Technical Data Advance Information

DSP56321T/D Rev. 2, 10/2002

24-Bit Digital Signal Processor

MOTOROLA intelligence everywhere^{**}

digitaldna

The DSP56321T is a member of the DSP56300 Digital Signal Processor (DSP) family intended for applications requiring a large amount of on-device memory. The on-board EFCOP can accelerate general filtering applications, such as echo-cancellation. correlation, and general-purpose convolution-based algorithms. By operating in parallel with the core, the EFCOP provides overall enhanced performance and signal quality with no impact on channel throughput or total channel support.

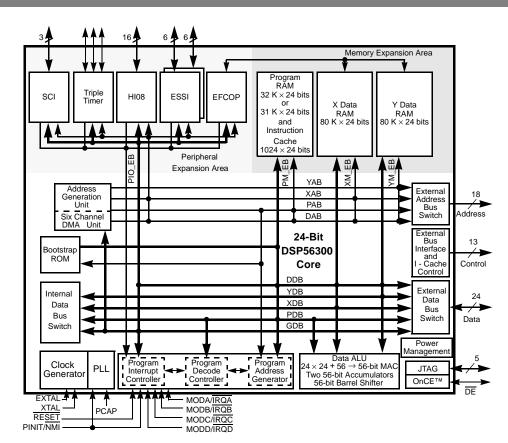


Figure 1. DSP56321T Block Diagram

The Motorola DSP56321T supports networking, security encryption, and home entertainment applications using a high- performance, single-clock-cycle-per- instruction engine (DSP56000 code-compatible), a barrel shifter, 24-bit addressing, an instruction cache, and a six-channel direct memory access (DMA) controller (see **Figure 1**). The DSP5321T offers 220/240 MMACS performance, attaining 440/480 MMACS when the EFCOP is in use, It operates with an internal 220/240 MHz clock, using a 1.6 volt core and independent 3.3 volt input/output (I/O) power. This device is pin- compatible with the Motorola DSP56303, DSP56L307, DSP56309, and DSP56311.

Table of Contents

	DSP56321T Features	iii
	Target Applications	v
	Product Documentation	v
Chapter 1	Signal/ Connection Descriptions	
	1.1 Signal Groupings	
	1.2 Power	
	1.3 Ground	
	1.4 Clock	
	1.5 External Memory Expansion Port (Port A)	
	1.6 Interrupt and Mode Control	
	1.7 Host Interface (HI08)	
	1.8 Enhanced Synchronous Serial Interface 0 (ESSI0)	
	1.9 Enhanced Synchronous Serial Interface 1 (ESSI1)	
	1.10 Serial Communication Interface (SCI)	
	1.11 Timers	1-16
	1.12 JTAG and OnCE Interface	
Chapter 2	Specifications	
•	2.1 Introduction	
	2.2 Maximum Ratings	
	2.3 Thermal Characteristics	
	2.4 DC Electrical Characteristics	
	2.5 AC Electrical Characteristics	
Chapter 3	Packaging	
	3.1 Pin-Out and Package Information	3-1
	3.2 FC-PBGA Package Description	
	3.3 FC-PBGA Package Mechanical Drawing	
Chapter 4	Design Considerations	
Unapter 4	4.1 Thermal Design Considerations	4-1
	4.2 Electrical Design Considerations	
	4.3 Power Consumption Considerations	
	4.4 Input (EXTAL) Jitter Requirements	
Appendix A	Power Consumption Benchmark	

Index

Data Sheet Conventions

OVERBAR	Used to indicate a signal that is active when pulled low (For example, the RESET pin is active when low.)					
"asserted"	Means that a high true (ad	Means that a high true (active high) signal is high or that a low true (active low) signal is low				
"deasserted"	Means that a high true (active high) signal is low or that a low true (active low) signal is high					
Examples:	Signal/Symbol	Logic State	Signal State	Voltage		
	PIN	True	Asserted	V _{IL} /V _{OL}		
	PIN	False	Deasserted	V _{IH} /V _{OH}		
	PIN	True	Asserted	V _{IH} /V _{OH}		
	PIN	False	Deasserted	V _{IL} /V _{OL}		

Note: Values for V_{IL}, V_{OL}, V_{IH}, and V_{OH} are defined by individual product specifications.

DSP56321T Features

High-Performance DSP56300 Core

- 220/240 million multiply-accumulates per second (MMACS) (440/480 MMACS using the EFCOP in filtering applications) with a 220/240 MHz clock at 1.6 V core and 3.3 V I/O and a junction temperature range of 0–85°C
- Object code compatible with the DSP56000 core with highly parallel instruction set
- Data Arithmetic Logic Unit (Data ALU) with fully pipelined 24 × 24-bit parallel Multiplier-Accumulator (MAC), 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing), conditional ALU instructions, and 24-bit or 16-bit arithmetic support under software control
- Program Control Unit (PCU) with Position Independent Code (PIC) support, addressing modes optimized for DSP applications (including immediate offsets), on-chip instruction cache controller, on-chip memory-expandable hardware stack, nested hardware DO loops, and fast auto-return interrupts
- Direct Memory Access (DMA) with six DMA channels supporting internal and external accesses; one-, two-, and three-dimensional transfers (including circular buffering); end-of-block-transfer interrupts; and triggering from interrupt lines and all peripherals
- Phase Lock Loop (PLL) allows change of low-power Divide Factor (DF) without loss of lock and output clock with skew elimination
- Hardware debugging support including On-Chip Emulation (OnCE™) module, Joint Test Action Group (JTAG) Test Access Port (TAP)

Enhanced Filtering Coprocessor (EFCOP)

- On-chip 24×24 -bit filtering and echo-cancellation coprocessor that runs in parallel to the DSP core
 - Operation at the same frequency as the core (up to 220/240 MHz)
 - Support for a variety of filter modes, some of which are optimized for cellular base station applications:
 - Real Finite Impulse Response (FIR) with real taps
 - Complex FIR with complex taps
 - Complex FIR generating pure real or pure imaginary outputs alternately
 - A 4-bit decimation factor in FIR filters, thus providing a decimation ratio up to 16
 - Direct form 1 (DFI) Infinite Impulse Response (IIR) filter
 - Direct form 2 (DFII) IIR filter
 - Four scaling factors (1, 4, 8, 16) for IIR output
 - Adaptive FIR filter with true least mean square (LMS) coefficient updates
 - Adaptive FIR filter with delayed LMS coefficient updates

On-Chip Peripherals

- Enhanced DSP56000-like 8-bit parallel host interface (HI08) supports a variety of buses (for example, ISA) and provides glueless connection to a number of industry-standard microcomputers, microprocessors, and DSPs
- Two enhanced synchronous serial interfaces (ESSI), each with one receiver and three transmitters (allows six-channel home theater)
- Serial communications interface (SCI) with baud rate generator
- Triple timer module
- Up to 34 programmable general-purpose input/output (GPIO) pins, depending on which peripherals are enabled

On-Chip Memories

- 192×24 -bit bootstrap ROM
- 192 K RAM total
- Program RAM, Instruction Cache, X data RAM, and Y data RAM sizes are programmable:

Program RAM Size	Instruction Cache Size	X Data RAM Size*	Y Data RAM Size*	Instruction Cache	MSW2	MSW1	MSW0
32 K \times 24-bit	0	80 K imes 24-bit	$80 \text{ K} \times 24\text{-bit}$	disabled	0	0	0
31 K \times 24-bit	1024 imes 24-bit	80 K imes 24-bit	$80 \text{ K} \times 24\text{-bit}$	enabled	0	0	0
40 K \times 24-bit	0	76 K \times 24-bit	76 K \times 24-bit	disabled	0	0	1
39 K \times 24-bit	1024×24 -bit	76 K \times 24-bit	76 K \times 24-bit	enabled	0	0	1
48 K \times 24-bit	0	72 K \times 24-bit	72 K \times 24-bit	disabled	0	1	0
47 K \times 24-bit	1024×24 -bit	72 K \times 24-bit	72 K \times 24-bit	enabled	0	1	0
64 K \times 24-bit	0	64 K \times 24-bit	64 K \times 24-bit	disabled	0	1	1
$63 \text{ K} \times 24 \text{-bit}$	1024×24 -bit	$64 \text{ K} \times 24\text{-bit}$	$64 \text{ K} \times 24$ -bit	enabled	0	1	1
72 K \times 24-bit	0	$60 \text{ K} \times 24 \text{-bit}$	$60 \text{ K} \times 24 \text{-bit}$	disabled	1	0	0
71 K \times 24-bit	1024×24 -bit	$60 \text{ K} \times 24 \text{-bit}$	$60 \text{ K} \times 24 \text{-bit}$	enabled	1	0	0
80 K \times 24-bit	0	56 K \times 24-bit	56 K \times 24-bit	disabled	1	0	1
79 K \times 24-bit	1024×24 -bit	56 K \times 24-bit	56 K \times 24-bit	enabled	1	0	1
96 K × 24-bit	0	48 K \times 24-bit	48 K \times 24-bit	disabled	1	1	0
95 K \times 24-bit	1024×24 -bit	48 K \times 24-bit	48 K \times 24-bit	enabled	1	1	0
112 K \times 24-bit	0	40 K \times 24-bit	40 K \times 24-bit	disabled	1	1	1
111 K × 24-bit	1024×24 -bit	40 K \times 24-bit	40 K \times 24-bit	enabled	1	1	1

*Includes 12 K × 24-bit shared memory (that is, 24 K total memory shared by the core and the EFCOP)

Off-Chip Memory Expansion

- Data memory expansion to two 256 K \times 24-bit word memory spaces using the standard external address lines
- Program memory expansion to one 256 K \times 24-bit words memory space using the standard external address lines
- External memory expansion port
- Chip Select Logic for glueless interface to static random access memory (SRAMs)

Reduced Power Dissipation

- Very low-power CMOS design
- Wait and Stop low-power standby modes
- Fully static design specified to operate down to 0 Hz (dc)
- Optimized power management circuitry (instruction-dependent, peripheral-dependent, and mode-dependent)

Packaging

The DSP56321T is available in a 196-pin flip-chip plastic ball grid array (FC-PBGA) package.

Target Applications

DSP56321/DSP56321T applications require high performance, low power, small packaging, and a large amount of on-chip memory. The EFCOP can accelerate general filtering applications. Examples include:

- · Wireless and wireline infrastructure applications
- Multi-channel wireless local loop systems
- Security encryption systems
- Home entertainment systems
- DSP resource boards
- · High-speed modem banks
- IP telephony

Product Documentation

The three documents listed in the following table are required for a complete description of the DSP56321T and are necessary to design properly with the part. Documentation is available from the following sources. (See the back cover for details.)

- A local Motorola distributor
- A Motorola semiconductor sales office
- A Motorola Literature Distribution Center
- The World Wide Web (WWW)

Table 1. DSP56321T Documentation

Name	Description	Order Number
DSP56300 Family Manual	Detailed description of the DSP56300 family processor core and instruction set	DSP56300FM/AD
DSP56321 Reference Manual	Detailed functional description of the DSP56321 memory configuration, operation, and register programming Note: The DSP56321T is functionally identical to the DSP56321 with the exception of operating temperature range.	DSP56321RM/D
DSP56321T Technical Data	DSP56321T features list and physical, electrical, timing, and package specifications	DSP56321T/D

Note: To ensure that you have the latest documentation for designing your application, click on the <u>Subscribe for Updates</u> option under **Page Contents** on the *DSP56321 Product Page*. Once registered, you will receive periodic notification via email when the product documentation is updated.

Signal/ Connection Descriptions

Freescale Semiconductor, Inc.

1.1 Signal Groupings

The DSP56321T input and output signals are organized into functional groups as shown in **Table 1-1**. **Figure 1-1** diagrams the DSP56321T signals by functional group. The remainder of this chapter describes the signal pins in each functional group.

Table 1-1. DSP56321T Functional Signal Groupings

Functional Group				
Power (/ _{CC})			20
Ground	(GND))		66
Clock				2
PLL				1
Address	bus			18
Data bus Port A ¹				
Bus control				
Interrupt and mode control				
Host inte	erface	e (HI08)	Port B ²	16
Enhance	ed syr	nchronous serial interface (ESSI)	Ports C and D ³	12
Serial co	ommu	nication interface (SCI)	Port E ⁴	3
Timer			1	3
OnCE/J	TAG I	Port		6
 Port A signals define the external memory interface port, including the external address to bus, and control signals. Port B signals are the HI08 port signals multiplexed with the GPIO signals. Port C and D signals are the two ESSI port signals multiplexed with the GPIO signals. Port E signals are the SCI port signals multiplexed with the GPIO signals. There are 8 signal lines that are not connected internally. These are designated no connected package description (see Chapter 3). There are also two lines that are reserved. 				

Note: This chapter refers to a number of configuration registers used to select individual multiplexed signal functionality. Refer to the *DSP56321 Reference Manual (DSP56321RM/D)* for details on these configuration registers.

V _{CCQL} V _{CCQH} V _{CCA} V _{CCD} V _{CCC} 2	DSPS Power Inputs: Core Logic I/O Address Bus Data Bus Bus Control	6321T Interrupt/ Mode Control		During Reset MODA MODB MODC MODD RESET PINIT	After Reset IRQA IRQB IRQC IRQD RESET NMI	
V _{CCH} V _{CCS}	HI08 ESSI/SCI/Timer		_8	Non-Multiplexed Bus H[0-7]	Bus HAD[0-7]	Port B GPIO PB[0-7]
GND <u>66</u>	Ground plane	Host Interface (HI08) Port ¹		HA0 HA1 HA2 HCS/HCS Single DS HRW HDS/HDS Single HR HREQ/HREQ HACK/HACK	HAS/HAS HA8 HA9 HA10 Double DS HRD/HRD HWR/HWR Double HR HTRQ/HTRQ HRRQ/HRRQ	PB8 PB9 PB10 PB13 PB11 PB12 PB14 PB15
EXTAL	Clock	Enhanced Synchronous Serial Interface Port 0 (ESSI0) ²		SC0[0–2] SCK0 SRD0 STD0	Port C GPIO PC[0–2] PC3 PC4 PC5	
A[0-17] -18	Port A External Address Bus	Enhanced Synchronous Serial Interface Port 1 (ESSI1) ²		SC1[0-2] SCK1 SRD1 STD1	Port D GPIO PD[0–2] PD3 PD4 PD5	
$D[0-23] \xrightarrow{24}$ $AA[0-3] \xrightarrow{4}$	External Data Bus External	Serial Communications Interface (SCI) Port ²		RXD TXD SCLK	Port E GPIO PE0 PE1 PE2	
	Bus Control	Timers ³		TIO0 TIO1 TIO2	Timer GPIO TIO0 TIO1 TIO2	
		OnCE/ JTAG Port		TCK TDI TDO TMS TRST DE		

- Notes: 1. The HI08 port supports a non-multiplexed or a multiplexed bus, single or double Data Strobe (DS), and single or double Host Request (HR) configurations. Since each of these modes is configured independently, any combination of these modes is possible. These HI08 signals can also be configured alternatively as GPIO signals (PB[0–15]). Signals with dual designations (for example, HAS/HAS) have configurable polarity.
 - 2. The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC[0–5]), Port D GPIO signals (PD[0–5]), and Port E GPIO signals (PE[0–2]), respectively.
 - 3. TIO[0–2] can be configured as GPIO signals.

Figure 1-1. Signals Identified by Functional Group

1.2 Power

Table 1-2.	Power	Inputs
	1 0 1 0 1	inputo

Power Name	Description
V _{CCQL}	Quiet Core (Low) Power—An isolated power for the core processing and clock logic. This input must be isolated externally from all other chip power inputs.
V _{CCQH}	Quiet External (High) Power —A quiet power source for I/O lines. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
V _{CCA}	Address Bus Power—An isolated power for sections of the address bus I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V_{CCQL} .
V _{CCD}	Data Bus Power —An isolated power for sections of the data bus I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V_{CCQL} .
V _{CCC}	Bus Control Power —An isolated power for the bus control I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V _{CCQL} .
V _{CCH}	Host Power —An isolated power for the HI08 I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V_{CCQL} .
V _{CCS}	ESSI, SCI, and Timer Power —An isolated power for the ESSI, SCI, and timer I/O drivers. This input must be tied externally to all other chip power inputs, <i>except</i> V_{CCQL} .
Note: The user mus	t provide adequate external decoupling capacitors for all power connections.

1.3 Ground

Table 1-3. Grounds

Ground Name	Description				
GND	Ground—Connected to an internal device ground plane.				
Note: The u	Note: The user must provide adequate external decoupling capacitors for all GND connections.				

1.4 Clock

Table 1-4. Clock Signals

Signal Name	Туре	State During Reset	Signal Description
EXTAL	Input	Input	External Clock/Crystal Input—Interfaces the internal crystal oscillator input to an external crystal or an external clock.
XTAL	Output	Chip-driven	Crystal Output —Connects the internal crystal oscillator output to an external crystal. If an external clock is used, leave XTAL unconnected.

External Memory Expansion Port (Port A)

1.5 External Memory Expansion Port (Port A)

Note: When the DSP56321T enters a low-power standby mode (stop or wait), it releases bus mastership and tri-states the relevant Port A signals: A[0–17], D[0–23], AA0/RAS0–AA3/RAS3, RD, WR, BB, CAS.

1.5.1 External Address Bus

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
A[0–17]	Output	Tri-stated	Address Bus—When the DSP is the bus master, A[0–17] are active-high outputs that specify the address for external program and data memory accesses. Otherwise, the signals are tri-stated. To minimize power dissipation, A[0–17] do not change state when external memory spaces are not being accessed.

Table 1-5. External Address Bus Signals

1.5.2 External Data Bus

Table 1-6	External Data	Bus Signals
		a Dus Signais

Signal Name	Туре	State During Reset	State During Stop or Wait	Signal Description	
D[0-23]	Input/ Output	Ignored Input	Last state: Input: Ignored Output: Last value	Data Bus —When the DSP is the bus master, D[0–23] are active-high, bidirectional input/outputs that provide the bidirectional data bus for external program and data memory accesses. Otherwise, D[0–23] drivers are tri-stated. If the last state is output, these lines maintain the last output state even if all drivers are tri-stated, because they have internal weak keeper circuits.	

1.5.3 External Bus Control

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
AA[0-3]	Output	Tri-stated	Address Attribute—When defined as AA, these signals can be used as chip selects or additional address lines. The default use defines a priority scheme under which only one AA signal can be asserted at a time. Setting the AA priority disable (APD) bit (Bit 14) of the Operating Mode Register, the priority mechanism is disabled and the lines can be used together as four external lines that can be decoded externally into 16 chip select signals.
RD	Output	Tri-stated	Read Enable —When the DSP is the bus master, \overline{RD} is an active-low output that is asserted to read external memory on the data bus (D[0–23]). Otherwise, \overline{RD} is tri-stated.
WR	Output	Tri-stated	Write Enable —When the DSP is the bus master, $\overline{\text{WR}}$ is an active-low output that is asserted to write external memory on the data bus (D[0–23]). Otherwise, the signals are tri-stated.
TA	Input	Ignored Input	Transfer Acknowledge —If the DSP56321T is the bus master and there is no external bus activity, or the DSP56321T is not the bus master, the TA input is ignored. The TA input is a data transfer acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states (1, 2 infinity) can be added to the wait states inserted by the bus control register (BCR) by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, is asserted to enable completion of the bus cycle, and is deasserted before the next bus cycle. The current bus cycle completes one clock period after TA is asserted synchronous to CLKOUT. The number of wait states is determined by the TA input or by the BCR, whichever is longer. The BCR can be used to set the minimum number of wait states in external bus cycles.
			To use the \overline{TA} functionality, the BCR must be programmed to at least one wait state. A zero wait state access cannot be extended by \overline{TA} deassertion; otherwise, improper operation may result. TA can operate synchronously or asynchronously depending on the setting of the TAS bit in the Operating Mode Register. TA functionality cannot be used during DRAM type accesses; otherwise improper operation may result.
BR	Output	Reset: Output (deasserted) State during Stop/Wait depends on BRH bit setting: • BRH = 0: Output (deasserted) • BRH = 1: Maintains last state (that is, if asserted, remains asserted)	Bus Request —Asserted when the DSP requests bus mastership. \overline{BR} is deasserted when the DSP no longer needs the bus. \overline{BR} may be asserted or deasserted independently of whether the DSP56321T is a bus master or a bus slave. Bus "parking" allows \overline{BR} to be deasserted even though the DSP56321T is the bus master. (See the description of bus "parking" in the \overline{BB} signal description.) The bus request hold (BRH) bit in the BCR allows \overline{BR} to be asserted under software control even though the DSP does not need the bus. \overline{BR} is typically sent to an external bus arbitrator that controls the priority, parking, and tenure of each master on the same external bus. \overline{BR} is affected only by DSP requests for the external bus, never for the internal bus. During hardware reset, \overline{BR} is deasserted and the arbitration is reset to the bus slave state.

