POWER MANAGEMENT

Features

- Input supply voltage range -3.0 V to 5.5 V
- Charge pump modes - $1 \mathrm{x}, 1.5 \mathrm{x}$ and 2 x
- Four programmable current sinks with 32 steps from 0.5 mA to 25 mA
- Two user-configurable 100 mA low-noise LDO regulators
- Charge pump frequency - 250 kHz
- $I^{2} \mathrm{C}$ compatible interface - up to 400 kHz
- Backlight current accuracy $\pm 1.5 \%$ typical
- Backlight current matching $\pm 0.5 \%$ typical
- Programmable fade-in/fade-out for main backlight
- Automatic sleep mode (LEDs off) $-I_{Q}=100 \mu \mathrm{~A}$
- Low shutdown current - $0.1 \mu \mathrm{~A}$ (typical)
- Ultra-thin package $-3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.6 \mathrm{~mm}$
- Fully WEEE and RoHS compliant

Applications

- Cellular phone backlighting
- PDA backlighting
- Camera I/O and core power

Description

The SC624A is a high efficiency charge pump LED driver using Semtech's proprietary mAhXLife ${ }^{\top M}$ technology. Performance is optimized for use in single-cell Li-ion battery applications.

The charge pump provides backlight current in conjunction with four matched current sinks. The load and supply conditions determine whether the charge pump operates in $1 \mathrm{x}, 1.5 \mathrm{x}$, or 2 x mode. An optional fading feature that gradually adjusts the backlight current is provided to simplify control software. The SC624A also provides two low-dropout, low-noise linear regulators for powering a camera module or other peripheral circuits.

The SC624A uses an I^{12} C compatible serial interface. The interface controls all functions of the device, including backlight current and two LDO voltage outputs.

In sleep mode, the device reduces quiescent current to $100 \mu \mathrm{~A}$ while continuing to monitor the serial interface. The two LDOs can be enabled when the device is in sleep mode. Total current reduces to $0.1 \mu \mathrm{~A}$ in shutdown.

Typical Application Circuit

Pin Configuration

Ordering Information

Device	Package
SC624AULTRT ${ }^{(1)(2)}$	MLPQ-UT-20 3×3
SC624AEVB	Evaluation Board

Notes:
(1) Available in tape and reel only. A reel contains 3,000 devices.
(2) Available in lead-free package only. Device is WEEE and RoHS compliant.

Marking Information

Abstract

Absolute Maximum Ratings VIN (V)

$$
-0.3 \text { to }+6.0
$$

\qquad $$
\text { VOUT (V) . - } 0.3 \text { to +6.0 }
$$ $$
\mathrm{C} 1+, \mathrm{C} 2+(\mathrm{V}) \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . .
$$ VOUT Short Circuit Duration ContinuousVLDO1, VLDO2 Short Circuit Duration....... ContinuousESD Protection Level ${ }^{(1)}$ (kV)2

Pin Voltage - All Other Pins (V) -0.3 to $\left(V_{\text {IN }}+0.3\right)$ Voltage Difference between any two LEDs (V) ≤ 1.2

Voltage Difference between any two LEDs (V)
\qquad
Recommended Operating Conditions

Recommended Operating Conditions

Ambient Temperature Range $\left({ }^{\circ} \mathrm{C}\right.$) $-40 \leq T_{A} \leq+85$
VIN (V) $3.0 \leq \mathrm{V}_{\text {IN }} \leq 5.5$
VOUT (V) $2.5 \leq V_{\text {out }} \leq 5.25$

Thermal Information

Thermal Resistance, Junction to Ambient ${ }^{(2)}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \ldots . .35$
Maximum Junction Temperature (${ }^{\circ} \mathrm{C}$) +150
Storage Temperature Range $\left({ }^{\circ} \mathrm{C}\right) \ldots \ldots \quad-65$ to +150
Peak IR Reflow Temperature (10s to 30s) (${ }^{\circ} \mathrm{C}$) +260

Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not recommended.

NOTES:

(1) Tested according to JEDEC standard JESD22-A114-B.
(2) Calculated from package in still air, mounted to $3^{\prime \prime} \times 4.5^{\prime \prime}, 4$ layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.

