Features

- -55° to $+125^{\circ} \mathrm{C}$ operation
- 16 to 40 VDC input
- Fully isolated
- Optocoupler feedback
- Fixed frequency, 550 kHz typical
- Topology - Single Ended Forward
- 50 V for up to 50 ms transient protection
- Inhibit and sync functions
- Indefinite short circuit protection
- Undervoltage lockout
- Up to 84% efficiency, $28 \mathrm{~W} / \mathrm{in}^{3}$

DC/DC CONVERTERS 28 Volt Input

Size (max.): Non flanged $1.460 \times 1.130 \times 0.330(37.08 \times 28.70 \times 8.38 \mathrm{~mm})$ Flanged $2.005 \times 1.130 \times 0.330(50.93 \times 28.70 \times 8.38 \mathrm{~mm})$
Weight: $\quad 30$ grams maximum.
Screening: Standard, ES, or 883 (Class H).

DESCRIPTION

The MHF+ Series ${ }^{\text {TM }}$ of high frequency DC/DC converters offers a wide input voltage range of 16 to 40 volts and up to 15 watts of output power. The units are capable of withstanding short term transients up to 50 volts. The package is a hermetically sealed, welded metal case. Flanged and non-flanged models are available.

Converter Design

The MHF+ converters are switching regulators that use a quasisquare wave, single-ended forward converter design with a constant switching frequency of 550 kHz . Isolation between input and output circuits is provided with a transformer in the forward path and a temperature compensated optical link in the feedback control loop.

For the MHF+ dual output models, good cross regulation is maintained by tightly coupled output magnetics. Up to 90% of the total output power (80% on 2805D) is available from either output, providing the opposite output is simultaneously carrying 10% of the total output power (20\% on 2805D models). Predictable current limit is accomplished by directly monitoring the output load current and providing a constant current output above the overload point.

Higher Power Density

The MHF+ Series offers a new standard of performance for small size and high power density. At just 0.33 inch high and a total footprint of $1.7 \mathrm{in}^{2}$, this low profile package offers a total power density of up to 28 watts per cubic inch.

Low Noise, high Audio Rejection

The MHF+ converters' feed-forward compensation system provides excellent dynamic response and noise rejection. Audio rejection is typically 50 dB . Typical output voltage response for a 50% to 100% step load transient is as low as 1.3% with a 150 msec recovery time. Input ripple current is typically 35 mA p -p with output ripple voltage typically 30 mV p-p.

INHIBIT FUNCTION

MHF+ converters provide an inhibit terminal that can be used to disable internal switching, resulting in no output and very low quiescent input current. The converter is inhibited when a TTL compatible low (≤ 0.8 - output disabled) is applied to the inhibit pin. The unit is enabled when the pin, which is internally connected to a pull-up resistor, is left unconnected or is connected to an open-collector gate. The open circuit output voltage associated with the inhibit pin is 8.5 to 12 V . In the inhibit mode, a maximum of 4 mA must be sunk from the inhibit pin.

Synchronization

A synchronization feature is included with the MHF+ Series that allows the user to match the switching frequency of the converter to the frequency of the system clock. An external synchronization feature is included that allows the user to adjust the nominally 550 kHz operating frequency to any frequency within the range of 500 kHz to 600 kHz . This is initiated by applying a TTL compatible input of the desired frequency to pin 5 .

Short Circuit Protection

MHF+ Series converters provide short circuit protection by restricting the output current to approximately 115% of the full load output current. The output current is sensed in the secondary stage to provide highly predictable and accurate current limiting, and to eliminate foldback characteristics.

Undervoltage Lockout

Undervoltage lockout prevents the units from operating below approximately 12 VDC input voltage to keep system current levels smooth, especially during initialization or re-start operations.

ABSOLUTE MAXIMUM RATINGS
Input Voltage
- 16 to 40 VDC
Power Dissipation (Pd)
- 6 W
Output Power
- 12 to 15 watts depending on model
Lead Soldering Temperature (10 sec per lead) - $300^{\circ} \mathrm{C}$
Storage Temperature Range (Case)
- $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS
 \section*{Input Voltage Range}

- 16 to 40 VDC continuous
- 50 V for up to 50 msec transient

Case Operating Temperature (Tc)

- $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ full power
- $-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ absolute

Derating Output Power/Current (Tc)

- Linearly from 100% at $125^{\circ} \mathrm{C}$ to 0% at $135^{\circ} \mathrm{C}$

SYNC AND INHIBIT

Sync In ($\mathbf{5 0 0}$ to 600 kHz)

- Duty cycle 40% to 60%
- Logic low 0.8 V max
- Logic high 4.5 V min, 5 V max
- Referenced to input common
- If not used, connect to input common Inhibit TTL Open Collector
- Logic low (output disabled)

Logic low voltage $\leq 0.8 \mathrm{~V}$
Inhibit pin current 4.0 mA max

- Referenced to input common
- Logic high (output enabled)