 Table 1-7.
 External Bus Control Signals

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description				
BG	Input	Ignored Input	Bus Grant—Asserted by an external bus arbitration circuit when the DSP56321T becomes the next bus master. When BG is asserted, the DSP56321T must wait until BB is deasserted before taking bus mastership. When BG is deasserted, bus mastership is typically given up at the end of the current bus cycle. This may occur in the middle of ar instruction that requires more than one external bus cycle for execution To ensure proper operation, the user must set the asynchronous bus arbitration enable (ABE) bit (Bit 13) in the Operating Mode Register. When this bit is set, BG and BB are synchronized internally. This adds a required delay between the deassertion of an initial BG input and the assertion of a subsequent BG input.				
BB	Input/ Output	Ignored Input	Bus Busy—Indicates that the bus is active. Only after BB is deasserted can the pending bus master become the bus master (and then assert the signal again). The bus master may keep BB asserted after ceasing bus activity regardless of whether BR is asserted or deasserted. Called "bus parking," this allows the current bus master to reuse the bus without rearbitration until another device requires the bus. BB is deasserted by an "active pull-up" method (that is, BB is driven high and then released and held high by an external pull-up resistor).Notes:1.See BG for additional information. 2.				

 Table 1-7.
 External Bus Control Signals (Continued)

1.6 Interrupt and Mode Control

The interrupt and mode control signals select the chip operating mode as it comes out of hardware reset. After $\overline{\mathsf{RESET}}$ is deasserted, these inputs are hardware interrupt request lines.

Signal Name	Туре	State During Reset	Signal Description			
MODA	Input	Schmitt-trigger Input	Mode Select A —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.			
ĪRQĀ	Input		External Interrupt Request A —After reset, this input becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the STOP or WAIT standby state and IRQA is asserted, the processor exits the STOP or WAIT state.			
MODB	Input	Schmitt-trigger Input	Mode Select B —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.			
ĪRQB	Input		External Interrupt Request B —After reset, this input becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the WAIT standby state and IRQB is asserted, the processor exits the WAIT state.			
MODC	Input	Schmitt-trigger Input	Mode Select C —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.			
ĪRQC	Input		External Interrupt Request C —After reset, this input becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the WAIT standby state and IRQC is asserted, the processor exits the WAIT state.			
MODD	Input	Schmitt-trigger Input	Mode Select D —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.			
IRQD	Input		External Interrupt Request D —After reset, this input becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the WAIT standby state and IRQD is asserted, the processor exits the WAIT state.			
RESET	Input	Schmitt-trigger Input	Reset —Places the chip in the Reset state and resets the internal phase generator. The Schmitt-trigger input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably. When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA, MODB, MODC, and MODD inputs. The RESET signal must be asserted after powerup.			
PINIT	Input	Input	PLL Initial —During assertion of RESET, the value of PINIT determines whether the DPLL is enabled or disabled.			
NMI	Input		Nonmaskable Interrupt—After RESET deassertion and during normal instruction processing, this Schmitt-trigger input is the negative-edge-triggered NMI request.			

Table 1-8. Interrupt and Mode Control

1.7 Host Interface (HI08)

The HI08 provides a fast, 8-bit, parallel data port that connects directly to the host bus. The HI08 supports a variety of standard buses and connects directly to a number of industry-standard microcomputers, microprocessors, DSPs, and DMA hardware.

1.7.4 Host Port Usage Considerations

Careful synchronization is required when the system reads multiple-bit registers that are written by another asynchronous system. This is a common problem when two asynchronous systems are connected (as they are in the Host port). The considerations for proper operation are discussed in **Table 1-9**.

Action	Description					
Asynchronous read of receive byte registers	When reading the receive byte registers, Receive register High (RXH), Receive register Middle (RXM), or Receive register Low (RXL), the host interface programmer should use interrupts or poll the Receive register Data Full (RXDF) flag that indicates data is available. This assures that the data in the receive byte registers is valid.					
Asynchronous write to transmit byte registers	The host interface programmer should not write to the transmit byte registers, Transmit register High (TXH), Transmit register Middle (TXM), or Transmit register Low (TXL), unless the Transmit register Data Empty (TXDE) bit is set indicating that the transmit byte registers are empty. This guarantees that the transmit byte registers transfer valid data to the Host Receive (HRX) register.					
Asynchronous write to host vector	The host interface programmer must change the Host Vector (HV) register only when the Host Command bit (HC) is clear. This practice guarantees that the DSP interrupt control logic receives a stable vector.					

Table 1-9. Host Port Usage Considerations

1.7.5 Host Port Configuration

HI08 signal functions vary according to the programmed configuration of the interface as determined by the 16 bits in the HI08 Port Control Register.

Table 1-10. Host Interface

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
H[0-7]	Input/Output	Ignored Input	Host Data —When the HI08 is programmed to interface with a non-multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the bidirectional Data bus.
HAD[0-7]	Input/Output		Host Address —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, these signals are lines 0–7 of the bidirectional multiplexed Address/Data bus.
PB[0-7]	Input or Output		Port B 0–7 —When the HI08 is configured as GPIO through the HI08 Port Control Register, these signals are individually programmed as inputs or outputs through the HI08 Data Direction Register.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
HA0	Input	Ignored Input	Host Address Input 0 —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is line 0 of the host address input bus.
HAS/HAS	Input		Host Address Strobe —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is the host address strobe (HAS) Schmitt-trigger input. The polarity of the address strobe is programmable but is configured active-low (HAS) following reset.
PB8	Input or Output		Port B 8 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HA1	Input	Ignored Input	Host Address Input 1 —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is line 1 of the host address (HA1) input bus.
HA8	Input		Host Address 8 —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 8 of the host address (HA8) input bus.
PB9	Input or Output		Port B 9 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HA2	Input	Ignored Input	Host Address Input 2 —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is line 2 of the host address (HA2) input bus.
HA9	Input		Host Address 9 —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 9 of the host address (HA9) input bus.
PB10	Input or Output		Port B 10 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HCS/HCS	Input	Ignored Input	Host Chip Select —When the HI08 is programmed to interface with a nonmultiplexed host bus and the HI function is selected, this signal is the host chip select (HCS) input. The polarity of the chip select is programmable but is configured active-low (HCS) after reset.
HA10	Input		Host Address 10 —When the HI08 is programmed to interface with a multiplexed host bus and the HI function is selected, this signal is line 10 of the host address (HA10) input bus.
PB13	Input or Output		Port B 13 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.

Table 1-10. Host Interface (Continued)

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
HRW	Input	Ignored Input	Host Read/Write —When the HI08 is programmed to interface with a single-data-strobe host bus and the HI function is selected, this signal is the Host Read/Write (HRW) input.
HRD/HRD	Input		Host Read Data —When the HI08 is programmed to interface with a double-data-strobe host bus and the HI function is selected, this signal is the HRD strobe Schmitt-trigger input. The polarity of the data strobe is programmable but is configured as active-low (HRD) after reset.
PB11	Input or Output		Port B 11 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HDS/HDS	Input	Ignored Input	Host Data Strobe —When the HI08 is programmed to interface with a single-data-strobe host bus and the HI function is selected, this signal is the host data strobe (HDS) Schmitt-trigger input. The polarity of the data strobe is programmable but is configured as active-low (HDS) following reset.
HWR/HWR	Input		Host Write Data —When the HI08 is programmed to interface with a double-data-strobe host bus and the HI function is selected, this signal is the host write data strobe (HWR) Schmitt-trigger input. The polarity of the data strobe is programmable but is configured as active-low (HWR) following reset.
PB12	Input or Output		Port B 12 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.
HREQ/HREQ	Output	Ignored Input	Host Request —When the HI08 is programmed to interface with a single host request host bus and the HI function is selected, this signal is the host request (HREQ) output. The polarity of the host request is programmable but is configured as active-low (HREQ) following reset. The host request may be programmed as a driven or open-drain output.
HTRQ/HTRQ	Output		Transmit Host Request —When the HI08 is programmed to interface with a double host request host bus and the HI function is selected, this signal is the transmit host request (HTRQ) output. The polarity of the host request is programmable but is configured as active-low (HTRQ) following reset. The host request may be programmed as a driven or open-drain output.
PB14	Input or Output		Port B 14 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.

Table 1-10. Host Interface (Continued)

Signal Name	Type State During Reset ^{1,2}		Signal Description				
HACK/HACK	Input	Ignored Input	Host Acknowledge—When the HI08 is programmed to interface with a single host request host bus and the HI function is selected this signal is the host acknowledge (HACK) Schmitt-trigger input. The polarity of the host acknowledge is programmable but is configured as active-low (HACK) after reset.				
HRRQ/HRRQ	Output		Receive Host Request —When the HI08 is programmed to interface with a double host request host bus and the HI function is selected, this signal is the receive host request (HRRQ) output. The polarity of the host request is programmable but is configured as active-low (HRRQ) after reset. The host request may be programmed as a driven or open-drain output.				
PB15	Input or Output		Port B 15 —When the HI08 is configured as GPIO through the HI08 Port Control Register, this signal is individually programmed as an input or output through the HI08 Data Direction Register.				
 Notes: 1. In the Stop state, the signal maintains the last state as follows: If the last state is input, the signal is an ignored input. If the last state is output, these lines maintain the last output state even if the drivers are because they have internal weak keeper circuits. 							
2.							

Table 1-10. Host Interface (Continued)

1.8 Enhanced Synchronous Serial Interface 0 (ESSI0)

Two synchronous serial interfaces (ESSI0 and ESSI1) provide a full-duplex serial port for serial communication with a variety of serial devices, including one or more industry-standard codecs, other DSPs, microprocessors, and peripherals that implement the Motorola serial peripheral interface (SPI).

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC00	Input or Output	Ignored Input	Serial Control 0 —For asynchronous mode, this signal is used for the receive clock I/O (Schmitt-trigger input). For synchronous mode, this signal is used either for transmitter 1 output or for serial I/O flag 0.
PC0	Input or Output		Port C 0 —The default configuration following reset is GPIO input PC0. When configured as PC0, signal direction is controlled through the Port C Direction Register. The signal can be configured as ESSI signal SC00 through the Port C Control Register.
SC01	Input/Output	Ignored Input	Serial Control 1 —For asynchronous mode, this signal is the receiver frame sync I/O. For synchronous mode, this signal is used either for transmitter 2 output or for serial I/O flag 1.
PC1	Input or Output		Port C 1 —The default configuration following reset is GPIO input PC1. When configured as PC1, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SC01 through the Port C Control Register.
SC02	Input/Output	Ignored Input	Serial Control Signal 2—The frame sync for both the transmitter and receiver in synchronous mode, and for the transmitter only in asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PC2	Input or Output		Port C 2 —The default configuration following reset is GPIO input PC2. When configured as PC2, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SC02 through the Port C Control Register.
SCK0	Input/Output	Ignored Input	Serial Clock—Provides the serial bit rate clock for the ESSI. The SCK0 is a clock input or output, used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
РСЗ	Input or Output		Port C 3 —The default configuration following reset is GPIO input PC3. When configured as PC3, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SCK0 through the Port C Control Register.

Table 1-11. Enhanced Synchronous Serial Interface 0

Signal Name	Туре	State During Reset ^{1,2}	Signal Description		
SRD0	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD0 is an input when data is received.		
PC4	Input or Output		Port C 4 —The default configuration following reset is GPIO input PC4. When configured as PC4, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SRD0 through the Port C Control Register.		
STD0	Output	Ignored Input	Serial Transmit Data—Transmits data from the Serial Transmit Shift Register. STD0 is an output when data is transmitted.		
PC5	Input or Output		Port C 5 —The default configuration following reset is GPIO input PC5. When configured as PC5, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal STD0 through the Port C Control Register.		
 Notes: 1. In the Stop state, the signal maintains the last state as follows: If the last state is input, the signal is an ignored input. If the last state is output, these lines maintain the last output state even if the drivers are tri-state because they have internal weak keeper circuits. 					
2. 1	he Wait process	ing state does no	t affect the signal state.		

Table 1-11.	Enhanced S	vnchronous	Serial	Interface	0	(Continued)
	Ennanoca O	ynonious	oonar	muou	0	

1.9 Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC10	Input or Output	Ignored Input	Serial Control 0 —For asynchronous mode, this signal is used for the receive clock I/O (Schmitt-trigger input). For synchronous mode, this signal is used either for transmitter 1 output or for serial I/O flag 0.
PD0	Input or Output		Port D 0 —The default configuration following reset is GPIO input PD0. When configured as PD0, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC10 through the Port D Control Register.
SC11	Input/Output	Ignored Input	Serial Control 1 —For asynchronous mode, this signal is the receiver frame sync I/O. For synchronous mode, this signal is used either for Transmitter 2 output or for Serial I/O Flag 1.
PD1	Input or Output		Port D 1 —The default configuration following reset is GPIO input PD1. When configured as PD1, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC11 through the Port D Control Register.

Table 1-12. Enhanced Serial Synchronous Interface 1

Enhanced Synchronous Serial Interface 1 (ESSI1)

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC12	Input/Output	Ignored Input	Serial Control Signal 2—The frame sync for both the transmitter and receiver in synchronous mode and for the transmitter only in asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PD2	Input or Output		Port D 2 —The default configuration following reset is GPIO input PD2. When configured as PD2, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SC12 through the Port D Control Register.
SCK1	Input/Output	Ignored Input	Serial Clock —Provides the serial bit rate clock for the ESSI. The SCK1 is a clock input or output used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PD3	Input or Output		Port D 3 —The default configuration following reset is GPIO input PD3. When configured as PD3, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SCK1 through the Port D Control Register.
SRD1	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD1 is an input when data is being received.
PD4	Input or Output		Port D 4 —The default configuration following reset is GPIO input PD4. When configured as PD4, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SRD1 through the Port D Control Register.
STD1	Output	Ignored Input	Serial Transmit Data—Transmits data from the Serial Transmit Shift Register. STD1 is an output when data is being transmitted.
PD5	Input or Output		Port D 5 —The default configuration following reset is GPIO input PD5. When configured as PD5, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal STD1 through the Port D Control Register.
•	If the last state is If the last state is because they hav	s input, the signal s output, these lin e internal weak k	ins the last state as follows: I is an ignored input. les maintain the last output state even if the drivers are tri-stated, eeper circuits. It affect the signal state.

Table 1-12.	Enhanced Serial Synchronous Interface	1 (Continued)
-------------	---------------------------------------	---------------

1.10 Serial Communication Interface (SCI)

The SCI provides a full duplex port for serial communication with other DSPs, microprocessors, or peripherals such as modems.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description			
RXD Input		Ignored Input	Serial Receive Data—Receives byte-oriented serial data and transfers it to the SCI Receive Shift Register.			
PE0 Input or Output			Port E 0 —The default configuration following reset is GPIO input PE0. When configured as PE0, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal RXD through the Port E Control Register.			
TXD Output		Ignored Input	Serial Transmit Data—Transmits data from the SCI Transmit Data Register.			
PE1	Input or Output		Port E 1 —The default configuration following reset is GPIO input PE1. When configured as PE1, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal TXD through the Port E Control Register.			
SCLK	Input/Output	Ignored Input	Serial Clock —Provides the input or output clock used by the transmitter and/or the receiver.			
PE2	Input or Output		Port E 2 —The default configuration following reset is GPIO input PE2. When configured as PE2, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal SCLK through the Port E Control Register.			
 Notes: In the Stop state, the signal maintains the last state as follows: If the last state is input, the signal is an ignored input. If the last state is output, these lines maintain the last output state even if the drivers are tri-stated, because they have internal weak keeper circuits. 2. The Wait processing state does not affect the signal state. 						

Table 1-13. Serial Communication Interface

1.11 Timers

The DSP56321T has three identical and independent timers. Each timer can use internal or external clocking and can either interrupt the DSP56321T after a specified number of events (clocks) or signal an external device after counting a specific number of internal events.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description			
TIO0 Input or Output		Ignored Input	Timer 0 Schmitt-Trigger Input/Output — When Timer 0 functions as an external event counter or in measurement mode, TIO0 is used as input. When Timer 0 functions in watchdog, timer, or pulse modulation mode, TIO0 is used as output.			
			The default mode after reset is GPIO input. TIO0 can be changed to output or configured as a timer I/O through the Timer 0 Control/Status Register (TCSR0).			
TIO1 Input or Output		Ignored Input	Timer 1 Schmitt-Trigger Input/Output — When Timer 1 functions as an external event counter or in measurement mode, TIO1 is used as input. When Timer 1 functions in watchdog, timer, or pulse modulation mode, TIO1 is used as output.			
			The default mode after reset is GPIO input. TIO1 can be changed to output or configured as a timer I/O through the Timer 1 Control/Status Register (TCSR1).			
TIO2 Input or Output		Ignored Input	Timer 2 Schmitt-Trigger Input/Output — When Timer 2 functions as an external event counter or in measurement mode, TIO2 is used as input. When Timer 2 functions in watchdog, timer, or pulse modulation mode, TIO2 is used as output.			
			The default mode after reset is GPIO input. TIO2 can be change to output or configured as a timer I/O through the Timer 2 Control/Status Register (TCSR2).			
 Notes: 1. In the Stop state, the signal maintains the last state as follows: If the last state is input, the signal is an ignored input. If the last state is output, these lines maintain the last output state even if the drivers are tri-stated, because they have internal weak keeper circuits. 2. The Wait processing state does not affect the signal state. 						

Table 1-14. Triple Timer Signals

1.12 JTAG and OnCE Interface

The DSP56300 family and in particular the DSP56321T support circuit-board test strategies based on the *IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture*, the industry standard developed under the sponsorship of the Test Technology Committee of IEEE and the JTAG.

The OnCE module provides a means to interface nonintrusively with the DSP56300 core and its peripherals so that you can examine registers, memory, or on-chip peripherals. Functions of the OnCE module are provided through the JTAG TAP signals.

For programming models, see the chapter on debugging support in the DSP56300 Family Manual.

Signal Name	Туре	State During Reset	Signal Description			
ТСК	Input	Input	Test Clock —A test clock input signal to synchronize the JTAG test logic.			
TDI	Input	Input	Test Data Input —A test data serial input signal for test instructions and data. TDI is sampled on the rising edge of TCP and has an internal pull-up resistor.			
TDO	Output	Tri-stated	Test Data Output —A test data serial output signal for test instructions and data. TDO is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK.			
TMS	Input	Input	Test Mode Select —Sequences the test controller's state machine. TMS is sampled on the rising edge of TCK and has internal pull-up resistor.			
TRST	Input	Input	Test Reset —Initializes the test controller asynchronously. The has an internal pull-up resistor. TRST must be asserted afte powerup.			
DE	Input/ Output (open-drain)	Input	 Debug Event—As an input, initiates Debug mode from an external command controller, and, as an open-drain output, acknowledges that the chip has entered Debug mode. As an input, DE causes the DSP56300 core to finish executing the current instruction, save the instruction pipeline information, enter Debug mode, and wait for commands to be entered from the debug serial input line. This signal is asserted as an output for three clock cycles when the chip enters Debug mode as a result of a debug request or as a result of meeting a breakpoint condition. The DE has an internal pull-up resistor. This signal is not a standard part of the JTAG TAP controller. The signal connects directly to the OnCE module to initiate debug mode directly or to provide a direct external indication that the chip has entered Debug mode. All other interface with the OnCE module must occur through the JTAG port. 			

 Table 1-15.
 JTAG/OnCE Interface

2.1 Introduction

The DSP56321T is fabricated in high-density CMOS with Transistor-Transistor Logic (TTL) compatible inputs and outputs.

Note: The DSP56321T specifications are preliminary and are from design simulations, and may not be fully tested or guaranteed. Finalized specifications will be published after full characterization and device qualifications are complete.

2.2 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CCQH}).

Note: In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

N/		Unit	
V _{CCQL}	-0.1 to 2.25	V	
V _{CCQH} ⁴	-0.3 to 4.35	V	
V _{IN}	GND – 0.3 to V _{CCQH} + 0.3	V	
I	10	mA	
TJ	0 to +85	°C	
T _{STG}	–55 to +150	°C	
	V _{CCQH} ⁴ V _{IN} I T _J T _{STG}	V_{CCQH}^4 -0.3 to 4.35 V_{IN} GND - 0.3 to V_{CCQH} + 0.3 I 10 T_J 0 to +85 T_{STG} -55 to +150	

Table 2-1. Absolute Maximum Ratings

Solution of the maximum rating are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device.

 Power-up sequence: During power-up, and throughout the DSP56321T operation, V_{CCQH} voltage must always be higher or equal to V_{CCQL} voltage.

V_{CCQH} provides input power for V_{CCA}, V_{CCD}, V_{CCC}, V_{CCH}, and V_{CCS}. These power blocks are isolated internally, but must be connected together externally.

5. Typically, this value implies a maximum ambient temperature (T_A) of +70°C.

2.3 Thermal Characteristics

eja JMA	50 28	°C/W °C/W
AML	28	°C/W
		0/00
ЭJMA	37	°C/W
JMA	23	°C/W
θJB	13	°C/W
θJC	0.1	°C/W
	^С өјв ^С өјс kage theri	R _{0JB} 13

Table 2-2. Thermal Characteristics

Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. All values in this table are simulated; testing is not complete.
 Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.

3. Per JEDEC JESD51-6 with the board horizontal.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

5. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.

