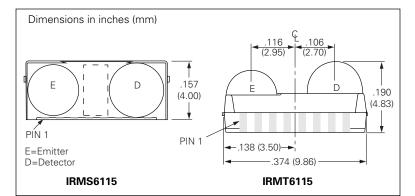


SIDE VIEW IRMS 6115 TOP VIEW IRMT 6115 115 Kb/s Infrared Data Transceiver

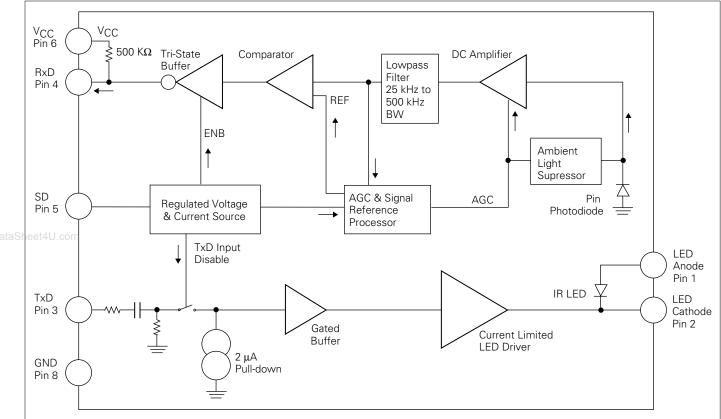


FEATURES

- Compliant with IrDA Specification
- Data Rates 9.6 Kb/s to 115 Kb/s, usable up to 576 Kb/s
- Wide Range of Supply Voltage 2.4 to 5.5 V
- Standby Current 90 μA Typical
- Excellent Power Supply Noise Rejection
- Tri-State Receiver Output and TxD Disable
- AC Coupled Transmit Input: Provides Integrated Protection for Eye Safety
- High DC Ambient Rejection
- Independent LED Supply, Anode Pin Can Take
 up to 9.0 V DC when not Transmitting and
- up to 4.0 V above V_{CC} when Transmitting
- + Receiver Latency Less than 100 μs
- Slimline Package: H 4.0 mm x D 4.8 mm x L 9.8 mm

DESCRIPTION

With state of the art submicron BiCMOS circuitry, coupled with Infineon optoelectronic expertise, the IRMS6115 and IRMT6115 outperforms its closest rival. The transmit input is AC coupled, limiting transmit pulse duration to 70 µs, preventing transmitter damage and continuous LED output.


Absolute Maximum Ratings, TA=25°C (except where noted)

3 , A	,
Supply Voltage Range, all states, V _{CC}	–0.5 to +7.0 V
LED Anode Voltage, V _{LEDA}	
V _{CC} =0 to 5.5 V, not transmitting	0.5 to +9.0 V
LED Anode Voltage, V _{LEDA}	
V _{CC} =2.4 to 5.5 V, transmitting	–0.5 to V _{CC} + 4.0 V
Input Current I _{CC}	
$V_{\rm CC}$ =5.0 V, TxD= $V_{\rm CC}$, transmit	20 mA
Output RxD Current	
Storage Temperature, T _S	
Operating Temperature, T _O	
Lead Solder Temperature, Maximum 230°C	
IC Junction Temperature, T _J	
Average IR LED Current, ILED	
Repetitive Pulsed IR LED Current,	
<10 µs, t _{on} <20%, LED Anode=3.3 V, I _{LED(RP)}	
Input Voltage: TxD.	
RxD Voltage	
	0.0 10 700 + 0.0 V

Table 1. Pin Functions

Pin no.	Function	Pin no.	Function
1	IR LEDA	5	SD
2	IR LEDC	6	V _{CC}
3	TxD	7	*Do not connect
4	RxD	8	GND

*Pin 7 internally grounded

Theory of operation

The IRMS6115/IRMT6115 Slimline—Infrared Data Transceiver consists of a detector photodiode, an IR LED transmitter, an IC containing ambient light suppressor, and Automatic Gain control circuitry (AGC).

The ambient light suppressor can cancel up to 4.0 mW/cm² (typical) at 2.4 V of DC ambient signal, and up to 1.5 mW/cm² (peakto-peak) at 120 Hz AC ambient.