Open collector or unconnected

TYPICAL CHARACTERISTICS

Output Voltage Temperature Coefficient

- $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical
- $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum

Input to Output Capacitance

- 60 pF typical
Undervoltage Lockout
- 12 V input typical
Current Limit
- 115% of full load typical

Isolation

- 100 megohm minimum at 500 V

Audio Rejection

- 50 dB typical
Conversion Frequency ($55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \mathrm{TC}$)
- Free run 550 kHz typical 480 kHz min, 620 kHz max
Inhibit Pin Voltage (unit enabled)
- 8.5 to 12 V

Electrical Characteristics: $25^{\circ} \mathrm{C}$ Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTPUT MO		MHF+283R3S			MHF+2805S			MHF+285R2S			UNITS
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
OUTPUT VOLTAGE		3.27	3.30	3.33	4.95	5.00	5.05	5.16	5.20	5.24	VDC
OUTPUT CURRENT	$\mathrm{V}_{\text {IN }}=16$ to 40 VDC	0	-	2.4	0	-	2.4	0	-	2.4	A
OUTPUT POWER	$\mathrm{V}_{\text {IN }}=16$ to 40 VDC	0	-	8	0	-	12	0	-	12.48	W
OUTPUT RIPPLE	$10 \mathrm{kHz}-2 \mathrm{MHz}$	-	30	80	-	30	80	-	30	50	
VOLTAGE	$\mathrm{Tc}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	50	120	-	60	100	-	60	100	$m \vee p-p$
LINE REGULATION	Vin $=16$ to 40 VDC	-	5	100	-	5	50	-	5	35	mV
LOAD REGULATION	NO LOAD TO FULL	-	20	50	-	20	50	-	20	35	mV
INPUT VOLTAGE	CONTINUOUS	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 50 ms	-	-	50	-	-	50	-	-	50	V
INPUT CURRENT	NO LOAD	-	25	65	-	25	40	-	25	42	
	FULL LOAD	-	-	397	-	560	624	-	560	605	mA
	INHIBITED	-	5	12	-	5	12	-	5	12	
INPUT RIPPLE	$10 \mathrm{kHz}-10 \mathrm{MHz}$	-	45	80	-	35	80	-	35	100	
CURRENT	$\mathrm{Tc}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	-	120	-	-	100	-	-	100	pp
EFFICIENCY		72	75	-	75	77	-	75	77	-	\%
LOAD FAULT ${ }^{1}$	SHORT CIRCUIT POWER DISSIPATION	-	5	8	-	3.5	6	-	3.5	6	W
	RECOVERY ${ }^{2}$	-	7.5	30	-	7.5	30	-	7.5	30	ms
STEP LOAD RESP.	$50 \%-100 \%-50 \%$ TRANSIENT	-400	150	500	-400	150	400	-400	150	400	mV pk
	RECOVERY ${ }^{2}$	-	150	300	-	150	300	-	150	300	$\mu \mathrm{s}$
STEP LINE RESP.	$16-40-16 \mathrm{VDC}$ TRANSIENT ${ }^{3}$	-800	550	800	-800	550	800	-800	550	800	mV pk
	RECOVERY ${ }^{2}$	-	0.8	1.2	-	0.8	1.2	-	0.8	1.2	ms
START-UP	DELAY	-	10	25	-	10	25	-	10	25	ms
	OVERSHOOT ${ }^{4}$	-	200	300	-	100	600	-	100	600	mV pk

Notes

1. Indefinite short circuit protection not guaranteed above $125^{\circ} \mathrm{C}$ (case) 3. Input step transition time $>10 \mu \mathrm{~s}$.
2. Recovery time is measured from application of the transient
3. Input step transition time $<100 \mu \mathrm{~s}$.