DC Electrical Characteristics 2.4

	Characteristics	Symbol	Min	Тур	Max	Unit
Supply voltage • Core (V _{CCQ} • I/O (V _{CCQH} ,			1.5 3.0	1.6 3.3	1.7 3.6	V V
	<u> </u>	V _{IH} V _{IHP}	2.0 2.0	_	V _{CCQH} + 0.3 V _{CCQH} + 0.3	V V
 EXTAL⁹ 		V _{IHX}	$0.8 imes V_{CCQH}$	—	V _{CCQH}	V
	ge 5, BB, TA, MOD ³ /IRQ ³ , RESET, PINIT SSI/SCI/Timer/HI08 pins	V _{IL} V _{ILP} V _{ILX}	-0.3 -0.3 -0.3	 	0.8 0.8 0.2 × V _{CCQH}	V V V
Input leakage c	current	I _{IN}	-10	_	10	μΑ
High impedanc (@ 2.4 V / 0.4 \	e (off-state) input current V)	I _{TSI}	-10	_	10	μA
Output high vol • TTL (I _{OH} = - • CMOS (I _{OH}	–0.4 mA) ^{6,8}	V _{OH}	2.4 V _{CCQH} – 0.01	_		v v
Output low volta • TTL (I _{OL} = 3 • CMOS (I _{OL}	3.0 mA, open-drain pins $I_{OL} = 6.7$ mA) ^{6,8}	V _{OL}		_	0.4 0.01	v v
Internal supply In Normal m -220 MHz -240 MHz In Wait mod -220 MHz -240 MHz	node ³ at: le ⁴ at:	I _{CCI} I _{CCW}		198 216 TBD TBD		mA mA mA
 In Stop mod 		I _{CCS}	—	TBD	—	μA
Input capacitan		C _{IN}	—	_	10	pF
2. 3. 4. 5. 6. 7.	Power-up sequence: During power-up, an always be higher or equal to V_{CCQL} voltage Refers to MODA/IRQA, MODB/IRQB, MO Section 4.3 provides a formula to compute obtain these results, all inputs must be terresults and the second	ge. DC/IRQC, a te the estimation minated (that marks (see A easured resu terminated minary estim onnected at ip crystal os tested. .1 V; T _J = 0°	and MODD/IRQI ated current req at is, not allowed ppendix A). Th ults of this bench (that is, not allo nation, and is eva Stop mode mus cillator must be	D pins. uirements d to float). e power co mark. Thi wed to floa aluated ba st be termi disabled.	in Normal mode. Measurements a onsumption numb s reflects typical at). used on measurer	To are bers in DSP ments.

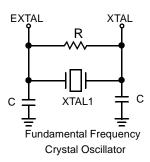
 Table 2-3.
 DC Electrical Characteristics⁷

Driving EXTAL to the low VIHX or the high VILX value may cause additional power consumption (DC 9. current). To minimize power consumption, the minimum V_{IHX} should be no lower than $0.9 \times V_{CCQH}$ and the maximum V_{ILX} should be no higher than $0.1 \times V_{CCQH}.$

2.5 AC Electrical Characteristics

The timing waveforms shown in the AC electrical characteristics section are tested with a V_{IL} maximum of 0.3 V and a V_{IH} minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in Note 6 of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50 percent point of the respective input signal's transition. DSP56321T output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.4 V and 2.4 V, respectively.

Note: Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test conditions are 15 MHz and rated speed.


2.5.1 Internal Clocks

Characteristics	Symbol	Expression				
Unaracteristics	Gymbol	Min	Тур	Max		
Internal operating frequency With DPLL disabled With DPLL enabled 	f		Ef/2 (Ef × MF)/(PDF × DF)			
Internal clock cycle time With DPLL disabled With DPLL enabled 	T _C		$2 \times ET_C$ ET _C × PDF × DF/MF			
Internal clock high period With DPLL disabled With DPLL enabled 	Т _Н	$0.49 \times T_{C}$	et _c	 0.51 × T _C		
Internal clock low period With DPLL disabled With DPLL enabled 	TL	$0.49 \times T_{C}$	et _c	 0.51 × T _C		
Note: Ef = External frequency; MF = Multiplication Factor = MFI + MFN/MFD; PDF = Predivision Factor; DF = Division Factor; T _C = Internal clock cycle; ET _C = External clock cycle; T _H = Internal clock high; T _L = Internal clock low						

Table 2	-4. Int	ternal (Clocks

2.5.2 External Clock Operation

The DSP56321T system clock is derived from the on-chip oscillator or is externally supplied. To use the on-chip oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL; an example is shown in **Figure 2-1**.

Suggested Component Values:

$$\label{eq:GSC} \begin{split} f_{OSC} &= 16{-}32 \mbox{ MHz} \\ R &= 1 \mbox{ } M\Omega \pm 10\% \\ C &= 10 \mbox{ } pF \pm 10\% \end{split}$$

Calculations are for a 16–32 MHz crystal with the following parameters:

- shunt capacitance (C₀) of 5.2–7.3 pF,
- series resistance of 5–15 Ω , and

drive level of 2 mW.

Note: Make sure that in the PCTL Register:
XTLD (bit 2) = 0

Figure 2-1. Crystal Oscillator Circuits

N -	Characteristics		220 MHz		240 MHz	
No.	Characteristics	Symbol	Min	Max	Min	Max
1	Frequency of EXTAL (EXTAL Pin Frequency) ¹ With DPLL disabled With DPLL enabled² 	Ef DEFR = PDF × PDFR	0 MHz 16 MHz	220 MHz 220 MHz	0 MHz 16 MHz	240 MHz 240 MHz
2	EXTAL input high ³ With DPLL disabled (46.7%–53.3% duty cycle⁴) With DPLL enabled (42.5%–57.5% duty cycle⁴) 	ET _H	2.13 ns 1.93 ns	∞ 35.9 ns	1.95 ns 1.77 ns	∞ 35.9 ns
3	 EXTAL input low⁴ With DPLL disabled (46.7%–53.3% duty cycle⁴) With DPLL enabled (42.5%–57.5% duty cycle⁴) 	ETL	2.13 ns 1.93 ns	∞ 35.9 ns	1.95 ns 1.77 ns	∞ 35.9 ns
4	EXTAL cycle time ³ With DPLL disabled With DPLL enabled 	ET _C	4.55 ns 4.55 ns	∞ 62.5 ns	4.17 ns 4.17 ns	∞ 62.5 ns
7	Instruction cycle time = I _{CYC} = ET _C With DPLL disabled With DPLL enabled 	Icyc	9.1 ns 4.55 ns	∞ 1.6 µs	8.34 ns 4.17 ns	∞ 1.6 μs
Note	 s: 1. The rise and fall time of this external clock 2. Refer to Table 2-6 for a description of PDF 3. Measured at 50 percent of the input transit 4. The indicated duty cycle is for the specifier 	and PDFR.		part is rated	. The minir	num clock

Table 2-5. External Clock Operation

4. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time required for correction operation, however, remains the same at lower operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time requirements are met.

Note: If an externally-supplied square wave voltage source is used, disable the internal oscillator circuit during bootup by setting XTLD (PCTL Register bit 2 = 1—see the *DSP56321T Reference Manual*). The external square wave source connects to EXTAL; XTAL is not physically connected to the board or socket. **Figure 2-2** shows the EXTAL input and the internal clock signals.

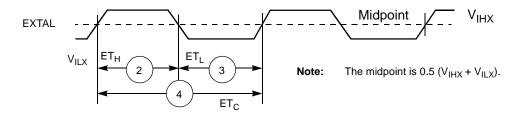


Figure 2-2. External Input Clock Timing

5.

6.

2.5.3 Clock Generator (CLKGEN) and Digital Phase Lock Loop (DPLL) Characteristics

		220	MHz	240		
Characteristics	Symbol	Min	Max	Min	Мах	Unit
Predivision factor	PDF ¹	1	16	1	16	-
Predivider output clock frequency range	PDFR	16	32	16	32	MHz
Total multiplication factor ²	MF	5	15	5	15	_
Multiplication factor integer part	MFI ¹	5	15	5	15	_
Multiplication factor numerator ³	MFN	0	127	0	127	_
Multiplication factor denominator	MFD	1	128	1	128	_
Double clock frequency range	DDFR	160	440	160	480	MHz
Phase lock-in time ⁴	DPLT	6.8 ⁵	150 ⁶	6.8 ⁵	150 ⁶	μs
 Refer to the <i>DSP56321 User's Manual</i> for a detailed description of register reset values. The total multiplication factor (MF) includes both integer and fractional parts (that is, MF = MI MFN/MFD). The numerator (MFN) should be less than the denominator (MFD). 						
 The numerator (MFN) should be less that DPLL lock procedure duration is specifie EXTAL pin. Parameters will be refined a 	d for the case whe	en an exte	rnal clock s	source is s	supplied to	the

Frequency-only Lock Mode or non-integer MF, after partial reset. Frequency and Phase Lock Mode, integer MF, after full reset.

Table 2-6.	CLKGEN and DPLL Characteristics
------------	---------------------------------

2.5.4 Reset, Stop, Mode Select, and Interrupt Timing

No.	Characteristics	Expression	220	MHz	240 MHz		Unit
NO.	Unaracteristics	Expression	Min	Max	Min	Max	Onit
8	Delay from RESET assertion to all pins at reset value ³	_	-	26		26	ns
9	Required RESET duration ⁴ Power on, external clock generator, DPLL disabled	50 × ET _C	227.5	_	208.5	_	ns
	Power on, external clock generator, DPLL enabled Power on, internal oscillator During STOP, XTAL disabled	1000 × ET _C 75000 × ET _C 75000 × ET _C	4.55 0.341 0.341	_ _	4.17 0.313 0.313	_ _	μs ms ms
	During STOP, XTAL enabled During normal operation	$\begin{array}{c} 2.5 \times T_{C} \\ 2.5 \times T_{C} \end{array}$	11.38 11.38	_	10.43 10.43	_	ns ns
10	Delay from asynchronous RESET deassertion to first external address output (internal reset deassertion) ⁵ Minimum Maximum	3.25 × T _C + 2.0 20.25 T _C + 10	16.79		15.55	94.44	ns ns
13	Mode select setup time	20.20 10 1 10	30.0		30.0		ns
14	Mode select hold time		0.0	_	0.0	_	ns
15	Minimum edge-triggered interrupt request assertion width		4.0	_	4.0	_	ns
16	Minimum edge-triggered interrupt request deassertion width		4.0	_	4.0	—	ns
17	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory access address out valid Caused by first interrupt instruction fetch Caused by first interrupt instruction execution	4.25 × T _C + 2.0 7.25 × T _C + 2.0	21.24 34.99		19.72 32.23		ns ns
18	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general-purpose transfer output valid caused by first interrupt instruction execution	10 × T _C + 5.0	50.5	_	46.17	_	ns
19	Delay from address output valid caused by first interrupt instruction execute to interrupt request deassertion for level sensitive fast interrupts ^{1, 7, 8}	(WS + 3.75) × T _C – 10.94	_	Note 8	_	Note 8	ns
20	Delay from RD assertion to interrupt request deassertion for level sensitive fast interrupts ^{1,} 7, 8	(WS + 3.25) × T _C – 10.94	-	Note 8	_	Note 8	ns
21	Delay from $\overline{\text{WR}}$ assertion to interrupt request deassertion for level sensitive fast interrupts ^{1, 7, 8} SRAM WS = 3 SRAM WS ≥ 4	(WS + 3) × T _C − 10.94 (WS + 2.5) × T _C − 10.94	_	Note 8 Note 8		Note 8 Note 8	ns ns
24	Duration for IRQA assertion to recover from Stop state		5.9	_	5.9	_	ns

 Table 2-7.
 Reset, Stop, Mode Select, and Interrupt Timing⁶

Ne	Ob and a starting time.	-	220	MHz	240 MHz		
No.	Characteristics	Expression	Min	Max	Min	Max	Un
25	Delay from \overline{IRQA} assertion to fetch of first instruction (when exiting Stop) ^{2, 3} DPLL is not active during Stop (PCTL Bit 1 = 0) and Stop delay is enabled (Operating Mode Register Bit 6 = 0)	DPLT + (128K × T _C)	589.2	732.4	540.6	683.8	μs
	DPLL is not active during Stop (PCTL Bit 1 = 0) and Stop delay is not enabled (Operating Mode Register Bit 6 = 1) DPLL is active during Stop (PCTL Bit 1 = 1; Implies No Stop Delay)	DPLT + (23.75 ± 0.5) × T _C (8.25 ± 0.5) × T _C	6.9 35.3	150.1 39.6	6.9 32.3	150.1 35.5	μs ns
26	Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop) ^{2, 3}						
	DPLL is not active during Stop (PCTL bit 1 = 0) and Stop delay is enabled (Operating Mode Register Bit 6 = 0)	DPLT + (128 K \times T _C)	589.2	—	540.6	—	μs
	DPLL is not active during Stop (PCTL bit 1 = 0) and Stop delay is not enabled (Operating Mode Register Bit 6 = 1) DPLL is active during Stop ((PCTL bit 1 = 0;	DPLT + (20.5 \pm 0.5) \times T _C 5.5 \times T _C	6.9 25.0	_	6.9 22.9	_	μs ns
	implies no Stop delay)						
27	Interrupt Requests Rate HI08, ESSI, SCI, Timer DMA IRQ, NMI (edge trigger) IRQ, NMI (level trigger)	12T _C 8T _C 8T _C 12T _C		54.6 36.4 36.4 54.6		50.0 33.4 33.4 50.0	ns ns ns ns
28	DMA Requests Rate Data read from HI08, ESSI, SCI Data write to HI08, ESSI, SCI <u>Timer</u> IRQ, NMI (edge trigger)	6Т _С 7Т _С 2Т _С 3Т _С	 	27.3 31.9 9.1 13.7	 	25.0 29.2 8.3 12.5	ns ns ns
29	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory (DMA source) access address out valid	$4.25 \times T_{C} + 2.0$	21.34	_	19.72	—	ns

Table 2-7.	Reset, Stop, Mode Select, and Interrupt Timing ⁶	(Continued)
------------	---	-------------

				<u> </u>					
No.		Characteristics	Expression	220 MHz		240 MHz		Unit	
NO.		Characteristics	Expression	Min	Max	Min	Max	Onit	
	2.	This timing depends on several setting	s:						
		For DPLL disable, using internal oscillator (DPLL Control Register (PCTL) Bit $2 = 0$) and oscillator disabled during Stop (PCTL Bit $1 = 0$), a stabilization delay is required to assure that the oscillator is stable before programs are executed. Resetting the Stop delay (Operating Mode Register Bit $6 = 0$) provides the proper delay. While Operating Mode Register Bit $6 = 1$ can be set, it is not recommended, and these specifications do not guarantee timings for that case.							
		For DPLL disable, using internal oscillator (PCTL Bit 2 = 0) and oscillator enabled during Stop (PCTL Bit 1 = 1), no stabilization delay is required and recovery is minimal (Operating Mode Register Bit 6 setting is ignored).							
		For DPLL disable, using external clock (PCTL Bit 2 = 1), no stabilization delay is required and recovery time is defined by the PCTL Bit 1 and Operating Mode Register Bit 6 settings.							
		For DPLL enable, if PCTL Bit 1 is 0, the DPLL is shut down during Stop. Recovering from Stop requires the DPLL to lock. The DPLL lock procedure duration is defined in Table 2-6 and will be refined after silicon characterization. This procedure is followed by the stop delay counter. Stop recovery ends when the stop delay counter completes its count.							
	3. 4.	The DPLT value for DPLL disable is 0. Periodically sampled and not 100 perc For an external clock generator, RESE EXTAL input is active and valid.	ent tested.	RESET is	asserted	, V _{CCQL} i	s valid, ar	nd the	
	For an internal oscillator, RESET duration is measured while RESET is asserted and V _{CCQL} is valid. The speci timing reflects the crystal oscillator stabilization time after power-up. This number is affected both by the specifications of the crystal and other components connected to the oscillator and reflects worst case conditions of the crystal and other components connected to the oscillator and reflects worst case conditions of the crystal and other components connected to the oscillator and reflects worst case conditions of the crystal and other components connected to the oscillator and reflects worst case conditions of the crystal and other components connected to the oscillator and reflects worst case conditions of the crystal and other components connected to the oscillator and reflects worst case conditions of the crystal and other components connected to the oscillator and reflects worst case conditions of the crystal and other components connected to the oscillator and reflects worst case conditions of the crystal and other components connected to the oscillator and reflects worst case conditions of the crystal and other components connected to the oscillator and reflects worst case conditions of the crystal and other components connected to the oscillator and reflects worst case conditions are components connected to the components connec								
	5	When the V _{CCQL} is valid, but the other yet met, the device circuitry is in an un heat-up. Designs should minimize this If DPLL does not lose lock.	initialized state that can result i	in signific					
	5. 6.	$V_{CCQH} = 3.3 V \pm 0.3 V$, $V_{CCQL} = 1.6 V$	$+ 0.1 \text{ V} \cdot \text{T}_{1} = 0^{\circ} \text{C} \text{ to } +85^{\circ} \text{C} \cdot \text{C}_{2}$	– 50 pF					
	7.	WS = number of wait states (measured	\pm 0.1 v, $\tau_0 = 0.0$ to ± 0.0 c, $C_{\rm L}$. – 50 pr.).					
	8.	Use the expression to compute a maxi		,-					

Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing ⁶ (Continued)
--

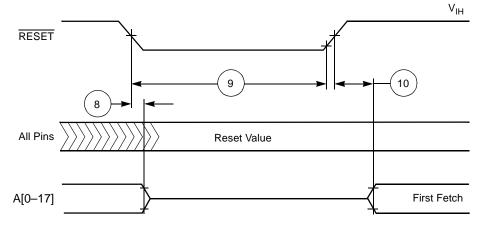


Figure 2-3. Reset Timing

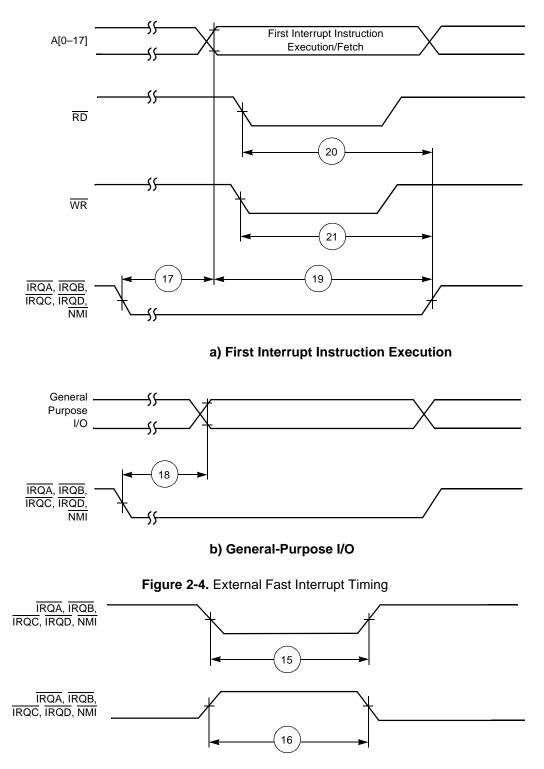


Figure 2-5. External Interrupt Timing (Negative Edge-Triggered)

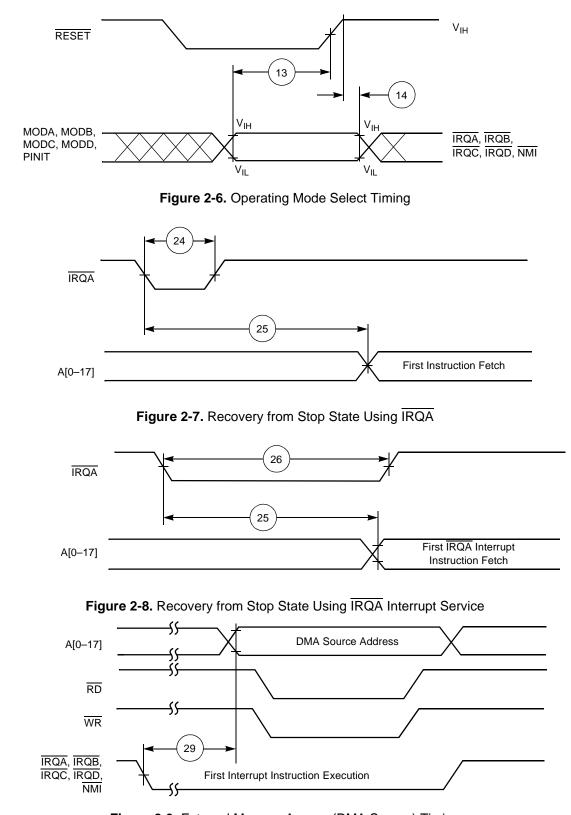


Figure 2-9. External Memory Access (DMA Source) Timing

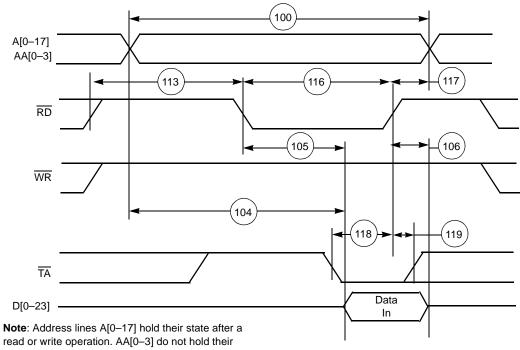
2.5.5 External Memory Expansion Port (Port A)

