bit#3           | 3-bit data for specifying the bit number                                                                                                      |
| ер              | Element pointer (r30)                                                                                                                         |
| сссс            | 4-bit data which show the conditions code                                                                                                     |
| vector          | 5-bit data which specify the trap vector (00H to 1FH)                                                                                         |
| listX           | X item register list                                                                                                                          |

# (2) Register symbols used to describe op codes

| Register Symbol | Explanation                                        |
|-----------------|----------------------------------------------------|
| R               | 1-bit data of a code which specifies reg1 or regID |
| r               | 1-bit data of the code which specifies reg2        |
| w               | 1-bit data of the code which specifies reg3        |
| d               | 1-bit displacement data                            |
| i               | 1-bit immediate data                               |
| сссс            | 4-bit data which show the conditions code          |
| bbb             | 3-bit data for specifying the bit number           |
| L               | 1-bit data which specifies a register list         |

# (3) Register symbols used in operation (1/2)

| Register Symbol        | Explanation                            |
|------------------------|----------------------------------------|
| $\leftarrow$           | Input for                              |
| GR[]                   | General register                       |
| SR [ ]                 | System register                        |
| zero-extend (n)        | Expand n with zeros until word length. |
| sign-extend (n)        | Expand n with signs until word length. |
| load-memory (a, b)     | Read data from address a until size b. |
| store-memory (a, b, c) | Write data b in address a to size c.   |
| load-memory-bit (a, b) | Read bit b of address a.               |

# (3) Register symbols used in operation (2/2)

| Register Symbol               | Explanation                                                                                                                                                                          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| store-memory-bit (a, b, c)    | Write bit b of address a to c.                                                                                                                                                       |
| saturated (n)                 | Execute saturated processing of n (n is a 2's complement).<br>If, as a result of calculations,<br>$n \ge 7FFFFFFH$ , let it be 7FFFFFFH.<br>$n \le 80000000H$ , let it be 80000000H. |
| result                        | Reflects the results in a flag.                                                                                                                                                      |
| Byte                          | Byte (8 bits)                                                                                                                                                                        |
| Half-word                     | Half word (16 bits)                                                                                                                                                                  |
| Word                          | Word (32 bits)                                                                                                                                                                       |
| +                             | Addition                                                                                                                                                                             |
| -                             | Subtraction                                                                                                                                                                          |
| =                             | Bit concatenation                                                                                                                                                                    |
| X                             | Multiplication                                                                                                                                                                       |
| ÷                             | Division                                                                                                                                                                             |
| %                             | Remainder from division results                                                                                                                                                      |
| AND                           | Logical product                                                                                                                                                                      |
| OR                            | Logical sum                                                                                                                                                                          |
| XOR                           | Exclusive OR                                                                                                                                                                         |
| NOT                           | Logical negation                                                                                                                                                                     |
| logically shift left by       | Logical shift left                                                                                                                                                                   |
| logically shift right by      | Logical shift right                                                                                                                                                                  |
| arithmetically shift right by | Arithmetic shift right                                                                                                                                                               |

# (4) Register symbols used in an execution clock

| Register Symbol | Explanation                                                                                                 |
|-----------------|-------------------------------------------------------------------------------------------------------------|
| i : issue       | If executing another instruction immediately after executing the first instruction.                         |
| r : repeat      | If repeating execution of the same instruction immediately after executing the first instruction.           |
| I : latency     | If referring to the results of instruction execution immediately after execution using another instruction. |

# (5) Register symbols used in flag operations

| Identifier | Explanation                                    |
|------------|------------------------------------------------|
| (Blank)    | No change                                      |
| 0          | Clear to 0                                     |
| Х          | Set or cleared in accordance with the results. |
| R          | Previously saved values are restored.          |
#### (6) Condition codes

| Condition Name<br>(cond) | Condition Code<br>(cccc) | Condition Formula         | Explanation                                   |
|--------------------------|--------------------------|---------------------------|-----------------------------------------------|
| V                        | 0000                     | OV = 1                    | Overflow                                      |
| NV                       | 1000                     | OV = 0                    | No overflow                                   |
| C/L                      | 0001                     | CY = 1                    | Carry<br>Lower (Less than)                    |
| NC/NL                    | 1001                     | CY = 0                    | No carry<br>Not lower (Greater than or equal) |
| Z/E                      | 0010                     | Z = 1                     | Zero<br>Equal                                 |
| NZ/NE                    | 1010                     | Z = 0                     | Not zero<br>Not equal                         |
| NH                       | 0011                     | (CY or Z) = 1             | Not higher (Less than or equal)               |
| Н                        | 1011                     | (CY or Z) = 0             | Higher (Greater than)                         |
| Ν                        | 0100                     | S = 1                     | Negative                                      |
| Р                        | 1 1 0 0                  | S = 0                     | Positive                                      |
| т                        | 0101                     | —                         | Always (Unconditional)                        |
| SA                       | 1 1 0 1                  | SAT = 1                   | Saturated                                     |
| LT                       | 0110                     | (S xor OV) = 1            | Less than signed                              |
| GE                       | 1 1 1 0                  | (S  xor  OV) = 0          | Greater than or equal signed                  |
| LE                       | 0 1 1 1                  | ((S  xor  OV)  or  Z) = 1 | Less than or equal signed                     |
| GT                       | 1 1 1 1                  | ((S xor OV) or Z) = 0     | Greater than signed                           |

#### B.2 Instruction Set (in Alphabetical Order)

| -        | -                   |                            |                                                              |                                   |        |               |             |    |      |   | ( | 1/6)     |
|----------|---------------------|----------------------------|--------------------------------------------------------------|-----------------------------------|--------|---------------|-------------|----|------|---|---|----------|
| Mnemonic | Operand             | Op Code                    | Operation                                                    |                                   | Ex     | ecut<br>Clocl | ion<br>‹    |    | Flaç |   | ; |          |
|          |                     |                            |                                                              |                                   | i      | r             | Ι           | СҮ | ٥V   | S | Z | SAT      |
| ADD      | reg1,reg2           | rrrr001110RRRRR            | GR[reg2]←GR[reg2]+GR[reg1]                                   |                                   | 1      | 1             | 1           | ×  | ×    | × | × |          |
|          | imm5,reg2           | rrrrr010010iiiii           | GR[reg2]←GR[reg2]+sign-extend(ir                             | mm5)                              | 1      | 1             | 1           | ×  | ×    | × | × |          |
| ADDI     | imm16,reg1,reg2     | rrrr110000RRRRR            | GR[reg2]←GR[reg1]+sign-extend(ir                             | mm16)                             | 1      | 1             | 1           | ×  | ×    | × | × |          |
|          |                     |                            |                                                              |                                   |        |               |             |    |      |   |   |          |
| AND      | reg1,reg2           | rrrr001010RRRRR            | GR[reg2]←GR[reg2]AND GR[reg1]                                |                                   | 1      | 1             | 1           |    | 0    | × | × |          |
| ANDI     | imm16,reg1,reg2     | rrrr110110RRRRR            | GR[reg2]←GR[reg1]AND zero-exte                               | nd(imm16)                         | 1      | 1             | 1           |    | 0    | 0 | × |          |
|          |                     |                            |                                                              |                                   |        |               |             |    |      |   |   |          |
| Bcond    | disp9               | ddddd1011dddcccc<br>Note 1 | if conditions are satisfied<br>then PC←PC+sign-extend(disp9) | When conditions are satisfied     |        | 2<br>Note 2   | 2<br>Note 2 |    |      |   |   |          |
|          |                     |                            |                                                              | When conditions are not satisfied | 1      | 1             | 1           |    |      |   |   |          |
| BSH      | reg2,reg3           | rrrr11111100000            | GR[reg3]←GR[reg2] (23 : 16) II GR                            | [reg2] (31 : 24) II               | 1      | 1             | 1           | ×  | 0    | × | × |          |
|          |                     | wwwww01101000010           | GR[reg2] (7 : 0) II GR[reg2] (15 : 8)                        |                                   |        |               |             |    |      |   |   |          |
| BSW      | reg2,reg3           | rrrr1111100000             | GR[reg3]←GR[reg2] (7 : 0) ∥ GR[re                            | g2] (15 : 8) ll GR                | 1      | 1             | 1           | ×  | 0    | × | × |          |
|          |                     | wwww01101000000            | [reg2] (23 : 16) II GR[reg2] (31 : 24)                       |                                   |        |               |             |    |      |   |   |          |
| CALLT    | imm6                | 0000001000iiiiii           | CTPC←PC+2(return PC)                                         |                                   | 4      | 4             | 4           |    |      |   |   |          |
|          |                     |                            | CTPSW←PSW                                                    |                                   |        |               |             |    |      |   |   |          |
|          |                     |                            | adr-CTBP+zero-extend(imm6 logically shift left by 1)         |                                   |        |               |             |    |      |   |   |          |
|          |                     |                            | PC←CTBP+zero-extend(Load-memo                                | ory(adr,Half-word))               |        |               |             |    |      |   |   |          |
| CLR1     | bit#3, disp16[reg1] | 10bbb111110RRRRR           | adr←GR[reg1]+sign-extend(disp16)                             | )                                 | 3      | 3             | 3           |    |      |   | × |          |
|          |                     | dddddddddddddd             | Z flag←Not(Load-memory-bit(adr,t                             | oit#3))                           | Note 3 | Note 3        | Note 3      |    |      |   |   |          |
|          |                     |                            | Store-memory-bit(adr,bit#3,0)                                |                                   |        |               |             |    |      |   |   |          |
|          | reg2,[reg1]         | rrrrr111111RRRRR           | adr←GR[reg1]                                                 |                                   | 3      | 3             | 3           |    |      |   | × |          |
|          |                     | 0000000011100100           | ∠ flag←Not(Load-memory-bit(adr,r                             | reg2))                            | Note 3 | NOte 3        | Note 3      |    |      |   |   |          |
|          |                     |                            | Store-memory-bit(adr,reg2,0)                                 |                                   |        |               |             |    |      |   |   |          |
| CMOV     | cccc,imm5,reg2,reg3 |                            | if conditions are satisfied                                  | _)                                | 1      | 1             | 1           |    |      |   |   |          |
|          |                     | wwwww011000cccc0           | then GR[reg3]—sign-extended(imm                              | 15)                               |        |               |             |    |      |   |   |          |
|          |                     |                            |                                                              |                                   |        |               |             |    |      |   |   |          |
|          | cccc,reg1,reg2,reg3 |                            | If conditions are satisfied                                  |                                   | 1      | 1             | 1           |    |      |   |   |          |
|          |                     | wwwww01100166660           | then GR[reg3] ← GR[reg1]                                     |                                   |        |               |             |    |      |   |   |          |
| CMD      | rog1 rog2           |                            |                                                              |                                   | 1      | 1             | 1           | ~  | ~    | ~ | ~ |          |
| CIVIF    | imm5 rog2           |                            | result CR[reg2] sign sytend(imm)                             | =)                                | 1      | 1             | 1           | ×  | ×    | × | × |          |
| OTDET    | immo,regz           |                            |                                                              | )                                 | 1      | 1             | 1           | ×  | ×    | × | × | <b>D</b> |
| GIKEI    |                     |                            |                                                              |                                   | 3      | 3             | 3           | ĸ  | к    | к | к | к        |
| וח       |                     | 0000011111100000           |                                                              |                                   | 1      | 1             | 1           |    |      |   |   |          |
|          |                     | 0000000101100000           |                                                              |                                   |        |               |             |    |      |   |   |          |
|          |                     |                            |                                                              |                                   |        |               |             |    |      |   |   |          |