Electrical Characteristics: $25^{\circ} \mathrm{C}$ Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTPUT MODELS		MHF+2812S			MHF+2815S			MHF+2828S			UNITS
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
OUTPUT VOLTAGE		11.88	12.00	12.12	14.85	15.00	15.15	27.72	28.00	28.28	VDC
OUTPUT CURRENT	$\mathrm{V}_{\text {IN }}=16$ to 40 VDC	0	-	1.25	0	-	1.00	0	-	0.54	A
OUTPUT POWER	$\mathrm{V}_{\text {IN }}=16$ to 40 VDC	0	-	15	0	-	15	0	-	15	W
OUTPUT RIPPLE	$10 \mathrm{kHz}-2 \mathrm{MHz}$	-	30	80	-	30	80	-	60	120	mV p-p
VOLTAGE	Tc $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	50	120	-	50	120	-	100	180	
LINE REGULATION	Vin $=16$ to 40 VDC	-	5	50	-	5	50	-	50	150	mV
LOAD REGULATION	NO LOAD TO FULL	-	20	50	-	20	50	-	50	150	mV
INPUT VOLTAGE	CONTINUOUS	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 50 ms	-	-	50	-	-	50	-	-	50	V
INPUT CURRENT	NO LOAD	-	25	50	-	25	62	-	25	60	mA
	FULL LOAD	-	680	752	-	670	752	-	640	760	
	INHIBITED	-	5	12	-	5	12	-	5	12	
INPUT RIPPLE	$10 \mathrm{kHz}-10 \mathrm{MHz}$	-	35	80	-	35	80	-	35	80	mA pp
CURRENT	$\mathrm{Tc}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	-	120	-	-	120	-	-	120	
EFFICIENCY		78	79	-	78	80	-	82	84	-	\%
LOAD FAULT ${ }^{1}$	SHORT CIRCUIT POWER DISSIPATION	-	3.5	6	-	3.5	6	-	3.5	6	W
	RECOVERY ${ }^{2}$	-	7.5	30	-	7.5	30	-	7.5	30	ms
STEP LOAD RESP.	$50 \%-100 \%-50 \%$ TRANSIENT	-500	150	500	-600	200	600	-800	600	800	mV pk
	RECOVERY ${ }^{2}$	-	150	300	-	150	300	-	200	400	$\mu \mathrm{s}$
STEP LINE RESP.	16-40-40 VDC TRANSIENT ${ }^{3}$	-800	550	800	-800	550	800	-1200	1100	1200	mV pk
	RECOVERY ${ }^{2}$	-	0.8	1.2	-	0.8	1.2	-	0.8	1.2	ms
START-UP	DELAY	0	10	25	0	10	25	0	10	25	ms
	OVERSHOOT ${ }^{4}$	0	200	1200	0	200	1500	0	200	280	mV pk

Notes

1. Indefinite short circuit protection not guaranteed above $125^{\circ} \mathrm{C}$ (case)
2. Recovery time is measured from application of the transient to point at which Vout is within regulation.
3. Input step transition time $>10 \mu \mathrm{~s}$.
4. Input step transition time $<100 \mu$ s.

Electrical Characteristics: $\mathbf{2 5}^{\circ} \mathrm{C}$ Tc, 28 VDC Vin, $\mathbf{1 0 0 \%}$ load, free run, unless otherwise specified.

DUAL OUTPUT MODEL		MHF+2805D			MHF+2812D			MHF+2815D			UNITS
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
OUTPUT VOLTAGE	$+\mathrm{V}_{\text {OUT }}$	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
	$-\mathrm{V}_{\text {OUT }}$	4.92	5.00	5.08	11.82	12.00	1218	14.78	15.00	15.23	
OUTPUT CURRENT ${ }^{1}$	$\mathrm{V}_{\text {IN }}=16$ to 40 VDC	-	± 1.2	1.92	-	± 0.625	1.125	-	± 0.500	0.900	A
OUTPUT POWER ${ }^{1}$	$\mathrm{V}_{\text {IN }}=16$ to 40 VDC	-	-	12	-	-	15	-	-	15	W
OUTPUT RIPPLE	$10 \mathrm{kHz}-2 \mathrm{MHz}$	-	30	80	-	30	80	-	30	80	mV p-p
VOLTAGE $\pm \mathrm{V}_{\text {OUT }}$	Tc $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	60	120	-	60	120	-	50	120	
LINE REGULATION	BALANCED + $\mathrm{V}_{\text {OUT }}$	-	5	50	-	5	50	-	5	50	mV
Vin $=16$ to 40 VDC	LOAD $-\mathrm{V}_{\text {OUT }}$	-	-	80	-	-	100	-	-	100	
LOAD REGULATION	BALANCED + $\mathrm{V}_{\text {OUT }}$	-	20	50	-	20	50	-	20	50	mV
	LOAD -V ${ }_{\text {OUT }}$	-	-	100	-	-	100	-	-	100	
CROSS REGULATION ${ }^{2}$	NEGATIVE V ${ }_{\text {OUT }}$	-	6	7.5	-	3	6	-	3	6	\%
INPUT VOLTAGE	CONTINUOUS	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 50 msec	-	-	50	-	-	50	-	-	50	V
INPUT CURRENT	NO LOAD	-	20	40	-	25	50	-	25	50	mA
	FULL LOAD	-	540	600	-	645	754	-	638	754	
	INHIBITED	-	6	12	-	5	12	-	5	12	
INPUT RIPPLE	$10 \mathrm{kHz}-10 \mathrm{MHz}$	-	20	50	-	35	60	-	35	60	mA p-p
CURRENT	Tc $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	40	80	-	50	100	-	50	100	
EFFICIENCY		77	79	-	76	83	-	76	84	-	\%
LOAD FAULT	SHORT CIRCUIT ${ }^{3}$ POWER DISSIPATION	-	3	6	-	3	6	-	3	6	W
	RECOVERY ${ }^{4}$	-	7.5	30	-	7.5	50	-	7.5	50	ms
STEP LOAD RESP. ${ }^{5}$ BALANCED LOADS	$\begin{array}{r} 50 \%-100 \%-50 \% \\ \text { TRANSIENT } \frac{+V_{\text {OUT }}}{-\mathrm{V}_{\text {OUT }}} \end{array}$	-600	200	600	-600	300	600	-600	300	600	mV pk
		-600	150	600	-600	100	500	-600	100	600	
	RECOVERY ${ }^{4}$	-	150	500	-	200	400	-	200	500	$\mu \mathrm{s}$
STEP LINE RESP.$\pm \mathrm{V}_{\text {OUT }}$	$16-40-40 \mathrm{VDC}$ TRANSIENT ${ }^{6}$	-800	600	800	-750	550	750	-750	550	750	mV pk
	RECOVERY ${ }^{4}$	-	0.8	1.2	-	0.8	1.2	-	0.8	1.2	ms
START-UP	DELAY	-	12	20	-	12	25	-	12	25	ms
	OVERSHOOT ${ }^{7}$	0	100	250	0	200	750	0	200	750	mV pk