2.5.5.1 SRAM Timing

Table 2-8. SRAM Timing

			1	220	MHz	240		
No.	. Characteristics Symbol Expression ¹		Min	Max	Min	Max	Unit	
100	Address valid and AA assertion pulse width ²	t _{RC} , t _{WC}	$\begin{array}{c} (\text{WS + 2}) \times \text{T}_{\text{C}} - 4.0 \\ [3 \leq \text{WS} \leq 7] \\ (\text{WS + 3}) \times \text{T}_{\text{C}} - 4.0 \\ [\text{WS} \geq 8] \end{array}$	18.8 46.0	_	16.9 41.9	_	ns ns
101	Address and AA valid to WR assertion	t _{AS}	$0.75 \times T_{C} - 3.0$ [WS = 3] $1.25 \times T_{C} - 3.0$ [WS ≥ 4]	0.41 2.69	_	0.13 2.21	_	ns ns
102	WR assertion pulse width	t _{WP}	$\label{eq:WS} \begin{array}{l} WS\timesT_{C}-4.0\\ [WS=3]\\ (WS-0.5)\timesT_{C}-4.0\\ [WS\geq4] \end{array}$	9.65 11.93	_	8.51 10.6	_	ns ns
103	WR deassertion to address not valid	t _{WR}	$\begin{array}{c} 1.25 \times T_{C} - 4.0 \\ [3 \leq WS \leq 7] \\ 2.25 \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	1.69 6.24	_	1.21 6.51	_	ns ns
104	Address and AA valid to input data valid	t _{AA} , t _{AC}	$\begin{array}{l} (\text{WS + 0.75)} \times \text{T}_{\text{C}} - 5.6 \\ [\text{WS} \geq 3] \end{array}$	_	11.46	—	10.04	ns
105	RD assertion to input data valid	t _{OE}	$\begin{array}{l} (\text{WS + 0.25})\times\text{T}_{\text{C}}-6.5\\ [\text{WS}\geq3] \end{array}$	-	8.29	_	7.05	ns
106	RD deassertion to data not valid (data hold time)	t _{OHZ}		0.0	—	0.0	—	ns
107	Address valid to WR deassertion ²	t _{AW}	$\begin{array}{c} (\text{WS + 0.75})\times\text{T}_{\text{C}}-4.0\\ [\text{WS}\geq3] \end{array}$	13.06	—	11.64	—	ns
108	Data valid to $\overline{\text{WR}}$ deassertion (data setup time)	t _{DS} (t _{DW})	$\begin{array}{c} (WS-0.25)\times T_C-5.4\\ [WS\geq 3] \end{array}$	7.11	—	6.07	—	ns
109	Data hold time from WR deassertion	t _{DH}	$\begin{array}{l} 1.25 \times T_{C} - 4.0 \\ [3 \leq WS \leq 7] \\ 2.25 \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	1.69 6.23	_	1.21 5.38	_	ns ns
110	WR assertion to data active	_	$0.25 \times T_{C} - 4.0$ [WS = 3] $-0.25 \times T_{C} - 4.0$ [WS ≥ 4]	-2.86 -5.14	_	-2.96 -5.04	_	ns ns
111	WR deassertion to data high impedance		$1.25 \times T_{C}$ $[3 \le WS \le 7]$ $2.25 \times T_{C}$ $[WS \ge 8]$	5.69 10.24	_	5.21 9.38	_	ns ns
112	Previous RD deassertion to data active (write)	_	$\begin{array}{c} 2.25 \times T_{C} - 4.0 \\ [3 \leq WS \leq 7] \\ 3.25 \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	6.23 10.78	_	5.38 9.54	_	ns ns
113	RD deassertion time	—	$\begin{array}{c} 1.75 \times T_{C} - 3.0 \\ [3 \leq WS \leq 7] \\ 2.75 \times T_{C} - 3.0 \\ [WS \geq 8] \end{array}$	4.96 9.51	_	4.30 8.47	_	ns ns

Na	Characteristics	Symbol	Expression ¹	220 MHz		240 MHz		Unit
No.	Characteristics	Symbol	Expression ¹	Min	Max	Min	Мах	Unit
114	WR deassertion time ⁴	_	$\begin{array}{c} 2.0 \times T_{C} - 3.0 \\ [3 \leq WS \leq 7] \\ 3.0 \times T_{C} - 3.0 \\ [WS \geq 8] \end{array}$	6.1 10.6		5.3 9.5		ns ns
115	Address valid to RD assertion	_	$0.5 imes T_{C} - 2.0$	0.3	_	0.1	_	ns
116	RD assertion pulse width	—	$\begin{array}{l} (\text{WS + 0.25}) \times \text{T}_{\text{C}} - 3.0 \\ [\text{WS} \geq 3] \end{array}$	11.79		10.55		ns
117	RD deassertion to address not valid	_	$\begin{array}{l} 1.25 \times T_{C} - 4.0 \\ [3 \leq WS \leq 7] \\ 2.25 \times T_{C} - 4.0 \\ [WS \geq 8] \end{array}$	1.69 6.24	_	1.21 5.38		ns ns
118	TA setup before RD or WR deassertion ⁵		$0.25 \times T_{C} + 2.0$	3.14		3.04	_	ns
119	TA hold after RD or WR deassertion	_		0		0		ns
Notes	 WS is the number of wait states sp example, for a category of [3 ≤ WS otherwise. Timings 100 and 107 are guarante 	\leq 7] timing i ed by desigr	s specified for 3 wait states.) n, not tested.			0		•


Table 2-8. SRAM Timing (Continued)

3.

All timings are measured from $0.5 \times V_{CCQH}$ to $0.5 \times V_{CCQH}$.

4. The WS number applies to the access in which the deassertion of WR occurs and assumes the next access uses a minimal number of wait states.

state after a read or write operation.

Figure 2-10. SRAM Read Access

Semiconductor, Inc. Freescale

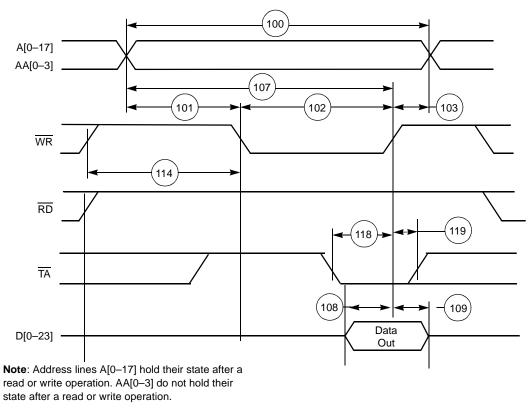


Figure 2-11. SRAM Write Access

2.5.5.2 Asynchronous Bus Arbitration Timings

Table 2-9.	Asynchronous Bus Timings
------------	--------------------------

No.		Characteristics	Expression	220	MHz	240	MHz	Unit
NO.			Expression	Min	Max	Min	Max	Unit
250	BB ass	sertion window from \overline{BG} input deassertion.	2.5 × Tc + 5	—	16.4	_	15.4	ns
251	Delay from BB assertion to BG assertion 2 × Tc + 5 14.1 - 13.3 - ns							ns
Notes	s: 1. 2. 3.	Bit 13 in the Operating Mode Register must be set to en At 150 MHz, Asynchronous Arbitration mode is recomm To guarantee timings 250 and 251, it is recommended DSP56300 devices (on the same bus), as shown in Fig device while BG2 is the BG signal for a second DSP56	nended. that you assert n <u>on-c</u> jure 2-12 , where BG	overlapp	ing BG ir	puts to c		300

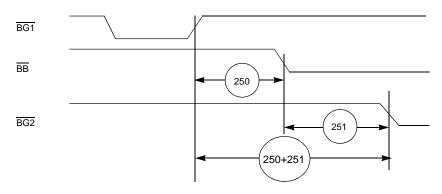


Figure 2-12. Asynchronous Bus Arbitration Timing

The asynchronous bus arbitration is enabled by internal synchronization circuits on \overline{BG} and \overline{BB} inputs. These synchronization circuits add delay from the external signal until it is exposed to internal logic. As a result of this delay, a DSP56300 part may assume mastership and assert \overline{BB} , for some time after \overline{BG} is deasserted. This is the reason for timing 250.

Once \overline{BB} is asserted, there is a synchronization delay from \overline{BB} assertion to the time this assertion is exposed to other DSP56300 components that are potential masters on the same bus. If \overline{BG} input is asserted before that time, and \overline{BG} is asserted and \overline{BB} is deasserted, another DSP56300 component may assume mastership at the same time. Therefore, some non-overlap period between one \overline{BG} input active to another \overline{BG} input active is required. Timing 251 ensures that overlaps are avoided.

2.5.6 Host Interface Timing

Na	Characteristic 10	Funnasian	220	MHz	240	Unit	
No.	Characteristic ¹⁰	Expression	Min	Max	Min	Max	Unit
317	Read data strobe assertion width ⁵ HACK assertion width	T _C + T ₃₁₈	9.05	—	8.30		ns
318	Read data strobe deassertion width ⁵ HACK deassertion width	T ₃₁₈	4.5	—	4.13	—	ns
319	Read data strobe deassertion width ⁵ after "Last Data Register" reads ^{8,11} , or between two consecutive CVR, ICR, or ISR reads ³ HACK deassertion width after "Last Data Register" reads ^{8,11}	$2.5 \times T_{C} + 3.3$	14.7	_	13.7	_	ns
320	Write data strobe assertion width ⁶		6.0	_	5.5	_	ns
321	Write data strobe deassertion width ⁸ HACK write deassertion width • after ICR, CVR and "Last Data Register" writes	2.5 × T _C + 3.3	14.7	_	13.7	_	ns
	 after IVR writes, or after TXH:TXM:TXL writes (with HLEND= 0), or after TXL:TXM:TXH writes (with HLEND = 1) 		7.5	_	6.88	_	ns
322	HAS assertion width		4.5	_	4.13	—	ns
323	HAS deassertion to data strobe assertion ⁴		0.0	_	0.0	_	ns
324	Host data input setup time before write data strobe deassertion ⁶		4.5	_	4.13	—	ns
325	Host data input hold time after write data strobe deassertion ⁶		1.5	_	1.38	_	ns
326	Read data strobe assertion to output data active from high impedance ⁵ HACK assertion to output data active from high impedance		1.5	_	1.38	_	ns
327	Read data strobe assertion to output data valid ⁵ HACK assertion to output data valid		-	13.45	—	12.32	ns
328	Read data strobe deassertion to output data high impedance ⁵ HACK deassertion to output data high impedance		-	4.5	—	4.13	ns
329	Output data hold time after read data strobe deassertion ⁵ Output data hold time after HACK deassertion		1.5	—	1.38	—	ns
330	HCS assertion to read data strobe deassertion ⁵	T _C + T ₃₁₈	9.05	_	8.30	—	ns
331	HCS assertion to write data strobe deassertion ⁶		4.5	_	4.13	_	ns
332	HCS assertion to output data valid		—	11.04	—	10.12	ns
333	HCS hold time after data strobe deassertion ⁴		0.0	_	0.0	_	ns
334	Address (HAD[0–7]) setup time before HAS deassertion (HMUX=1)		2.1	_	1.93	_	ns
335	Address (HAD[0–7]) hold time after HAS deassertion (HMUX=1)		1.5	-	1.38	—	ns
336	HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/W setup time before data strobe assertion ⁴ • Read • Write		0 2.1		0 1.93		ns ns

Table 2-10.	Host Interface	Timings ^{1,2,12}
	11001 111011000	1 mmgo

N-		Expression	220 MHz		240 MHz		
No.	Characteristic ¹⁰	Expression	Min	Мах	Min	Мах	Uni
	10] (HMUX=1), HA[0–2] (HMUX=0), HR/ \overline{W} hold time ata strobe deassertion ⁴		1.5	—	1.38	—	ns
	from read data strobe deassertion to host request on for "Last Data Register" read ^{5, 7, 8}	T _C + 2.64	7.19	—	6.81	—	ns
	from write data strobe deassertion to host request on for "Last Data Register" write ^{6, 7, 8}	1.5 × T _C + 2.64	9.47	—	8.9	—	ns
	from data strobe assertion to host request deassertion st Data Register" read or write (HROD=0) ^{4, 7, 8}		—	11.04	—	10.12	ns
for "Las	from data strobe assertion to host request deassertion st Data Register" read or write (HROD=1, open drain equest) ^{4, 7, 8, 9}		—	300.0	_	300.0	ns
Notes: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	See the Programmer's Model section in the chapter on In the timing diagrams below, the controls pins are draw This timing is applicable only if two consecutive reads f The data strobe is Host Read (HRD) or Host Write (HW (HDS) in the Single Data Strobe mode. The read data strobe is HRD in the Dual Data Strobe m The write data strobe is HWR in the Dual Data Strobe m The host request is HREQ in the Single Host Request m mode. The "Last Data Register" is the register at address \$7, w transfers. This is RXL/TXL in the Big Endian mode (HL 7—ICR[7]), or RXH/TXH in the Little Endian mode (HL In this calculation, the host request signal is pulled up to $V_{CCOH} = 3.3 V \pm 0.3 V$, $V_{CCOL} = 1.6 V \pm 0.1 V$; $T_{J} = 0^{\circ}C$	wn as active low. The rom one of these reg /R) in the Dual Data node and HDS in the mode and HDS in the mode and HRRQ an which is the last loca END = 0; HLEND is END = 1). by a 4.7 k Ω resistor i	e pin pola gisters ar Strobe n Single I e Single d HTRQ tion to be the Inter n the Op	arity is provide and another of the execute of the	rogramm ed. I Host Da be mode obe mod ouble Ho written i ttrol Reg	ata Strob e. e. st Reque	

Table 2-10.	Host	Interface	Timings ^{1,2,12}	(Continued))
-------------	------	-----------	---------------------------	-------------	---

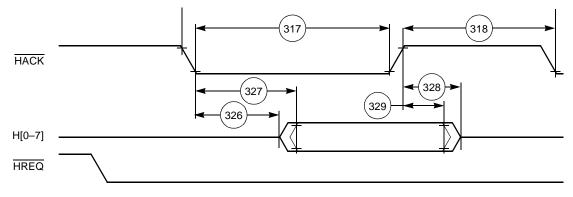


Figure 2-13. Host Interrupt Vector Register (IVR) Read Timing Diagram

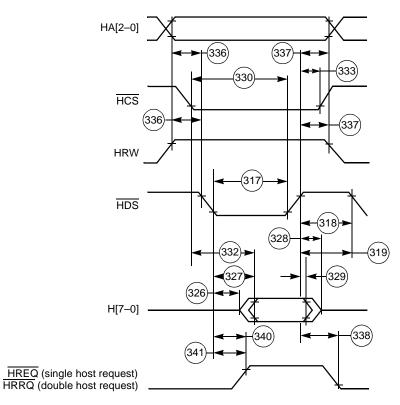


Figure 2-14. Read Timing Diagram, Non-Multiplexed Bus, Single Data Strobe

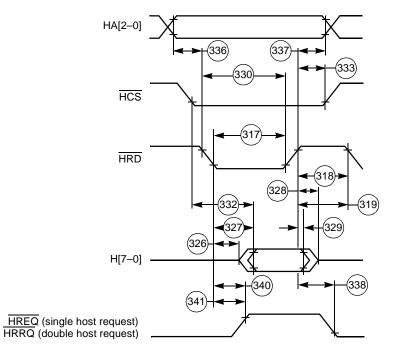
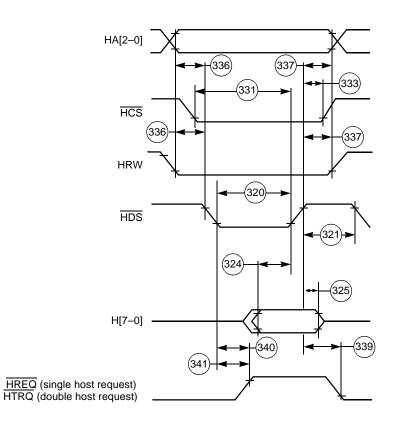



Figure 2-15. Read Timing Diagram, Non-Multiplexed Bus, Double Data Strobe

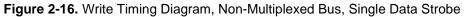


Figure 2-17. Write Timing Diagram, Non-Multiplexed Bus, Double Data Strobe

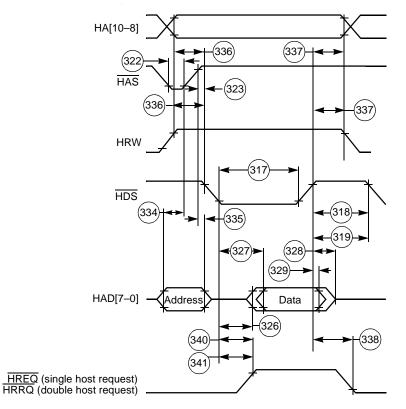


Figure 2-18. Read Timing Diagram, Multiplexed Bus, Single Data Strobe

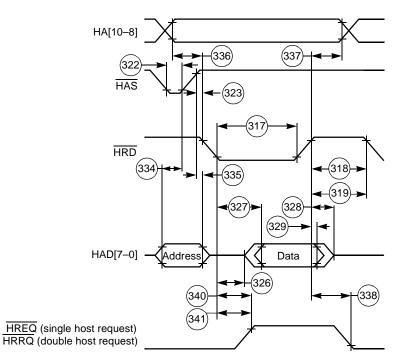
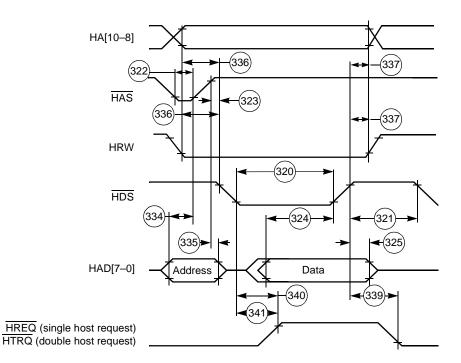
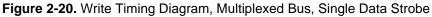
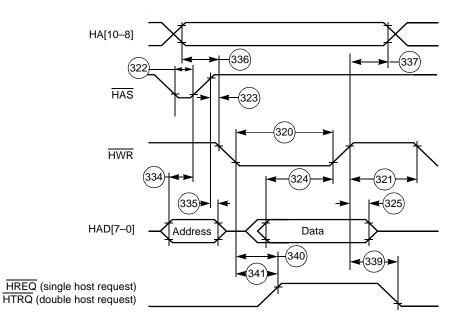
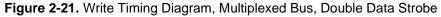






Figure 2-19. Read Timing Diagram, Multiplexed Bus, Double Data Strobe

2.5.7 **SCI** Timing

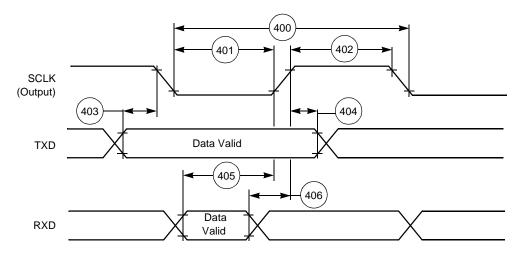

			-	220 MHz		240 MHz		11
No.	Characteristics ¹	Symbol	Expression	Min	Max	Min	Max	Unit
400	Synchronous clock cycle	t _{SCC} ²	$16 \times T_{C}$	72.8	_	66.7		ns
401	Clock low period		t _{SCC} /2 - 10.0	26.4	_	23.4		ns
402	Clock high period		t _{SCC} /2 - 10.0	26.4	_	23.4	_	ns
403	Output data setup to clock falling edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} - 17.0$	3.5	_	1.76	_	ns
404	Output data hold after clock rising edge (internal clock)		$t_{SCC}/4 - 0.5 \times T_C$	15.9	_	14.6		ns
405	Input data setup time before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 \times T_{C} + 25.0$	45.5	_	43.8		ns
406	Input data not valid before clock rising edge (internal clock)		$t_{SCC}/4 + 0.5 imes T_C - 5.5$	-	15.0	-	13.8	ns
407	Clock falling edge to output data valid (external clock)			-	32.0	-	32.0	ns
408	Output data hold after clock rising edge (external clock)		T _C + 8.0	12.6	_	12.2		ns
409	Input data setup time before clock rising edge (external clock)			0.0	_	0.0	_	ns
410	Input data hold time after clock rising edge (external clock)			9.0	_	9.0		ns
411	Asynchronous clock cycle	t _{ACC} ³	$64 imes T_C$	291.2	_	266.9	_	ns
412	Clock low period		t _{ACC} /2 - 10.0	135.6	_	123.5	_	ns
413	Clock high period		t _{ACC} /2 – 10.0	135.6	_	123.5	_	ns
414	Output data setup to clock rising edge (internal clock)		t _{ACC} /2 - 30.0	115.6	_	103.5	_	ns
415	Output data hold after clock rising edge (internal clock)		t _{ACC} /2 - 30.0	115.6	—	103.5	_	ns

Table 2-11. SCI Timings

 $\label{eq:V_CCQH} \begin{array}{l} \mathsf{V}_{CCQH} = 3.3 \; \mathsf{V} \pm 0.3 \; \mathsf{V}, \; \mathsf{V}_{CCQL} = 1.6 \; \mathsf{V} \pm 0.1 \; \mathsf{V}; \; \mathsf{T}_{\mathsf{J}} = 0^{\circ} \mathsf{C} \; \text{to} \; \mathsf{+85^{\circ}C}, \; \mathsf{C}_{\mathsf{L}} = 50 \; \mathsf{pF}. \\ \mathsf{t}_{SCC} = \mathsf{synchronous} \; \mathsf{clock} \; \mathsf{cycle} \; \mathsf{time} \; (\mathsf{for} \; \mathsf{internal} \; \mathsf{clock}, \; \mathsf{t}_{SCC} \; \mathsf{is} \; \mathsf{determined} \; \mathsf{by} \; \mathsf{the} \; \mathsf{SCI} \; \mathsf{clock} \; \mathsf{control} \; \mathsf{register} \; \mathsf{and} \\ \end{array}$ 2. T_C).

t_{ACC} = asynchronous clock cycle time; value given for 1X Clock mode (for internal clock, t_{ACC} is determined by the 3. SCI clock control register and T_C).