|          |                    |                  |                                                         |          |        | (2/    |    |       |   |   |     |  |  |
|----------|--------------------|------------------|---------------------------------------------------------|----------|--------|--------|----|-------|---|---|-----|--|--|
| Mnemonic | Operand            | Op Code          | Operation                                               | Ex       | ecuti  | ion    |    | Flags |   |   |     |  |  |
|          |                    |                  |                                                         | (        | Clock  | k      |    |       |   |   |     |  |  |
|          |                    |                  |                                                         | i        | r      | Ι      | CY | OV    | S | Ζ | SAT |  |  |
| DISPOSE  | imm5,list12        | 0000011001iiiiiL | sp←sp+zero-extend(imm5 logically shift left by 2)       | N+1      | N+1    | N+1    |    |       |   |   |     |  |  |
|          |                    | LLLLLLLLLL00000  | GR[reg in list12] Load-memory (sp, Word)                | Note 4   | Note 4 | Note 4 |    |       |   |   |     |  |  |
|          |                    |                  | sp←sp+4                                                 |          |        |        |    |       |   |   |     |  |  |
|          |                    |                  | repeat 2 steps above until all regs in list12 is loaded | $\vdash$ |        |        |    |       |   |   |     |  |  |
|          | imm5,list12,[reg1] | 0000011001iiiiiL | sp←sp+zero-extend(imm5 logically shift left by 2)       | N+3      | N+3    | N+3    |    |       |   |   |     |  |  |
|          |                    | LLLLLLLLRRRRR    | GR[reg in list12] Load-memory (sp, Word)                | Note 4   | Note 4 | Note 4 |    |       |   |   |     |  |  |
|          |                    | Note 5           | sp←sp+4                                                 |          |        |        |    |       |   |   |     |  |  |
|          |                    |                  | repeat 2 steps above until all regs in list12 is loaded |          |        |        |    |       |   |   |     |  |  |
|          |                    |                  | PC-GR[reg1]                                             |          |        |        |    |       |   |   |     |  |  |
| DIV      | reg1,reg2,reg3     | rrrr111111RRRRR  | GR[reg2]←GR[reg2}÷GR[reg1]                              | 35       | 35     | 35     |    | ×     | × | × |     |  |  |
|          |                    | wwww01011000000  | GR[reg3]←GR[reg2]%GR[reg1]                              |          |        |        |    |       |   |   |     |  |  |
| DIVH     | reg1,reg2          | rrrr000010RRRRR  | GR[reg2]←GR[reg2]÷GR[reg1] <sup>№te 6</sup>             | 35       | 35     | 35     |    | ×     | × | × |     |  |  |
|          | reg1,reg2,reg3     | rrrr111111RRRRR  | GR[reg2]←GR[reg2]÷GR[reg1] <sup>№te 6</sup>             | 35       | 35     | 35     |    | ×     | × | × |     |  |  |
|          |                    | wwww0101000000   | GR[reg3]←GR[reg2]%GR[reg1]                              |          |        |        |    |       |   |   |     |  |  |
| DIVHU    | reg1,reg2,reg3     | rrrr111111RRRRR  | GR[reg2]←GR[reg2]÷GR[reg1] <sup>№te 6</sup>             | 34       | 34     | 34     |    | ×     | × | × |     |  |  |
|          |                    | wwww01010000010  | GR[reg3]←GR[reg2]%GR[reg1]                              |          |        |        |    |       |   |   |     |  |  |
| DIVU     | reg1,reg2,reg3     | rrrr111111RRRRR  | GR[reg2]←GR[reg2]÷GR[reg1]                              | 34       | 34     | 34     |    | ×     | × | × |     |  |  |
|          |                    | wwww01011000010  | GR[reg3]←GR[reg2]%GR[reg1]                              |          |        |        |    |       |   |   |     |  |  |
| EI       |                    | 1000011111100000 | PSW.ID←0                                                | 1        | 1      | 1      |    |       |   |   |     |  |  |
|          |                    | 000000101100000  |                                                         |          |        |        |    |       |   |   |     |  |  |
| HALT     |                    | 0000011111100000 | Stop                                                    | 1        | 1      | 1      |    |       |   |   |     |  |  |
|          |                    | 000000100100000  |                                                         |          |        |        |    |       |   |   |     |  |  |
| HSW      | reg2,reg3          | rrrr11111100000  | GR[reg3]←GR[reg2](15 : 0) II GR[reg2] (31 : 16)         | 1        | 1      | 1      | ×  | 0     | × | × |     |  |  |
|          |                    | wwww01101000100  |                                                         |          |        |        |    |       |   |   |     |  |  |
| JARL     | disp22,reg2        | rrrr11110ddddd   | GR[reg2]←PC+4                                           | 2        | 2      | 2      |    |       |   |   |     |  |  |
|          |                    | ddddddddddddd    | PC←PC+sign-extend(disp22)                               |          |        |        |    |       |   |   |     |  |  |
|          |                    | Note 7           |                                                         |          |        |        |    |       |   |   |     |  |  |
| JMP      | [reg1]             | 00000000011RRRRR | PC←GR[reg1]                                             | 3        | 3      | 3      |    |       |   |   |     |  |  |
| JR       | disp22             | 0000011110dddddd | PC←PC+sign-extend(disp22)                               | 2        | 2      | 2      |    |       |   |   |     |  |  |
|          |                    | ddddddddddddd    |                                                         |          |        |        |    |       |   |   |     |  |  |
|          |                    | Note 7           |                                                         |          |        |        |    |       |   |   |     |  |  |
| LD.B     | disp16[reg1],reg2  | rrrr111000RRRRR  | adr←GR[reg1]+sign-extend(disp16)                        | 1        | 1      | n      |    |       |   |   |     |  |  |
|          |                    | ddddddddddddd    | GR[reg2]←sign-extend(Load-memory(adr,Byte))             |          |        | Note 9 |    |       |   |   |     |  |  |
| LD.BU    | disp16[reg1],reg2  | rrrr11110bRRRRR  | adr←GR[reg1]+sign-extend(disp16)                        | 1        | 1      | n      |    |       |   |   |     |  |  |
|          |                    | dddddddddddddd   | GR[reg2]←zero-extend(Load-memory(adr,Byte))             |          |        |        |    |       |   |   |     |  |  |
|          |                    | Notes 8, 10      |                                                         |          |        | Note11 |    |       |   |   |     |  |  |
| LD.H     | disp16[reg1],reg2  | rrrr111001RRRRR  | adr←GR[reg1]+sign-extend(disp16)                        | 1        | 1      | n      |    |       |   |   |     |  |  |
|          |                    | ddddddddddddd    | GR[reg2]←sign-extend(Load-memory(adr,Half-              |          |        |        |    |       |   |   |     |  |  |
|          |                    | Note 8           | word))                                                  |          |        | Note 9 |    |       |   |   |     |  |  |