Notes

1. Up to 13.5 watts, 90% ($9.6 \mathrm{~W}, 80 \%$ for 2805D) of the total output power is available from either output providing the opposite output is simultaneously carrying $10 \%(20 \%$ for 2805 D$)$ of the total output power. Each output must carry a minimum of $10 \%(20 \%$ for 2805D) of the total output power in order to maintain regulation on the negative output.
2. Effect on-Vout for the following conditions:
$+\mathrm{Po}=50 \%$ to 10% and $-\mathrm{Po}=50 \%$
$+\mathrm{Po}=50 \%$ and $-\mathrm{Po}=50 \%$ to 10%
3. Indefinite short circuit protection not guaranteed above $125^{\circ} \mathrm{C}$ (case)
4. Recovery time is measured from application of the transient to point at which Vout is within regulation.
5. Response of either output with the opposite output held at half of the total output power.
6. Input step transition time $>10 \mu \mathrm{~s}$.
7. Input step transition time $<100 \mu \mathrm{~s}$.

BLOCK DIAGRAM

Figure 1: MHF+ Single Output

MHF+ SERIES
 SINGLE AND DUAL
 15 WATT

DC/DC CONVERTERS

PIN OUT			
Pin	Single Output (Except MHF+2828S)	MHF+2828S	Dual Output
1	Inhibit	Inhibit	Inhibit
2	No connection	Positive Output	Positive Output
3	Output Common	(See note 1, below)	Output Common
4	Positive Output	Output Common	Negative Output
5^{2}	Sync	Sync	Sync
6	Case Ground	Case Ground	Case Ground
7	Input Common	Input Common	Input Common
8	Positive Input	Positive Input	Positive Input

1. Pin 3 of MHF+2828S will provide 14 Vout referenced to output common (pin 4).
2. If Sync is not used, pin 5 should be connected to input common.

See pages 9 and 10 for dimensions.
Figure 2: Pin Out

SMD NUMBERS

Standard MICROCIRCUIT DRAWING (SMD)	MHF+ SIMILAR PART
IN PROCESS	MHF+283R3S/883
5962-9213901HXC	MHF+2805S/883
IN PROCESS	MHF+285R2S/883
$5962-9166401 \mathrm{HXC}$	$\mathrm{MHF}+2812 \mathrm{~S} / 883$
$5962-9160101 \mathrm{HXC}$	$\mathrm{MHF}+2815 \mathrm{~S} / 883$
$5962-9689801 \mathrm{HXC}$	$\mathrm{MHF}+2828 \mathrm{~S} / 883$
$5962-9555901 \mathrm{HXC}$	$\mathrm{MHF}+2805 \mathrm{D} / 883$
$5962-9214401 \mathrm{HXC}$	$\mathrm{MHF}+2812 \mathrm{D} / 883$
$5962-9161401 \mathrm{HXC}$	$\mathrm{MHF}+2815 \mathrm{D} / 883$

Flanged SMDs have the suffix HZC instead of HXC.
For exact specifications for an SMD product, refer to the SMD drawing. Call your Interpoint representative for status on the MHF+ SMD releases which are "in process". SMDs can be downloaded from
http://www.dscc.dla.mil/programs/smcr

Typical Performance Curves: $\mathbf{2 5}^{\circ} \mathrm{C}$ Tc , 28 VDC Vin, 100% load, free run, unless otherwise specified.

Figure 3

Figure 6

Figure 9

Figure 4

Figure 7

Figure 10

Figure 5

Figure 8

MHF+2805S STEP LOAD RESPONSE
Figure 11

MHF+ SERIES
 SINGLE AND DUAL 15 WATT

Typical Performance Curves: $25^{\circ} \mathrm{C}$ Tc , 28 VDC Vin, 100% load, free run, unless otherwise specified.