In the timing diagrams below, the SCLK is drawn using the clock falling edge as a the first reference. Clock polarity 4. is programmable in the SCI Control Register (SCR). Refer to the DSP56321 Reference Manual for details.

a) Internal Clock

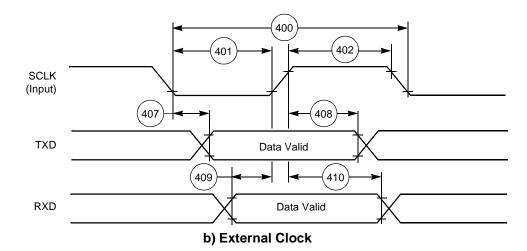


Figure 2-22. SCI Synchronous Mode Timing

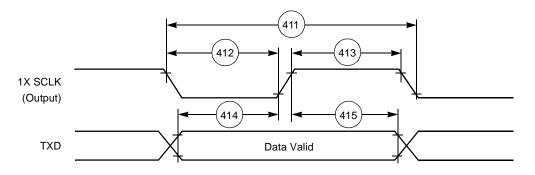


Figure 2-23. SCI Asynchronous Mode Timing

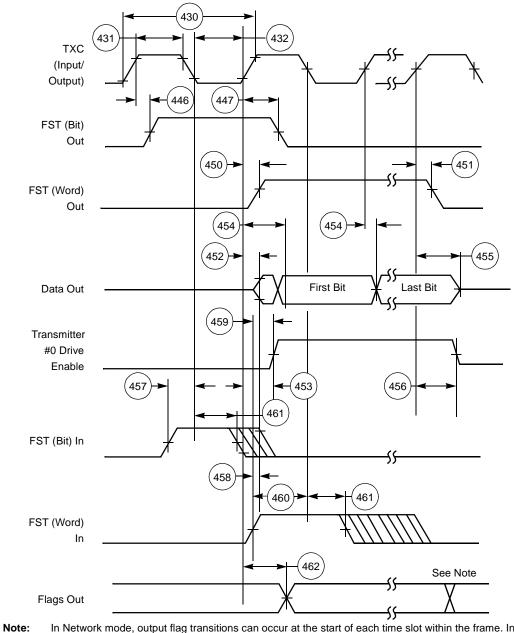

2.5.8 ESSI0/ESSI1 Timing

Table 2-12. ESSI Timings

No.	Characteristics ^{4, 6}	Symbol	Expression	220	MHz	240	MHz	Cond-	Unit
NO.	Characteristics ??	Symbol	Expression	Min	Max	Min	Max	ition ⁵	Unit
430	Clock cycle ¹	T _{ECCX} T _{ECCI}	$6 \times T_C$ $8 \times T_C$	27.3 36.4	_	25.0 33.3	_	x ck i ck	ns ns
431	Clock high period • For external clock • For internal clock		T _{ECCX} /2 – 10.0 T _{ECCI} /2 – 10.0	3.7 8.2	_	2.5 6.7	_	x ck i ck	ns ns
432	Clock low period • For external clock • For internal clock		T _{ECCX} /2 – 10.0 T _{ECCI} /2 – 10.0	3.7 8.2		2.5 6.7		x ck i ck	ns ns
433	RXC rising edge to FSR out (bit-length) high		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$		6.8 9.1		6.3 8.3	x ck i ck a	ns
434	RXC rising edge to FSR out (bit-length) low		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$		6.8 9.1		6.3 8.3	x ck i ck a	ns
435	RXC rising edge to FSR out (word-length-relative) high ²		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$		6.8 9.1		6.3 8.3	x ck i ck a	ns
436	RXC rising edge to FSR out (word-length-relative) low ²		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$		6.8 9.1		6.3 8.3	x ck i ck a	ns
437	RXC rising edge to FSR out (word-length) high		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$		6.8 9.1		6.3 8.3	x ck i ck a	ns
438	RXC rising edge to FSR out (word-length) low		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$		6.8 9.1		6.3 8.3	x ck i ck a	ns
439	Data in setup time before RXC (SCK in Synchronous mode) falling edge		$\begin{array}{c} 0.2 \times T_{ECCX} \\ 0.2 \times T_{ECCI} \end{array}$	5.5 7.3	_	5 6.7	_	x ck i ck	ns
440	Data in hold time after RXC falling edge		$\begin{array}{c} 0.15 \times T_{ECCX} \\ 0.15 \times T_{ECCI} \end{array}$	4.1 5.5	_	3.8 5.0	_	x ck i ck	ns
441	FSR input (bl, wr) high before RXC falling edge ²		$\begin{array}{c} 0.2 \times T_{ECCX} \\ 0.2 \times T_{ECCI} \end{array}$	5.5 7.3	_	5 6.7	_	x ck i ck a	ns
442	FSR input (wl) high before RXC falling edge		$\begin{array}{c} 0.2 \times T_{ECCX} \\ 0.2 \times T_{ECCI} \end{array}$	5.5 7.3	_	5 6.7	_	x ck i ck a	ns
443	FSR input hold time after RXC falling edge		$\begin{array}{c} 0.15 \times T_{ECCX} \\ 0.15 \times T_{ECCI} \end{array}$	4.1 5.5	_	3.8 5.0	_	x ck i ck a	ns
444	Flags input setup before RXC falling edge		$\begin{array}{c} 0.2 \times T_{ECCX} \\ 0.2 \times T_{ECCI} \end{array}$	5.5 7.3	_	5 6.7	_	x ck i ck s	ns
445	Flags input hold time after RXC falling edge		$\begin{array}{c} 0.15 \times T_{ECCX} \\ 0.15 \times T_{ECCI} \end{array}$	4.1 5.5		3.8 5.0	_	x ck i ck s	ns
446	TXC rising edge to FST out (bit-length) high		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$		6.8 9.1		6.3 8.3	x ck i ck	ns
447	TXC rising edge to FST out (bit-length) low		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$		6.8 9.1		6.3 8.3	x ck i ck	ns
448	TXC rising edge to FST out (word-length-relative) high ²		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$	_	6.8 9.1		6.3 8.3	x ck i ck	ns
449	TXC rising edge to FST out (word-length-relative) low ²		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$		6.8 9.1	_	6.3 8.3	x ck i ck	ns

NI	Characteristics ^{4, 6}	Ourse a	Funne!- :	220	MHz	z 240 MHz		Cond-	
No.	Characteristics", *	Symbol	Expression	Min	Max	Min	Max	ition ⁵	Unit
450	TXC rising edge to FST out (word-length) high		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$		6.8 9.1	_	6.3 8.3	x ck i ck	ns
451	TXC rising edge to FST out (word-length) low		$\begin{array}{c} 0.25 \times \mathrm{T}_{\mathrm{ECCX}} \\ 0.25 \times \mathrm{T}_{\mathrm{ECCI}} \end{array}$	_	6.8 9.1	_	6.3 8.3	x ck i ck	ns
452	TXC rising edge to data out enable from high impedance		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$	-	6.8 9.1	_	6.3 8.3	x ck i ck	ns
453	TXC rising edge to Transmitter #0 drive enable assertion		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$		6.8 9.1	_	6.3 8.3	x ck i ck	ns
454	TXC rising edge to data out valid		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$	_	6.8 9.1	_	6.3 8.3	x ck i ck	ns
455	TXC rising edge to data out high impedance ³		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$	_	6.8 9.1	_	6.3 8.3	x ck i ck	ns
456	TXC rising edge to Transmitter #0 drive enable deassertion ³		$\begin{array}{c} 0.25 \times \mathrm{T}_{\mathrm{ECCX}} \\ 0.25 \times \mathrm{T}_{\mathrm{ECCI}} \end{array}$	_	6.8 9.1	_	6.3 8.3	x ck i ck	ns
457	FST input (bl, wr) setup time before TXC falling edge ²		$\begin{array}{c} 0.2 \times \mathrm{T}_{\mathrm{ECCX}} \\ 0.2 \times \mathrm{T}_{\mathrm{ECCI}} \end{array}$	5.5 7.3	_	5 6.7	_	x ck i ck	ns
458	FST input (wl) to data out enable from high impedance		TBD	_	TBD	_	TBD	_	ns
459	FST input (wl) to Transmitter #0 drive enable assertion		TBD	_	TBD	—	TBD	_	ns
460	FST input (wl) setup time before TXC falling edge		$\begin{array}{c} 0.2 \times T_{ECCX} \\ 0.2 \times T_{ECCI} \end{array}$	5.5 7.3	_	5 6.7	_	x ck i ck	ns
461	FST input hold time after TXC falling edge		$\begin{array}{c} 0.15 \times T_{ECCX} \\ 0.15 \times T_{ECCI} \end{array}$	4.1 5.5	_	3.8 5.0	_	x ck i ck	ns
462	Flag output valid after TXC rising edge		$\begin{array}{c} 0.25 \times T_{ECCX} \\ 0.25 \times T_{ECCI} \end{array}$	_	6.8 9.1	_	6.3 8.3	x ck i ck	ns
Notes	 For the internal clock, the external clock cyr. 2-5) and the ESSI control register. T_{ECCX} n <i>DSP56321 Reference Manual</i>. T_{ECCI} must <i>ESSI Clock Generator Functional Block Dia</i> The word-length-relative frame sync signal waveform, but spreads from one serial cloc until the one before last bit clock of the first Periodically sampled and not 100 percent t V_{CCQH} = 3.3 V ± 0.3 V, V_{CCQL} = 1.6 V ± 0.7 TXC (SCK Pin) = Transmit Clock RXC (SC0 or SCK Pin) = Receive Clock FST (SC2 Pin) = Transmit Frame Sync FSR (SC1 or SC2 Pin) Receive Frame Sync i ck = Internal Clock; x ck = External Clock i ck a = Internal Clock, Synchronous Mode In the timing diagrams below, the clocks an reference. Clock and frame sync polarities 	hust be $\ge T_C \times 4$ agram shown waveform o k before the word in the ested 1 V; $T_J = 0^{\circ}C$ c c e (asynchrorous) d frame syn	\times 3, in accordar, in accordance v in in Figure 7-3 o perates the same first bit clock (sa frame. C to +85°C, C _L = hous implies that is implies that TX c signals are dra	nce with vith the f the <i>D</i> , e way a me as 50 pF TXC an (C and wn usir	n the no explan SP5632 as the b the Bit nd RXC RXC a ng the c	c are tw re the solution of th	ow Tab of CRA[erence th fram o Frame o Giffe same c lling ec	le 7-1 in th (PSR] and <i>Manual.</i> e sync sig e Sync sig source sig rent clock: lock) lge as a th	nal nal nal) s)

Table 2-12.	ESSI Timings	(Continued)
-------------	--------------	-------------

In Network mode, output flag transitions can occur at the start of each time slot within the frame. In Normal mode, the output flag state is asserted for the entire frame period.

Figure 2-24. ESSI Transmitter Timing

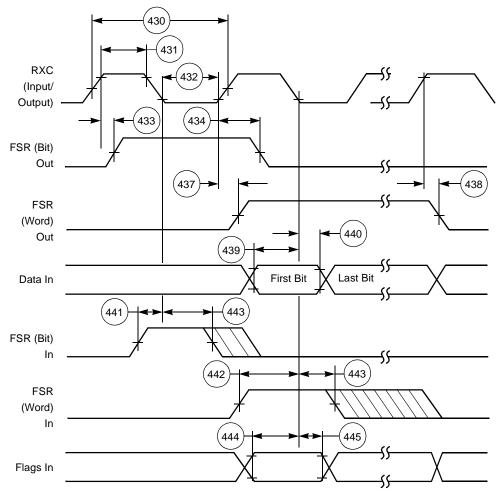


Figure 2-25. ESSI Receiver Timing

2.5.9 Timer Timing

Table 2-13. Timer Timings

		-	220 MHz		240 MHz		11.5
No.	Characteristics	Expression	Min	Max	Min	Max	- Unit
480	TIO Low	$2 \times T_{C} + 2.0$	11.1	_	10.3	_	ns
481	TIO High	$2 \times T_{C} + 2.0$	11.0	-	10.3	_	ns
486	Synchronous delay time from Timer input rising edge to the external memory address out valid caused by the first interrupt instruction execution	10.25 × T _C + 10.0	56.64	-	52.74	_	ns
Notes:	 V_{CCQH} = 3.3 V ± 0.3 V, V_{CCQL} = 1.6 V ± The maximum frequency of pulses generic completed. In the timing diagrams below, TIO is drawn in the Timer Control/Status Register (TCG) 	rated by a timer will be o wn using the rising edge	defined aftered	er device o erence. Ti	O polarity	is prograr	nmable
						<u> </u>	
	Figure 2-26.	TIO Timer Event In	put Rest	trictions			
	TIO (Input)	(48	6		>		
	Address					^	_
		First Interrup	ot Instructio	n Executio	on		

Figure 2-27. Timer Interrupt Generation

2.5.10 CONSIDERATIONS FOR GPIO USE

The following considerations can be helpful when GPIO is used.

2.5.10.1 GPIO as Output

- The time from fetch of the instruction that changes the GPIO pin to the actual change is seven core clock cycles, if the instruction is a one-cycle instruction and there are no pipeline stalls or any other pipeline delays.
- The maximum rise or fall time of a GPIO pin is 13 ns (TTL levels, assuming that the maximum of 50 pF load limit is met).

2.5.10.2 GPIO as Input

GPIO inputs are not synchronized with the core clock. When only one GPIO bit is polled, this lack of synchronization presents no problem, since the read value can be either the previous value or the new value of the corresponding GPIO pin. However, there is the risk of reading an intermediate state if:

- Two or more GPIO bits are treated as a coupled group (for example, four possible status states encoded in two bits).
- The read operation occurs during a simultaneous change of GPIO pins (for example, the change of 00 to 11 may happen through an intermediate state of 01 or 10).

Therefore, when GPIO bits are read, the recommended practice is to poll continuously until two consecutive read operations have identical results.

2.5.11 JTAG Timing

N -	Oberestaristics	All frequencies		11		
No.	Characteristics	Min	Max	Unit		
500	TCK frequency of operation	0.0	22.0	MHz		
501	TCK cycle time in Crystal mode	45.0	_	ns		
502	TCK clock pulse width measured at 1.6 V	20.0	_	ns		
503	TCK rise and fall times	0.0	3.0	ns		
504	Boundary scan input data setup time	5.0	_	ns		
505	Boundary scan input data hold time	24.0	_	ns		
506	TCK low to output data valid	0.0	40.0	ns		
507	TCK low to output high impedance	0.0	40.0	ns		
508	TMS, TDI data setup time	5.0	_	ns		
509	TMS, TDI data hold time	25.0	_	ns		
510	TCK low to TDO data valid	0.0	44.0	ns		
511	TCK low to TDO high impedance	0.0	44.0	ns		
512	TRST assert time	100.0	_	ns		
513	TRST setup time to TCK low 40.0 —					
Notes:	1. $V_{CCQH} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{CCQL} = 1.6 \text{ V} \pm 0.1 \text{ V}$; $T_J = 0^{\circ}\text{C}$ to +85°C, $C_L = 50 \text{ pF}$ 2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.					

Table 2-14. JTAG Timing

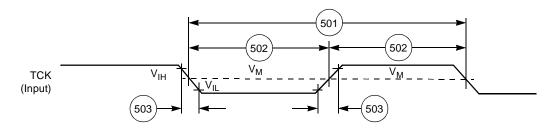


Figure 2-28. Test Clock Input Timing Diagram

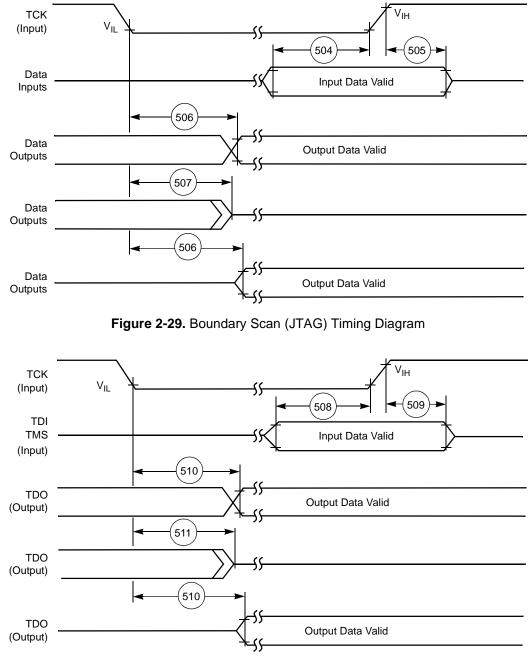


Figure 2-30. Test Access Port Timing Diagram

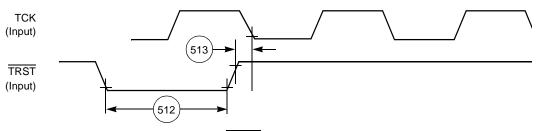


Figure 2-31. TRST Timing Diagram

2.5.12 OnCE Module TimIng

No.	Characteristics	Expression	-	ll encies	Unit	
			Min	Max		
500	TCK frequency of operation	Max 22.0 MHz	0.0	22.0	MHz	
514	DE assertion time in order to enter Debug mode	1.5 × T _C + 10.0	20.0	—	ns	
515	Response time when DSP56321T is executing NOP instructions from internal memory	$5.5 \times T_{C} + 30.0$	—	67.0	ns	
516	Debug acknowledge assertion time	3 × T _C + 5.0	25.0	_	ns	
Note:	Note: $V_{CCQH} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{CCQL} = 1.6 \text{ V} \pm 0.1 \text{ V}; T_J = 0^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, C_L = 50 \text{ pF}$					

Table 2-15. OnCE Module Timing

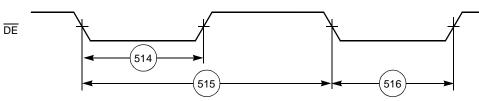


Figure 2-32. OnCE—Debug Request

3.1 Pin-Out and Package Information

This section includes diagrams of the DSP56321T package pin-outs and tables showing how the signals described in **Chapter 1** are allocated for the package. The DSP56321T is available in a 196-pin Flip Chip-Plastic Ball Grid Array (FC-PBGA) package.

3.2 FC-PBGA Package Description

Top and bottom views of the FC-PBGA package are shown in **Figure 3-1** and **Figure 3-2** with their pin-outs.