Electrical Characteristics

Unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ for Typ, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for Min and Max, $\mathrm{T}_{\mathrm{JMAX})}=125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$ to $4.2 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{1}=\mathrm{C}_{2}=2.2 \mu \mathrm{~F}$, $\mathrm{C}_{\text {OUT }}=4.7 \mu \mathrm{~F}(\mathrm{ESR}=0.03 \Omega), \Delta \mathrm{V}_{\mathrm{F}} \leq 1.2 \mathrm{~V}^{(1)}$

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Supply Specifications						
Shutdown Current	$\mathrm{I}_{\text {QOFF) }}$	Shutdown, $\mathrm{V}_{\text {IN }}=4.2 \mathrm{~V}$		0.1	2	$\mu \mathrm{A}$
Total Quiescent Current	I_{0}	Sleep (LDOs off), $\mathrm{EN}=\mathrm{V}_{\mathrm{IN}}$		100	160	$\mu \mathrm{A}$
		$\begin{gathered} \text { Sleep (LDOs on), } \mathrm{EN}=\mathrm{V}_{\text {IN }} \\ \mathrm{V}_{\text {IN }}>\left(\mathrm{V}_{\text {LDO }}+300 \mathrm{mV}\right), \mathrm{I}_{\text {LDO }} \leq 200 \mathrm{~mA} \end{gathered}$		220	340	
		Charge pump in 1x mode, 4 backlights on		3.8	4.65	mA
		Charge pump in $1.5 \times$ mode, 4 backlights on		4.6	5.85	
		Charge pump in 2 x mode, 4 backlights on		4.6	5.85	
Fault Protection						
Output Short Circuit Current Limit	$\mathrm{I}_{\text {OUT(SC) }}$	VOUT pin shorted to GND		300		mA
Over-Temperature	$\mathrm{T}_{\text {OTP }}$			160		${ }^{\circ} \mathrm{C}$

Electrical Characteristics (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Fault Protection (continued)						
Charge Pump Over-Voltage Protection	$\mathrm{V}_{\text {ovp }}$	VOUT pin open circuit, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {ovp }}$ rising threshold	5.3	5.7	6.0	V
Undervoltage Lockout	$\mathrm{V}_{\text {UvIo }}$	Decreasing $\mathrm{V}_{\text {IN }}$		2.4		V
	$\mathrm{V}_{\text {uvio-hys }}$			300		mV
Charge Pump Electrical Specifications						
Maximum Total Output Current	$\mathrm{I}_{\text {OUt(max) }}$	$\mathrm{V}_{\text {IN }}>3.4 \mathrm{~V}$, sum of all active LED currents, $\mathrm{V}_{\text {OUT(MAX) }}=4.2 \mathrm{~V}$	100			mA
Backlight Current Setting	$\mathrm{I}_{\text {BL }}$	Nominal setting for BL1 thru BL4	0.5		25	mA
Backlight Current Accuracy	$I_{\text {BL_ACC }}$	$\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}, \mathrm{I}_{\mathrm{BL}}=12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-8	± 1.5	+8	\%
Backlight Current Matching	$\mathrm{I}_{\text {BL-BL }}$	$\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}, \mathrm{I}_{\mathrm{BL}}=12 \mathrm{~mA}^{(2)}$	-3.5	± 0.5	+3.5	\%
1x Mode to $1.5 x$ Mode Falling Transition Voltage	$\mathrm{V}_{\text {TRANS } 1 \mathrm{x}}$	$\mathrm{I}_{\text {OUT }}=40 \mathrm{~mA}, \mathrm{I}_{\text {BLn }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=3.2 \mathrm{~V}$		3.27		V
1.5x Mode to $1 x$ Mode Hysteresis	$\mathrm{V}_{\text {HYSTIX }}$	$\mathrm{I}_{\text {OUT }}=40 \mathrm{~mA}, \mathrm{I}_{\text {BLn }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=3.2 \mathrm{~V}$		250		mV
1.5x Mode to $2 x$ Mode Falling Transition Voltage	$\mathrm{V}_{\text {trans } 1.5 \mathrm{x}}$	$\mathrm{I}_{\text {OUT }}=40 \mathrm{~mA}, \mathrm{I}_{\text {BLn }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=4.0 \mathrm{~V}^{(3)}$		2.92		V
2x Mode to $1.5 x$ Mode Hysteresis	$\mathrm{V}_{\text {HYST } 1.5 \mathrm{x}}$	$\mathrm{I}_{\text {OUT }}=40 \mathrm{~mA}, \mathrm{I}_{\text {BLn }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=4.0 \mathrm{~V}^{(3)}$		300		mV
Current Sink Off-State Leakage Current	$I_{\text {BLn }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {BLn }}=4.2 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$
Pump Frequency	$\mathrm{f}_{\text {PUMP }}$	$\mathrm{V}_{\text {IN }}=3.2 \mathrm{~V}$		250		kHz
LDO Electrical Specifications						
LDO1 Voltage Setting	$\mathrm{V}_{\text {LDO1 }}$	Range of nominal settings in 100 mV increments	2.5		3.3	V
LDO2 Voltage Setting	$\mathrm{V}_{\mathrm{LDO2}}$	Range of nominal settings in 100 mV increments	1.5		1.8	V
LDO1, LDO2 Output Voltage Accuracy	$\mathrm{V}_{\text {LDO1, }} \mathrm{V}_{\text {LDO2 }}$	$\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}, \mathrm{I}_{\text {LDO }}=1 \mathrm{~mA}$	-3.5	± 3	+3.5	\%
Line Regulation	$\Delta V_{\text {LINE }}$	LDO1, $\mathrm{I}_{\text {LDO } 1}=1 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=2.8 \mathrm{~V}$		2.1	7.2	mV
		LDO2, $\mathrm{I}_{\text {LDO2 }}=1 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}=1.8 \mathrm{~V}$		1.3	4.8	