|          |                    |                     |                                                                                          |                 |         |               |          |                  |    |   | (: | 3/6) |
|----------|--------------------|---------------------|------------------------------------------------------------------------------------------|-----------------|---------|---------------|----------|------------------|----|---|----|------|
| Mnemonic | Operand            | Op Code             | Operation                                                                                |                 | Ex<br>( | ecut<br>Cloci | ion<br>k |                  | j  |   |    |      |
|          |                    |                     |                                                                                          |                 | i       | r             | 1        | CY               | ov | s | z  | SAT  |
| LD.HU    | disp16[reg1],reg2  | rrrr111111RRRRR     | adr←GR[reg1]+sign-extend(disp16)                                                         | )               | 1       | 1             | n        |                  |    |   |    |      |
|          |                    | ddddddddddddd       | GR[reg2]←zero-extend(Load-memo                                                           | ory(adr,Half-   |         |               |          |                  |    |   | ,  |      |
|          |                    | Note 8              | word))                                                                                   |                 |         |               | Note11   |                  |    |   | ,  |      |
| LD.W     | disp16[reg1],reg2  | rrrr111001RRRRR     | adr←GR[reg1]+sign-exend(disp16)                                                          |                 | 1       | 1             | n        |                  |    |   |    |      |
|          |                    | dddddddddddddd      | GR[reg2]←Load-memory(adr,Word)                                                           |                 |         |               |          |                  |    |   | ,  |      |
|          |                    | Note 8              |                                                                                          |                 |         |               | Note 9   |                  |    |   |    |      |
| LDSR     | reg2,regID         | rrrr111111RRRRR     | SR[regID]←GR[reg2]                                                                       | Other than      | 1       | 1             | 1        |                  |    |   |    |      |
|          |                    | 000000000100000     | _                                                                                        | regID=PSW       |         |               |          |                  |    |   | J  |      |
|          |                    | Note 12             |                                                                                          | regID=PSW       |         |               |          | ×                | ×  | × | ×  | ×    |
| MOV      | reg1,reg2          | rrrr000000RRRRR     | GR[reg2]←GR[reg1]                                                                        |                 | 1       | 1             | 1        |                  |    |   |    |      |
| l        | imm5,reg2          | rrrr010000iiiii     | GR[reg2]←sign-extend(imm5)                                                               |                 | 1       | 1             | 1        |                  |    |   |    |      |
|          | imm32,reg1         | 00000110001RRRRR    | GR[reg1]←imm32                                                                           |                 | 2       | 2             | 2        |                  |    |   |    |      |
|          |                    |                     |                                                                                          |                 |         |               |          |                  |    |   | ,  |      |
|          |                    |                     |                                                                                          |                 |         |               |          |                  | 1  | 1 | ,  |      |
| MOVEA    | imm16,reg1,reg2    | rrrr110001RRRRR     | GR[reg2]←GR[reg1]+sign-extend(ir                                                         | nm16)           | 1       | 1             | 1        |                  |    |   |    |      |
|          |                    |                     |                                                                                          |                 |         |               |          |                  | 1  | 1 | ,  |      |
| MOVHI    | imm16,reg1,reg2    | rrrr110010RRRRR     | GR[reg2]←GR[reg1]+(imm16 II 0 <sup>16</sup> )                                            |                 | 1       | 1             | 1        |                  |    |   | ,  |      |
|          |                    |                     |                                                                                          |                 |         |               |          |                  | 1  | 1 | ,  |      |
| MUL      | reg1,reg2,reg3     | rrrrr111111RRRRR    | GR[reg3] ∥ GR[reg2]←GR[reg2]xGF                                                          | R[reg1]         | 1       | 2             | 2        | $\left[ \right]$ |    |   | _  |      |
|          |                    | wwww01000100000     |                                                                                          |                 |         | Note14        | Ļ        |                  |    |   |    |      |
|          | imm9,reg2,reg3     | rrrr111111iiii      | GR[reg3] II GR[reg2]←GR[reg2]xsiç                                                        | gn-extend(imm9) | 1       | 2             | 2        |                  |    |   |    |      |
|          |                    | wwwww01001IIII00    |                                                                                          | Note 13         |         | Note14        |          |                  |    |   |    |      |
| MULH     | reg1,reg2          | rrrr000111RRRRR     | GR[reg2]←GR[reg2] <sup>Note 6</sup> xGR[reg1] <sup>Note 6</sup> xGR[reg1] <sup>Not</sup> | ote 6           | 1       | 1             | 2        |                  |    |   |    |      |
| <u> </u> | imm5,reg2          | rrrr010111iiiii     | GR[reg2]←GR[reg2] <sup>№ote 6</sup> xsign-exten                                          | d(imm5)         | 1       | 1             | 2        |                  |    |   |    |      |
| MULHI    | imm16,reg1,reg2    | rrrr110111RRRRR     | GR[reg2]←GR[reg1] <sup>№te 6</sup> ximm16                                                |                 | 1       | 1             | 2        |                  |    |   |    |      |
|          |                    |                     |                                                                                          |                 |         |               |          |                  |    |   |    |      |
| MULU     | reg1,reg2,reg3     | rrrr111111RRRRR     | GR[reg3] ∥ GR[reg2]←GR[reg2]xGF                                                          | R[reg1]         | 1       | 2             | 2        |                  |    |   | ,  |      |
|          |                    | wwwww01000100010    |                                                                                          |                 |         | Note 14       |          |                  |    |   |    |      |
|          | imm9,reg2,reg3     | rrrrr111111iiii     | GR[reg3] II GR[reg2]←GR[reg2]xze                                                         | ro-extend(imm9) | 1       | 2             | 2        |                  |    |   | ,  |      |
|          |                    | wwwww01001IIII10    |                                                                                          | Note 13         |         | Note 14       |          |                  |    |   |    |      |
| NOP      |                    | 0000000000000000000 | Pass at least one clock cycle doing                                                      | nothing.        | 1       | 1             | 1        |                  |    |   |    |      |
| NOT      | reg1,reg2          | rrrr000001RRRRR     | GR[reg2]←NOT(GR[reg1])                                                                   |                 | 1       | 1             | 1        |                  | 0  | × | ×  |      |
| NOT1     | bit#3,disp16[reg1] | 01bbb111110RRRRR    | adr←GR[reg1]+sign-extend(disp16)                                                         | )               | 3       | 3             | 3        |                  |    |   | ×  |      |
|          |                    | ddddddddddddd       | Z flag (Load-memory-bit(adr,bit#3))                                                      |                 | Note 3  | Note 3        | Note 3   |                  |    |   | ,  |      |
|          |                    |                     | Store-memory-bit(adr,bit#3,Z flag)                                                       |                 |         |               |          |                  |    |   |    |      |
|          | reg2,[reg1]        | rrrr111111RRRRR     | adr←GR[reg1]                                                                             |                 | 3       | 3             | 3        | $\left  \right $ | Į  |   | ×  |      |
|          |                    | 000000011100010     | Z flag←Not(Load-memory-bit(adr,re                                                        | eg2))           | Note 3  | Note 3        | Note 3   |                  |    |   |    |      |
|          |                    |                     | Store-memory-bit(adr,reg2,Z flag)                                                        |                 |         |               |          |                  |    |   |    |      |
| OR       | reg1,reg2          | rrrr001000RRRRR     | GR[reg2]←GR[reg2]OR GR[reg1]                                                             |                 | 1       | 1             | 1        |                  | 0  | × | ×  |      |

|          | Γ                         | I                                       |                                                                      | 1      |               |          | 1  |    |       | (- | 4/6) |
|----------|---------------------------|-----------------------------------------|----------------------------------------------------------------------|--------|---------------|----------|----|----|-------|----|------|
| Mnemonic | Operand                   | Op Code                                 | Operation                                                            | Ex     | ecut<br>Clocl | ion<br>k |    | F  | Flags | 6  |      |
|          |                           |                                         |                                                                      | i      | r             | Ι        | СҮ | ٥V | S     | Z  | SAT  |
| ORI      | imm16,reg1,reg2           | rrrr110100RRRRR                         | GR[reg2]←GR[reg1]OR zero-extend(imm16)                               | 1      | 1             | 1        |    | 0  | ×     | ×  |      |
|          |                           |                                         |                                                                      |        |               |          |    |    |       |    |      |
| PREPARE  | list12,imm5               | 0000011110iiiiiL                        | Store-memory(sp-4,GR[reg in list12],Word)                            | N+1    | N+1           | N+1      |    |    |       |    |      |
|          |                           | LLLLLLLLL00001                          | sp←sp–4                                                              | Note 4 | Note 4        | Note 4   |    |    |       |    |      |
|          |                           |                                         | repeat 1 step above until all regs in list12 is stored               |        |               |          |    |    |       |    |      |
|          |                           |                                         | sp←sp-zero-extend(imm5)                                              |        |               |          |    |    |       |    |      |
|          | list12,imm5,              | 0000011110iiiiiL                        | Store-memory(sp-4,GR[reg in list12],Word)                            | N+2    | N+2           | N+2      |    |    |       |    |      |
|          | sp/imm <sup>Note 15</sup> | LLLLLLLLLLff011                         | sp←sp–4                                                              | Note 4 | Note 4        | Note 4   |    |    |       |    |      |
|          |                           | imm16/imm32                             | repeat 1 step above until all regs in list12 is stored               | Note17 | Note17        | Note17   |    |    |       |    |      |
|          |                           |                                         | sp←sp-zero-extend(imm5)                                              |        |               |          |    |    |       |    |      |
|          |                           | Note 16                                 | ep←sp/imm                                                            |        |               |          |    |    |       |    |      |
| RETI     |                           | 0000011111100000                        | if PSW.EP=1                                                          | 3      | 3             | 3        | R  | R  | R     | R  | R    |
|          |                           | 000000101000000                         | then PC ←EIPC                                                        |        |               |          |    |    |       |    |      |
|          |                           |                                         | PSW ←EIPSW                                                           |        |               |          |    |    |       |    |      |
|          |                           |                                         | else if PSW.NP=1                                                     |        |               |          |    |    |       |    |      |
|          |                           |                                         | then PC ←FEPC                                                        |        |               |          |    |    |       |    |      |
|          |                           |                                         | PSW ←FEPSW                                                           |        |               |          |    |    |       |    |      |
|          |                           |                                         | else PC ←EIPC                                                        |        |               |          |    |    |       |    |      |
|          |                           |                                         | PSW ←EIPSW                                                           |        |               |          |    |    |       |    |      |
| SAR      | reg1,reg2                 | rrrr111111RRRRR                         | GR[reg2]←GR[reg2]arithmetically shift right                          | 1      | 1             | 1        | ×  | 0  | ×     | ×  |      |
|          |                           | 000000010100000                         | by GR[reg1]                                                          |        |               |          |    |    |       | -  |      |
|          | imm5,reg2                 | rrrr010101iiiii                         | GR[reg2]←GR[reg2]arithmetically shift right<br>by zero-extend (imm5) | 1      | 1             | 1        | ×  | 0  | ×     | ×  |      |
| SASF     | cccc,reg2                 | rrrr1111110cccc                         | if conditions are satisfied                                          | 1      | 1             | 1        |    |    |       |    |      |
|          |                           | 0000001000000000                        | then GR[reg2]←(GR[reg2]Logically shift left by 1)                    |        |               |          |    |    |       |    |      |
|          |                           |                                         | OR 0000001H                                                          |        |               |          |    |    |       |    |      |
|          |                           |                                         | else GR[reg2]←(GR[reg2]Logically shift left by 1)                    |        |               |          |    |    |       |    |      |
|          |                           |                                         | OR 0000000H                                                          |        |               |          |    |    |       |    |      |
| SATADD   | reg1,reg2                 | rrrr000110RRRRR                         | GR[reg2]←saturated(GR[reg2]+GR[reg1])                                | 1      | 1             | 1        | ×  | ×  | ×     | ×  | ×    |
|          | imm5,reg2                 | rrrr010001iiiii                         | GR[reg2]←saturated(GR[reg2]+sign-extend(imm5)                        | 1      | 1             | 1        | ×  | ×  | ×     | ×  | ×    |
| SATSUB   | reg1,reg2                 | rrrr000101RRRRR                         | GR[reg2]←saturated(GR[reg2]–GR[reg1])                                | 1      | 1             | 1        | ×  | ×  | ×     | ×  | ×    |
| SATSUBI  | imm16,reg1,reg2           | rrrr110011RRRRR                         | GR[reg2]←saturated(GR[reg1]–sign-extend(imm16)                       | 1      | 1             | 1        | ×  | ×  | ×     | ×  | ×    |
|          |                           |                                         |                                                                      |        |               |          |    |    |       |    |      |
| SATSUBR  | reg1,reg2                 | rrrr000100RRRRR                         | GR[reg2]←saturated(GR[reg1]–GR[reg2])                                | 1      | 1             | 1        | ×  | ×  | ×     | ×  | ×    |
| SETF     | cccc,reg2                 | rrrr1111110cccc                         | If conditions are satisfied                                          | 1      | 1             | 1        |    |    |       |    |      |
|          |                           | 000000000000000000000000000000000000000 | then GR[reg2]←00000001H                                              |        |               |          |    |    |       |    |      |
|          |                           |                                         | else GR[reg2]←0000000H                                               |        |               |          |    |    |       |    |      |

