SKiiP 15AC066V1

MiniSKiiP[®] 1

3-phase bridge inverter

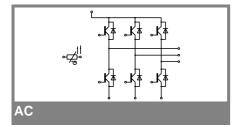
SkiiP 15AC066V1

Target Data

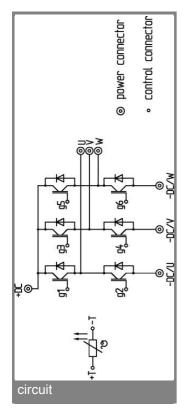
Features

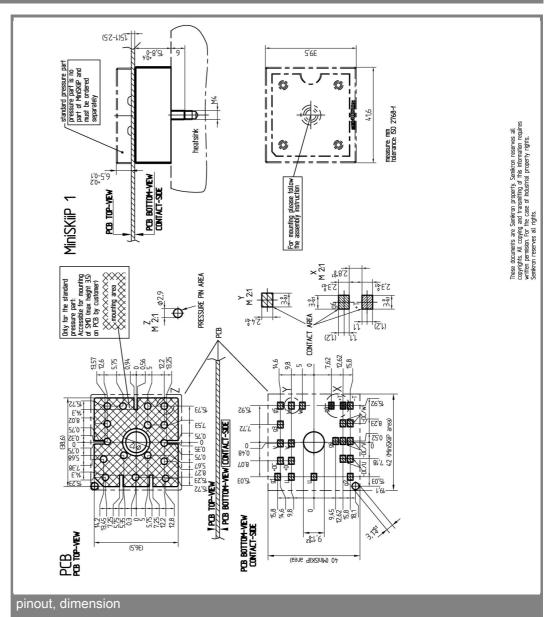
- Trench IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 10,0 kVA
- Typical motor power 4,0 kW

Remarks


- · Case temperature limited to
- T_C=125°C max.
 Product reliability results are valid for T_i=150°C
- SC data: $t_p \le 6 \ \mu s; \ V_{GE} \le 15 \ V; \ T_j = 150 \ ^{\circ}C; \ V_{CC} = 360 \ V$ $V_{CEsat}, \ V_F = chip \ level \ value$


Absolute	Maximum Ratings	$\Gamma_{\rm S}$ = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT - Inverter								
V_{CES}		600	V					
I _C	$T_s = 25 (70) ^{\circ}C, T_i = 150 ^{\circ}C$	37 (28)	Α					
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	40 (33)	Α					
I _{CRM}	$t_p = 1 \text{ ms}$	60	Α					
V_{GES}	·	±20	V					
T_j		-40 + 175	°C					
Diode - Inverter								
I _F	T _s = 25 (70) °C ,T _i = 150 °C	32 (24)	Α					
I _F	$T_s = 25 (70) ^{\circ}C, T_i = 175 ^{\circ}C$	36 (28)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	60	Α					
T_{j}		-40 + 175	°C					
I _{tRMS}	per power terminal (20 A / spring)	40	Α					
T _{stg}	$T_{op} \le T_{stg}$	-40 + 125	°C					
V _{isol}	AC, 1 min.	2500	V					

Characteristics T _S = 25 °C, unless otherwise specifie								
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V_{CEsat}	$I_{Cnom} = 30 \text{ A}, T_{j} = 25 (150) ^{\circ}\text{C}$	1	1,45 (1,65)	1,9 (2,1)	V			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.5$ mA		5,8		V			
V _{CE(TO)}	T _j = 25 (150) °C		0,9 (0,85)	1 (0,9)	V			
r _T	$T_j = 25 (150) ^{\circ}C$		20 (28)	30 (40)	mΩ			
C _{ies}	$V'_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,6		nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,19		nF			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,17		nF			
R _{CC'+EE'}	spring contact-chip T _s = ()°C				mΩ			
$R_{th(j-s)}$	per IGBT		1,35		K/W			
t _{d(on)}	under following conditions		20		ns			
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = -8\text{V}/+15\text{V}$		20		ns			
t _{d(off)}	$I_{Cnom} = 30 \text{ A}, T_j = 150 \text{ °C}$		200		ns			
t _f	$R_{Gon} = R_{Goff} = 20 \Omega$		45		ns			
$E_{on}(E_{off})$	inductive load		0,9 (1,2)		mJ			
Diode - Inverter								
$V_F = V_{EC}$	$I_{Fnom} = 30 \text{ A}, T_i = 25 (150) ^{\circ}\text{C}$		1,5 (1,5)	1,7 (1,7)	V			
V _(TO)	T _i = 25 (150) °C		1 (0,9)	1,1 (1)	V			
r _T	T _i = 25 (150) °C		16,7 (20)	20 (23,3)	mΩ			
$R_{th(j-s)}$	per diode		2,1		K/W			
I _{RRM}	under following conditions		46,3		Α			
Q_{rr}	I _{Fnom} = 30 A, V _R = 300 V		4		μC			
E _{rr}	V _{GE} = 0 V, T _i = 150 °C		1,1		mJ			
	di _F /dt = 1880 A/µs							
Temperature Sensor								
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanical Data								
m			35		g			
M_s	Mounting torque	2		2,5	Nm			

SKiiP 15AC066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 24-02-2006 SEN © by SEMIKRON