The AGC in the IC is to keep the system output constant by varying the gain to accommodate a wide range of input signals. It also provides noise immunity in the high noise ambient environment.

For normal operation of the transmit and receiver modes, the Shut Down (SD) pin should be held low. It is recommended that this pin be connected to GND if Shut Down (SD) mode is not used.

In receive mode, the receiver output (RxD) which normally stays high, will go low for duration of the receive pulses. It is a push-pull CMOS driver capable of driving a standard CMOS or TTL load. No external pull-up or pull-down resistor is required.

In transmit mode, by asserting the TxD pin above $\frac{1}{2} V_{CC}$ will turn on IR LED transmitter. At the LED Anode (pin 1) connect this pin to V_{CC} or unregulated power supply (not to exceed V_{CC} + 4.0 V), through a resistor to set the proper LED current to reduce the thermal dissipation and to lower LED current.

Table 2. Slimline IRMS6115/IRMT6115 Truth Table

Input	S		Outputs			
SD	TxD	Detector	RxD	LED		
High	X=don't care state	X=don't care state	500 k $Ω$ pull-up	Off		
Low	High		Undefined	On		
	Low	0.4 mW/sr	High	Off		
		40 mW/sr	Low			

Electrical Characteristics

Table 3. Basic Operating Parameters, $T_A=25^{\circ}C$ (except where noted)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supported Data Rate	—	9.6 K	_	115 K	Kb/s	1.63 µs or 3/16 clock period
Power Supply Voltage	V _{CC}	2.4	—	5.5	V	-25° C to $+85^{\circ}$ C, V_{CC} to V_{SS}
Maximum LED Anode Voltage	VLEDA	—	—	V _{CC} +4	V	V _{CC} =2.4 V to 5.5 V
I _{CC} Shut Down Current (Note 1)	I _{CC1}	—	0.01	1.0	μA	SD= V_{CC} , V_{CC} =2.4 V to 5.5 V
I _{CC} Standby Current (Ave)	I _{CC1}	65	80	90	μA	no signal, V _{CC} =2.7 V to 3.3 V
I _{CC} Receiving Current (Ave)	I _{CC2}	_	100	200	μA	V _{CC} =2.7 V to 3.3 V
I _{CC} Transmitting Current (Ave)	I _{CC3}	_	2.0	2.5	mA	V _{CC} =2.7 V to 3.3 V, No LED resistor, VLED=3.0 V DC

Table 4. I/O Parameters

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
TxD, SD input capacitance	—	—	5.0	_	pF	V _{CC} =2.4 V to 5.5 V
TxD High Loading	—	1.0	2.0	3.0	μA	$TxD=V_{CC}, V_{CC}=2.4 V \text{ to } 5.5 V$
TxD Low Loading	_	—	_	0.01	μA	TxD=0, V _{CC} =2.4 V to 5.5 V
TxD, SD Input Threshold (Note 1)	—	0.8	1.4	2.0	V	V _{CC} =2.4 ∨ to 5.0 ∨
SD to RxD Tri-State	—	—	35	100	ns	V _{CC} =2.4 ∨ to 5.0 ∨
SD to RxD Enable	—	—	90	200	ns	V _{CC} =2.4 ∨ to 5.0 ∨
RxD Output High	V _{IH}	4.3	4.6	_	V	V _{CC} =5.0 V, I _{OH} =8 mA
RxD Output High	V _{IH}	1.9	2.1	_	V	V _{CC} =2.4 V, I _{OH} =3 mA
RxD Output Low	VIL	—	0.22	0.4	V	V _{CC} =5.0 V, I _{OL} =8 mA
RxD Ouput Low	V _{IL}	—	0.17	0.3	V	V _{CC} =2.4 V, I _{OL} =3.0 mA
RxD Short Circuit	—	-	48	_	mA	$V_{\rm CC}$ =5.0 V, RxD=0, RxD= $V_{\rm CC}$
RxD Short Circuit	—	—	10	_	mA	V_{CC} =2.4 V, RxD=0, RxD= V_{CC}
RxD to $V_{\rm CC}$ Tri-State Impedance	—	350	500	650	kΩ	$V_{\rm CC}$ =2.4 V to 5.0 V, between RxD to $V_{\rm CC}$
RxD Rise Time	t _r	12	18	27	ns	V _{CC} =5.0 V, Load=15 pF
RxD Fall Time	tf	20	30	40	ns	V _{CC} =5.0 V, Load=50 pF
RxD Rise Time	t _r	17	25	40	ns	V _{CC} =2.4 V, Load=15 pF
RxD Fall Time	tf	30	45	70	ns	V _{CC} =2.4 V, Load=50 pF