| (5/6) |
|-------|
|-------|

| Mnemonic | Operand            | Op Code          | Operation                                                       | Ex     | ecut   | ion    |    | F  | lags        | ; | 0,0) |
|----------|--------------------|------------------|-----------------------------------------------------------------|--------|--------|--------|----|----|-------------|---|------|
|          |                    |                  |                                                                 | (      | Cloc   | k      |    |    | <del></del> |   |      |
|          |                    |                  |                                                                 | i      | r      | Ι      | CY | ٥V | S           | Ζ | SAT  |
| SET1     | bit#3,disp16[reg1] | 00bbb111110RRRRR | adr←GR[reg1]+sign-extend(disp16)                                | 3      | 3      | 3      |    |    |             | × |      |
|          |                    | ddddddddddddd    | Z flag←Not (Load-memory-bit(adr,bit#3))                         | Note 3 | Note 3 | Note 3 |    |    |             |   |      |
|          |                    |                  | Store-memory-bit(adr,bit#3,1)                                   |        |        |        |    |    |             |   |      |
|          | reg2,[reg1]        | rrrr111111RRRRR  | adr←GR[reg1]                                                    | 3      | 3      | 3      |    |    |             | × |      |
|          |                    | 000000011100000  | Z flag←Not(Load-memory-bit(adr,reg2))                           | Note 3 | Note 3 | Note 3 |    |    |             |   |      |
|          |                    |                  | Store-memory-bit(adr,reg2,1)                                    |        |        |        |    |    |             |   |      |
| SHL      | reg1,reg2          | rrrr111111RRRRR  | GR[reg2]←GR[reg2] logically shift left by GR[reg1]              | 1      | 1      | 1      | ×  | 0  | ×           | × |      |
|          |                    | 000000011000000  |                                                                 |        |        |        |    |    |             |   |      |
|          | imm5,reg2          | rrrr010110iiiii  | GR[reg2]←GR[reg2] logically shift left<br>by zero-extend(imm5)  | 1      | 1      | 1      | ×  | 0  | ×           | × |      |
| SHR      | reg1,reg2          | rrrr111111RRRRR  | GR[reg2]←GR[reg2] logically shift right by GR[reg1]             | 1      | 1      | 1      | ×  | 0  | ×           | × |      |
|          |                    | 0000000010000000 |                                                                 |        |        |        |    |    |             |   |      |
|          | imm5,reg2          | rrrr010100iiiii  | GR[reg2]←GR[reg2] logically shift right<br>by zero-extend(imm5) | 1      | 1      | 1      | ×  | 0  | ×           | × |      |
| SLD.B    | disp7[ep],reg2     | rrrr0110dddddd   | adr←ep+zero-extend(disp7)                                       | 1      | 1      | n      |    |    |             |   |      |
|          |                    |                  | GR[reg2]←sign-extend(Load-memory(adr,Byte))                     |        |        | Note 9 |    |    |             |   |      |
| SLD.BU   | disp4[ep],reg2     | rrrr0000110dddd  | adr←ep+zero-extend(disp4)                                       | 1      | 1      | n      |    |    |             |   |      |
|          | Note 18            |                  | GR[reg2]←zero-extend(Load-memory(adr,Byte))                     |        |        | Note 9 |    |    |             |   |      |
| SLD.H    | disp8[ep],reg2     | rrrr1000dddddd   | adr←ep+zero-extend(disp8)                                       | 1      | 1      | n      |    |    |             |   |      |
|          |                    | Note 19          | GR[reg2]←sign-extend(Load-memory(adr,Half-<br>word))            |        |        | Note 9 |    |    |             |   |      |
| SLD.HU   | disp5[ep],reg2     | rrrr0000111dddd  | adr←ep+zero-extend(disp5)                                       | 1      | 1      | n      |    |    |             |   |      |
|          | Notes 18, 20       |                  | GR[reg2]←zero-extend(Load-memory(adr,Half-                      |        |        | Note 9 |    |    |             |   |      |
|          |                    |                  | word))                                                          |        |        |        |    |    |             |   |      |
| SLD.W    | disp8[ep],reg2     | rrrr1010ddddd0   | adr←ep+zero-extend(disp8)                                       | 1      | 1      | n      |    |    |             |   |      |
|          |                    | Note 21          | GR[reg2]←Load-memory(adr,Word)                                  |        |        | Note 9 |    |    |             |   |      |
| SST.B    | reg2,disp7[ep]     | rrrrr0111dddddd  | adr←ep+zero-extend(disp7)                                       | 1      | 1      | 1      |    |    |             |   |      |
|          |                    |                  | Store-memory(adr,GR[reg2],Byte)                                 |        |        |        |    |    |             |   |      |
| SST.H    | reg2,disp8[ep]     | rrrr1001dddddd   | adr←ep+zero-extend(disp8)                                       | 1      | 1      | 1      |    |    |             |   |      |
|          |                    | Note 19          | Store-memory(adr,GR[reg2],Half-word)                            |        |        |        |    |    |             |   |      |
| SST.W    | reg2,disp8[ep]     | rrrr1010ddddd1   | adr←ep+zero-extend(disp8)                                       | 1      | 1      | 1      |    |    |             |   |      |
|          |                    | Note 21          | Store-memory(adr,GR[reg2],Word)                                 |        |        |        |    |    |             |   |      |
| ST.B     | reg2,disp16[reg1]  | rrrr111010RRRRR  | adr-GR[reg1]+sign-extend(disp16)                                | 1      | 1      | 1      |    |    |             |   |      |
|          |                    | ddddddddddddd    | Store-memory(adr,GR[reg2],Byte)                                 |        |        |        |    |    |             |   |      |
| ST.H     | reg2,disp16[reg1]  | rrrr111011RRRRR  | adr-GR[reg1]+sign-extend(disp16)                                | 1      | 1      | 1      |    |    |             |   |      |
|          |                    | ddddddddddddd    | Store-memory (adr,GR[reg2], Half-word)                          |        |        |        |    |    |             |   |      |
|          |                    | Note 8           |                                                                 |        |        |        |    |    |             |   |      |
| ST.W     | reg2,disp16[reg1]  | rrrr111011RRRRR  | adr←GR[reg1]+sign-extend(disp16)                                | 1      | 1      | 1      |    |    |             |   |      |
|          |                    | ddddddddddddd    | Store-memory (adr,GR[reg2], Word)                               |        |        |        |    |    |             |   |      |
|          |                    | Note 8           |                                                                 |        |        |        |    |    |             |   |      |
| STSR     | regID,reg2         | rrrr111111RRRRR  | GR[reg2]←SR[regID]                                              | 1      | 1      | 1      |    |    |             |   |      |
|          |                    | 000000001000000  |                                                                 |        |        |        |    |    |             |   |      |

|          |                    |                  |                                                    |         |               |          |    |    |       | (! | 6/6) |
|----------|--------------------|------------------|----------------------------------------------------|---------|---------------|----------|----|----|-------|----|------|
| Mnemonic | Operand            | Op Code          | Operation                                          | Ex<br>( | ecut<br>Clocl | ion<br>k |    |    | Flags | ;  |      |
|          |                    |                  |                                                    | i       | r             | I        | СҮ | ov | S     | z  | SAT  |
| SUB      | reg1,reg2          | rrrr001101RRRRR  | GR[reg2]-GR[reg1]                                  | 1       | 1             | 1        | ×  | ×  | ×     | ×  |      |
| SUBR     | reg1,reg2          | rrrr001100RRRRR  | GR[reg2]←GR[reg1]–GR[reg2]                         | 1       | 1             | 1        | ×  | ×  | ×     | ×  |      |
| SWITCH   | reg1               | 00000000010RRRR  | adr←(PC+2) + (GR [reg1] logically shift left by 1) | 5       | 5             | 5        |    |    |       |    | ĺ    |
|          |                    |                  | PC←(PC+2) + (sign-extend                           |         |               |          |    |    |       |    | ĺ    |
|          |                    |                  | (Load-memory (adr,Half-word)))                     |         |               |          |    |    |       |    | ĺ    |
|          |                    |                  | logically shift left by 1                          |         |               |          |    |    |       |    |      |
| SXB      | reg1               | 00000000101RRRRR | GR[reg1]←sign-extend                               | 1       | 1             | 1        |    |    |       |    | ĺ    |
|          |                    |                  | (GR[reg1] (7 : 0))                                 |         |               |          |    |    |       |    |      |
| SXH      | reg1               | 00000000111RRRRR | GR[reg1]←sign-extend                               | 1       | 1             | 1        |    |    |       |    |      |
|          |                    |                  | (GR[reg1] (15 : 0))                                |         |               |          |    |    |       |    |      |
| TRAP     | vector             | 00000111111iiiii | EIPC ←PC+4 (Return PC)                             | 3       | 3             | 3        |    |    |       |    |      |
|          |                    | 00000010000000   | EIPSW ←PSW                                         |         |               |          |    |    |       |    | ĺ    |
|          |                    |                  | ECR.EICC ←Interrupt Code                           |         |               |          |    |    |       |    | ĺ    |
|          |                    |                  | PSW.EP ←1                                          |         |               |          |    |    |       |    | ĺ    |
|          |                    |                  | PSW.ID ←1                                          |         |               |          |    |    |       |    | ĺ    |
|          |                    |                  | PC ←00000040H (when vector is 00H to<br>0FH)       |         |               |          |    |    |       |    |      |
|          |                    |                  | 00000050H (when vector is 10H to 1FH)              |         |               |          |    |    |       |    |      |
| TST      | reg1,reg2          | rrrr001011RRRRR  | result←GR[reg2] AND GR[reg1]                       | 1       | 1             | 1        |    | 0  | ×     | ×  |      |
| TST1     | bit#3,disp16[reg1] | 11bbb111110RRRRR | adr←GR[reg1]+sign-extend(disp16)                   | 3       | 3             | 3        |    |    |       | ×  |      |
|          |                    | dddddddddddddd   | Z flag←Not (Load-memory-bit (adr,bit#3))           | Note 3  | Note 3        | Note 3   |    |    |       |    |      |
|          | reg2, [reg1]       | rrrrr111111RRRRR | adr←GR[reg1]                                       | 3       | 3             | 3        |    |    |       | ×  |      |
|          |                    | 000000011100110  | Z flag←Not (Load-memory-bit (adr,reg2))            | Note 3  | Note 3        | Note 3   |    |    |       |    |      |
| XOR      | reg1,reg2          | rrrr001001RRRRR  | GR[reg2]←GR[reg2] XOR GR[reg1]                     | 1       | 1             | 1        |    | 0  | ×     | ×  |      |
| XORI     | imm16,reg1,reg2    | rrrrr110101RRRRR | GR[reg2]←GR[reg1] XOR zero-extend (imm16)          | 1       | 1             | 1        |    | 0  | ×     | ×  |      |
|          |                    |                  |                                                    |         |               |          |    |    |       |    | ĺ    |
| ZXB      | reg1               | 00000000100RRRRR | GR[reg1]—zero-extend (GR[reg1] (7 : 0))            | 1       | 1             | 1        |    |    |       |    |      |
| ZXH      | reg1               | 00000000110RRRRR | GR[reg1]←zero-extend (GR[reg1] (15 : 0))           | 1       | 1             | 1        |    |    |       |    |      |

