UltraLogic[™] 64-Macrocell Flash CPLD #### **Features** - · 64 macrocells in four logic blocks - 64 I/O pins - · 6 dedicated inputs including 4 clock pins - No hidden delays - · High speed - f_{MAX} = 125 MHz - $-t_{PD} = 10 \text{ ns}$ - $-t_S = 5.5 \text{ ns}$ - $-t_{CO} = 6.5 \text{ ns}$ - · Electrically alterable Flash technology - · Available in 84-pin PLCC and 100-pin TQFP packages - · Pin compatible with the CY7C374 #### **Functional Description** The CY7C373 is a Flash erasable Complex Programmable Logic Device (CPLD) and is part of the FLASH370™ family of high-density, high-speed CPLDs. Like all members of the FLASH370 family, the CY7C373 is designed to bring the ease of use and high performance of the 22V10 to high-density CPLDs. The 64 macrocells in the CY7C373 are divided between four logic blocks. Each logic block includes 16 macrocells, a 72 x 86 product term array, and an intelligent product term allocator. The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource—the Programmable Interconnect Matrix (PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect. Like all members of the FLASH370 family, the CY7C373 is rich in I/O resources. Every macrocell in the device features an associated I/O pin, resulting in 64 I/O pins on the CY7C373. In addition, there are two dedicated inputs and four input/clock pins. Finally, the CY7C373 features a very simple timing model. Unlike other high-density CPLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C373 remain the same. #### **Selection Guide** | | | 7C373-125 | 7C373-100 | 7C373-83 | 7C373-66 | 7C373L-66 | |------------------------------------|---------------------------|-----------|-----------|----------|----------|-----------| | Maximum Propagation Delay (ns) | | 10 | 12 | 15 | 20 | 20 | | Minimum Set-up, t _S (ns | .) | 5.5 | 6 | 8 | 10 | 10 | | Maximum Clock to Outp | out, t _{CO} (ns) | 6.5 | 6.5 | 8 | 10 | 10 | | Maximum Supply | Commercial | 280 | 250 | 250 | 250 | 125 | | Current, I _{CC} (mA) | Industrial | | | 300 | 300 | | Shaded area contains preliminary information Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600 June 1992 – Revised June 1996 # Pin Configurations ## Functional Description (continued) #### Logic Block The number of logic blocks distinguishes the members of the FLASH370 family. The CY7C373 includes four logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells. #### Product Term Array The product term array in the FLASH370 logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72 x 86. This large array in each logic block allows for very complex functions to be implemented in single passes through the device. #### Product Term Allocator The product term allocator is a dynamic, configurable resource that shifts product term resources to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370 CPLDs. Note that the product term allocator is handled by software and is invisible to the user. #### I/O Macrocell Each of the macrocells on the CY7C373 has a separate I/O pin associated with it. In other words, each I/O pin is shared by two macrocells. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed, polarity control over the input sum-term, and two global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input. #### **Programmable Interconnect Matrix** The Programmable Interconnect Matrix (PIM) connects the four logic blocks on the CY7C373 to the inputs and to each other. All inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM. #### **Development Tools** Development software for the CY7C373 is available from Cypress's *Warp2*TM, and *Warp3*TM software packages. Both of these products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABELTM, CUPLTM, and LOG/ICTM. Please refer to third-party tool support data sheets for further information. #### **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) | Storage Temperature | 65°C to +150°C | |--|----------------| | Ambient Temperature with Power Applied | 55°C to +125°C | | Supply Voltage to Ground Potential | 0.5V to +7.0V | | DC Voltage Applied to Outputs in High Z State | 0.5V to +7.0V | | DC Input Voltage | 0.5V to +7.0V | | DC Program Voltage | 12.5V | | Output Current into Outputs | 16 mA | | Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V | | Latch-Up Current | >200 mA | ## **Operating Range** | Range | Ambient
Temperature | V _{cc} | |------------|------------------------|-----------------| | Commercial | 0°C to +70°C | 5V ± 5% | | Industrial | –40°C to +85°C | 5V ± 10% | # Electrical Characteristics Over the Operating Range | Parameter | Description | | Test Conditions | | Min. | Max. | Unit | |-----------------|---|--|--|----------------------|------|------|------| | V _{OH} | Output HIGH Voltage | $V_{CC} = Min.$ $I_{OH} = -3.2 \text{ mA (Com'l/Ind)}$ | | | | | V | | V _{OL} | Output LOW Voltage | V _{CC} = Min. | I _{OL} = 16 mA (Com'l/Ind) | | | 0.5 | V | | V _{IH} | Input HIGH Voltage | Guaranteed Input Lo | gical HIGH Voltage for all Ir | nputs ^[†] | 2.0 | 7.0 | V | | V _{IL} | Input LOW Voltage | Guaranteed Input Lo | gical LOW Voltage for all In | puts ^[] | -0.5 | 0.8 | V | | I _{IX} | Input Load Current | $V_I = Internal GND, V_I = V_{CC}$ | | | | +10 | μΑ | | I _{OZ} | Output Leakage Current | V _o = Internal GND, V | o = V _{CC} | | -50 | +50 | μΑ | | los | Output Short
Circuit Current ^[2, 3] | $V_{CC} = Max., V_{OUT} = 0$ | .5V | | -30 | -160 | mA | | I _{CC} | Power Supply Current ^[4] | $V_{CC} = Max., I_{OUT} = 0 \text{ m}$ | $A, f = 1 \text{ mHz}, V_{IN} = GND, V_{CC}$ | Com'l | | 250 | mA | | | | | | Com'l
"L",-66 | | 125 | mA | | | | | | Com'l
-125 | | 280 | mA | | | | | | Industrial | | 300 | mA | Shaded area contains preliminary information # Capacitance^[3] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|--------------------------------------|------|------| | C _{IN} | Input Capacitance | V _{IN} = 5.0V at f=1 MHz | 10 | pF | | C _{OUT} | Output Capacitance | V _{OUT} = 5.0V at f = 1 MHz | 12 | pF | ## Endurance Characteristics[3] | Parameter | Description | Test Conditions | Min. | Max. | Unit | |-----------|------------------------------|-------------------------------|------|------|--------| | N | Minimum Reprogramming Cycles | Normal Programming Conditions | 100 | | Cycles | #### Notes: - 1. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included. - 2. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. V_{OUT} = 0.5V has been chosen to avoid test problems caused by tester ground degradation. - 3. Tested initially and after any design or process changes that may affect these parameters. - 4. Measured with 16-bit counter programmed into each logic block. #### **AC Test Loads and Waveforms** OUTPUT O 4 | Paramete ^[5] | V _X | Output Waveform Measurement Level | | | | | | | |-------------------------|------------------|-------------------------------------|--|--|--|--|--|--| | t _{ER (-}) | 1.5V | V _{OH} 0.5V V _X | | | | | | | | t _{ER (+)} | 2.6V | V _{OL} 0.5V | | | | | | | | t _{EA (+)} | 1.5V | V _X | | | | | | | | t _{EA (-)} | V _{thc} | V _X 0.5V V _{OL} | | | | | | | (c) Test Waveforms # Switching Characteristics Over the Operating Range^[6] | | | | | | | | | 7C3 | 73-66 | | |-------------------|---|------|-------|---------------|--------|------|-------|------|--------|------| | | | 7C37 | 3-125 | 7 C 37 | '3-100 | 7C3 | 73-83 | 7C37 | '3L-66 | | | Parameter | Description | | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | Combinato | rial Mode Parameters | | | 1 | | | | 1 | .1 | | | t _{PD} | Input to Combinatorial Output | | 10 | | 12 | | 15 | | 20 | ns | | t _{PDL} | Input to Output Through Transparent Input or
Output Latch | | 13 | | 15 | | 18 | | 22 | ns | | t _{PDLL} | Input to Output Through Transparent Input and Output Latches | | 15 | | 16 | | 19 | | 24 | ns | | t _{EA} | Input to Output Enable | | 14 | | 16 | | 19 | | 24 | ns | | t _{ER} | Input to Output Disable | | 14 | | 16 | | 19 | | 24 | ns | | Input Regis | stered/Latched Mode Parameters | | | 1 | ı | | | | | | | t _{WL} | Clock or Latch Enable Input LOW Time ^[3] | 3 | | 3 | | 4 | | 5 | | ns | | t _{WH} | Clock or Latch Enable Input HIGH Time ^[3] | 3 | | 3 | | 4 | | 5 | | ns | | t _{IS} | Input Register or Latch Set-Up Time | 2 | | 2 | | 3 | | 4 | | ns | | t _{IH} | Input Register or Latch Hold Time | 2 | | 2 | | 3 | | 4 | | ns | | t _{ICO} | Input Register Clock or Latch Enable to Combinatorial Output | | 14 | | 16 | | 19 | | 24 | ns | | t _{ICOL} | Input Register Clock or Latch Enable to Output Through Transparent Output Latch | | 16 | | 18 | | 21 | | 26 | ns | Shaded area contains preliminary information #### Notes: - 5. t_{ER} measured with 5-pF AC Test Load and t_{EA} measured with 35-pF AC Test Load. - 6. All AC parameters are measured with 16 outputs switching and 35-pF AC Test Load. # **Switching Characteristics** Over the Operating Range^[6] (Continued) | | | | | | | | | 7C3 | 73-66 | | |---|--|-----------|-------|-----------|------|----------|------|-----------|-------|------| | | Description | | 3-125 | 7C373-100 | | 7C373-83 | | 7C373L-66 | | | | Parameter | | | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | Output Reg | jistered/Latched Mode Parameters | | • | 1 | | | | | | | | t _{CO} | Clock or Latch Enable to Output | | 6.5 | | 6.5 | | 8 | | 10 | ns | | t _S | Set-Up Time from Input to Clock or Latch Enable | 5.5 | | 6 | | 8 | | 10 | | ns | | t _H | Register or Latch Data Hold Time | 0 | | 0 | | 0 | | 0 | | ns | | t _{CO2} | Output Clock or Latch Enable to Output Delay (Through Memory Array) | | 14 | | 16 | | 19 | | 24 | ns | | t _{SCS} | Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array) | 8 | | 10 | | 12 | | 15 | | ns | | t _{SL} | Set-Up Time from Input Through Transparent
Latch to Output Register Clock or Latch Enable | 10 | | 12 | | 15 | | 20 | | ns | | t _{HL} | Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable | 0 | | 0 | | 0 | | 0 | | ns | | f _{MAX1} | Maximum Frequency with Internal Feedback (Least of $1/t_{SCS}$, $1/(t_S + t_H)$, or $1/t_{CO}$) ^[3] | 125 | | 100 | | 83 | | 66 | | MHz | | f _{MAX2} | Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of 1/(t_{WL} + t_{WH}), 1/(t_{S} + t_{H}), or 1/ t_{CO})[3] | 153.
8 | | 153.