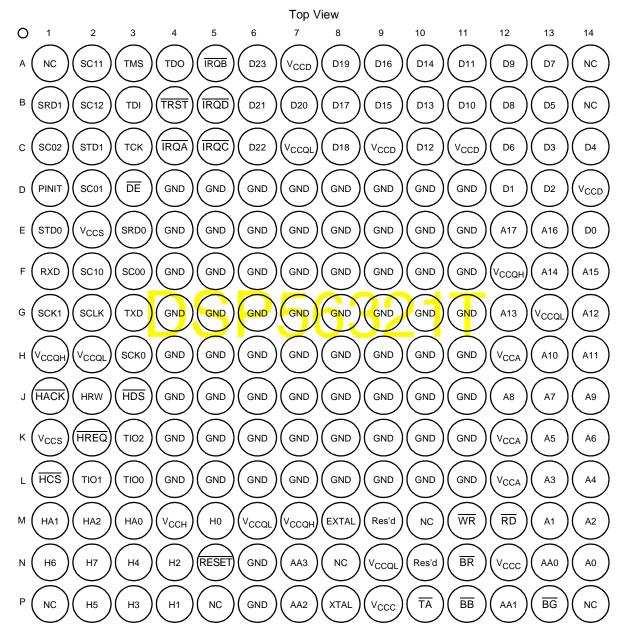


Figure 3-1. DSP56321T FC-PBGA Package, Top View

FC-PBGA Package Description

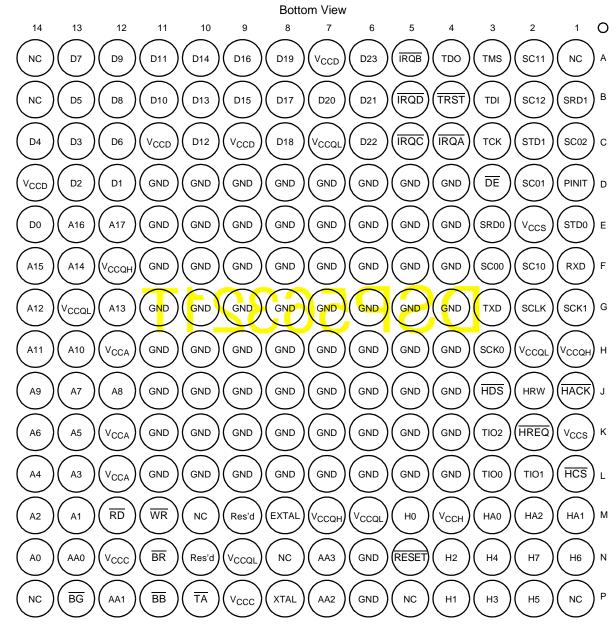


Figure 3-2. DSP56321T FC-PBGA Package, Bottom View

Ball No.	Signal Name	Ball No.	Signal Name	Ball No.	Signal Name
A1	Not Connected (NC), reserved	B12	D8	D9	GND
A2	SC11 or PD1	B13	D5	D10	GND
A3	TMS	B14	NC	D11	GND
A4	TDO	C1	SC02 or PC2	D12	D1
A5	MODB/IRQB	C2	STD1 or PD5	D13	D2
A6	D23	C3	тск	D14	V _{CCD}
A7	V _{CCD}	C4	MODA/IRQA	E1	STD0 or PC5
A8	D19	C5	MODC/IRQC	E2	V _{CCS}
A9	D16	C6	D22	E3	SRD0 or PC4
A10	D14	C7	V _{CCQL}	E4	GND
A11	D11	C8	D18	E5	GND
A12	D9	C9	V _{CCD}	E6	GND
A13	D7	C10	D12	E7	GND
A14	NC	C11	V _{CCD}	E8	GND
B1	SRD1 or PD4	C12	D6	E9	GND
B2	SC12 or PD2	C13	D3	E10	GND
B3	TDI	C14	D4	E11	GND
B4	TRST	D1	PINIT/NMI	E12	A17
B5	MODD/IRQD	D2	SC01 or PC1	E13	A16
B6	D21	D3	DE	E14	D0
B7	D20	D4	GND	F1	RXD or PE0
B8	D17	D5	GND	F2	SC10 or PD0
B9	D15	D6	GND	F3	SC00 or PC0
B10	D13	D7	GND	F4	GND
B11	D10	D8	GND	F5	GND

Table 3-1. Signal List by Ball Number

Ball		Ball		Ball	
No.	Signal Name	No.	Signal Name	No.	Signal Name
F6	GND	H3	SCK0 or PC3	J14	A9
F7	GND	H4	GND	K1	V _{CCS}
F8	GND	H5	GND	K2	HREQ/HREQ, HTRQ/HTRQ, or PB14
F9	GND	H6	GND	K3	TIO2
F10	GND	H7	GND	K4	GND
F11	GND	H8	GND	K5	GND
F12	V _{CCQH}	H9	GND	K6	GND
F13	A14	H10	GND	K7	GND
F14	A15	H11	GND	K8	GND
G1	SCK1 or PD3	H12	V _{CCA}	K9	GND
G2	SCLK or PE2	H13	A10	K10	GND
G3	TXD or PE1	H14	A11	K11	GND
G4	GND	J1	HACK/HACK, HRRQ/HRRQ, or PB15	K12	V _{CCA}
G5	GND	J2	HRW, HRD/HRD, or PB11	K13	A5
G6	GND	J3	HDS/HDS, HWR/HWR, or PB12	K14	A6
G7	GND	J4	GND	L1	HCS/HCS, HA10, or PB13
G8	GND	J5	GND	L2	TIO1
G9	GND	J6	GND	L3	TIO0
G10	GND	J7	GND	L4	GND
G11	GND	J8	GND	L5	GND
G12	A13	J9	GND	L6	GND
G13	V _{CCQL}	J10	GND	L7	GND
G14	A12	J11	GND	L8	GND
H1	V _{CCQH}	J12	A8	L9	GND
H2	V _{CCQL}	J13	A7	L10	GND

Table 3-1. Signal List by Ball Number (Continued)

Ball No.	Signal Name	Ball No.	Signal Name	Ball No.	Signal Name
L11	GND	M13	A1	P1	NC
L12	V _{CCA}	M14	A2	P2	H5, HAD5, or PB5
L13	A3	N1	H6, HAD6, or PB6	P3	H3, HAD3, or PB3
L14	A4	N2	H7, HAD7, or PB7	P4	H1, HAD1, or PB1
M1	HA1, HA8, or PB9	N3	H4, HAD4, or PB4	P5	NC
M2	HA2, HA9, or PB10	N4	H2, HAD2, or PB2	P6	GND
М3	HA0, HAS/HAS, or PB8	N5	RESET	P7	AA2
M4	V _{CCH}	N6	GND	P8	XTAL
M5	H0, HAD0, or PB0	N7	AA3	P9	V _{CCC}
M6	V _{CCQL}	N8	NC	P10	TA
M7	V _{CCQH}	N9	V _{CCQL}	P11	BB
M8	EXTAL	N10	Reserved	P12	AA1
M9	Reserved	N11	BR	P13	BG
M10	NC	N12	V _{CCC}	P14	NC
M11	WR	N13	AA0		
M12	RD	N14	A0		
Note:	Signal names are based on configured functionality. Most connections supply a single signal. Some connections provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some connections have two or more configurable functions; names assigned to these connections indicate the function for a specific configuration. For example, connection N2 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin. Unlike the TQFP package, most of the GND pins are connected internally in the center of the connection array and act as heat sink for the chip. Therefore, except for GND _P and GND _{P1} that support the PLL, other GND signals do not support individual subsystems in the chip.				

Table 3-1. Signal List by Ball Number (Continued)

Signal Name	Ball No.	Signal Name	Ball No.	Signal Name	Ball No.
A0	N14	BR	N10	D9	A12
A1	M13	D0	E14	DE	D3
A10	H13	D1	D12	EXTAL	M8
A11	H14	D10	B11	GND	D4
A12	G14	D11	A11	GND	D5
A13	G12	D12	C10	GND	D6
A14	F13	D13	B10	GND	D7
A15	F14	D14	A10	GND	D8
A16	E13	D15	B9	GND	D9
A17	E12	D16	A9	GND	D10
A2	M14	D17	B8	GND	D11
A3	L13	D18	C8	GND	E4
A4	L14	D19	A8	GND	E5
A5	K13	D2	D13	GND	E6
A6	K14	D20	B7	GND	E7
A7	J13	D21	B6	GND	E8
A8	J12	D22	C6	GND	E9
A9	J14	D23	A6	GND	E10
AA0	N13	D3	C13	GND	E11
AA1	P12	D4	C14	GND	F4
AA2	P7	D5	B13	GND	F5
AA3	N7	D6	C12	GND	F6
BB	P11	D7	A13	GND	F7
BG	P13	D8	B12	GND	F8

Table 3-2. Signal List by Signal Name

	Ball		Ball		Ball
Signal Name	No.	Signal Name	No.	Signal Name	No.
GND	F9	GND	K4	HA1	M1
GND	F10	GND	K5	HA10	L1
GND	F11	GND	K6	HA2	M2
GND	G4	GND	K7	HA8	M1
GND	G5	GND	K8	HA9	M2
GND	G6	GND	K9	HACK/HACK	J1
GND	G7	GND	K10	HAD0	M5
GND	G8	GND	K11	HAD1	P4
GND	G9	GND	L4	HAD2	N4
GND	G10	GND	L5	HAD3	P3
GND	G11	GND	L6	HAD4	N3
GND	H4	GND	L7	HAD5	P2
GND	H5	GND	L8	HAD6	N1
GND	H6	GND	L9	HAD7	N2
GND	H7	GND	L10	HAS/HAS	М3
GND	H8	GND	L11	HCS/HCS	L1
GND	H9	GND	N6	HDS/HDS	J3
GND	H10	GND	P6	HRD/HRD	J2
GND	H11	H0	M5	HREQ/HREQ	K2
GND	J4	H1	P4	HRRQ/HRRQ	J1
GND	J5	H2	N4	HRW	J2
GND	J6	H3	P3	HTRQ/HTRQ	K2
GND	J7	H4	N3	HWR/HWR	J3
GND	J8	H5	P2	IRQA	C4
GND	J9	H6	N2	IRQB	A5
GND	J10	H7	N2	IRQC	C5
GND	J11	HA0	M3	IRQD	B5

Table 3-2. Signal List by Signal Name (Continued)

Signal Name	Ball No.	Signal Name	Ball No.	Signal Name	Ball No.
MODA	C4	PC3	H3	TA	P10
MODB	A5	PC4	E3	тск	C3
MODC	C5	PC5	E1	TDI	B3
MODD	B5	PCAP	P5	TDO	A4
NC	A1	PD0	F2	TIO0	L3
NC	A14	PD1	A2	TIO1	L2
NC	B14	PD2	B2	TIO2	К3
NC	M10	PD3	G1	TMS	A3
NC	N8	PD4	B1	TRST	B4
NC	P1	PD5	C2	TXD	G3
NC	P5	PE0	F1	V _{CCA}	H12
NC	P14	PE1	G3	V _{CCA}	K12
NMI	D1	PE2	G2	V _{CCA}	L12
PB0	M5	PINIT	D1	V _{CCC}	N12
PB1	P4	RD	M12	V _{CCC}	P9
PB10	M2	Reserved	M9	V _{CCD}	A7
PB11	J2	Reserved	N10	V _{CCD}	C9
PB12	J3	RESET	N5	V _{CCD}	C11
PB13	L1	RXD	F1	V _{CCD}	D14
PB14	K2	SC00	F3	V _{CCH}	M4
PB15	J1	SC01	D2	V _{CCQH}	F12
PB2	N4	SC02	C1	V _{CCQH}	H1
PB3	P3	SC10	F2	V _{CCQH}	M7
PB4	N3	SC11	A2	V _{CCQL}	C7
PB5	P2	SC12	B2	V _{CCQL}	G13
PB6	N1	SCK0	H3	V _{CCQL}	H2
PB7	N2	SCK1	G1	V _{CCQL}	M6
PB8	M3	SCLK	G2	V _{CCQL}	N9
PB9	M1	SRD0	E3	V _{CCS}	E2
PC0	F3	SRD1	B1	V _{CCS}	K1
PC1	D2	STD0	E1	WR	M11
PC2	C1	STD1	C2	XTAL	P8

 Table 3-2.
 Signal List by Signal Name (Continued)

3.3 FC-PBGA Package Mechanical Drawing

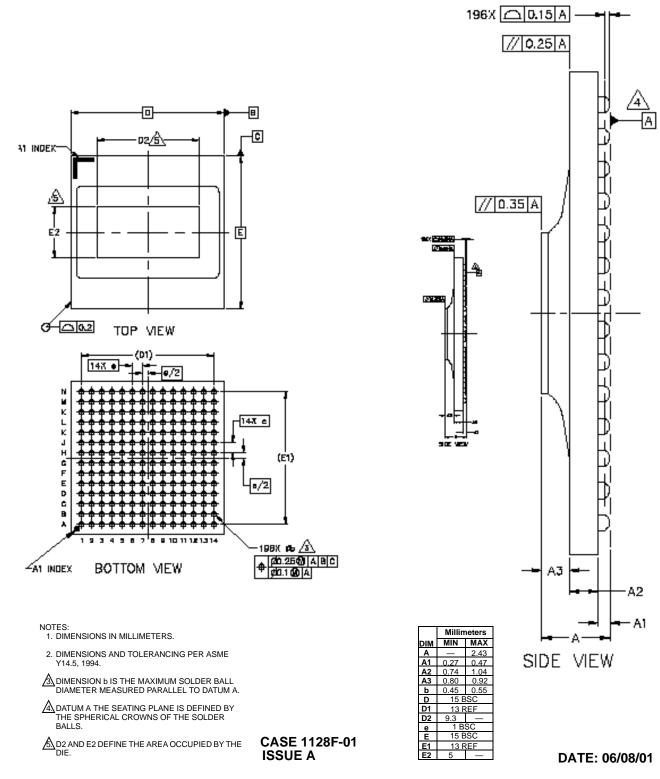


Figure 3-3. DSP56321T Mechanical Information, 196-pin FC-PBGA Package

Design Considerations

Freescale Semiconductor, Inc.

Thermal Design Considerations 4.1

An estimate of the chip junction temperature, T_I, in °C can be obtained from this equation:

Equation 1: $T_J = T_A + (P_D \times R_{\theta JA})$

Where:

T _A	=	ambient temperature °C
$R_{\theta JA}$	=	package junction-to-ambient thermal resistance °C/W
P _D	=	power dissipation in package

Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance, as in this equation:

Equation 2: $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

Where:

$R_{\theta JA}$	=	package junction-to-ambient thermal resistance °C/W
$R_{\theta JC}$	=	package junction-to-case thermal resistance °C/W
$R_{\theta CA}$	=	package case-to-ambient thermal resistance °C/W

 $R_{\theta IC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\Theta CA}$. For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board (PCB) or otherwise change the thermal dissipation capability of the area surrounding the device on a PCB. This model is most useful for ceramic packages with heat sinks; some 90 percent of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the device thermal performance may need the additional modeling capability of a system-level thermal simulation tool.

The thermal performance of plastic packages is more dependent on the temperature of the PCB to which the package is mounted. Again, if the estimates obtained from $R_{\theta JA}$ do not satisfactorily answer whether the thermal performance is adequate, a system-level model may be appropriate.

A complicating factor is the existence of three common ways to determine the junction-to-case thermal resistance in plastic packages.

- To minimize temperature variation across the surface, the thermal resistance is measured from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink.
- To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to the point at which the leads attach to the case.
- If the temperature of the package case (T_T) is determined by a thermocouple, thermal resistance is computed from the value obtained by the equation $(T_J T_T)/P_D$.

As noted earlier, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, that value is also suitable to determine the junction temperature from a case thermocouple reading in forced convection environments. In natural convection, the use of the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will yield an estimate of a junction temperature slightly higher than actual temperature. Hence, the new thermal metric, thermal characterization parameter or Ψ_{JT} , has been defined to be $(T_J - T_T)/P_D$. This value gives a better estimate of the junction temperature in natural convection when the surface temperature of the package is used. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.

4.2 Electrical Design Considerations

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}).

Use the following list of recommendations to ensure correct DSP operation.

- Provide a low-impedance path from the board power supply to each V_{CC} pin on the DSP and from the board ground to each GND pin.
- Use at least six 0.01–0.1 μ F bypass capacitors positioned as close as possible to the four sides of the package to connect the V_{CC} power source to GND.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{CC} and GND pins are less than 0.5 inch per capacitor lead.
- Use at least a four-layer PCB with two inner layers for V_{CC} and GND.

- Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal. This recommendation particularly applies to the address and data buses as well as the \overline{IRQA} , \overline{IRQB} , \overline{IRQC} , \overline{IRQD} , \overline{TA} , and \overline{BG} pins. Maximum PCB trace lengths on the order of 6 inches are recommended.
- Consider all device loads as well as parasitic capacitance due to PCB traces when you calculate capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{CC} and GND circuits.
- All inputs must be terminated (that is, not allowed to float) by CMOS levels except for the three pins with internal pull-up resistors (TRST, TMS, DE).
- Take special care to minimize noise levels on the V_{CCP}, GND_P, and GND_{P1} pins.
- The following pins must be asserted during power-up: $\overline{\text{RESET}}$ and $\overline{\text{TRST}}$. A stable EXTAL signal should be supplied before deassertion of $\overline{\text{RESET}}$. If the V_{CC} reaches the required level before EXTAL is stable or other "required $\overline{\text{RESET}}$ duration" conditions are met (see **Table 2-7**), the device circuitry can be in an uninitialized state that may result in significant power consumption and heat-up. Designs should minimize this condition to the shortest possible duration.
- Ensure that during power-up, and throughout the DSP56321 operation, V_{CCQH} is always higher or equal to the V_{CC} voltage level.
- If multiple DSP devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices.
- The Port A data bus (D[0–23]), HI08, ESSI0, ESSI1, SCI, and timers all use internal keepers to
 maintain the last output value even when the internal signal is tri-stated. Typically, no pull-up or
 pull-down resistors should be used with these signal lines. However, if the DSP is connected to a
 device that requires pull-up resistors (such as an MPC8260), the recommended resistor value is 10 KΩ
 or less. If more than one DSP must be connected in parallel to the other device, the pull-up resistor
 value requirement changes as follows:
 - 2 DSPs = 5 K Ω (mask sets 0K91M and 1K91M)/7 K Ω (mask set 0K93M) or less
 - 3 DSPs = 3 K Ω (mask sets 0K91M and 1K91M)/4 K Ω (mask set 0K93M) or less
 - 4 DSPs = 2 K Ω (mask sets 0K91M and 1K91M)/3 K Ω (mask set 0K93M) or less
 - 5 DSPs = 1.5 K Ω (mask sets 0K91M and 1K91M)/2 K Ω (mask set 0K93M) or less
 - 6 DSPs = 1 K Ω (mask sets 0K91M and 1K91M)/1.5 K Ω (mask set 0K93M) or less

4.3 Power Consumption Considerations

Power dissipation is a key issue in portable DSP applications. Some of the factors affecting current consumption are described in this section. Most of the current consumed by CMOS devices is alternating current (ac), which is charging and discharging the capacitances of the pins and internal nodes.

Current consumption is described by this formula:

Equation 3: $I = C \times V \times f$

Where:

С	=	node/pin capacitance
V	=	voltage swing
f	=	frequency of node/pin toggle

Example 4-1. Current Consumption

For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, with a 66 MHz clock, toggling at its maximum possible rate (33 MHz), the current consumption is expressed in **Equation 4**.

Equation 4: $I = 50 \times 10^{-12} \times 3.3 \times 33 \times 10^{6} = 5.48 \ mA$

The maximum internal current (I_{CCI} max) value reflects the typical possible switching of the internal buses on best-case operation conditions—not necessarily a real application case. The typical internal current (I_{CCItyp}) value reflects the average switching of the internal buses on typical operating conditions.

Perform the following steps for applications that require very low current consumption:

- 1. Set the EBD bit when you are not accessing external memory.
- 2. Minimize external memory accesses, and use internal memory accesses.
- 3. Minimize the number of pins that are switching.
- 4. Minimize the capacitive load on the pins.
- 5. Connect the unused inputs to pull-up or pull-down resistors.
- 6. Disable unused peripherals.
- 7. Disable unused pin activity (for example, CLKOUT, XTAL).

One way to evaluate power consumption is to use a current-per-MIPS measurement methodology to minimize specific board effects (that is, to compensate for measured board current not caused by the DSP). A benchmark power consumption test algorithm is listed in **Appendix A**. Use the test algorithm, specific test current measurements, and the following equation to derive the current-per-MIPS value.

Equation 5: $I/MIPS = I/MHz = (I_{typF2} - I_{typF1})/(F2 - F1)$

Where:

I _{typF2}	=	current at F2
I _{typF1}	=	current at F1
F2	=	high frequency (any specified operating frequency)
F1	=	low frequency (any specified operating frequency lower than F2)

Note: F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application.

4.4 Input (EXTAL) Jitter Requirements

The allowed jitter on the frequency of EXTAL is 0.5 percent. If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time), then the allowed jitter can be 2 percent. The phase and frequency jitter performance results are valid only if the input jitter is less than the prescribed values.

Appendix A

Power Consumption Benchmark

Freescale Semiconductor, Inc.