**Notes 1.** dddddddd: Higher 8 bits of disp9.

- 2. 3 clocks if the final instruction includes PSW write access.
- 3. If there is no wait state (3 + the number of read access wait states).
- **4.** N is the total number of list 12 read registers. (According to the number of wait states. Also, if there are no wait states, N is the number of list 12 registers.)
- 5. RRRRR: other than 00000.
- 6. The lower halfword data only are valid.
- 7. ddddddddddddddddd: The higher 21 bits of disp22.
- 8. dddddddddddd: The higher 15 bits of disp16.
- 9. According to the number of wait states (1 if there are no wait states).
- **10.** b: bit 0 of disp16.
- 11. According to the number of wait states (2 if there are no wait states).

- **Notes 12.** In this instruction, for convenience of mnemonic description, the source register is made reg2, but the reg1 field is used in the op code. Therefore, the meaning of register specification in the mnemonic description and in the op code differs from other instructions.
  - rrrr = regID specification
  - RRRRR = reg2 specification
  - 13. i i i i i : Lower 5 bits of imm9.
    - IIII: Lower 4 bits of imm9.
  - **14.** In the case of r = w (the lower 32 bits of the results are not written in the register) or w = r0 (the higher 32 bits of the results are not written in the register), 1.
  - 15. sp/imm: specified by bits 19 and 20 of the sub op code.
  - **16.** ff = 00: Load sp in ep.
    - 01: Load sign expanded 16-bit immediate data (bits 47 to 32) in ep.
    - 10: Load 16-bit logically left shifted 16-bit immediate data (bits 47 to 32) in ep.
    - 11: Load 32-bit immediate data (bits 63 to 32) in ep.
  - **17.** If imm = imm32, N + 3 blocks.
  - 18. rrrrr: Other than 00000.
  - 19. ddddddd: Higher 7 bits of disp8.
  - 20. dddd: Higher 4 bits of disp5.
  - **21.** dddddd: Higher 6 bits of disp8.

| ·]                                   |     |   |
|--------------------------------------|-----|---|
| A/D conversion result registers      |     |   |
| A/D converter                        |     |   |
| A/D converter mode register 0        |     |   |
| A/D converter mode register 1        |     |   |
| A/D trigger mode                     |     |   |
| A0 to A7                             | 61  |   |
| A8 to A15                            | 61  |   |
| A16 to A23                           | 54  |   |
| ADn0 to ADn9 (n = 0 to 7)            |     |   |
| ADCR0 to ADCR7                       |     |   |
| ADCR0H to ADCR7H                     |     |   |
| Address multiplex function           | 138 |   |
| Address space                        | 76  |   |
| ADIC                                 | 217 |   |
| ADIF                                 | 217 |   |
| ADM0                                 | 318 |   |
| ADM1                                 | 320 |   |
| ADMK                                 | 217 |   |
| ADPR0 to ADPR2                       | 217 |   |
| ADTRG                                | 60  |   |
| ALV1n0, ALV1n1 (n = 0 to 5)          |     |   |
| ANI0 to ANI7                         | 54  |   |
| ANIS0 to ANIS2                       |     |   |
| Applications                         |     |   |
| ASIM00, ASIM01, ASIM10, ASIM11       |     |   |
| ASIS0, ASIS1                         | 291 |   |
| Assembler-reserved register          | 71  |   |
| Asynchronous serial interfaces 0, 1  |     |   |
| Asynchronous serial interface mode   |     |   |
| registers 00, 01, 10, 11             |     |   |
| Asynchronous serial interface status |     |   |
| registers 0, 1                       |     | I |
| AVDD                                 | 64  |   |
| AVREF                                | 64  |   |
| AVss                                 | 64  |   |
|                                      |     |   |

#### [B]

| Basic operation of A/D converter                |
|-------------------------------------------------|
| Baud rate generator compare registers 0 to 2313 |
| Baud rate generator prescaler mode              |
| registers 0 to 2                                |
| BC0 to BC15 167                                 |
| BCC                                             |
| BCn0, BCn1 (n = 0 to 7)117                      |

| BCT                                            | 105 |
|------------------------------------------------|-----|
| BCYST                                          | 57  |
| Block diagram of port                          | 353 |
| Block transfer mode                            | 180 |
| Boundary of memory area                        | 194 |
| Boundary operation conditions                  | 122 |
| BPRM0 to BPRM2                                 | 314 |
| BPRn2 to BPRn0 (n = 0 to 2)                    | 314 |
| BRCE0 to BRCE2                                 | 314 |
| BRG0 to BRG2                                   | 310 |
| BRGC0 to BRGC2                                 | 313 |
| BRGn0 to BRGn7 (n = 0 to 2)                    | 313 |
| BS                                             | 318 |
| BSC                                            | 108 |
| BSn0, BSn1 (n = 0 to 7)                        | 108 |
| BTn0, BTn1 (n = 0 to 7)                        | 105 |
| Bus access                                     | 107 |
| Bus arbitration for CPU                        | 197 |
| Bus control function                           | 103 |
| Bus control pins                               | 103 |
| Bus cycle control register                     | 117 |
| Bus cycle type configuration register          | 105 |
| Bus cycle type control function                | 105 |
| Bus cycles in which the wait function is valid | 115 |
| Bus hold function                              | 119 |
| Bus hold timing                                | 121 |
| Bus priority order                             | 122 |
| Bus size configuration register                | 108 |
| Bus sizing function                            | 108 |
| Bus width                                      | 109 |
| Byte access                                    | 109 |
|                                                |     |

## [C]

| CALLT base pointer                   | 72  |
|--------------------------------------|-----|
| Capture/compare registers 1n0 to 1n3 |     |
| (n = 0 to 5)                         |     |
| Capture operation (timer 1)          |     |
| CBR refresh timing                   | 157 |
| CBR self-refresh timing              |     |
| CC1n0 to CC1n3 (n = 0 to 5)          | 252 |
| CE                                   |     |
| CE10 to CE15                         |     |
| CE40, CE41                           |     |
| CES1n0, CES1n1 (n = 0 to 5)          |     |
| CESEL                                |     |

| CG                                             | 231 |
|------------------------------------------------|-----|
| CH0 to CH3                                     | 173 |
| CKC                                            | 233 |
| CKDIV0, CKDIV1                                 | 233 |
| CKSEL                                          | 62  |
| CL0, CL1                                       | 288 |
| Clearing/starting timer (timer1)               | 265 |
| CLKOUT                                         | 62  |
| Clock control register                         | 233 |
| Clock generator                                | 231 |
| Clock generator functions                      | 231 |
| Clock output inhibit mode                      | 243 |
| Clock selection                                | 232 |
| Clocked serial interfaces 0 to 3               | 299 |
| Clocked serial interface mode registers 0 to 3 | 301 |
| Clocks of DMA transfer                         | 194 |
| CLSn0, CLSn1 (n = 0 to 3)                      | 302 |
| CM40, CM41                                     | 253 |
| CMIC40, CMIC41                                 | 217 |
| CMIF40, CMIF41                                 | 217 |
| CMMK40, CMMK41                                 | 217 |
| CMPR40n, CMPR41n (n = 0 to 2)                  | 217 |
| CMS1n0 to CMS1n3 (n = 0 to 5)                  | 255 |
| Command register                               | 101 |
| Compare operation (timer 1)                    | 269 |
| Compare operation (timer 4)                    | 272 |
| Compare registers 40, 41                       | 253 |
| Control register (CG)                          | 237 |
| Control register (DMAC)                        | 163 |
| Control register (RPU)                         | 254 |
| Count clock selection (timer 1)                | 263 |
| Count clock selection (timer 4)                | 271 |
| Count operation (timer 1)                      | 262 |
| Count operation (timer 4)                      | 271 |
| CPC0n, CPC1n (n = 0 to 3)                      | 140 |
| CPU address space                              | 76  |
| CPU function                                   | 69  |
| CPU register set                               | 70  |
| CRXE0 to CRXE3                                 | 301 |
| CS                                             | 318 |
| CS0 to CS7                                     | 55  |
| CSI0 to CSI3                                   | 299 |
| CSIC0 to CSIC3                                 | 217 |
| CSIF0 to CSIF3                                 | 217 |
| CSIM0 to CSIM3                                 | 301 |
| CSMK0 to CSMK3                                 | 217 |
| CSOT0 to CSOT3                                 | 301 |
| CSPRmn (m = 0 to 3, n = 0 to 2)                | 217 |

| СТВР           | 72 |
|----------------|----|
| CTPC           | 72 |
| CTPSW          | 72 |
| CTXE0 to CTXE3 |    |
| CVDD           | 64 |
| CVss           | 64 |
| CY             | 73 |
|                |    |