Electrical Characteristics (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
LDO Electrical Specifications (continued)						
Load Regulation	$\Delta \mathrm{V}_{\text {LOAD }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{LDO1} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{LDO} 1}=1 \mathrm{~mA} \text { to } 100 \mathrm{~mA} \end{aligned}$			25	mV
		$\begin{aligned} & \mathrm{V}_{\mathrm{LDO2} 2}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.7 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{LDO} 2}=1 \mathrm{~mA} \text { to } 100 \mathrm{~mA} \end{aligned}$			20	
Dropout Voltage ${ }^{(4)}$	$V_{\text {D }}$	$\mathrm{I}_{\text {LDO } 1}=100 \mathrm{~mA}$		100	150	mV
Current Limit	$\mathrm{I}_{\text {LIM }}$		200			mA
Power Supply Rejection Ratio	$\mathrm{PSRR}_{\text {LDo } 1}$	$\begin{gathered} 2.5 \mathrm{~V}<\mathrm{V}_{\text {LDO1 }}<3 \mathrm{~V}, \mathrm{f}<1 \mathrm{kHz}, \mathrm{C}_{\text {BYP }}=22 \mathrm{nF}, \mathrm{I}_{\text {LDO1 }}=50 \mathrm{~mA}, \\ \mathrm{~V}_{\text {IN }}=3.7 \mathrm{~V} \text { with } 0.5 \mathrm{~V}_{\text {P. }} \text { ripple } \end{gathered}$		50		dB
	$\mathrm{PSRR}_{\text {LDo2 }}$	$\begin{gathered} \mathrm{f}<1 \mathrm{kHz}, \mathrm{C}_{\mathrm{BYP}}=22 \mathrm{nF}, \mathrm{I}_{\mathrm{LDO} 2}=50 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{IN}}=3.7 \mathrm{~V} \text { with } 0.5 \mathrm{~V}_{\text {P-P }} \text { ripple } \end{gathered}$		60		
Output Voltage Noise	$\mathrm{e}_{\text {n-LDO1 }}$	$\begin{gathered} \text { LDO1, } 10 \mathrm{~Hz}<\mathrm{f}<100 \mathrm{kHz}, \mathrm{C}_{\text {BYP }}=22 \mathrm{nF}, \mathrm{C}_{\mathrm{LDO}}=1 \mu \mathrm{~F}, \\ \mathrm{I}_{\mathrm{LDO} 1}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=3.7 \mathrm{~V}, 2.5 \mathrm{~V}<\mathrm{V}_{\mathrm{LDO}}<3 \mathrm{~V} \end{gathered}$		100		$\mu \mathrm{V}_{\text {RMS }}$
	$\mathrm{e}_{\text {n-LDO2 }}$	$\begin{gathered} \text { LDO2, } 10 \mathrm{~Hz}<\mathrm{f}<100 \mathrm{kHz}, \mathrm{C}_{\text {BYP }}=22 \mathrm{nF}, \\ \mathrm{C}_{\mathrm{LDO}}=1 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{LDO} 2}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=3.7 \mathrm{~V} \end{gathered}$		50		
Minimum Output Capacitor	$\mathrm{C}_{\text {LDo(min) }}$			1		$\mu \mathrm{F}$

Digital I/O Electrical Specifications (EN)

Input High Threshold	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	1.6		V
Input Low Threshold	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}$		0.4	V
Inputdlighecurrentn	I_{H}	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	-1	+1	$\mu \mathrm{A}$
Input Low Current	$1{ }_{\text {IL }}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	-1	+1	$\mu \mathrm{A}$

I 2 C Interface

Interface complies with slave mode $I^{2} C$ interface as described by Philips $I^{2} C$ specification version 2.1 dated January, 2000.

Digital Input Voltage	$\mathrm{V}_{\text {B-IL }}$				0.4	V
	$\mathrm{~V}_{\text {B-HH }}$		1.6			V
SDA Output Low Level		$\mathrm{I}_{\mathrm{DIN}}(\mathrm{SDA}) \leq 3 \mathrm{~mA}$			0.4	V
Digital Input Current	$\mathrm{I}_{\text {B-IN }}$		-0.2		0.2	$\mu \mathrm{~A}$
Hysteresis of Schmitt Trigger Inputs	$\mathrm{V}_{\mathrm{HYS}}$			0.1		V
Maximum Glitch Pulse Rejection	t_{SP}			50		ns