Figure 12

FIGURE 15

MHF+2805S TURN-ON INTO FULL LOAD
Figure 13

MHF+2815D +VOUT STEP LOAD RESPONSE
Figure 16

OUTPUT LOAD (\%) COND. A: 50% LOAD +V ; 50% to $10 \%-\mathrm{V}$ COND. B: 50% LOAD $-\mathrm{V} ; 50 \%$ to $10 \%+V$ MHF+2805D/MHF+2812D/MHF+2815D CROSS REGULATION

Figure 19

MHF+2815D STEP LINE RESPONSE
FIGURE 14

MHF+2815D TURN-ON INTO FULL LOAD
Figure 17

Figure 20

Squared corner and dot on top of case indicate pin one.

CASE E BOTTOM VIEW See Figure 22 for pin configurations.

1.460 max (37.08)

Materials

Header Cold Rolled Steel/Nickel/Gold
Cover Kovar/Nickel (SMHF Series

Cold Rolled Steel/Nickel/Gold) \#52 alloy/Gold compression glass seal

Case dimensions in inches (mm)

Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding $300^{\circ} \mathrm{C}$ for 10 seconds per pin.

Figure 21: Case E Maximum Dimensions

BOTTOM VIEW CASE E1
MHF+ Series Single and Dual: Screening - Standard, ES, or 883

Figure 22: Case E1

Note: Although every effort has been made to render the case drawings at actual size, variations in the printing process may cause some distortion. Please refer to the numerical dimensions for accuracy

MHF+ SERIES

SINGLE AND DUAL

DC/DC CONVERTERS

Materials

Header Cold Rolled Steel/Nickel/Gold
Cover MHF+ Series and FMH Filter Kovar/Nickel
SMHF
Cold Rolled Steel/Nickel
Pins \#52 alloy (all cases)
compression glass seal

Case dimensions in inches (mm)

Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.2) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding $300^{\circ} \mathrm{C}$ for 10 seconds per pin.

Figure 23: Case G Maximum Dimensions

BOTTOM VIEW CASE G1

Flanged cases: Designator "F" required in Case Option position of model number MHF+ Series Single and Dual: Screening - Standard, ES, or 883

Figure 24: Case G1

TEST	STANDARD	/ES	/883 (Class H)*
PRE-CAP INSPECTION Method 2017, 2032	yes	yes	yes
TEMPERATURE CYCLE (10 times) Method 1010, Cond. C, $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Method 1010 , Cond. B, $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{gathered} \text { no } \\ \text { yes } \end{gathered}$	$\begin{gathered} \text { yes } \\ \text { no } \end{gathered}$
CONSTANT ACCELERATION Method 2001, 3000 g Method 2001, 500 g	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{gathered} \text { yes } \\ \text { no } \end{gathered}$
BURN-IN Method 1015,160 hours at $125^{\circ} \mathrm{C}$ 96 hours at $125^{\circ} \mathrm{C}$ case (typical)	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{gathered} \text { yes } \\ \text { no } \end{gathered}$
FINAL ELECTRICAL TEST MIL-PRF-38534, Group A Subgroups 1 through 6: $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ Subgroups 1 and $4:+25^{\circ} \mathrm{C}$ case	$\begin{gathered} \text { no } \\ \text { yes } \end{gathered}$	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{gathered} \text { yes } \\ \text { no } \end{gathered}$
HERMETICITY TESTING Fine Leak, Method 1014, Cond. A Gross Leak, Method 1014, Cond. C Gross Leak, Dip (1×10^{-3})	no no yes	yes yes no	yes yes no
FINAL VISUAL INSPECTION Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.
*883 products are built with element evaluated components and are 100\% tested and guaranteed over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Contact Information:

Interpoint Headquarters USA
Phone: 1-800-822-8782
+425-882-3100
Email:
power@intp.com

www.interpoint.com

Interpoint UK
Phone: +44-1252-815511
Email: poweruk@intp.com

Interpoint France
Phone: +33-134285455
Email: powerfr@intp.com

Features

- -55° to $+125^{\circ} \mathrm{C}$ operation
- 16 to 48 VDC input
- Fully Isolated
- Optocoupler feedback
- Fixed frequency 450 kHz
- Topology - Current Mode Flyback
- Transient protection $80 \mathrm{~V} / 120 \mathrm{~ms}$
- Inhibit and sync functions
- Indefinite short circuit protection
- Undervoltage lockout
- Up to 76% efficiency

DC/DC CONVERTERS 28 VOLT INPUT

MODELS
VDC OUTPUT
TRIPLE OUTPUT
+5 and ± 12
+5 and ± 15

Size (max.): Non flanged, case E2, $1.460 \times 1.130 \times 0.330$ inches ($37.08 \times 28.70 \times 8.38 \mathrm{~mm}$)
Flanged, case G2, $2.005 \times 1.130 \times 0.330$ inches ($50.93 \times 28.70 \times 8.38 \mathrm{~mm}$) See Figures 13-16 for dimensions.
Weight: 32 grams maximum.
Screening: Standard, ES, or 883 (Class H). See Table 1 for screening options.