Table 5. Receiver Parameters, T_A=25°C (except where noted)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Maximum Data Rate	—	9.6	115.2	576	Kb/s	4.0 μ W/cm ² to 500 mW/cm ²
Receive ¹ / ₂ Angle	_	15	—	_	degree	IrDA Physical Layer specification
Minimum Signal Detect Irradiance	E _{IHmin}	—	2.0	4.0	μW/cm ²	Bit error rate=10 ⁻⁸ , 1.63 μs pulse
Maximum Signal Detect Irradiance	E _{Emax}	500	1000	—	mW/cm ²	Bit error rate= 10^{-8} , 1.63 µs pulse
Maximum Signal Irradiance No detect	—	_	—	0.3	μW/cm ²	<0.1 pulse per second detect, 1.63 µs
Maximum DC Ambient Irradiance, 5.0 V (Note 7)	—	_	7.5	—	mW/cm ²	<i>V</i> _{CC} =5.0 ∨
Maximum DC Ambient Irradiance, 2.4 V (Note 7)		—	4.0	_	mW/cm ²	$V_{\rm CC}$ =2.4 V
AGC Attack Time (Note 2)	—	—	1.0	2.0	μs	4 μ W/cm ² to 500 mW/cm ²
AGC Settling (Note 3)	_	—	5.0	10	pulse	4 μW/cm ² to 500 mW/cm ² at 115 Kb/s
Near-Far Receiver Latency (Note 4)	—	—	2.5	4.0	ms	0 to 5 mW/cm ² ambient input
AGC Decay Rate (Note 5)	—	—	44	_	dB/ms	Following AGC settling at 500 mW/cm ²

Infineon Technologies, Corp. • Optoelectronics Division • Cupertino, CA (formerly Siemens Microelectronics, Inc.) www.infineon.com/opto • 1-800-777-4363 3

Table 5. Receiver Parameters (continued)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Transmit Receiver Latency (Note 4)	tL	—	50	100	μs	0 to 3 mW/cm ² DC ambient input
RxD Suppression Duration (Note 8)	—	—	50	100	μs	Following end of TxD pulse
Powerup Receiver Latency	—	—	50	100	μs	0 to 3 mW/cm ² DC ambient input
Output Pulse Width at RxD	—	1.0	1.63	3.0	μs	1.63 μ s, 4 μ W/cm ² to 500 mW/cm ² input.
Maximum Output Pulse Width at RxD, (Note 7)	—	—	57	100	μs	200 μs, 500 mW/cm ² , V _{CC} =5.0 V
Small Ripple Power Supply Rejection (Note 6)	—	50	100	—	mV/µs	100 mV _{P-P} triangle wave on V_{CC}
Large Ripple Power Supply Rejection (Note 6)	—	100	200	_	mV/ms	1.0 V_{P-P} triangle wave on V_{CC}