Electrical Characteristics (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
$I^{2} \mathrm{C}$ Interface (Continued)						
I/O Pin Capacitance	$\mathrm{C}_{\text {IN }}$			10		pF
$1^{2} C$ Timing						
Clock Frequency	$\mathrm{f}_{\text {SCL }}$			400	440	kHz
SCL Low Period ${ }^{(5)}$	$\mathrm{t}_{\text {Low }}$		1.3			$\mu \mathrm{s}$
SCL High Period ${ }^{(5)}$	$\mathrm{t}_{\text {HIGH }}$		0.6			$\mu \mathrm{s}$
Data Hold Time ${ }^{(5)}$	$\mathrm{t}_{\text {HD_DAT }}$		0			$\mu \mathrm{s}$
Data Setup Time ${ }^{(5)}$	$\mathrm{t}_{\text {SU_DAT }}$		100			$\mu \mathrm{s}$
Setup Time for Repeated START Condition ${ }^{(5)}$	$\mathrm{t}_{\text {SU_ST }}$		0.6			$\mu \mathrm{s}$
Hold Time for Repeated START Condition ${ }^{(5)}$	$\mathrm{t}_{\text {H__SA }}$		0.6			$\mu \mathrm{s}$
Setup Time for STOP Condition ${ }^{(5)}$	$\mathrm{t}_{\text {SU_ }}{ }^{\text {STo }}$		0.6			$\mu \mathrm{s}$
Bus-Free Time Between STOP and START ${ }^{(5)}$	$\mathrm{t}_{\text {BUF }}$		1.3			$\mu \mathrm{s}$
Interface Start-up Time ${ }^{(5)}$	t_{EN}	Bus Start-up Time After EN Pin is Pulled High			1	ms

Notes:
(1). DAV Gis theivoltage difference between any two LEDs.
(2) Current matching equals $\pm\left[I_{\text {BLMAX) }}-I_{\text {BLMMIN }}\right] /\left[I_{\text {BLMAX) }}+I_{\text {BL(MIN) }}\right]$.
(3) Test voltage is $\mathrm{V}_{\text {out }}=4.0 \mathrm{~V}$ - a relatively extreme LED voltage — to force a transition during test. Typically $\mathrm{V}_{\text {out }}=3.2 \mathrm{~V}$ for white LEDs.
(4) Dropout is defined as $\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{LDO}}\right)$ when $\mathrm{V}_{\mathrm{LDO} 1}$ drops 100 mV from nominal. Dropout does not apply to LDO2 since it has a maximum output voltage of 1.8 V .
(5) Guaranteed by design

Typical Characteristics

Backlight Efficiency (4 LEDs) - 25mA Each

Battery Current (4 LEDs) - 5.0mA Each

Battery Current (4 LEDs) - 12mA Each

Backlight Efficiency (4 LEDs) - 12mA Each

Backlight Efficiency (4 LEDs) - 5.0mA Each

Typical Characteristics (continued)

PSRR vs. Frequency (LDO1)

Noise vs Load Current (LDO1)

PSRR vs. Frequency (LDO2)

Noise vs Load Current (LDO2)

Typical Characteristics (continued)

Line Regulation (LDO1)

Line Regulation (LDO2)

Load Transient Response (LDO1) - Falling Edge

Output Short Circuit Current Limit

Load Transient Response (LDO2) - Rising Edge

Load Transient Response (LDO2) - Falling Edge

Output Open Circuit Protection

Pin Descriptions

Pin \#	Pin Name	Pin Function
1	C2-	Negative connection to bucket capacitor 2 - requires a $1 \mu \mathrm{~F}$ capacitor connected to $\mathrm{C} 2+$
2	PGND	Ground pin for high current charge pump
3	NC	Unused pin - do not terminate
4	BL1	Current sink output for main backlight LED 1 - leave this pin open if unused
5	BL2	Current sink output for main backlight LED 2 - leave this pin open if unused
6	BL3	Current sink output for main backlight LED 3 - leave this pin open if unused
7	BL4	Current sink output for main backlight LED 4 - leave this pin open if unused
8	AGND	Analog ground pin - connect to ground and separate from PGND current
9	SCL	$1^{2} \mathrm{C}$ clock input pin
10	NC	Unused pin - do not terminate
11	SDA	${ }^{2} \mathrm{C}$ bi-directional data pin — used for read and write operations for all internal registers (refer to Register Map and I^{2} C Interface sections)
12	EN	Chip enable - active high — low state resets all registers (see register map table)
13	BYP	Bypass pin for voltage reference - connect with a 22 nF capacitor to AGND
14	LDO2	Output of LDO2 - connect with a $1 \mu \mathrm{~F}$ capacitor to AGND
15	LDO1	Output of LDO1 - connect with a $1 \mu \mathrm{~F}$ capacitor to AGND
muw. Datpsheet4	U.com VOUT	Charge pump output - all LED anode pins should be connected to this pin — requires a $2.2 \mu \mathrm{~F}$ capacitor to PGND
17	C2+	Positive connection to bucket capacitor 2 - requires a $1 \mu \mathrm{~F}$ capacitor connected to C 2 -
18	C1+	Positive connection to bucket capacitor 1 - requires a $1 \mu \mathrm{~F}$ capacitor connected to C 1 -
19	VIN	Battery voltage input - connect with a $1 \mu \mathrm{~F}$ capacitor to PGND
20	C1-	Negative connection to bucket capacitor 1 - requires a $1 \mu \mathrm{~F}$ capacitor connected to $\mathrm{C} 1+$
T	THERMAL PAD	Thermal pad for heatsinking purposes - connect to ground plane using multiple vias - not connected internally