DESCRIPTION

Interpoint's MHF+ Series ${ }^{\text {TM }}$ Triple DC/DC converters provide a wide input voltage range of 16 to 48 VDC delivering 15 watts of total output power with output voltages of +5 and ± 12 or +5 and ± 15 VDC. The main output, +5 VDC, will supply up to 7.5 watts and the auxiliaries will supply up to 7.5 watts of combined power. Full power operation at $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ plus the ability to withstand transients of up to 80 V for up to 120 milliseconds make these converters an ideal choice for your high reliability systems.

Converter Design

MHF+ Triple Series of DC/DC converters incorporate dual-phase, phase-shifted technology with a continuous flyback topology. This design eliminates a minimum load requirement on the main output and eliminates cross regulation effects between the main output voltage and the auxiliary output voltages. The phase-shifted design offers a further benefit in reduced input and output ripple.

Inhibit Function

An open collector, TTL compatible, inhibit terminal (pin 1) provides shut-down and start-up control. Applying a logic level low ($<0.8 \mathrm{~V}$), referenced to input common, will disable the output of the converter. When inhibited input current is reduced to 5 mA or less and there is no generation of switching noise. The inhibit terminal typically sinks 3 mA when the converter is inhibited.

Leaving the terminal open or pulling it high will enable the converter. Use an open collector interface for logic high voltages of up to 11 volts. (Refer to Figure 2 for a connection diagram.) An open collector interface is not required if the logic high is in excess of the open circuit voltage of the inhibit terminal, 11 volts, but less than 40 volts.

Soft Start Feature

The soft-start feature provides a controlled 20 milliseconds turn-on to minimize inrush current and reduce overshoot at initial start-up or when inhibit is released.

SYNCHRONIZATION

To synchronize the converter's switching frequency to a system clock apply the clock signal to the sync terminal (pin 7). When multiple converters are powered from a single power source, asynchronous (free run) operation will result in lower peak noise for common spectral peaks, but synchronous operation will eliminate any possibility of interference frequencies in the low audio band. Source impedance of the signal should be less than 100 ohms and the transition time should be less than 100 nanoseconds. The capacitively coupled sync input will synchronize on a differential signal of as low as 4 volts to as high as 10 volts. If the sync function is not used, the terminal should be left open.

Short Circuit Protection

Internal current limiting circuitry protects all three outputs against short circuits. When output power exceeds approximately 130% of maximum output power, the output currents are limited. In addition, separate current limiting circuitry protects each output individually resulting in normal operation of either the main or the auxiliaries, whichever is not in a shorted condition.

PACKAGING

MHF+ Triple converters are packaged in hermetically sealed metal cases. MHF+ Triple converters can be purchased in a flanged or non-flanged case. The flanged option provides increased heat dissipation and also provides greater stability when mechanically secured.

MHF+ SERIES TRIPLE DC/DC CONVERTERS

ABSOLUTE MAXIMUM RATINGS

Input Voltage

- 16 to 48 VDC

Power Dissipation (Pd)

- 12 watts

Output Power

- 15 watts

Lead Soldering Temperature (10 sec per pin)

- $300^{\circ} \mathrm{C}$

Storage Temperature Range (Case)

- $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range

- 16 to 48 VDC continuous
- 80 V for up to 120 msec

Case Operating Temperature (Tc)

- $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ full power
- $-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ absolute

Derating Output Power/Current

- Linearly from 100% at $125^{\circ} \mathrm{C}$ to 0% at $135^{\circ} \mathrm{C}$

SYNC AND INHIBIT

Sync $\mathbf{4 0 0}$ to $\mathbf{6 0 0} \mathbf{~ k H z}$

- Duty cycle 40% to 60%
- Logic low 0.8 V max
- Logic high 4.5 V min, 10.0 V max
- If not used, leave unconnected
- Referenced to input common Inhibit: TTL Open Collector
- Logic low (output disabled)

Logic low voltage $\leq 0.8 \mathrm{~V}$ max
Inhibit pin current 3.0 typ , $5.0 \max$

- Referenced to input common

Logic high (output enabled)
Open collector
Unconnected or 11 to 40 V

TYPICAL CHARACTERISTICS
Output Voltage Temperature Coefficient

- $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical

Current Limit

- 130% typical

Isolation

- 100 megohm minimum at 500 V

Conversion Frequency

- Free run 375 minimum, 500 kHz maximum
- External sync range 400 to 600 kHz Inhibit Pin Voltage (unit enabled)
- 10 V typical

Figure 1: Block Diagram

Electrical Characteristics: $\mathbf{2 5}^{\circ} \mathrm{C}$ Tc, 28 VDC Vin, $\mathbf{1 0 0 \%}$ load, free run, unless otherwise specified.