www.DataShTable 6. Transmitter Output

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Maximum Data Rate	—	9.6	115.2	576	Kb/s	TxD pulse width=434 ns
TxD Radiant Intensity	-	40	150	500	mW/Sr	I_{LED} =350 mA, (6.8 Ω LED resistor, 5.0 V _{LED} supply)
TxD Radiant Intensity	—	_	70	500	mW/Sr	LEDA=2.4 V, no current limiting LED resistor
TxD ¹ / ₂ Angle	—	15	20	30	degree	IrDA Physical Layer specification
TxD Peak Wavelength	λ_{peak}	850	870	900	nm	<i>I</i> _F =20 mA
I _{LED} Pulse Width	—	1.55	1.60	1.65	μs	TxD=1.63 μs, V _{CC} =5.0 V
Optical Rise and Fall Time	t _r , t _f	10	_	600	ns	$V_{\text{LED}}=2.7 \text{ V}$
Pulse Width Limit	—	35	70	140	μs	TxD pulse>200 μ s, 5.0 V pulse, V_{CC} =5.0 V
I _{LED} Limit	—	350	400	600	mA	TxD= V_{CC} , LED anode=3.3 V, V_{CC} =5.0 V
ILED Limit Temperature Coefficient	—	—	+0.47	—	%/°C	TxD= V_{CC} , LED anode=3.3 V, V_{CC} =5.0 V
LED Temperature Coefficient	—	—	-0.5	—	%/°C	I _{LED} =300 mA
LED Cathode Saturation Drop	—	—	0.3	0.4	V	300 mA, V _{CC} =2.4 ∨
TxD V _{CC} dV/dt Rejection	—	—	5.0	—	V/µs	dV/dt for less than 10% change in TxD output

Note 1:

For Shut Down (SD) current to fall below 1µA requires driving Shut Down (SD) to within 0.5 V of $V_{\rm CC}$ to ensure cutoff of the PMOS transistor of the input CMOS totem pole. In most applications this is not an issue if Shut Down (SD) is driven from a CMOS driver supplied from the same voltage supply

Note 2:

"AGC Attack Time" is the time required for internal AGC (Automatic Gain Control) attenuation to rise to within 10% of final value.

Note 3:

"AGC Settling" is the number of pulses within 100 μs required for the output pulse width to settle to 90% of its final value.

Note 4:

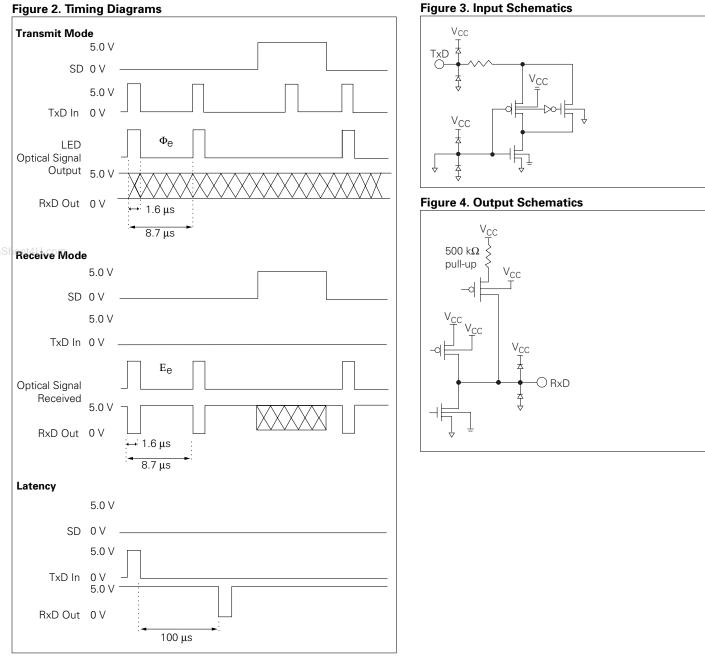
"Near-Far Receiver Latency" is the time required for the AGC and ambient correction circuits to return to maximum sensitivity (Far) following reception of a maximum (Near) signal or a change in ambient. "Transmit Receiver Latency" is commonly called "Receiver Latency" or "Transmitter Turnaround Time."

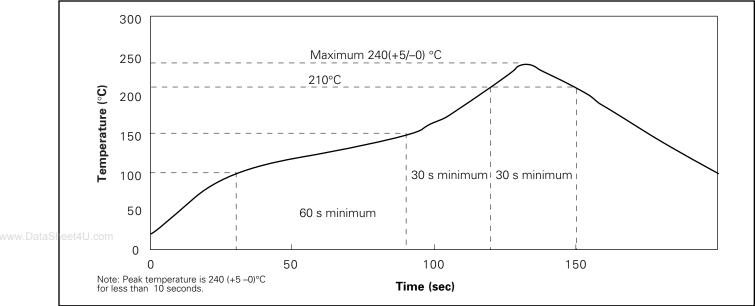
Note 5:

"AGC Decay Rate" is the rate at which the receiver gain increases following the cessation of signal input.