The following benchmark program evaluates DSP56321T power use in a test situation. It enables the PLL, disables the external clock, and uses repeated multiply-accumulate (MAC) instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation.

```
; *
;* CHECKS Typical Power Consumption
;*
                                                 *
200,55,0,0,0
       page
       nolist
I_VEC EQU $000000; Interrupt vectors for program debug only START EQU $8000; MAIN (external) program starting address
INT_PROG EQU $100 ; INTERNAL program memory starting address
INT_XDAT EQU $0; INTERNAL X-data memory starting address
INT_YDAT EQU $0; INTERNAL Y-data memory starting address
       INCLUDE "ioequ.asm"
       INCLUDE "intequ.asm"
       list
       org
              P:START
;
       movep #$0243FF,x:M_BCR ;; BCR: Area 3 = 2 w.s (SRAM)
; Default: 2w.s (SRAM)
;
             #$0d0000,x:M_PCTL
                                   ; XTAL disable
       movep
                                   ; PLL enable
                                   ; CLKOUT disable
;
 Load the program
;
       move
              #INT_PROG,r0
              #PROG_START,r1
       move
       do
              #(PROG_END-PROG_START), PLOAD_LOOP
              p:(r1)+,x0
       move
       move
              x0,p:(r0)+
       nop
PLOAD LOOP
 Load the X-data
;
;
              #INT_XDAT,r0
      move
              #XDAT_START,r1
       move
              #(XDAT_END-XDAT_START),XLOAD_LOOP
       do
      move
              p:(r1)+,x0
      move
              x0,x:(r0)+
XLOAD_LOOP
;
 Load the Y-data
;
              #INT_YDAT,r0
       move
       move
              #YDAT_START,r1
       do
              #(YDAT_END-YDAT_START),YLOAD_LOOP
       move
              p:(r1)+,x0
       move
              x0,y:(r0)+
YLOAD_LOOP
              INT_PROG
       jmp
PROG_START
              #$0,r0
       move
       move
              #$0,r4
      move
              #$3f,m0
              #$3f,m4
      move
;
```

clr

а

; sbr _end	clr move move bset dor mac mac add mac move	<pre>b #\$0,x0 #\$0,x1 #\$0,y0 #\$0,y1 #4,omr ; ebd #60,_end x0,y0,ax:(r0)+,x1 x1,y1,ax:(r0)+,x0 a,b x0,y0,ax:(r0)+,x1 x1,y1,a b1,x:\$ff</pre>	y:(r4)+,y1 y:(r4)+,y0 y:(r4)+,y0
PROG_E	bra nop nop nop ND nop nop	sbr	
XDAT_S	TART org dc dc dc dc dc dc dc cc cc cc cc cc cc	x:0 \$262EB9 \$86F2FE \$E56A5F \$616CAC \$8FFD75 \$9210A \$A06D7B \$CEA798 \$8DFBF1 \$A063D6 \$6C6657 \$C2A544 \$A3662D \$A4E762 \$84F0F3 \$E6F1B0 \$B3829 \$8BF7AE \$63A94F \$E78DC \$242DE5 \$A3E0BA \$EBAB6B \$8726C8 \$CA361 \$2F6E86 \$A57347 \$4BE774 \$8F734D \$A1ED12 \$4BFCE3 \$EA26E0 \$CD7D99 \$4BA85E \$27A43F \$A8B10C \$D3A55 \$225EC6A \$2A255B \$A5F1F8 \$2426D1 \$AE6536 \$CBBC37 \$6235A4 \$37F00 \$63BEC2 \$A5E4D3 \$8CE810 \$3FF99 \$60E50E \$CFFB2F \$40753C \$8262C5 \$CA641A	

dc dc dc dc dc dc dc dc dc dc dc ZDAT_END	\$EB3B4B \$2DA928 \$AB6641 \$28A7E6 \$4E2127 \$482FD4 \$7257D \$E53C72 \$1A8C3 \$E27540
_	
XDAT_END YDAT_START ; org de dc dc dc dc dc dc dc dc dc dc	y:0 \$5B6DA \$C3F70B \$6A39E8 \$81E801 \$C666A6 \$46F8E7 \$AAEC94 \$24233D \$802732 \$2E3C83 \$A43E00 \$C2B6399 \$85A47E \$ABFDDF \$F3A2C \$2D7CF5 \$E16A8A \$ECB8FB \$4BED18 \$43F3711 \$8A5566 \$E1E9D7 \$ACA2C4 \$8135AD \$2CE0E22 \$8F2C73 \$432730 \$AA7FA9 \$4A292E \$ACA2C4 \$8135AD \$2CE0652 \$432730 \$AA7FA9 \$4A292E \$ACA2C4 \$8135AD \$2CE0652 \$1AA3A \$A1B6EB \$4A292E \$A63CCF \$6BA65C \$E06D65 \$1AA3A \$A1B6EB \$4A292E \$AC676C7 \$6664F4 \$87E41D \$CE26922 \$2C3863 \$C2F6C7 \$6064F4 \$87E41D \$CB2692 \$2C3863 \$C260C9D5 \$E0F5EA \$8230DB \$A3B778 \$2BF551 \$E0A6B66 \$63FFB7 \$28F324 \$8728D \$667842 \$83E053 \$A1FD90 \$652689 \$85B68E \$622EAF
dc	\$6162BC \$E4A245
YDAT_END	
; * * * * * * * * * *	*****

For More Information On This Product, Go to: www.freescale.com

Power Consumption Benchmark

```
EQUATES for DSP56321 I/O registers and ports
 ;
 ;
            Last update: June 11 1995
 ;
  132,55,0,0,0
               page
               opt
                            mex
 ioequ
              ident 1,0
  ;------
                EQUATES for I/O Port Programming
  ;
  ;------
                Register Addresses
 ;
M_HDR EQU $FFFFC9 ; Host port GPIO data Register
M_HDDR EQU $FFFFC8 ; Host port GPIO direction Register
M_PCRC EQU $FFFFBF ; Port C Control Register
M_PCRC EQU $FFFFBE ; Port C Direction Register
M_PCRD EQU $FFFFAF ; Port C GPIO Data Register
M_PRRD EQU $FFFFAF ; Port D Control register
M_PRRD EQU $FFFFAF ; Port D Direction Data Register
M_PDRD EQU $FFFFAP ; Port D Direction Data Register
M_PDRD EQU $FFFFAP ; Port D Direction Data Register
                                                 ; Port D GPIO Data Register
; Port E Control register
 M_PDRD EQU $FFFFAD
 M_PCRE EQU $FFFF9F
 M_PRRE EQU $FFFF9E
M_PDRE EQU $FFFF9D
                                                ; Port E Direction Register
; Port E Data Register
; OnCE GDB Register
 M_OGDB EQU $FFFFFC
  ;------
                EQUATES for Host Interface
  ;-----
 ;
               Register Addresses
M_HCR EQU $FFFFC2 ; Host Control Register
M_HSR EQU $FFFFC3 ; Host Status Register
M_HPCR EQU $FFFFC4 ; Host Polarity Control Register
M_HBAR EQU $FFFFC5 ; Host Base Address Register
M_HRX EQU $FFFFC6 ; Host Receive Register
M_HTX EQU $FFFFC7 ; Host Transmit Register
               HCR bits definition

      M_HRIE
      EQU $0
      ; Host Receive interrupts Enable

      M_HTIE
      EQU $1
      ; Host Transmit Interrupt Enable

      M_HCIE
      EQU $2
      ; Host Command Interrupt Enable

                                               ; Host Flag 2
 M_HF2 EQU $3
 M HF3 EOU $4
                                                ; Host Flag 3
               HSR bits definition
 M_HRDF EQU $0 ; Host Receive Data Full
M_HTDE EQU $1 ; Host Receive Data Empty
M_HCP EQU $2
M_HCP EQU $2
M_HF0 EQU $3
                                               ; Host Command Pending
                                                ; Host Flag O
 M_HF1 EQU $4
                                                 ; Host Flag 1
; HPCR bits definition
M_HGEN EQU $0 ; Host Port GPIO Enable
M_HASEN EQU $1 ; Host Address 8 Enable
M_HA9EN EQU $2 ; Host Address 9 Enable
M_HCSEN EQU $3 ; Host Address 9 Enable
M_HCSEN EQU $3 ; Host Chip Select Enable
M_HREN EQU $4 ; Host Request Enable
M_HAEN EQU $5 ; Host Acknowledge Enable
M_HEN EQU $5 ; Host Acknowledge Enable
M_HOD EQU $8 ; Host Enable
M_HOSP EQU $8 ; Host Request Open Drain mode
M_HDSP EQU $9 ; Host Data Strobe Polarity
M_HASP EQU $4 ; Host Address Strobe Polarity
M_HMUX EQU $8 ; Host Address Strobe Polarity
M_HDJHS EQU $2 ; Host Duble/Single Strobe select
M_HCSP EQU $D ; Host Chip Select Polarity
M_HRP EOU $E ; Host Request Polarity
               HPCR bits definition
 M_HRP EQU $E
                                              ; Host Request Polarity
 M_HAP EQU $F
                                                ; Host Acknowledge Polarity
```

:_____ EQUATES for Serial Communications Interface (SCI) ; ; Register Addresses M_STXH EQU \$FFFF97; SCI Transmit Data Register (high)M_STXM EQU \$FFFF96; SCI Transmit Data Register (middle)M_STXL EQU \$FFFF95; SCI Transmit Data Register (low)M_SRXH EQU \$FFFF99; SCI Receive Data Register (high)M_SRXM EQU \$FFFF99; SCI Receive Data Register (middle)M_SRXL EQU \$FFFF98; SCI Receive Data Register (low)M_STXA EQU \$FFFF94; SCI Receive Data Register (low)M_STXA EQU \$FFFF95; SCI Transmit Address RegisterM_SCR EQU \$FFFF96; SCI Control RegisterM_SSR EQU \$FFFF93; SCI Status RegisterM_SCCR EQU \$FFFF9B; SCI Clock Control Register SCI Control Register Bit Flags M_WDS EQU \$7 ; Word Select Mask (WDS0-WDS3) M_WDS0 EQU 0 ; Word Select 0 M_WDS1 EQU 1 ; Word Select 1 M_WDS2 EQU 2 ; Word Select 2 M_SSFTD EQU 3 ; SCI Shift Direction M_SBK EQU 4 ; Send Break M_WAKE EQU 5 ; Receiver Wakeup Enable M_WOMS EQU 7 ; Wired-OR Mode Select M_SCTE EQU 8 ; SCI Receiver Enable M_ILLE EQU 10 ; SCI Receiver Interrupt Enable M_SCTIE EQU 11 ; SCI Receive Interrupt Enable M_SCTIE EQU 12 ; SCI Transmitter Enable M_SCTIE EQU 13 ; Timer Interrupt Enable M_TIR EQU 14 ; Timer Interrupt Rate M_SCKP EQU 15 ; SCI Clock Polarity M WDS EOU \$7 ; Word Select Mask (WDS0-WDS3) M_SCKP EQU 15 ; SCI Clock Polarity M_REIE EQU 16 ; SCI Error Interrupt Enable (REIE) SCI Status Register Bit Flags M_TRNE EQU 0 ; Transmitter Empty ; Transmit Data Register Empty ; Receive Data Register Full M_TDRE EQU 1 M_RDRF EQU 2 M_IDLE EQU 3 ; Idle Line Flag M_OR EQU 4 ; Overrun Error Flag M_PE EQU 5 ; Parity Error ; Framing Error Flag M FE EOU 6 M R8 EOU 7 ; Received Bit 8 (R8) Address SCI Clock Control Register ; M_CD EQU \$FFF ; Clock Divider Mask (CD0-CD11) M_COD EQU 12 M_SCP EQU 13 ; Clock Out Divider ; Clock Prescaler ; Receive Clock Mode Source Bit M_RCM EQU 14 M TCM EOU 15 ; Transmit Clock Source Bit ;------EQUATES for Synchronous Serial Interface (SSI) ;-----Register Addresses Of SSI0 M_TX00 EQU \$FFFFBC ; SSI0 Transmit Data Register 0 M_TX01 EQU \$FFFFBB ; SSI0 Transmit Data Register 1 M_TX02 EQU \$FFFFBA ; SSI0 Transmit Data Register 2 M_TSR0 EQU \$FFFFB9 ; SSI0 Time Slot Register M_RX0 EQU \$FFFFB8 ; SSI0 Receive Data Register M_RXD EQU \$FFFFB8; SSID Receive Data RegisterM_SSISR0 EQU \$FFFFB7; SSID Receive Data RegisterM_CRB0 EQU \$FFFFB6; SSID Control Register BM_CRA0 EQU \$FFFFB5; SSID Control Register AM_TSMA0 EQU \$FFFFB4; SSID Transmit Slot Mask Register BM_RSMA0 EQU \$FFFFB2; SSID Receive Slot Mask Register AM_RSMB0 EQU \$FFFFB1; SSID Receive Slot Mask Register B

Register Addresses Of SSI1 M_TX10 EQU \$FFFFAC ; SSI1 Transmit Data Register 0 M_TX11 EQU \$FFFFAB ; SSI1 Transmit Data Register 1 M_TX12 EQU \$FFFFAB ; SSI1 Transmit Data Register 2 M_TSR1 EQU \$FFFFA9 ; SSI1 Time Slot Register M_RX1 EQU \$FFFFA8 ; SSI1 Receive Data Register M_SSISR1 EQU \$FFFFA7 ; SSI1 Status Register M_CRB1 EQU \$FFFFA6 ; SSI1 Control Register B M_CRA1 EQU \$FFFFA5 ; SSI1 Control Register A ; SSI1 Transmit Slot Mask Register A ; SSI1 Transmit Slot Mask Register B M_TSMA1 EQU \$FFFFA4 M_TSMB1 EQU \$FFFFA3 M_RSMA1 EQU \$FFFFA2 ; SSI1 Receive Slot Mask Register A ; SSI1 Receive Slot Mask Register B M_RSMB1 EQU \$FFFFA1 SSI Control Register A Bit Flags ; M_PM EQU \$FF ; Prescale Modulus Select Mask (PM0-PM7) M PSR EOU 11 ; Prescaler Range ; Frame Rate Divider Control Mask (DC0-DC7) M_DC EQŨ \$1F000 M_ALC EQU 18 ; Alignment Control (ALC) M_WL EQU \$380000 ; Word Length Control Mask (WL0-WL7) M SSC1 EOU 22 ; Select SC1 as TR #0 drive enable (SSC1) ; SSI Control Register B Bit Flags ; Serial Output Flag Mask M OF EOU \$3 M_OF0 EQU 0 ; Serial Output Flag O ; Serial Output Flag 1 ; Serial Control Direction Mask M_OF1 EQU 1 M_SCD EQU \$1C M_SCD0 EQU 2 ; Serial Control 0 Direction ; Serial Control 1 Direction ; Serial Control 2 Direction ; Clock Source Direction ; Shift Direction M_SCD1 EQU 3 M_SCD2 EQU 4 M_SCKD EQU 5 ; Clock Source Direction ; Shift Direction ; Frame Sync Length Mask (FSL0-FSL1) ; Frame Sync Length 0 ; Frame Sync Relative Timing ; Frame Sync Relative Timing ; Frame Sync Polarity ; Clock Polarity ; Sync/Async Control ; SSI Mode Select ; SSI Transmit enable Mask M_SHFD EQU 6 M_FSL EQU \$180 M_FSL0 EQU 7 M_FSL1 EQU 8 M_FSR EQU 9 M_FSP EQU 10 M_CKP EQU 11 M_SYN EQU 12 M_SSTE EQU 13 ; SSI Mode Select M_SSTE EQU \$1C000 ; SSI Transmit enable Mask M_SSTE2 EQU 14 ; SSI Transmit #2 Enable M_SSTE1 EOU 15 ; SSI Transmit #2 Enable ; SSI Transmit #2 Enable ; SSI Transmit #2 M_SSTE1 EQU 15 ; SSI Transmit #1 Enable ; SSI Transmit #0 Enable ; SSI Receive Enable ; SSI Transmit Interrupt Enable M_SSTE0 EQU 16 M_SSRE EQU 17 M_SSTIE EQU 18 M_SSRIE EQU 19 M_STLIE EQU 20 ; SSI Receive Interrupt Enable ; SSI Transmit Last Slot Interrupt Enable M_SRLIE EQU 21 M_STEIE EQU 22 ; SSI Receive Last Slot Interrupt Enable ; SSI Transmit Error Interrupt Enable ; SI Receive Error Interrupt Enable M SREIE EOU 23 SSI Status Register Bit Flags ; M_IF EQU \$3 M_IFO EQU 0 ; Serial Input Flag Mask ; Serial Input Flag 0 M_IF1 EQU 1 ; Serial Input Flag 1 M_TFS EQU 2 ; Transmit Frame Sync Flag ; Receive Frame Sync Flag M_RFS EQU 3 M_TUE EQU 4 ; Transmitter Underrun Error FLag M_ROE EQU 5 ; Receiver Overrun Error Flag M_TDE EQU 6 ; Transmit Data Register Empty ; Receive Data Register Full M RDF EOU 7 SSI Transmit Slot Mask Register A M_SSTSA EQU \$FFFF ; SSI Transmit Slot Bits Mask A (TS0-TS15) SSI Transmit Slot Mask Register B M_SSTSB EQU \$FFFF ; SSI Transmit Slot Bits Mask B (TS16-TS31) SSI Receive Slot Mask Register A ; M SSRSA EOU SFFFF ; SSI Receive Slot Bits Mask A (RS0-RS15) SSI Receive Slot Mask Register B ; M_SSRSB EQU \$FFFF ; SSI Receive Slot Bits Mask B (RS16-RS31)

EQUATES for Ex	ception Processing
Register Addre	sses
I_IPRC EQU \$FFFFFF I_IPRP EQU \$FFFFFE	; Interrupt Priority Register Core ; Interrupt Priority Register Peripheral
Interrupt Prio	rity Register Core (IPRC)
[_IAL EQU \$7 IAL0 EQU 0 IAL1 EQU 1 IAL2 EQU 2 I_IBL EQU 38 IBL0 EQU 3 I_IBL1 EQU 4 IBL2 EQU 5 I_ICL EQU \$1C0 ICL0 EQU 6 I_ICL1 EQU 7 ICL2 EQU 8 I_IDL EQU \$E00 I_IDL1 EQU 9 IDL1 EQU 9 IDL1 EQU 10 I_IDL2 EQU 11 D0L EQU 12 D0L1 EQU 13 I_D1L EQU \$C000 D1L0 EQU 14 I_D1L1 EQU 15 D1L1 EQU 15	<pre>; IRQA Mode Mask ; IRQA Mode Interrupt Priority Level (low) ; IRQA Mode Interrupt Priority Level (high ; IRQB Mode Interrupt Priority Level (low) ; IRQC Mode Mask ; IRQC Mode Interrupt Priority Level (low) ; IRQC Mode Interrupt Priority Level (low) ; IRQC Mode Interrupt Priority Level (low) ; IRQD Mode Interrupt Priority Level (low) ; DMA0 Interrupt Priority Level Mask ; DMA0 Interrupt Priority Level (low) ; DMA1 Interrupt Priority Level (low) ; DMA1 Interrupt Priority Level (low) ; DMA2 Interrupt Priority Level (low) ; DMA2 Interrupt Priority Level (low) ; DMA3 Interrupt Priority Level (low) ; DMA4 Interrupt Priority Level (low) ; DMA4 Interrupt Priority Level (low) ; DMA5 Interrupt Priority Level (low)</pre>
LD2L EQU \$30000 LD2L0 EQU 16 LD2L1 EQU 17 LD3L EQU \$C0000 LD3L0 EQU 18 LD3L1 EQU 19 LD4L EQU \$300000 LD4L1 EQU 20 LD4L1 EQU 21 LD5L0 EQU 22 LD5L1 EQU 23 Interrupt Prio	<pre>; DMA2 Interrupt priority Level Mask ; DMA2 Interrupt Priority Level (low) ; DMA2 Interrupt Priority Level (high) ; DMA3 Interrupt Priority Level Mask ; DMA3 Interrupt Priority Level (low) ; DMA4 Interrupt Priority Level Mask ; DMA4 Interrupt Priority Level (low) ; DMA4 Interrupt Priority Level (high) ; DMA4 Interrupt Priority Level (high) ; DMA5 Interrupt Priority Level Mask ; DMA5 Interrupt Priority Level (low) ; DMA5 Interrupt Priority Level (low) ; DMA5 Interrupt Priority Level (low) ; DMA5 Interrupt Priority Level (high)</pre>
LHPL EQU \$3 LHPL EQU 0 LSOL EQU 2 LSOL EQU 2 LSOL EQU 2 LSOL EQU 3 LS1L EQU 3 LS1L EQU 4 LS1L EQU 5 LSCL EQU 6 LSCL EQU 6 LSCL EQU 7 LTOL EQU 3 0 LTOL EQU 8 LTOL EQU 9	<pre>; Host Interrupt Priority Level Mask ; Host Interrupt Priority Level (low) ; Host Interrupt Priority Level (high) ; SSI0 Interrupt Priority Level (high) ; SSI0 Interrupt Priority Level (low) ; SSI1 Interrupt Priority Level (high) ; SSI1 Interrupt Priority Level (low) ; SSI1 Interrupt Priority Level (high) ; SCI Interrupt Priority Level (high) ; SCI Interrupt Priority Level (low) ; TIMER Interrupt Priority Level (high) ; TIMER Interrupt Priority Level (low) ; TIMER Interrupt Priority Level (low) ; TIMER Interrupt Priority Level (low)</pre>
EQUATES for TI	
Register Addre	

M_TLR0 EQU\$FFFF8E; TIMER0 Load RegM_TCPR0 EQU\$FFFF8D; TIMER0 Compare RegisterM_TCR0 EQU\$FFFF8C; TIMER0 Count Register Register Addresses Of TIMER1 M_TCSR1 EQU \$FFFF8B; TIMER1 Control/Status RegisterM_TLR1 EQU \$FFFF8A; TIMER1 Load RegM_TCPR1 EQU \$FFFF89; TIMER1 Compare RegisterM_TCR1 EQU \$FFFF88; TIMER1 Count Register Register Addresses Of TIMER2 ; M_TCSR2 EQU \$FFFF87 ; TIMER2 Control/Status Register ; TIMER2 Control/Status Regi ; TIMER2 Load Reg ; TIMER2 Compare Register ; TIMER2 Count Register ; TIMER Prescaler Load Register ; TIMER Prescalar Count Register M_TLR2 EQU \$FFFF86 M_TCPR2 EQU \$FFFF85 M_TCR2 EQU \$FFFF84 M_TPLR EQU \$FFFF83 M TPCR EOU \$FFFF82 ; Timer Control/Status Register Bit Flags M_TE EQU 0 ; Timer Enable ; Timer Enable ; Timer Overflow Interrupt Enable ; Timer Compare Interrupt Enable ; Timer Control Mask (TCO-TC3) ; Inverter Bit ; Timer Restart Mode ; Direction Bit ; Data Input ; Data Output ; Prescaled Clock Enable ; Timer Overflow Flag ; Timer Compare Flag M_TOIE EQU 1 M_TCIE EQU 2 M_TC EQU[°]\$F0 M_INV EQU 8 M_TRM EQU 9 M_DIR EQU 11 M_DI EQU 12 M_DO EQU 13 M_PCE EQU 15 M_TOF EQU 20 M_TCF EQU 21 ; Timer Compare Flag Timer Prescaler Register Bit Flags ; M_PS EQU \$600000 ; Prescaler Source Mask M_PS0 EQU 21 M_PS1 EQU 22 Timer Control Bits M_TCO EQU 4 ; Timer Control 0 M_TC1 EQU 5 ; Timer Control 1 ; Timer Control 2 ; Timer Control 3 M_TC2 EQU 6 M TC3 EOU 7 ;_____ EQUATES for Direct Memory Access (DMA) ; Register Addresses Of DMA M_DSTR EQU FFFFF4 ; DMA Status Register M_DOR0 EQU \$FFFFF3 ; DMA Offset Register 0 M_DOR1 EQU \$FFFFF2 ; DMA Offset Register 1 $\rm M_DOR2~EQU~\$FFFFF1$; DMA Offset Register 2 M_DOR3 EQU \$FFFFF0 ; DMA Offset Register 3 ; Register Addresses Of DMA0 M_DSR0 EQU \$FFFFEF ; DMA0 Source Address Register M_DDR0 EQU \$FFFFEE ; DMA0 Destination Address Register M_DCO0 EQU \$FFFFED ; DMA0 Counter M_DCR0 EQU \$FFFFEC ; DMA0 Control Register Register Addresses Of DMA1 ; M_DSR1 EQU \$FFFFEB ; DMA1 Source Address Register M_DDR1 EQU \$FFFFEA ; DMA1 Destination Address Register M_DCO1 EQU \$FFFFE9 ; DMA1 Counter M_DCR1 EQU \$FFFFE8 ; DMA1 Control Register Register Addresses Of DMA2 M_DSR2 EQU \$FFFFE7 ; DMA2 Source Address Register