Block Diagram

Applications Information

General Description

This design is optimized for handheld applications supplied from a single Li-lon cell and includes the following key features:

- A high efficiency fractional charge pump that supplies power to all LEDs
- Four matched current sinks that control LED backlighting current, with 0.5 mA to 25 mA per LED
- Two adjustable LDOs with outputs ranging from 2.5 V to 3.3 V for LDO1 and 1.5 V to 1.8 V for LDO2, adjustable in 100 mV increments
- $A n I^{2} C$ compatible interface that provides control of all device functions

High Current Fractional Charge Pump

The backlight outputs are supported by a high efficiency, high current fractional charge pump output at the VOUT pin. The charge pump multiplies the input voltage by $1,1.5$, or 2 times. The charge pump switches at a fixed frequency of 250 kHz in 1.5 x and 2 x modes and is disabled in $1 x$ mode to save power and improve efficiency.

The mode selection circuit automatically selects the $1 \mathrm{x}, 1.5 \mathrm{x}$ or 2 x mode based on circuit conditions. Circuit mconditionsisuch as low input voltage, high output current, or high LED voltage place a higher demand on the charge pump output. A higher numerical mode may be needed momentarily to maintain regulation at the VOUT pin during intervals of high demand, such as the droop at the VIN pin during a supply voltage transient. The charge pump responds to these momentary high demands, setting the charge pump to the optimum mode ($1 \mathrm{x}, 1.5 \mathrm{x}$ or 2 x), as needed to deliver the output voltage and load current while optimizing efficiency. Hysteresis is provided to prevent mode toggling.

The charge pump requires two bucket capacitors for low ripple operation. One capacitor must be connected between the C1+ and C1-pins and the other must be connected between the C2+ and C2- pins as shown in
the typical application circuit diagram. These capacitors should be equal in value, with a minimum capacitance of $1 \mu \mathrm{~F}$ to support the charge pump current requirements. The device also requires a $1 \mu \mathrm{~F}$ capacitor on the VIN pin and a $2.2 \mu \mathrm{~F}$ capacitor on the VOUT pin to minimize noise and support the output drive requirements. Capacitors with X7R or X5R ceramic dielectric are strongly recommended for their low ESR and superior temperature and voltage characteristics. Y5V capacitors should not be used as their temperature coefficients make them unsuitable for this application.

LED Backlight Current Sinks

The backlight current is set via the $I^{2} C$ compatible interface. The current is regulated to one of 32 values between 0.5 mA and 25 mA . The step size varies depending upon the current setting. Between 0.5 mA and 12 mA , the step size is 0.5 mA . The step size increases to 1 mA for settings between 12 mA and 15 mA and 2 mA for settings greater than 15 mA . This feature allows finer adjustment for dimming functions in the low current setting range and coarse adjustment at higher current settings where small current changes are not visibly noticeable in LED brightness.

All backlight current sinks have matched currents, even when there is variation in the forward voltages ($\Delta \mathrm{V}_{\mathrm{F}}$) of the LEDs. A $\Delta \mathrm{V}_{\mathrm{F}}$ of 1.2 V is supported when the input voltage is at 3.0 V . Higher $\Delta \mathrm{V}_{\mathrm{F}}$ LED mis-match is supported when $\mathrm{V}_{\text {IN }}$ is higher than 3.0 V . All current sink outputs are compared and the lowest output is used for setting the voltage regulation at the VOUT pin. This is done to ensure that sufficient bias exists for all LEDs.

The backlight LEDs default to the off state upon powerup. For backlight applications using less than four LEDs, any unused output must be left open and the unused LED driver must remain disabled. When writing to the Backlight Enable Control register, a zero (0) must be written to the corresponding bit of any unused output.

Applications Information (continued)

Backlight Quiescent Current

The quiescent current required to operate all four backlights is reduced by 1.5 mA when backlight current is set to 4.0 mA or less. This feature results in higher efficiency under light-load conditions. Further reduction in quiescent current will result from using fewer than four LEDs.

Fade-In and Fade-Out

Backlight brightness can be set to automatically fade-in when current is set to increase and fade-out when current is set to decrease. When enabled with a new current setting, the current will step through each incremental setting between the old and new values. The result is a visually smooth change in brightness with a rate of fade that can be set to $8,16,24$, or 32 ms per step.