Note 6:

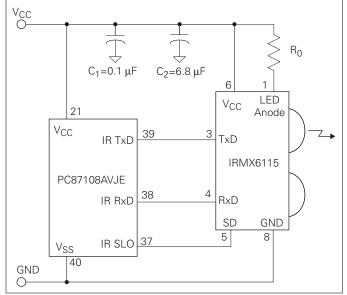
The receiver V_{CC} power supply rejection is significantly better for small ripple of less than 100 mV_{P-P} than for larger values. For ripple of more than 100 mV_{P-P}, internal circuits can maintain operating headroom provided that the slew rate is significantly slower. Typically, these specifications allow operation without an external filter from either switching supplies with less than 50 mV_{P-P} ripple or unregulated supplies with less than 1 V_{P-P} of 120 Hz ripple.


Note 7:


If the low going RxD pulse width exceeds 100 $\mu s,$ then the maximum DC ambient irradiance has been exceeded.

Note 8:

RxD is suppressed (forced high) while (TxD) transmit pulse is active and for the indicated period following the end of the TxD pulse.


Figure 2. Timing Diagrams

Interface Diagrams

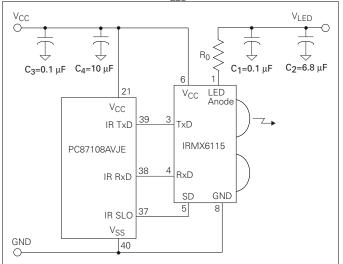
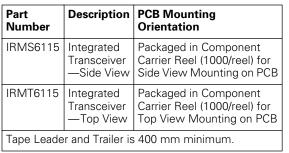
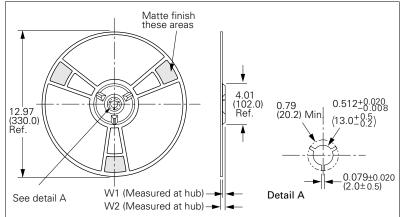


Table 7. Recommended External Component


Parameter	Value	Values								
V _{LED} pow- er supply	2.4	2.7	3.0	3.5	4.0	4.5	5.0	V		
Resistor	0	0	0	1.5	3.9	5.1	6.8	Ω		


Figure 7. With independent V_{LED} supply

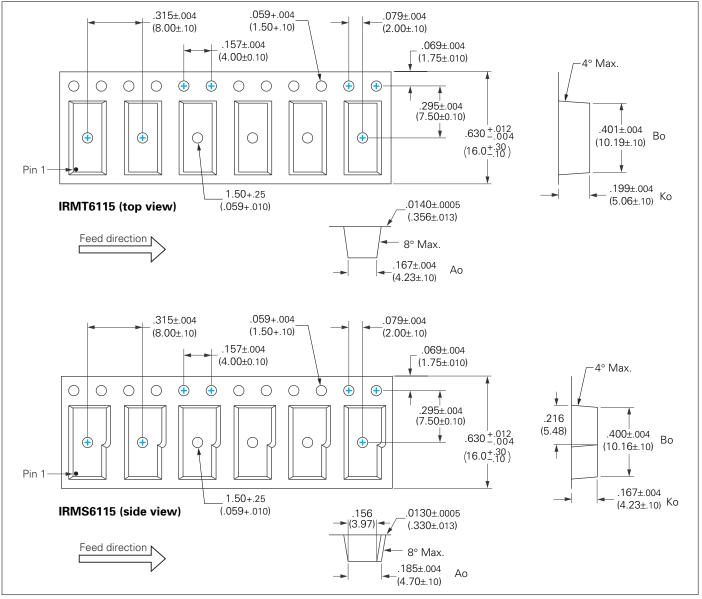
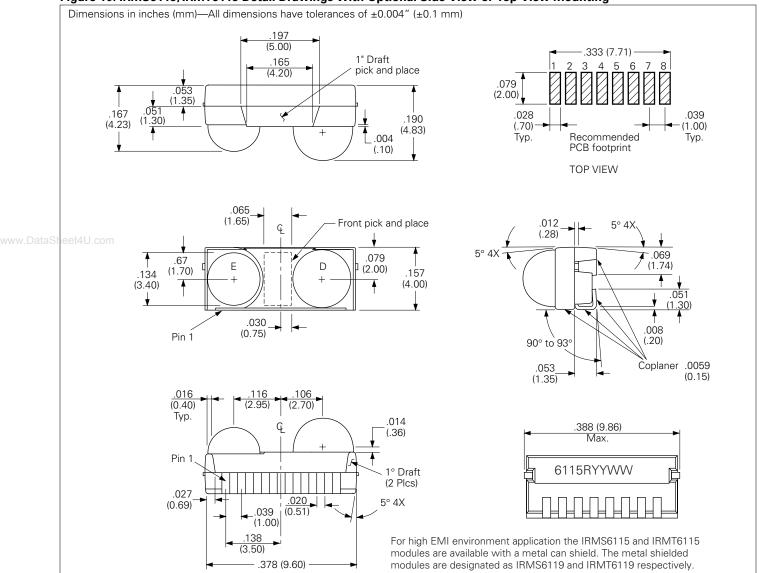