PARAMETER	CONDITION	MHF+28512T			MHF+28515T			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
OUTPUT VOLTAGE	MAIN	4.95	5.0	5.05	4.925	5.0	5.05	VDC
	+ AUXILIARY	11.64	12.0	12.36	14.55	15.0	15.45	
	- AUXILIARY	11.64	12.0	12.36	14.55	15.0	15.45	
OUTPUT CURRENT ${ }^{1}$	MAIN	0	-	1.5	0	-	1.5	A
	+ AUXILIARY	-	-	0.416	-	-	0.333	
	- AUXILIARY	-	-	0.416	-	-	0.333	
	TOTAL	-	-	2.125	-	-	2.0	
OUTPUT POWER ${ }^{2}$	MAIN	-	-	7.5	-	-	7.5	W
	+ AUXILIARY	-	-	5	-	-	5	
	- AUXILIARY	-	-	5	-	-	5	
	TOTAL	-	-	15	-	-	15	
OUTPUT RIPPLE VOLTAGE	10 kHz to 2 MHz MAIN	-	20	75	-	20	75	mV p-p
	10 kHz to $2 \mathrm{MHz} \quad \pm$ AUXILIARY	-	30	90	-	30	112	
LINE REGULATION ${ }^{3}$ $\mathrm{V}_{\text {IN }}=$ MIN. TO MAX.	MAIN	-	25	75	-	25	75	mV
	\pm AUXILIARY	-	120	240	-	150	300	
LOAD REGULATION3, 4	MAIN	-	25	60	-	25	60	mV
	\pm AUXILIARY	-	120	240	-	150	300	
CROSS REGULATION ${ }^{5}$	- AUXILIARY	-	-	1200	-	-	1500	mV
INPUT VOLTAGE	CONTINUOUS	16	28	48	16	28	48	VDC
	TRANSIENT 120 ms	-	-	80	-	-	80	V
INPUT CURRENT	NO LOAD ${ }^{3}$	-	20	35	-	20	35	mA
	FULL LOAD	-	705	724	-	705	724	
	INHIBITED ${ }^{3}$	-	3	5	-	3	5	
INPUT RIPPLE CURRENT	10 kHz to 10 MHz	-	20	50	-	20	50	mA p-p
EFFICIENCY		74	76	-	74	76	-	\%
LOAD FAULT ${ }^{6}$	POWER DISSIPATION $\text { MAIN }{ }^{3}$	-	-	12	-	-	12	W
	\pm AUXILIARY	-	-	12	-	-	12	
STEP LOAD RESPONSE ${ }^{3,7,8}$	TRANSIENT							mV pk
	$\begin{gathered} \text { MAIN } \\ \pm \text { AUXILIARY } \end{gathered}$	-	—	$\begin{aligned} & 850 \\ & 750 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 850 \\ & 750 \\ & \hline \end{aligned}$	
	RECOVERY MAIN	-	5	8	-	5	8	ms
	RECOVERY \pm AUX.	-	2	3	-	2	3	
START-UP ${ }^{3}$,	DELAY EACH OUTPUT	-	10	25	-	10	25	ms

Notes

1. The sum of the 12 volt auxiliary output currents may not exceed 625 mA . The sum of the 15 volt auxiliary output currents may not exceed 500 mA .
2. The sum of the auxiliary output power may not exceed 7.5 watts.
3. Case temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
4. Load regulation for the +5 is specified at 0.0 to 1.5 A with the aux. both held at $3.76 \mathrm{~W}(313 \mathrm{~mA}$ for the $\pm 12,250 \mathrm{~mA}$ for the $\pm 15)$. Load regulation for the aux. is specified as both aux. from 0.0 to $3.76 \mathrm{~W}(313 \mathrm{~mA}$ for $\pm 12,250 \mathrm{~mA}$ for $\pm 15)$ at the same time with the +5 held at 1.5 A .
5. Cross regulation only occurs between the two auxiliaries and is measured on -aux. +5 is held constant at 1.0 A. Cross regulation is specified for two conditions:
Negative aux. $=3.76 \mathrm{~W}$; positive aux. $=0.37 \mathrm{~W}$ to 3.76 W .
Negative aux. $=0.37 \mathrm{~W}$ to 3.76 W ; positive aux. $=3.76 \mathrm{~W}$.
6. Load fault $=<0.05 \Omega$.
7. Transition time is $2-10 \mu \mathrm{~s}$.
8. Time to settle to within 1% of Vout final value.

MHF+ SERIES TRIPLE DC/DC CONVERTERS 15 WATT

CONNECTION DIAGRAMS

Figure 2: INHIBIT INTERFACE

If the sync terminal ([pin 7) is not used, it must be left floating. The ac coupling shown will prevent sync signal failure.

Figure 3: AC Coupling of Sync Signal

*The case ground connection should be as low an impedance as possible to minimize EMI. Direct contact of baseplate to chassis ground provides the lowest impedance.