#### [D]

| D0 to D7                                     | .53 |
|----------------------------------------------|-----|
| D8 to D15                                    | .53 |
| DA0 to DA151                                 | 66  |
| DA16 to DA251                                | 65  |
| DAC0n, DAC1n (n = 0 to 3)1                   | 40  |
| DAD0, DAD11                                  | 69  |
| DADC0 to DADC31                              | 68  |
| Data wait control registers 1, 21            | 13  |
| DAW0n, DAW1n (n = 0 to 3)1                   | 41  |
| DBC0 to DBC31                                | 67  |
| DBPC                                         | .72 |
| DBPSW                                        | .72 |
| DCHC0 to DCHC31                              | 70  |
| DCLK0, DCLK1                                 | 237 |
| DCm0, DCm1 (m = 0 to 7)1                     | 42  |
| DDA0 to DDA3 1                               | 65  |
| DDIS1                                        | 73  |
| Dedicated baud rate generators 0 to 23       | 310 |
| Direct mode                                  | 232 |
| DMA addressing control registers 0 to 31     | 68  |
| DMA bus states1                              | 75  |
| DMA byte count registers 0 to 31             | 67  |
| DMA channel control registers 0 to 31        | 70  |
| DMA channel priorities1                      | 90  |
| DMA controller 1                             | 61  |
| DMA destination address registers 0 to 31    | 65  |
| DMA disable status register1                 | 73  |
| DMA functions 1                              | 61  |
| DMA restart register1                        | 73  |
| DMA source address registers 0 to 31         | 63  |
| DMA transfer start factors1                  | 91  |
| DMA trigger factor registers 0 to 31         | 71  |
| DMAAK0 to DMAAK3                             | .50 |
| DMAC1                                        | 61  |
| DMAC bus cycle state transition diagram1     | 78  |
| DMAIC0 to DMAIC3                             | 217 |
| DMAIF0 to DMAIF32                            | 217 |
| DMAMK0 to DMAMK32                            | 217 |
| DMAPRmn to DMAPRmn (m = 0 to 3, n = 0 to 2)2 | 217 |

| DMARQ0 to DMARQ3                      | . 49 |
|---------------------------------------|------|
| DRAM access                           | 143  |
| DRAM access during DMA flyby transfer | 151  |
| DRAM connections                      | 137  |
| DRAM controller                       | 136  |
| DRAM configuration registers 0 to 3   | 139  |
| DRAM type configuration register      | 142  |
| DRC0 to DRC3                          | 139  |
| DRST                                  | 173  |
| DS                                    | 168  |
| DSA0 to DSA3                          | 163  |
| DTC                                   | 142  |
| DTFR0 to DTFR3                        | 171  |
| DWC1, DWC2                            | 113  |
| DWn0 to DWn2 (n = 0 to 7)             | 113  |

## [E]

| EBS0, EBS1                               |          |
|------------------------------------------|----------|
| Edge detection function                  | 208, 220 |
| ECLR10 to ECLR15                         | 254      |
| ECR                                      | 72       |
| EDO DRAM access timing                   | 147      |
| EICC                                     | 72       |
| EIPC                                     | 72       |
| EIPSW                                    | 72       |
| Element pointer                          | 71       |
| EN0 to EN3                               |          |
| ENTO1n0, ENTO1n1 (n = 0 to 5)            |          |
| EP                                       | 73       |
| ESmn0, ESmn1 (m = 0 to 5, n = 0 to 3)    | 221      |
| ESN0                                     |          |
| ETI10 to ETI15                           |          |
| Example of DRAM refresh interval         |          |
| Example of interval factor settings      |          |
| Exception trap                           |          |
| External bus cycle during DMA transfer   |          |
| External expansion mode                  |          |
| External interrupt mode registers 1 to 6 | 220, 261 |
| External I/O interface                   | 125      |
| External memory area                     |          |
| External ROM interface                   | 125      |
| External trigger mode                    |          |
| External wait function                   | 114      |
|                                          |          |

## [F]

| FDW          | 174 |
|--------------|-----|
| FDW0 to FDW7 | 174 |
| FE0, FE1     | 291 |

| FECC                                      | 72  |
|-------------------------------------------|-----|
| FEPC                                      | 72  |
| FEPSW                                     | 72  |
| Flash memory                              |     |
| Flash memory programming mode             |     |
| Flyby transfer                            |     |
| Flyby transfer data wait control register |     |
| FR2 to FR0                                |     |
| Frequency measurement                     | 279 |
|                                           |     |

#### [G]

| General-purpose registers71 | I |
|-----------------------------|---|
| Global pointer71            | 1 |

# [H]

| Halfword access                    | 110 |
|------------------------------------|-----|
| HALT mode                          | 238 |
| High-speed page DRAM access timing | 143 |
| HLDAK                              | 57  |
| HLDRQ                              | 57  |
| HVdd                               | 64  |

### [I]

| ID                                      | 73  |
|-----------------------------------------|-----|
| IDLE                                    | 237 |
| IDLE mode                               | 240 |
| Idle state insertion function           | 117 |
| Idle state insertion timing             | 118 |
| IFCn5 to IFCn0 (n = 0 to 3)             | 171 |
| Illegal op code definition              | 225 |
| Image                                   | 77  |
| IMS1n0 to IMS1n3 (n = 0 to 5)           | 255 |
| In-service priority register            | 218 |
| Initialization                          | 410 |
| INIT0 to INIT3                          | 170 |
| INTC                                    | 199 |
| Internal block diagram                  | 35  |
| Internal peripheral I/O area            | 85  |
| Internal peripheral I/O interface       | 107 |
| Internal RAM area                       | 85  |
| Internal ROM area                       | 80  |
| Internal ROM area relocation function   | 84  |
| Interrupt control register              | 216 |
| Interrupt latency time                  | 229 |
| Interrupt stack pointer                 | 71  |
| Interrupt source register               | 72  |
| Interrupting DMA transfer               | 192 |
| Interrupt/exception processing function | 199 |

| Interrupt/exception table | 83       |
|---------------------------|----------|
| Interval timer            | 274      |
| INTM0                     | 208      |
| INTM1 to INTM6            | 220, 261 |
| INTP100 to INTP103        | 49       |
| INTP110 to INTP113        | 50       |
| INTP120 to INTP123        | 58       |
| INTP130 to INTP133        | 52       |
| INTP140 to INTP143        | 59       |
| INTP150 to INTP153        | 60       |
| INTSER0, INTSER1          | 294      |
| INTSR0, INTSR1            | 294      |
| INTSTO, INTST1            | 294      |
| IORD                      | 55       |
| IOWR                      | 56       |
| ISPR                      | 218      |
| ISPR0 to ISPR7            | 218      |
|                           |          |

# [L]

| LCAS         | 56 |
|--------------|----|
| Link pointer | 71 |
| <u>LWR</u>   | 56 |

## [M]

| MA5 to MA3                            | 134 |
|---------------------------------------|-----|
| Maskable interrupts                   | 209 |
| Maskable interrupt status flag        | 218 |
| Maximum response time to DMA request  | 194 |
| Memory access control function        | 125 |
| Memory block function                 | 104 |
| Memory expansion mode register        | 87  |
| Memory map                            | 79  |
| MM                                    | 87  |
| MM3 to MM0                            | 88  |
| MOD0 to MOD3                          |     |
| MODE0 to MODE3                        | 63  |
| MS                                    |     |
| Multiple interrupt processing control | 227 |

## [N]

| Next address setting function | 190      |
|-------------------------------|----------|
| NMI                           | 51       |
| Noise elimination             | 208, 219 |
| Non-maskable interrupt        | 204      |
| Normal operation mode         | 74       |
| NP                            | 73       |
| Number of access clocks       | 107      |

### [0]

| <br>                                    | 57   |
|-----------------------------------------|------|
| One time single transfer with DMARQ0 to |      |
| DMARQ3                                  | .196 |
| On-page/off-page judgment               | 132  |
| Operation in A/D trigger mode           | .329 |
| Operation in external trigger mode      | 341  |
| Operation in timer trigger mode         | .332 |
| Operation modes                         | 74   |
| Ordering information                    | 30   |
| OST0 to OST5                            | .254 |
| OV                                      | 73   |
| OVE0, OVE1                              | .291 |
| Overflow (timer 1)                      | .264 |
| Overflow (timer 4)                      | .271 |
| OVFn (n = 10 to 15, 40, 41)             | .261 |
| OVIC10 to OVIC12                        | .214 |
| OVIC13 to OVIC15                        | .215 |
| OVIF10 to OVIF12                        | .216 |
| OVIF13 to OVIF15                        | .217 |
| OVMK10 to OVMK12                        | .216 |
| OVMK13 to OVMK15                        | .217 |
| OVPR1mn (m = 0 to 2, n = 0 to 2)        | .216 |
| OVPR1mn (m = 3 to 5, n = 0 to 2)        | .217 |

# [P]

| 401     |
|---------|
| 49, 368 |
| 50, 371 |
| 51, 374 |
| 52, 377 |
| 53, 380 |
| 53, 382 |
| 54, 384 |
| 54, 386 |
| 55, 387 |
|         |

| P90 to P97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 56, 391 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| P100 to P107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 58, 394 |
| P110 to P117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 59, 397 |
| P120 to P127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60, 401   |
| P10IC0 to P10IC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 217       |
| P10IF0 to P10IF3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 217       |
| P10MK0 to P10MK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| P10PRmn (m = 0 to 3, n = 0 to 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| P11IC0 to P11IC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 217       |
| P11IF0 to P11IF3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| P11MK0 to P11MK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| P11PRmn (m = 0 to 3, n = 0 to 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| P12IC0 to P12IC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 217       |
| P12IE0 to P12IE3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 217       |
| P12MK0 to P12MK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 217       |
| $P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{12}P_{1$ | 217       |
| $P_{12}^{(1)}(1) = 0.003, 11 = 0.002)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| P 131C0 to P 131C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| $P I SP R I I I I I = 0 to 3, I = 0 to 2) \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| P14PRmn (m = 0 to 3, n = 0 to 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| P15IC0 to P15IC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| P15MKU to P15MK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| P15PRmn (m = 0 to 3, n = 0 to 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| PA0 to PA7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61, 403   |
| PAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| PAE0n, PAE1n (n = 0 to 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| Page ROM access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 135       |
| Page ROM configuration register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Page ROM controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130       |
| РВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 405       |
| PB0 to PB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61, 405   |
| PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71        |
| PCS0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 370       |
| PCS04 to PCS07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 370       |
| PCS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 373       |
| PCS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 380       |
| PCS8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 390       |
| PCS10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 396       |
| PCS11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400       |
| PCS14 to PCS17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 373       |
| PCS35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 380       |
| PCS84, PCS85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 390       |