Programmable LDO Outputs

Two low dropout (LDO) regulators are provided for camera module I/O and core power. Each LDO has at least 100 mA of available load current with $\pm 3.5 \%$ accuracy. The minimum current limit is 200 mA , so outputs greater than 100 mA are possible at somewhat reduced accuracy.

A 1μ F, low ESR capacitor should be used as a bypass capacitor on each LDO output to reduce noise and ensure stability In addition, it is recommended that a minimum 22nF capacitor be connected from the BYP pin to ground to minimize noise and achieve optimum power supply rejection. A larger capacitor can be used for this function, but at the expense of increasing turnon time. Capacitors with X7R or X5R ceramic dielectric are strongly recommended for their low ESR and superior temperature and voltage characteristics. Y5V capacitors should not be used as their temperature coefficients make them unsuitable for this application.

Shutdown State

The device is disabled when the EN pin is low. All registers are reset to default condition when EN is low.

Sleep Mode

When all LEDs are off, sleep mode is activated. This is a reduced current mode that helps minimize overall current consumption by turning off the clock and the charge pump while continuing to monitor the serial interface for commands. Both LDOs can be powered up while in sleep mode.

I²C Compatible Interface Functions

All device functions can be controlled via the $1^{2} C$ compatible interface. The interface is described in detail in the Serial Interface section of the datasheet.

Protection Features

The SC624A provides several protection features to safeguard the device from catastrophic failures. These features include:

- Output Open Circuit Protection
- Over-Temperature Protection
- Charge Pump Output Current Limit
- LDO Current Limit
- LED Float Detection

Output Open Circuit Protection

Over-Voltage Protection (OVP) is provided at the VOUT pin to prevent the charge pump from producing an excessively high output voltage. In the event of an open circuit at VOUT, the charge pump runs in open loop and the voltage rises up to the OVP limit. OVP operation is hysteretic, meaning the charge pump will momentarily turn off until $\mathrm{V}_{\text {out }}$ is sufficiently reduced. The maximum OVP threshold is 6.0 V , allowing the use of a ceramic output capacitor rated at 6.3 V with no fear of over-voltage damage.

Applications Information (continued)

Over-Temperature Protection

The Over-Temperature (OT) protection circuit helps prevent the device from overheating and experiencing a catastrophic failure. When the junction temperature exceeds $160^{\circ} \mathrm{C}$, the device goes into thermal shutdown with all outputs disabled until the junction temperature is reduced. All register information is retained during thermal shutdown.

Charge Pump Output Current Limit

The device also limits the charge pump current at the VOUT pin (typically 300 mA).

LDO Current Limit

The device limits the output currents of LDO1 and LDO2 to help prevent it from overheating and to protect the loads.

The minimum limit is 200 mA , so load current greater than the rated 100 mA can be used with degraded accuracy and larger dropout without tripping the current limit.

LED Float Detection

Float detect is a fault detection feature of the LED current sink outputs. If an output is programmed to be enabled and an open circuit fault occurs at any current sink output, that output will be disabled to prevent a sustained output OVP condition from occurring due to the resulting open loop. Float detect ensures device protection but does not ensure optimum performance. Unused LED outputs must be disabled to prevent an open circuit fault from occurring.

Applications Information (continued)

PCB Layout Considerations

The layout diagram in Figure 1 illustrates a proper two-layer PCB layout for the SC624A and supporting components. Following fundamental layout rules is critical for achieving the performance specified in the Electrical Characteristics table. The following guidelines are recommended when developing a PCB layout:

- Place all bypass and decoupling capacitors C1, C2, CIN, COUT, CLDO1, CLDO2, and CBYP as close to the device as possible.
- All charge pump current passes through VIN, VOUT, and the bucket capacitor connection pins. Ensure that all connections to these pins make use of wide traces so that the resistive drop on each connection is minimized.
- The thermal pad should be connected to the ground plane using multiple vias to ensure proper thermal connection for optimal heat transfer.

Figure 1 - Recommended PCB Layout

- Make all ground connections to a solid ground plane as shown in the example layout (Figure 3).
- If a ground layer is not feasible, the following groupings should be connected:
- PGND - CIN, COUT
- AGND - Ground Pad, CLDO1, CLDO2, CBYP
- If no ground plane is available, PGND and AGND should be routed back to the negative battery terminal as separate signals using thick traces. Joining the two ground returns at the terminal prevents large pulsed return currents from mixing with the low-noise return currents of the LDOs.
- Both LDO output traces should be made as wide as possible to minimize resistive losses.

