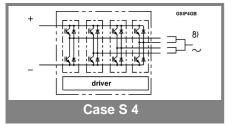

SKiiP 1242GB120-4D

SKiiP[®] 2

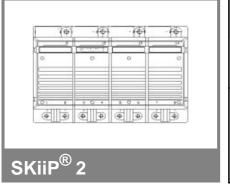
2-pack - integrated intelligent Power System

Power section


SKiiP 1242GB120-4D

Features

- SKiiP technology inside
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute	Maximum Ratings	s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	1200 (900)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	1200 (900)	Α			
I _{FSM}	$T_{i} = 150 ^{\circ}\text{C}, t_{p} = 10 \text{ms}; \text{sin}.$	8640	Α			
I ² t (Diode)	Diode, T _j = 150 °C, 10 ms	373	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

	•				•					
Characteristics T					$T_s = 25^{\circ}$	°C unless of	otherwise	specified		
Symbol	Conditions				min.	typ.	max.	Units		
IGBT										
V_{CEsat}	$I_{\rm C} = 1000 A$	A, T _i = 25 (125) °C			2,6 (3,1)	3,1	V		
V _{CEO}	$T_i = 25 (12)$	25) °C				1,2 (1,3)	1,5 (1,6)	V		
r_{CE}	$T_j = 25 (12)$	25) °C				1,3 (1,8)	1,6 (2)	mΩ		
I _{CES}	$V_{GE} = 0 V$	V _{CE} = V _{CE}	S,			(60)	1,6	mA		
	$T_j = 25 (12)$	25) °C								
E _{on} + E _{off}	I _C = 1000 A	A, V _{CC} = 60	00 V				300	mJ		
	T _j = 125 °C	$C, V_{CC} = 90$	00 V				529	mJ		
R _{CC' + EE'}	terminal ch	nip, T _i = 12	5 °C			0,13		mΩ		
L _{CE}	top, botton	n [*]				3,8		nH		
C _{CHC}	per phase	, AC-side				5,6		nF		
Inverse diode										
$V_F = V_{EC}$	I _F = 1000 /	A, T _i = 25 (125) °C			2,1 (2)	2,6	V		
V_{TO}	$T_j = 25 (12)$					1,3 (1)	1,4 (1,1)	V		
r _T	$T_j = 25 (12)$					0,8 (1)	1,1 (1,3)	mΩ		
E _{rr}	$I_{\rm C} = 1000 I_{\rm C}$	00					39	mJ		
	$T_{j} = 125 °C$	$C, V_{CC} = 90$	00 V				49	mJ		
Mechani	cal data									
M_{dc}	DC termina	,			6		8	Nm		
M _{ac}	AC terminals, SI Units				13		15	Nm		
W	SKiiP® 2 System w/o heat sink					3,5		kg		
W	heat sink				_	8,5		kg		
			P16 hea	at sink; 27	75m ³ /h);	", " refer	ence to			
temperat	•	or			1	•				
R _{th(j-s)I}	per IGBT						0,023	K/W		
$R_{th(j-s)D}$	per diode						0,063	K/W		
R _{th(s-a)}	per module						0,033	K/W		
Z_{th}	R_i (mK/W) (max. values) tau _i (s)									
_	1	2	3	4	1	2	3	4		
$Z_{th(j-r)l}$	2	18	3	0	1	0,13	0,001	1		
Z _{th(j-r)D}	7	48	8	0	1	0,13	0,001	1		
$Z_{th(r-a)}$	1,6	22	7	2,4	494	165	20	0,03		

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 1242GB120-4D

Absolute Maximum Ratings		_a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f_{sw}	switching frequency	14	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 1242GB120-4D


Gate driver features

- CMOS compatible inputs
- · Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- · Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- · Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 25/85/56

Characte	(T _a = 25 °C			= 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units
V _{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	290+580	290+580*f/f _{max} +1,2*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	220+420	220+420*f/f _{max} +0,85*(I _{AC} /A)		
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time			1,5	μs
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs
tpERRRESET	error memory reset time	9			μs
t_{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		1200		
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		1500		Α
I _{TRIPLG}	ground fault protection				Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