| PCS104 to PCS107                            | 396 |
|---------------------------------------------|-----|
| PCS115                                      | 400 |
| PE0, PE1                                    | 291 |
| Periods where interrupt is not acknowledged | 227 |
| Peripheral I/O registers                    | 92  |
| Pin configuration                           | 31  |
| Pin functions                               | 39  |
| Pin input/output circuit                    | 67  |
| Pin input/output circuit types              | 65  |
| Pin name                                    | 34  |
| Pin status                                  | 47  |
| PLL lockup                                  | 233 |
| PLL mode                                    | 231 |
| PM0                                         | 368 |
| PM1                                         | 371 |
| PM2                                         | 375 |
| PM3                                         | 378 |
| PM4                                         | 381 |
| PM5                                         | 383 |
| PM6                                         | 385 |
| PM8                                         | 388 |
| PM9                                         |     |
| PM10 (register)                             | 394 |
| PM11                                        | 398 |
| PM12                                        | 401 |
| PM00 to PM07                                | 368 |
| PM10 to PM17 (bit)                          | 371 |
| PM21 to PM27                                | 375 |
| PM30 to PM37                                | 378 |
| PM40 to PM47                                | 381 |
| PM50 to PM57                                | 383 |
| PM60 to PM67                                | 385 |
| PM80 to PM87                                | 388 |
| PM90 to PM97                                | 302 |
| PM100 to PM107                              | 30/ |
| PM110 to PM117                              | 208 |
| PM120 to PM127                              | 401 |
|                                             | 401 |
|                                             | 403 |
|                                             | 405 |
|                                             | 405 |
|                                             | 260 |
|                                             | 309 |
|                                             | 312 |
|                                             | 3/0 |
|                                             | 3/9 |
|                                             | 389 |
|                                             | 393 |
|                                             | 395 |

| PMC11                           | 399  |
|---------------------------------|------|
| PMC12                           | .402 |
| PMC00 to PMC07                  | 369  |
| PMC10 to PMC17 (bit)            | 372  |
| PMC22 to PMC27                  | 376  |
| PMC30 to PMC37                  | 379  |
| PMC80 to PMC87                  | 389  |
| PMC90 to PMC97                  | 393  |
| PMC100 to PMC107                | 395  |
| PMC110 to PMC117                | 399  |
| PMC120 to PMC127                | 402  |
| PMCX                            | 408  |
| PMCX5 to PMCX7                  | 408  |
| PMX                             | .407 |
| PMX5 to PMX7                    | .407 |
| Port/control select register 0  | 370  |
| Port/control select register 1  | 373  |
| Port/control select register 3  | 380  |
| Port/control select register 8  | 390  |
| Port/control select register 10 | 396  |
| Port/control select register 11 | 400  |
| Port 0                          | 367  |
| Port 1                          | 371  |
| Port 2                          | 374  |
| Port 3                          | 377  |
| Port 4                          | 380  |
| Port 5                          | 382  |
| Port 6                          | 38/  |
| Port 7                          | 386  |
| Port 8                          | 387  |
| Port 9                          | 301  |
| Port 10                         | 304  |
| Port 11                         | 307  |
| Port 12                         | 401  |
|                                 | 401  |
| Port R                          | 405  |
|                                 | 405  |
| Poil A                          | 2407 |
| Port 0 mode control register    | 260  |
| Port 1 mode control register    | .309 |
| Port 2 mode control register    | .372 |
| Port 2 mode control register    | .370 |
| Port 3 mode control register    | .379 |
| Port 8 mode control register    | .389 |
| Port 10 mode control register   | .393 |
| Port 10 mode control register   | .395 |
| Port 11 mode control register   | .399 |
| Port 12 mode control register   | .402 |
| Port X mode control register    | .408 |

| Port 0 mode register368              |
|--------------------------------------|
| Port 1 mode register371              |
| Port 2 mode register                 |
| Port 3 mode register                 |
| Port 4 mode register                 |
| Port 5 mode register                 |
| Port 6 mode register                 |
| Port 8 mode register                 |
| Port 9 mode register392              |
| Port 10 mode register                |
| Port 11 mode register                |
| Port 12 mode register401             |
| Port A mode register403              |
| Port B mode register405              |
| Port X mode register407              |
| Power saving control235              |
| Power save control register237       |
| PRC134                               |
| PRCMD                                |
| Precaution (A/D converter)345        |
| Precaution (DMA)197                  |
| Precaution (RPU)281                  |
| PRERR                                |
| Priorities of maskable interrupts212 |
| PRM1n1 (n = 0 to 5)258               |
| PRM4n0, PRM4n1 (n = 0, 1)259         |
| Program counter71                    |
| Program register set71               |
| Program status word73                |
| Programmable wait function113        |
| Programming environment414           |
| Programming method418                |
| PRS1n0, PRS1n1 (n = 0 to 5)258       |
| PRS400, PRS410259                    |
| PRW0 to PRW2134                      |
| PS00, PS01, PS10, PS11288            |
| PSC237                               |
| PSW73                                |
| PWM output277                        |
| PX407                                |
| PX5 to PX762, 407                    |
| Pulse width measurement275           |
|                                      |

#### [R]

| r0 to r31                 | 71  |
|---------------------------|-----|
| RAS0 to RAS7              | 55  |
| RCCn0, RCCn1 (n = 0 to 3) | 154 |
| RCW0 to RCW2              |     |

| RD                                            | 57  |
|-----------------------------------------------|-----|
| Real-time pulse unit                          | 247 |
| Receive buffers 0, 0L, 1, 1L                  | 292 |
| Receive error interrupt                       | 294 |
| Reception completion interrupt                | 294 |
| Recommended connection of unused pins         | 65  |
| Refresh control function                      | 153 |
| Refresh control registers 0 to 3              | 153 |
| Refresh timing                                | 157 |
| Refresh wait control register                 | 156 |
| REFRQ                                         | 62  |
| REG0 to REG7                                  | 101 |
| Relationship between analog input voltage and |     |
| A/D conversion results                        | 322 |
| Relationship between programmable wait and    |     |
| external wait                                 | 114 |
| REN0 to REN3 (DRST register)                  | 173 |
| RENn (RFCn register) (n = 0 to 3)             | 153 |
| RESET                                         | 64  |
| Reset functions                               | 409 |
| RFC0 to RFC3                                  | 153 |
| RHC0n, RHC1n (n = 0 to 3)                     | 140 |
| RHD0 to RHD3                                  | 140 |
| RIn0 to RIn5 (n = 0 to 3)                     | 154 |
| ROMC                                          | 130 |
| ROM-less modes 0, 1                           | 74  |
| RPC0n, RPC1n (n = 0 to 3)                     | 139 |
| RRW0, RRW1                                    | 156 |
| RWC                                           | 156 |
| RXB0, RXB0L, RXB1, RXB1L                      | 292 |
| RXBn0 to RXBn7 (n = 0, 1)                     | 292 |
| RXD0, RXD1                                    | 51  |
| RXE0, RXE1                                    | 287 |
| RXEB0, RXEB1                                  | 292 |

| ſ | S | 1 |
|---|---|---|
| - |   | - |

| S                                       | 73  |
|-----------------------------------------|-----|
| SA0 to SA15                             | 164 |
| SA16 to SA25                            |     |
| SAD0, SAD1                              |     |
| SAT                                     | 73  |
| Scan mode                               |     |
| SCK0, SCK1                              | 51  |
| SCK2                                    | 52  |
| SCK3                                    | 59  |
| SCLS00, SCLS01, SCLS10, SCLS11          |     |
| Securing oscillation stabilization time | 244 |
| SEIC0, SEIC1                            | 217 |
|                                         |     |

| SEIF0, SEIF1                                  | 217 |
|-----------------------------------------------|-----|
| Select mode                                   | 325 |
| Self-refresh functions                        | 158 |
| SEMK0, SEMK1                                  | 217 |
| SEPR0n, SEPR1n (n = 0 to 2)                   | 217 |
| Serial I/O shift registers 0 to 3             | 303 |
| Serial interface function                     | 283 |
| SI0, SI1                                      | 51  |
| SI2                                           | 52  |
| SI3                                           | 59  |
| Single-chip modes 0, 1                        | 74  |
| Single-step transfer mode                     | 180 |
| Single transfer mode                          | 179 |
| SIO0 to SIO3                                  | 303 |
| SIOn0 to SIOn7 (n = 0 to 3)                   | 303 |
| SL0, SL1                                      | 289 |
| SO0, SO1                                      | 51  |
| SO2                                           | 52  |
| SO3                                           | 59  |
| Software exception                            | 222 |
| Software STOP mode                            | 242 |
| SOT0, SOT1                                    | 291 |
| Specific registers                            | 100 |
| SRAM interface                                | 125 |
| SRAM connections                              | 125 |
| SRIC0, SRIC1                                  | 217 |
| SRIF0, SRIF1                                  | 217 |
| SRMK0, SRMK1                                  | 217 |
| SRPR0n, SRPR1n (n = 0 to 2)                   | 217 |
| SRW2 to SRW0                                  | 156 |
| Stack pointer                                 | 71  |
| Status saving register during CALLT execution | 72  |
| Status saving register during exception trap  | 72  |
| Status saving register during interrupt       | 72  |
| Status saving register during NMI             | 72  |
| STG0 to STG3                                  | 170 |
| STIC0, STIC1                                  | 217 |
| STIF0, STIF1                                  | 217 |
| STMK0, STMK1                                  | 217 |
| STP                                           | 237 |
| STPR0n, STPR1n (n = 0 to 2)                   | 217 |
| SYS                                           | 102 |
| System register set                           | 72  |
| System status register                        | 102 |
| -                                             |     |