Figure 2 - Layer 1

Figure 3 - Layer 2

Register Map

Address	D7	D6	D5	D4	D3	D2	D1	D0	Reset Value	Description
0×00	FADE_1	FADE_0	FADE_EN	BL_4	BL_3	BL_2	BL_1	BL_0	0x00	Backlight Current Control
0×01	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	BLEN_4	BLEN_3	BLEN_2	BLEN_1	0×00	Backlight Enable Control
0×03	$0^{(1)}$	LDO2_2	LDO2_1	LDO2_0	LDO1_3	LDO1_2	LDO1_1	LDO1_0	0×00	LDO Control

Note:
(1) $0=$ always write a 0 to these bits

Register and Bit Definitions (continued)

Backlight Current Control Register (0x00)

This register is used to set the currents for the backlight current sinks, as well as to enable and set the fade step rate. These current sinks need to be enabled in the Backlight Enable Control register to be active.

FADE[1:0]

These bits are used to set the rise/fall rate between two backlight currents as follows:

FADE_1	FADE_0	Fade Feature Rise/Fall Rate (ms/step)
www.DataShe0t4U.co	0	32
0	1	24
1	0	16
1	1	8

The number of steps in changing the backlight current will be equal to the change in binary count of bits $\mathrm{BL}[4: 0]$.

FADE_EN

This bit is used to enable or disable the fade feature. When the fade function is enabled and a new backlight current is set, the backlight current will change from its current value to a new value set by bits BL[4:0] at a rate of 8 ms to 32 ms per step. A new backlight level cannot be written during an ongoing fade operation, but an ongoing fade
operation may be cancelled by resetting the fade bit. Clearing the fade bit during an ongoing fade operation changes the backlight current immediately to the value of BL[4:0]. The number of counts to complete a fade operation equals the difference between the old and new backlight values to increment or decrement the BL[4:0] bits. If the fade bit is cleared, the current level will change immediately without the fade delay. The rate of fade may be changed dynamically, even while a fade operation is active, by writing new values to the FADE_1 and FADE_0 bits. The total fade time is determined by the number of steps between old and new backlight values, multiplied by the rate of fade in $\mathrm{ms} / \mathrm{step}$. The longest elapsed time for a full scale fade-out of the backlight is nominally 1.024 seconds when the default interval of 32 ms is used.

Register and Bit Definitions (continued)

BL[4:0]

These bits are used to set the current for the backlight current sinks. All enabled backlight current sinks will sink the same current, as shown in Table 1.

Table 1 - Backlight Current Control Bits

BL_4	BL_3	BL_2	BL_1	BL_0	Backlight Current (mA)
0	0	0	0	0	0.5
0	0	0	0	1	1.0
0	0	0	1	0	1.5
0	0	0	1	1	2.0
0	0	1	0	0	2.5
0	0	1	0	1	3.0
0	0	1	1	0	3.5
0	0	1	1	1	4.0
0	1	0	0	0	4.5
0	1	0	0	1	5
0	1	0	1	0	5.5
0	1	0	1	1	6
0	1	1	0	0	6.5
0	1	1	0	1	7
0	1	1	1	0	7.5
0	1	1	1	1	8
ww. Data	hed4U.	con0	0	0	8.5
1	0	0	0	1	9
1	0	0	1	0	9.5
1	0	0	1	1	10
1	0	1	0	0	10.5
1	0	1	0	1	11
1	0	1	1	0	11.5
1	0	1	1	1	12
1	1	0	0	0	13
1	1	0	0	1	14
1	1	0	1	0	15
1	1	0	1	1	17
1	1	1	0	0	19
1	1	1	0	1	21
1	1	1	1	0	23
1	1	1	1	1	25

BL Enable Control Register (0x01)

This register is used to enable the backlight current sinks.

BLEN[4:1]

These bits are used to enable current sinks (active high, default low).
BLEN_4 - Enable bit for backlight BL4
BLEN_3 - Enable bit for backlight BL3
BLEN_2 - Enable bit for backlight BL2
BLEN_1 - Enable bit for backlight BL1
When enabled, the current sinks will carry the current set by the backlight current control bits BL[4:0], as shown in Table 1.

Register and Bit Definitions (continued)

LDO Control Register (0x03)

This register is used to enable the LDOs and to set their output voltages.

LDO2[2:0]

These bits are used to set the output voltage of LDO2, as shown in Table 2.

Table 2 - LDO2 Control Bits

LDO2_2	LDO2_1	LDO2_0	LDO2 Output Voltage
0	0	0	OFF
0	0	1	1.8 V
0	1	0	1.7 V
0	1	1	1.6 V
1	0	0	1.5 V
101 through 111 are not used		OFF	

LD01[3:0]

These bits set the output voltage of LDO1, as shown in Table 3.