M_DDR2 EQU \$FFFFE6 ; DMA2 Destination Address Register M_DCO2 EQU \$FFFFE5 ; DMA2 Counter M_DCR2 EQU \$FFFFE4 ; DMA2 Control Register Register Addresses Of DMA4 M_DSR3 EQU \$FFFFE3 ; DMA3 Source Address Register M_DDR3 EQU \$FFFFE2 ; DMA3 Destination Address Register M_DCO3 EQU \$FFFFE1 ; DMA3 Counter M_DCR3 EQU \$FFFFE0 ; DMA3 Control Register ; Register Addresses Of DMA4 M_DSR4 EQU \$FFFFDF ; DMA4 Source Address Register M_DDR4 EQU \$FFFFDE ; DMA4 Destination Address Register M_DCO4 EQU \$FFFFDD ; DMA4 Counter M_DCR4 EQU \$FFFFDC ; DMA4 Control Register Register Addresses Of DMA5 ; M DSR5 EOU \$FFFFDB ; DMA5 Source Address Register M_DDR5 EQU \$FFFFDA ; DMA5 Destination Address Register M_DCO5 EQU \$FFFFD9 ; DMA5 Counter M_DCR5 EQU \$FFFFD8 ; DMA5 Control Register DMA Control Register M_DSS EQU \$3 ; DMA Source Space Mask (DSS0-Dss1) M_DSS EQU 0 ; DMA Source Memory space 0 M_DSS1 EQU 1 ; DMA Source Memory space 0 M_DSS1 EQU 1 ; DMA Source Memory space 1 M_DDS EQU \$C ; DMA Destination Space Mask (DDS-DDS1) M_DDS0 EQU 2 ; DMA Destination Memory Space 0 M_DDS1 EQU 3 ; DMA Destination Memory Space 1 N_DDS1 EQU 3 ; DMA Destination Memory Space 1 M_DAM EQU \$3f0 ; DMA Address Mode Mask (DAM5-DAM0) M_DAM EQU \$310; DMA Address Mode Mask (DAMS M_DAMO EQU 4; DMA Address Mode 0 M_DAM1 EQU 5; DMA Address Mode 1 M_DAM2 EQU 6; DMA Address Mode 2 M_DAM3 EQU 7; DMA Address Mode 3 M_DAM4 EQU 8; DMA Address Mode 4 M_DAM5 EQU 9; DMA Address Mode 5 M_D3D EQU 10; DMA Three Dimensional Mode M_DPS FOU \$F800; DMA Pequest Source Mask (DB M_DRS EQU \$F800; DMA Request Source Mask (DRS0-DRS4) M_DCON EQU 16 ; DMA Continuous Mode M_DPR EQU \$60000; DMA Channel Priority M_DPR0 EQU 17 ; DMA Channel Priority Level (low) M_DPR1 EQU 18 ; DMA Channel Priority Level (high) M_DTM EQU \$380000; DMA Transfer Mode Mask (DTM2-DTM0) M_DTM0 EQU 19 ; DMA Transfer Mode 0 M_DTM1 EQU 20 ; DMA Transfer Mode 1 M_DTM2 EQU 21 ; DMA Transfer Mode 2 M_DIE EQU 22 ; DMA Interrupt Enable bit M_DE EQU 23 ; DMA Channel Enable bit DMA Status Register M_DTD EQU \$3F ; Channel Transfer Done Status MASK (DTD0-DTD5) M_DTD0 EQU 0 ; DMA Channel Transfer Done Status 0 M_DTD1 EQU 1 ; DMA Channel Transfer Done Status 1 M_DTD2 EQU 2 ; DMA Channel Transfer Done Status 2 M_DTD3 EQU 3 ; DMA Channel Transfer Done Status 3 M_DTD4 EQU 4 ; DMA Channel Transfer Done Status 4 M_DTD5 EQU 5 ; DMA Channel Transfer Done Status 5 M_DACT EQU 8 ; DMA Active State M_DC4 EQU 8 ; DMA Active State M_DCH EQU \$E00; DMA Active Channel Mask (DCH0-DCH2) M_DCH0 EQU 9 ; DMA Active Channel 0 M_DCH1 EQU 10 ; DMA Active Channel 1 M_DCH2 EQU 11 ; DMA Active Channel 2 _____ EQUATES for Enhanced Filter Co-Processor (EFCOP) M_FDIR EQU \$FFFFB0 ; EFCOP Data Input Register ; EFCOP Data Output Register M FDOR \$FFFFB1 EOU ; EFCOP K-Constant Register M FKIR SFFFFB2 EOU ; EFCOP Filter Counter M FCNT EOU SFFFFB3 ; EFCOP Control Status Register M FCSR EOU SFFFFB4 ; EFCOP ALU Control Register M FACR SFFFFB5 EOU

\$FFFFB6 ; EFCOP Data Base Address ; EFCOP Coefficient Base Address ; EFCOP Decimation/Channel Register M FDBA EQU M_FCBA EQU \$FFFFB7 M FDCH EOU SFFFFB8 EQUATES for Phase Locked Loop (PLL) ;-----; Register Addresses Of PLL M_PCTL EQU \$FFFFFD ; PLL Control Register PLL Control Register ; M_MF EQU \$FFF : Multiplication Factor Bits Mask (MF0-MF11) M_DF EQU \$7000 ; Division Factor Bits Mask (DF0-DF2) M_XTLR EQU 15 ; XTAL Range select bit M_XTLD EQU 16 ; XTAL Disable Bit M_PSTP EQU 17 ; STOP Processing State Bit M_PEN EQU 18 ; PLL Enable Bit M_PCOD EQU 19 ; PLL Clock Output Disable Bit M_PD EQU \$F00000; PreDivider Factor Bits Mask (PD0-PD3) ;-----EQUATES for BIU ; ;------; Register Addresses Of BIU M_BCR EQU \$FFFFFB; Bus Control Register M_DCR EQU \$FFFFFA; DRAM Control Register M_AAR0 EQU \$FFFFF9; Address Attribute Register 0 M_AAR1 EQU \$FFFFF8; Address Attribute Register 1 M_AAR2 EQU \$FFFFF7; Address Attribute Register 2 M_AAR3 EQU \$FFFFF6; Address Attribute Register 3 M_IDR EQU \$FFFFF5 ; ID Register Bus Control Register M_BA0W EQU \$1F ; Area 0 Wait Control Mask (BA0W0-BA0W4) M_BA1W EQU \$3E0; Area 1 Wait Control Mask (BA1W0-BA14) M_BA2W EQU \$1C00; Area 2 Wait Control Mask (BA2W0-BA2W2) M_BA3W EQU \$E000; Area 3 Wait Control Mask (BA3W0-BA3W3) M_BDFW EQU \$1F0000 ; Default Area Wait Control Mask (BDFW0-BDFW4) M_BBS EQU 21 ; Bus State M_BLH EQU 22 ; Bus Lock Hold ; Bus Request Hold M BRH EOU 23 DRAM Control Register ; M_BCW EQU \$3 ; In Page Wait States Bits Mask (BCW0-BCW1) M_BRW EQU \$C ; Out Of Page Wait States Bits Mask (BRW0-BRW1) M_BPS EQU \$300 ; DRAM Page Size Bits Mask (BPS0-BPS1) M_BPLE EQU 11 ; Page Logic Enable M_BME EQU 12 ; Mastership Enable M_BRE EQU 13 ; Refresh Enable M_BSTR EQU 14 ; Software Triggered Refresh M_BRF EQU \$7F8000; Refresh Rate Bits Mask (BRF0-BRF7) M_BRP EQU 23 ; Refresh prescaler Address Attribute Registers ; M_BAT EQU \$3 ; Ext. Access Type and Pin Def. Bits Mask (BAT0-BAT1) ; Address Attribute Pin Polarity M_BAAP EQU 2 ; Program Space Enable ; X Data Space Enable ; Y Data Space Enable M_BPEN EQU 3 M_BXEN EQU 4 M_BYEN EQU 5 ; Address Muxing ; Packing Enable M_BAM EQU 6 M BPAC EOU 7 M_BNC EQU \$F00 ; Number of Address Bits to Compare Mask (BNC0-BNC3) M_BAC EQU \$FFF000; Address to Compare Bits Mask (BAC0-BAC11)

; control and status bits in SR M_CP EQU \$c00000; mask for CORE-DMA priority bits in SR M_CA EQU 0 ; Carry M_V EQU 1 ; Overflow M_Z EQU 2 ; Zero M_N EQU 3 ; Negative M_U EQU 4 ; Unnormalized M_E EQU 5 ; Extension M_L EQU 6 ; Limit M_S EQU 7 ; Scaling Bit M_IO EQU 8 ; Interupt Mask Bit 0 M_I1 EQU 9 ; Interupt Mask Bit 1 M_S0 EQU 10 ; Scaling Mode Bit 0 ; Scaling Mode Bit 1
; Sixteen_Bit Compatibility M_S1 EQU 11 M_SC EQU 13 ; Double Precision Multiply ; DO-Loop Flag M_DM EQU 14 M_LF EQU 15 M_FV EQU 16 ; DO-Forever Flag ; Sixteen-Bit Arithmetic M_SA EQU 17 ____ M_CE EQU 19 ; Instruction Cache Enable M_SM EQU 20 ; Arithmetic Saturation ; Rounding Mode
; bit 0 of priority bits in SR M_RM EQU 21 M_CPO EQU 22 M_CP1 EQU 23 ; bit 1 of priority bits in SR control and status bits in OMR $\ensuremath{\texttt{M_CDP}}$ EQU \$300 ; mask for CORE-DMA priority bits in OMR M_MA equ0 ; Operating Mode A M_MB equl ; Operating Mode B ; Operating Mode C ; Operating Mode C ; Operating Mode D ; External Bus Disable bit in OMR ; Stop Delay M_MC equ2 M_MD equ3 M_EBD EQU 4 M_SD EQU 6 M_MS EQU 7 ; Memory Switch bit in OMR M_CDP0 EQU 8 ; bit 0 of priority bits in OMR M_CDP1 EQU 9 ; bit 1 of priority bits in OMR EQU 10 ; Burst Enable M_BEN M_TAS EQŨ 11 ; TA Synchronize Select M_BRT EQU 12 ; Bus Release Timing M_ATE EQU 15 ; Address Tracing Enable bit in OMR. ; Stack Extension space select bit in OMR. M_XYS EQU 16 M_EUN EQU 17 ; Extensed stack UNderflow flag in OMR. ; Extended stack OVerflow flag in OMR. ; Extended WRaP flag in OMR. M_EOV EQU 18 M_WRP EQU 19 M_SEN EQU 20 ; Stack Extension Enable bit in OMR.

```
EQUATES for DSP56321 interrupts
   Last update: June 11 1995
132,55,0,0,0
    page
    opt
         mex
intequ ident
         1,0
    if
         @DEF(I_VEC)
    ;leave user definition as is.
    else
I_VEC EQU $0
    endif
        _____
               _____
; Non-Maskable interrupts
                _____
I_RESET EQU I_VEC+$00 ; Hardware RESET
I_STACK EQU I_VEC+$02 ; Stack Error
I_ILL EQU I_VEC+$04 ; Illegal Instruction
I_DBG EQU I_VEC+$06 ; Debug Request
```

I_TRAP EQU I_VEC+\$08 ; Trap I_NMI EQU I_VEC+\$0A ; Non Maskable Interrupt ; Interrupt Request Pins , I_IRQA EQU I_VEC+\$10 ; IRQA I_IRQB EQU I_VEC+\$12 ; IRQB I_IRQC EQU I_VEC+\$14 ; IRQC I_IRQD EQU I_VEC+\$16 ; IRQD ;------; DMA Interrupts I_DMA0 EQU I_VEC+\$18 ; DMA Channel 0 I_DMAG EQU I_VEC+\$1A ; DMA Channel 1 I_DMA2 EQU I_VEC+\$1A ; DMA Channel 2 I_DMA2 EQU I_VEC+\$1C ; DMA Channel 2 I_DMA3 EQU I_VEC+\$1E ; DMA Channel 3 I_DMA4 EQU I_VEC+\$20 ; DMA Channel 4 I_DMA5 EQU I_VEC+\$22 ; DMA Channel 5 ; Timer Interrupts _____ I_TIMOC EQU I_VEC+\$24 ; TIMER 0 compare I_TIMOOF EQU I_VEC+\$26 ; TIMER 0 overflow I_TIM1C EQU I_VEC+\$28 ; TIMER 1 compare I_TIM1OF EQU I_VEC+\$2A; TIMER 1 overflow I_TIM2C EQU I_VEC+\$2C ; TIMER 2 compare I_TIM2OF EQU I_VEC+\$2E ; TIMER 2 overflow ; ESSI Interrupts I_SIORD EQU I_VEC+\$30 ; ESSIO Receive Data I_SIORDE EQU I_VEC+\$32; ESSIO Receive Data w/ exception Status I_SIORLS EQU I_VEC+\$34; ESSIO Receive last slot I_SIOTD EQU I_VEC+\$36 ; ESSIO Transmit data __SIOTDE EQU I_VEC+\$38; ESSIO Transmit Data w/ exception Status I_SIOTLS EQU I_VEC+\$3A; ESSIO Transmit last slot I_SI1RD EQU I_VEC+\$40 ; ESSI1 Receive Data I_SIIRDE EQU I_VEC+\$42; ESSI1 Receive Data w/ exception Status I_SIIRLS EQU I_VEC+\$44 ; ESSI1 Receive last slot I_SIITD EQU I_VEC+\$46 ; ESSI1 Transmit data I_SIITDE EQU I_VEC+\$48; ESSII Transmit Data w/ exception Status I_SIITLS EQU I_VEC+\$4A; ESSII Transmit last slot ; SCI Interrupts _____ . I_SCIRD EQU I_VEC+\$50 ; SCI Receive Data I_SCIRDE EQU I_VEC+\$52 ; SCI Receive Data With Exception Status I_SCITD EQU I_VEC+\$54 ; SCI Transmit Data I_SCIIL EQU I_VEC+\$56 ; SCI Idle Line I_SCITM EQU I_VEC+\$58 ; SCI Timer ; HOST Interrupts _____ : _ _ _ _ _____ , I_HRDF EQU I_VEC+\$60 ; Host Receive Data Full I_HTDE EQU I_VEC+\$62 ; Host Transmit Data Empty I HC EOU I_VEC+\$64 ; Default Host Command 64 ; Default Host Command I_HC EQU I_VEC+\$64 ; EFCOP Filter Interrupts ; --_____ I_FDIIE EQU I_VEC+\$68; EFilter input buffer empty I_VEC+\$6A ; EFilter output buffer full I FDOIE EOU _____ ; INTERRUPT ENDING ADDRESS _____ I_INTEND EQU I_VEC+\$FF ; last address of interrupt vector space

Α

ac electrical characteristics 2-4 address bus 1-1 applications iv

В

benchmark test algorithm A-1 block diagram i bootstrap ROM iii Boundary Scan (JTAG Port) timing diagram 2-31 bus address 1-2 control 1-1 data 1-2 external address 1-4 external data 1-4 multiplexed 1-2 non-multiplexed 1-2

С

clock 1-1, 1-3 external 2-4 operation 2-5 clocks internal 2-4 crystal oscillator circuits 2-4

D

data bus 1-1 data memory expansion iv Data Strobe (DS) 1-2 dc electrical characteristics 2-3 DE signal 1-17 Debug Event signal (DE signal) 1-17 Debug mode entering 1-17 external indication 1-17 Debug support iii design considerations electrical 4-2, 4-3 PLL 4-4 power consumption 4-3 thermal 4-1 Digital Phase Lock Loop (DPLL) 2-6 documentation list v Double Data Strobe 1-2 DSP56300 Family Manual v DSP56321 block diagram i

Technical Data v User's Manual v

Ε

EFCOP interrupts A-12 electrical design considerations 4-2, 4-3 Enhanced Synchronous Serial Interface (ESSI) iii, 1-1, 1-2, 1-12, 1-13 receiver timing 2-27 transmitter timing 2-26 external address bus 1-4 external bus control 1-4, 1-5, 1-6 external clock operation 2-4 external data bus 1-4 external interrupt timing (negative edge-triggered) 2-10 external level-sensitive fast interrupt timing 2-10 external memory access (DMA Source) timing 2-11 External Memory Expansion Port 2-12 external memory expansion port 1-4

F

functional groups 1-2 functional signal groups 1-1

G

General-Purpose Input/Output (GPIO) iii, 1-2 ground 1-1, 1-3

Н

Host Interface (HI08) iii, 1-1, 1-2, 1-8, 1-9, 1-10, 1-11 Host Port Control Register (HPCR) 1-9, 1-11 host port configuration 1-8 usage considerations 1-8 Host Port Control Register (HPCR) 1-9, 1-11 Host Request Double 1-2 Single 1-2 Host Request (HR) 1-2

information sources v instruction cache iii internal clocks 2-4

interrupt and mode control 1-1, 1-7 interrupt control 1-7 interrupt timing 2-7 external level-sensitive fast 2-10 external negative edge-triggered 2-10 interrupts EFCOP A-12

J

Joint Test Action Group (JTAG) interface 1-17 JTAG iii JTAG Port reset timing diagram 2-31 timing 2-31 JTAG/OnCE Interface signals Debug Event signal (DE signal) 1-17 JTAG/OnCE port 1-1, 1-2

Κ

keeper circuit design considerations 4-3

Μ

MAP-BGA ball grid drawing (bottom) 3-3 ball grid drawing (top) 3-2 mechanical drawing 3-10 maximum ratings 2-1, 2-2 memory expansion port iii mode control 1-7 Mode select timing 2-7 multiplexed bus 1-2 multiplexed bus timings read 2-20 write 2-21

Ν

non-multiplexed bus 1-2 non-multiplexed bus timings read 2-18 write 2-19

0

off-chip memory iii OnCE module iii Debug request 2-32 On-Chip Emulation (OnCE) module interface 1-17 On-Chip Emulation module iii on-chip memory iii operating mode select timing 2-11 ordering information Back Cover

Ρ

package MAP-BGA description 3-2, 3-3, 3-10 Phase-Lock Loop (PLL) 1-1 design considerations 4-4 performance issues 4-4 PLL 1-3 Port A 1-1, 1-4, 2-12 Port B 1-1, 1-2, 1-10 Port C 1-1, 1-2, 1-12 Port D 1-1, 1-2, 1-13 Port E 1-1 power 1-1, 1-2, 1-3 power consumption design considerations 4-3 power consumption benchmark test A-1 power management iv program memory expansion iv program RAM iii

R

recovery from Stop state using IRQA 2-11 reset clock signals 1-3 interrupt signals 1-7 JTAG signals 1-17 mode control 1-7 OnCE signals 1-17 Reset timing 2-7, 2-9 ROM, bootstrap iii

S

Serial Communication Interface (SCI) iii, 1-1, 1-2, 1-15 Asynchronous mode timing 2-23 Synchronous mode timing 2-23 signal groupings 1-1 signals 1-1 functional grouping 1-2 Single Data Strobe 1-2 SRAM read access 2-13 support iv write access 2-14 Stop mode iv Stop state recovery from 2-11

Stop timing 2-7 supply voltage 2-2 Switch mode iii

Т

target applications iv Test Access Port (TAP) iii timing diagram 2-31 Test Clock (TCLK) input timing diagram 2-30 thermal design considerations 4-1 Timer event input restrictions 2-28 Timers 1-1, 1-2, 1-16 interrupt generation 2-28 timing interrupt 2-7 mode select 2-7 Reset 2-7 Stop 2-7

W

Wait mode iv World Wide Web v

Χ

X-data RAM iii

Υ

Y-data RAM iii

Index

Freescale Semiconductor, Inc.

Ordering Information

Consult a Motorola Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Supply Voltage	Package Type	Pin Count	Core Frequency (MHz)	Order Number
DSP56321T	1.6 V core 3.3 V I/O	Flip-Chip Plastic Ball Grid Array (FC-PBGA)	196	220	DSP56321TFC220
	0.0 1 1/0			240	DSP56321TFC240

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. OnCE and digital dna are trademarks of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. © Motorola, Inc. 2001, 2002