Ordering Information

Figure 9. Reel Dimensions in Inches (mm)



www.DataStFigure 8: Tape Dimensions in Inches (mm)

Figure 10. IRMS6115/IRMT6115 Detail Drawings With Optional Side View or Top View Mounting

© Infineon Technologies, Corp., Optoelectronic Division (formerly Siemens Microelectronics, Inc.)

Printed in the United States of America.

All rights reserved.

The information provided is believed to be accurate and reliable.

Infineon reserves the right to make changes to the product described without notice. No liability is assumed as a result of its use nor for any infringement of the rights of others.

This document may contain preliminary information and is subject to change by Infineon without notice. Some of the parametric data expressed in this preliminary data sheet is considered to be functional by design. Infineon assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Infineon or third parties.

The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons.

NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OF FITNESS FOR A PARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.

IRMS6115/IRMT6115 May 7 1999-08 www.DataSheet4U.com

	Sign-off indicates that OEDs Policy and Process requirements have been fulfilled, and this data sheet is ready for the web and print
	publications. □ OK as is (see attached) May 7 1999-08 □ OK with corrections □ OK with corrections □ Revision required
	Product Marketing Manager (or designated delegate):
	Sign-off date:
	Engineering Manager (or designated delegate):
	Sign-off date:
L	
	Sign-off indicates that OEDs Policy and Process requirements have been fulfilled, and this data sheet is ready for the web and print
et4	publications. □ OK as is □ OK with corrections □ OK with corrections □ Revision required □
	Product Marketing Manager (or designated delegate):
	Sign-off date:
	Engineering Manager (or designated delegate):
	Sign-off date:
Ļ	
	Sign-off indicates that OEDs Policy and Process requirements have been fulfilled, and this data sheet is ready for the web and print
	publications. <pre>OK as is</pre> (see attached) <pre>OK with corrections</pre> Revision required
	Product Marketing Manager (or designated delegate):
	Sign-off date:
	Engineering Manager (or designated delegate):
	Sign-off date:
L	
	Sign-off indicates that OEDs Policy and Process requirements have been fulfilled, and this data sheet is ready for the web and print
	publications. <pre> OK as is</pre>
	Product Marketing Manager (or designated delegate):
	Sign-off date:
	Engineering Manager (or designated delegate):
	Sign-off date:
	Sign-off indicates that OEDs Policy and Process requirements have been fulfilled, and this data sheet is ready for the web and print
	publications. <pre>OK as is</pre> (see attached) <pre>OK with corrections</pre> Revision required
	Product Marketing Manager (or designated delegate):
	Sign-off date:
	Engineering Manager (or designated delegate):
	Sign-off date:

IRMS6115/IRMT6115

115 Kb/s Data Transceiver

Filename IRMS/T6115 Questions? Doreen Stein X3477 WWW.DataSheetdbeom