Table 3 - LDO1 Control Bits

LDO1_3	LDO1_2	LDO1_1	LD01_0	LD01 Output Voltage
0	0	0	0	OFF
0	0	0	1	3.3 V
0	0	1	0	3.2 V
0	0	1	1	3.1 V
0	1	0	0	3.0 V
0	1	0	1	2.9 V
0	1	1	0	2.8 V
0	1	1	1	2.7 V
1	0	0	0	2.6 V
1	0	0	1	2.5 V
1010 through 1111 are not used				OFF

Serial Interface

The I ${ }^{2} \mathbf{C}$ General Specification

The SC624A is a read-write slave-mode $I^{2} C$ device and complies with the Philips $I^{2} \mathrm{C}$ standard Version 2.1, dated January 2000. The SC624A has four user-accessible internal 8 -bit registers. The $I^{2} C$ interface has been designed for program flexibility, supporting direct format for write operation. Read operations are supported on both combined format and stop separated format. While there is no auto increment/decrement capability in the SC624A ${ }^{2}$ C logic, a tight software loop can be designed to randomly access the next register independent of which register you begin accessing. The start and stop commands frame the data-packet and the repeat start condition is allowed if necessary.

SC624A Limitations to the I²C Specifications

The SC624A only recognizes seven bit addressing. This means that ten bit addressing and CBUS communication are not compatible. The device can operate in either standard mode ($100 \mathrm{kbit} / \mathrm{s}$) or fast mode ($400 \mathrm{kbit} / \mathrm{s}$).

Slave Address Assignment

The seven bit slave address is 0110 111x. The eighth bit is the data direction bit. 0x6E is used for a write operation, and $0 \times 6 \mathrm{~F}$ is used for a read operation.

Supported Formats

The supported formats are described in the following subsections.

Direct Format - Write

The simplest format for an $I^{2} \mathrm{C}$ write is direct format. After the start condition $[\mathrm{S}]$, the slave address is sent, followed
by an eighth bit indicating a write. The SC624A $I^{2} \mathrm{C}$ then acknowledges that it is being addressed, and the master responds with an 8 bit data byte consisting of the register address. The slave acknowledges and the master sends the appropriate 8 bit data byte. Once again the slave acknowledges and the master terminates the transfer with the stop condition [P].

Combined Format - Read

After the start condition [S], the slave address is sent, followed by an eighth bit indicating a write. The SC624A $1^{2} \mathrm{C}$ then acknowledges that it is being addressed, and the master responds with an 8 bit data byte consisting of the register address. The slave acknowledges and the master sends the repeated start condition [Sr]. Once again, the slave address is sent, followed by an eighth bit indicating a read. The slave responds with an acknowledge and the previously addressed 8 bit data byte; the master then sends a non-acknowledge (NACK). Finally, the master terminates the transfer with the stop condition [P].

Stop Separated Reads

Stop-separated reads can also be used. This format allows a master to set up the register address pointer for a read and return to that slave at a later time to read the data. In this format the slave address followed by a write command are sent after a start [S] condition. The SC624A then acknowledges it is being addressed, and the master responds with the 8 -bit register address. The master sends a stop or restart condition and may then address another slave. After performing other tasks, the master can send a start or restart condition to the SC624A with a read command. The device acknowledges this request and returns the data from the register location that had previously been set up.

SEMTECH

Serial Interface (continued)

I^{2} C Direct Format Write

S	Slave Address	W	A	Register Address	A	Data	A	P

S - Start Condition
$\mathrm{W}-\mathrm{Write}=$ ' 0 '
A - Acknowledge (sent by slave)
P - Stop condition

Slave Address - 7-bit
Register address - 8-bit
Data - 8-bit

${ }^{12}$ C Stop Separated Format Read

Register Address Setup Access									Master Addresses other Slaves	Register Read Access						
S		Slave Address	W	A	Register Address	A	P	S	Slave Address B	S / Sr	Slave Address	R	A	Data	NACK	P

S - Start Condition
Slave Address - 7-bit
$\mathrm{W}-\mathrm{Write}=$ ' 0 '
Register address - 8-bit
R - Read = ' 1 '
A - Acknowledge (sent by slave)
NAK - Non-Acknowledge (sent by master)
Sr - Repeated Start condition
P - Stop condition

I^{2} C Combined Format Read

S	Slave Address	W	A	Register Address	A	Sr	Slave Address	R	A	Data	NACK	P

S - Start Condition
Slave Address - 7-bit
W - Write = '0'
Register address - 8-bit
$R-\operatorname{Read}=$ ' 1 '
Data-8-bit

A - Acknowledge (sent by slave)
NAK - Non-Acknowledge (sent by master)
Sr - Repeated Start condition
P - Stop condition

Outline Drawing — MLPQ-UT-20 3x3

Land Pattern — MLPQ-UT-20 3x3

DIMENSIONS		
DIM	INCHES	MILLIMETERS
C	$(.114)$	(2.90)
G	.083	2.10
H	.067	1.70
K	.067	1.70
P	.016	0.40
R	.004	0.10
X	.008	0.20
Y	.031	0.80
Z	.146	3.70

NOTES:

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.
3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD SHALL BE CONNECTED TO A SYSTEM GROUND PLANE. FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE.

Contact Information

Semtech Corporation
Power Management Products Division 200 Flynn Road, Camarillo, CA 93012
Phone: (805) 498-2111 Fax: (805) 498-3804