## [T]

| ТВС  |  |
|------|--|
| TBCS |  |

| TC0 to TC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TC0 to TC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170                                                                                                                                                                 |
| TCLR10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49                                                                                                                                                                  |
| TCLR11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                  |
| TCLR12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58                                                                                                                                                                  |
| TCLR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52                                                                                                                                                                  |
| TCLR14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59                                                                                                                                                                  |
| TCLR15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60                                                                                                                                                                  |
| TDIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 169                                                                                                                                                                 |
| Terminating DMA transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 192                                                                                                                                                                 |
| TES1n0, TES1n1 (n = 0 to 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 255                                                                                                                                                                 |
| Text pointer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71                                                                                                                                                                  |
| TI10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49                                                                                                                                                                  |
| TI11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                                                                                                                                                                  |
| TI12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58                                                                                                                                                                  |
| TI13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52                                                                                                                                                                  |
| TI14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59                                                                                                                                                                  |
| TI15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60                                                                                                                                                                  |
| Time base counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 246                                                                                                                                                                 |
| Timer control registers 10 to 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 257                                                                                                                                                                 |
| Timer control registers 40, 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 259                                                                                                                                                                 |
| Timer output control registers 10 to 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 260                                                                                                                                                                 |
| Timer overflow status register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 261                                                                                                                                                                 |
| Timer trigger mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 324                                                                                                                                                                 |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                     |
| Timer unit mode registers 10 to 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 254                                                                                                                                                                 |
| Timer unit mode registers 10 to 15<br>Timer 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 254<br>251                                                                                                                                                          |
| Timer unit mode registers 10 to 15<br>Timer 1<br>Timer 1 operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 254<br>251<br>262                                                                                                                                                   |
| Timer unit mode registers 10 to 15<br>Timer 1<br>Timer 1 operation<br>Timer 4                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 254<br>251<br>262<br>253                                                                                                                                            |
| Timer unit mode registers 10 to 15<br>Timer 1<br>Timer 1 operation<br>Timer 4<br>Timer 4 operation                                                                                                                                                                                                                                                                                                                                                                                                                                     | 254<br>251<br>262<br>253<br>271                                                                                                                                     |
| Timer unit mode registers 10 to 15<br>Timer 1<br>Timer 1 operation<br>Timer 4<br>Timer 4 operation<br>Timers 10 to 15                                                                                                                                                                                                                                                                                                                                                                                                                  | 254<br>251<br>262<br>253<br>271<br>251                                                                                                                              |
| Timer unit mode registers 10 to 15<br>Timer 1<br>Timer 1 operation<br>Timer 4 operation<br>Timers 10 to 15<br>Timers 40, 41                                                                                                                                                                                                                                                                                                                                                                                                            | 254<br>251<br>262<br>253<br>271<br>251<br>253                                                                                                                       |
| Timer unit mode registers 10 to 15<br>Timer 1<br>Timer 1 operation<br>Timer 4<br>Timer 4 operation<br>Timers 10 to 15<br>Timers 40, 41<br>Timer/counter function                                                                                                                                                                                                                                                                                                                                                                       | 254<br>251<br>262<br>253<br>271<br>251<br>253<br>247                                                                                                                |
| Timer unit mode registers 10 to 15<br>Timer 1<br>Timer 1 operation<br>Timer 4 operation<br>Timers 4 operation<br>Timers 10 to 15<br>Timers 40, 41<br>Timer/counter function<br>TM0, TM1                                                                                                                                                                                                                                                                                                                                                | 254<br>251<br>262<br>253<br>251<br>253<br>253<br>247<br>169                                                                                                         |
| Timer unit mode registers 10 to 15<br>Timer 1<br>Timer 1 operation<br>Timer 4 operation<br>Timers 10 to 15<br>Timers 40, 41<br>Timer/counter function<br>TM0, TM1<br>TM10 to TM15                                                                                                                                                                                                                                                                                                                                                      | 254<br>251<br>262<br>273<br>271<br>251<br>253<br>247<br>169<br>251                                                                                                  |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM0, TM1         TM40, TM41                                                                                                                                                                                                                                                                                                | 254<br>251<br>262<br>253<br>251<br>253<br>253<br>247<br>169<br>251<br>251                                                                                           |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM10 to TM15         TM40, TM41         TMC10 to TMC15                                                                                                                                                                                                                                                                     | 254<br>251<br>252<br>271<br>253<br>253<br>247<br>169<br>251<br>253<br>253                                                                                           |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM0, TM1         TM40, TM41         TMC10 to TMC15         TMC40, TMC41                                                                                                                                                                                                                                                    | 254<br>251<br>252<br>271<br>251<br>253<br>247<br>169<br>251<br>253<br>257<br>259                                                                                    |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM10 to TM15         TM40, TM41         TMC10 to TMC15         TMC40, TMC41         TO100, TO101                                                                                                                                                                                                                           | 254<br>251<br>252<br>253<br>251<br>253<br>247<br>169<br>251<br>253<br>257<br>259<br>259<br>259                                                                      |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM10 to TM15         TM40, TM41         TMC10 to TMC15         TMC40, TMC41         TO100, TO101         TO110, TO111                                                                                                                                                                                                                      | 254<br>251<br>252<br>253<br>251<br>253<br>257<br>253<br>257<br>259<br>259<br>49<br>50                                                                               |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM0, TM1         TM10 to TM15         TM40, TM41         TMC10 to TMC15         TMC40, TMC41         TO100, TO101         TO110, TO111         TO120, TO121                                                                                                                                                                | 254<br>251<br>251<br>253<br>251<br>253<br>257<br>253<br>257<br>259<br>259<br>49<br>50<br>58                                                                         |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM10 to TM15         TMC10 to TMC15         TMC40, TMC41         TO110, TO111         TO120, TO121         TO130, TO131                                                                                                                                                                                                    | 254<br>251<br>252<br>271<br>253<br>253<br>247<br>169<br>253<br>257<br>257<br>259<br>49<br>50<br>58<br>52                                                            |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM0, TM1         TM10 to TM15         TM40, TM41         TMC10 to TMC15         TMC40, TMC41         TO100, TO101         TO110, TO111         TO120, TO121         TO130, TO131         TO140, TO141                                                                                                                      | 254<br>251<br>251<br>253<br>251<br>253<br>257<br>253<br>257<br>259<br>49<br>50<br>58<br>52<br>59                                                                    |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM0, TM1         TM10 to TM15         TM40, TM41         TMC10 to TMC15         TMC40, TMC41         TO100, TO101         TO110, TO111         TO120, TO121         TO130, TO131         TO140, TO141                                                                                                                      | 254<br>251<br>251<br>253<br>271<br>251<br>253<br>247<br>169<br>251<br>257<br>259<br>259<br>50<br>58<br>52<br>59<br>60                                               |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM10 to TM15         TM40, TM41         TMC10 to TMC15         TMC40, TMC41         TO110, TO111         TO120, TO121         TO130, TO131         TO140, TO141         TO150, TO151         TOC10 to TOC15                                                                                                                | 254<br>251<br>251<br>253<br>251<br>253<br>257<br>257<br>259<br>50<br>58<br>52<br>59<br>60<br>60<br>260                                                              |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM0, TM1         TM10 to TM15         TM40, TM41         TMC10 to TMC15         TMC40, TMC41         T0100, TO101         T0110, TO111         T0120, TO121         T0130, TO131         T0140, TO141         TO150, TO151         TOC10 to TOC15         TOVS                                                             | 254<br>251<br>253<br>251<br>251<br>253<br>257<br>259<br>259<br>259<br>50<br>58<br>52<br>59<br>59<br>60<br>260<br>261                                                |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM0, TM1         TM10 to TM15         TM40, TM41         TMC10 to TMC15         TMC40, TMC41         TO100, TO101         TO110, TO111         TO120, TO121         TO130, TO131         TO140, TO141         TOC10 to TOC15         TOVS         Transfer mode                                                            | 254<br>251<br>251<br>251<br>251<br>251<br>253<br>257<br>259<br>259<br>50<br>50<br>58<br>52<br>59<br>60<br>261<br>261<br>261<br>261                                  |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM0, TM1         TM10 to TM15         TMC10 to TMC15         TMC40, TMC41         TO100, TO101         TO110, TO111         TO120, TO121         TO130, TO151         TOC10 to TOC15         TOVS         Transfer mode         Transfer objects                                                                           | 254<br>251<br>251<br>253<br>251<br>253<br>257<br>257<br>257<br>259<br>59<br>58<br>52<br>59<br>59<br>60<br>260<br>261<br>261<br>261<br>261<br>261<br>261             |
| Timer unit mode registers 10 to 15         Timer 1         Timer 1 operation         Timer 4         Timer 4 operation         Timers 10 to 15         Timers 40, 41         Timer/counter function         TM0, TM1         TM10 to TM15         TM40, TM41         TMC10 to TMC15         TMC40, TMC41         T0100, TO101         T0110, TO111         T0120, TO121         T0130, TO131         TO150, TO151         TOC10 to TOC15         TOVS         Transfer mode         Transfer objects         Transfer of misalign data | 254<br>251<br>251<br>253<br>251<br>253<br>257<br>259<br>259<br>259<br>259<br>50<br>58<br>52<br>59<br>50<br>58<br>52<br>59<br>60<br>260<br>261<br>2179<br>219<br>219 |

| Transfer types                        | 181 |
|---------------------------------------|-----|
| Transmission completion interrupt     | 294 |
| Transmit shift registers 0, 0L, 1, 1L | 293 |
| TRG2 to TRG0                          | 320 |
| Trigger mode                          | 324 |
| TTYP                                  | 169 |
| TUM10 to TUM15                        | 254 |
| Two-cycle transfer                    | 181 |
| TXD0, TXD1                            | 51  |
| TXE0, TXE1                            |     |
| TXED0, TXED1                          |     |
| TXS0, TXS0L, TXS1, TXS1L              | 293 |
| TXSn7 to TXSn0 (n = 0, 1)             |     |

### [U]

| UART0, UART1 | 284 |
|--------------|-----|
| UCAS         | 56  |
| UNLOCK       | 102 |
| UWR          | 56  |

# [V]

| Vdd | 64 |
|-----|----|
| Vpp | 64 |
| Vss | 64 |

# [W]

| WAIT                        | 62  |
|-----------------------------|-----|
| Wait function               | 113 |
| WE                          | 57  |
| Word access                 | 110 |
| Wrap-around                 | 78  |
| Writing by flash programmer | 413 |

### [X]

| X1, X264 |
|----------|
|----------|

#### [Z]

| Ζ             | 73 |
|---------------|----|
| Zero register | 71 |

448



# Facsimile Message

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

FAX

Address

Tel.

From:

Name

Company

Thank you for your kind support.

| North America<br>NEC Electronics Inc.<br>Corporate Communications Dept.<br>Fax: 1-800-729-9288<br>1-408-588-6130 | Hong Kong, Philippines, Oceania<br>NEC Electronics Hong Kong Ltd.<br>Fax: +852-2886-9022/9044 | Asian Nations except Philippines<br>NEC Electronics Singapore Pte. Ltd.<br>Fax: +65-250-3583 |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| <b>Europe</b><br>NEC Electronics (Europe) GmbH<br>Technical Documentation Dept.<br>Fax: +49-211-6503-274         | <b>Korea</b><br>NEC Electronics Hong Kong Ltd.<br>Seoul Branch<br>Fax: 02-528-4411            | Japan<br>NEC Semiconductor Technical Hotline<br>Fax: 044-548-7900                            |
| <b>South America</b><br>NEC do Brasil S.A.<br>Fax: +55-11-6465-6829                                              | <b>Taiwan</b><br>NEC Electronics Taiwan Ltd.<br>Fax: 02-2719-5951                             |                                                                                              |

I would like to report the following error/make the following suggestion:

Document title: \_\_\_\_\_

Document number: \_\_\_\_

Page number:

If possible, please fax the referenced page or drawing.

| <b>Document Rating</b> | Excellent | Good | Acceptable | Poor |
|------------------------|-----------|------|------------|------|
| Clarity                |           |      |            |      |
| Technical Accuracy     |           |      |            |      |
| Organization           |           |      |            |      |