Figure 4: EMI Filter Connection

PIN OUT	
Pin	Description
1	Inhibit
2	Main (+5 V) Output
3	Output Common
4	Positive Auxiliary Output
5	Negative Auxiliary Output
6	Case Ground
7	Sync In
8	Input Common
9	Positive Input
If Sync is not used, leave it unconnected.	
Squared corner and dot on top of package indicate pin one.	
!	$\begin{array}{cccc}\odot & \odot & \odot & \odot \\ 2 & 3 & 4 & 5\end{array}$ 亿
	TTOM VIEW
\therefore	BOTTOM VIEW MHF+ Triple
\because	俍
$\because 9$	8 7 6
\cdots -	$\bigcirc \bigcirc$
Dotted line outlines flanged package option.	
Refer to Figures 13-16 for dimensions.	
Figure 5: Pin Out Bottom View	

SMD NUMBERS

Standard Microcircuit Drawing (SMD)	MHF+ SimiLAR PART
$5962-9560101 \mathrm{HXC}$	MHF+28512T/883
$5962-9560201 \mathrm{HXC}$	MHF+28515T/883

Flanged SMDs have the suffix HZC instead of HXC.

For exact specifications for an SMD product, refer to the SMD drawing. SMDs can be downloaded from
http://www.dscc.dla.mil/programs/smcr

MHF+ SERIES TRIPLE DC/DC CONVERTERS 15 WATT

Typical Performance Curves: $\mathbf{2 5}^{\circ} \mathrm{C}$ Tc , 28 VDC Vin, 100% load, free run, unless otherwise specified.

Figure 6

MHF+28512T TURN ON INTO FULL LOAD MAIN
MHF+28515T has a similar response

Figure 9

Figure 12

Figure 7

MHF+28512T TURN ON INTO FULL LOAD MAIN

MHF+28515T has a similar response

Figure 10
 MHF+ 28515 T STEP LINE RESPONSE MHF+28512T has a similar response

Figure 8

MHF+28512T TURN ON INTO FULL LOAD AUXILIARIES
MHF+28515T has a similar response

Figure 11

MHF + SERIES TRIPLE
 DC/DC CONVERTERS

15 WATT

Squared corner and dot on top of case indicate pin one.

Materials

Header Cold Rolled Steel/Nickel/Gold
Cover Kovar/Nickel
(SMHF Series
Cold Rolled Steel/Nickel/Gold)
Pins \#52 alloy/Gold compression glass seal

Case dimensions in inches (mm)
Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding $300^{\circ} \mathrm{C}$ for 10 seconds per pin.

Figure 13: Case E Maximum Dimensions

BOTTOM VIEW CASE E2
MHF+ Series Triple: Screening - Standard, ES, or 883

Figure 14: Case E2

DC/DC CONVERTERS

Flange Thickness: 0.047 (1.19)

Materials
Header Cold Rolled Steel/Nickel/Gold
Cover MHF+ Series and FMH Filter Kovar/Nickel
Pins \#52 alloy (all cases) compression glass seal

Case dimensions in inches (mm)
Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.2) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding $300^{\circ} \mathrm{C}$ for 10 seconds per pin.

Figure 15: Case G Maximum Dimensions

BOTTOM VIEW CASE G2

Flanged case: Designator (F) required in Case Option position of model number.
MHF+ Series Triple: Screening - Standard, ES, or 883

Figure 17: CASE G2

Note: Although every effort has been made to render the case drawings at actual size, variations in the printing process may cause some distortion. Please refer to the numerical dimensions for accuracy.

MHF + SERIES TRIPLE DC/DC CONVERTERS

 15 WATTTable 1: Environmental SCREening

TEST	STANDARD	/ES	/883 (Class H)*
PRE-CAP INSPECTION Method 2017, 2032	yes	yes	yes
TEMPERATURE CYCLE (10 times) Method 1010, Cond. C, $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Method 1010, Cond. B, $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{gathered} \text { yes } \\ \text { no } \end{gathered}$
CONSTANT ACCELERATION Method 2001, 3000 g Method 2001, 500 g	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{gathered} \text { yes } \\ \text { no } \end{gathered}$
BURN-IN Method 1015,160 hours at $125^{\circ} \mathrm{C}$ 96 hours at $125^{\circ} \mathrm{C}$ case (typical)	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	yes no
FINAL ELECTRICAL TEST MIL-PRF-38534, Group A Subgroups 1 through 6: $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ Subgroups 1 and $4:+25^{\circ} \mathrm{C}$ case	$\begin{gathered} \text { no } \\ \text { yes } \end{gathered}$	$\begin{gathered} \text { no } \\ \text { yes } \end{gathered}$	$\begin{gathered} \text { yes } \\ \text { no } \end{gathered}$
HERMETICITY TESTING Fine Leak, Method 1014, Cond. A Gross Leak, Method 1014, Cond. C Gross Leak, Dip (1×10^{-3})	no no yes	yes yes no	yes yes no
FINAL VISUAL INSPECTION Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.
*883 products are built with element evaluated components and are 100% tested and guaranteed over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Contact Information:

www.interpoint.com

Interpoint Headquarters USA
Phone: 1-800-822-8782
+425-882-3100
Email: power@intp.com
Interpoint UK
Phone: +44-1252-815511
Email: poweruk@intp.com

Interpoint France
Phone: +33-134285455
Email: powerfr@intp.com