8 | | 125 | | 100 | | MHz | | f _{MAX3} | Maximum Frequency of (2) CY7C373s with External Feedback (Lesser of $1/(t_{CO} + t_{S})$ and $1/(t_{WL} + t_{WH}))^{[3]}$ | 83.3 | | 80 | | 62.5 | | 50 | | MHz | | t _{OH} -t _{IH}
37x | Output Data Stable from Output clock Minus Input Register Hold Time for 7C37x ^[3,7] | О | | 0 | | 0 | | 0 | | ns | | Pipelined M | lode Parameters | | | 1 | • | 1 | • | ! | • | • | | t _{ICS} | Input Register Clock to Output Register Clock | 8 | | 10 | | 12 | | 15 | | ns | | f _{MAX4} | Maximum Frequency in Pipelined Mode (Least of $1/(t_{CO} + t_{IS})$, $1/t_{ICS}$, $1/(t_{WL} + t_{WH})$, $1/(t_{IS} + t_{IH})$, or $1/t_{SCS}$) | 125 | | 83.3 | | 66.6 | | 50.0 | | MHz | | Reset/Pres | et Parameters | | | • | • | • | • | • | • | • | | t _{RW} | Asynchronous Reset Width ^[3] | 10 | | 12 | | 15 | | 20 | | ns | | t _{RR} | Asynchronous Reset Recovery Time ^[3] | 12 | | 14 | | 17 | | 22 | | ns | | t _{RO} | Asynchronous Reset to Output | | 16 | | 18 | | 21 | | 26 | ns | | t _{PW} | Asynchronous Preset Width ^[3] | 10 | | 12 | | 15 | | 20 | | ns | | t _{PR} | Asynchronous Preset Recovery Time ^[3] | 12 | | 14 | | 17 | | 22 | | ns | | t _{PO} | Asynchronous Preset to Output | | 16 | | 18 | | 21 | | 26 | ns | | t _{POR} | Power-On Reset ^[3] | | 1 | | 1 | | 1 | | 1 | μs | Shaded area contains preliminary information. #### Notes: ^{7.} This specification is intended to guarantee interface compatibility of the other members of the CY7C370 family with the CY7C373. This specification is met for the devices operating at the same ambient temperature and at the same power supply voltage # **Switching Waveforms** # Combinatorial Output 7C373-6 # Registered Output 7C373-7 # Latched Output 7C373-8 # Switching Waveforms (Continued) # Registered Input #### Clock to Clock #### Latched Input 7C373-11 # Switching Waveforms (Continued) # Latched Input and Output ## AsynchronousReset # AsynchronousPreset 7C373-14 # Switching Waveforms (Continued) ## Output Enable/Disable 7C373-16 # **Ordering Information** | Ordering Code | Package
Type | Package
Type | Operating
Range | |---------------|--|---|---| | CY7C373-125AC | A100 | 100-Pin Thin Quad Flatpack | Commercial | | CY7C373-125JC | J83 | 84-Lead Plastic Leaded Chip Carrier | | | CY7C373-100AC | A100 | 100-Pin Thin Quad Flatpack | Commercial | | CY7C373-100JC | J83 | 84-Lead Plastic Leaded Chip Carrier | | | CY7C373-83AC | A100 | 100-Pin Thin Quad Flatpack | Commercial | | CY7C373-83JC | J83 | 84-Lead Plastic Leaded Chip Carrier | | | CY7C373-83AI | A100 | 100-Pin Thin Quad Flatpack | Industrial | | CY7C373-83JI | J83 | 84-Lead Plastic Leaded Chip Carrier | | | CY7C373-66AC | A100 | 100-Pin Thin Quad Flatpack | Commercial | | CY7C373-66JC | J83 | 84-Lead Plastic Leaded Chip Carrier | | | CY7C373-66AI | A100 | 100-Pin Thin Quad Flatpack | Industrial | | CY7C373-66JI | J83 | 84-Lead Plastic Leaded Chip Carrier | | | CY7C373L-66JC | J83 | 84-Lead Plastic Leaded Chip Carrier | Commercial | | | CY7C373-125AC CY7C373-125JC CY7C373-100AC CY7C373-100JC CY7C373-83AC CY7C373-83JC CY7C373-83JI CY7C373-66AC CY7C373-66JC CY7C373-66JI | Ordering Code Type CY7C373-125AC A100 CY7C373-125JC J83 CY7C373-100AC A100 CY7C373-100JC J83 CY7C373-83AC A100 CY7C373-83JC J83 CY7C373-83AI A100 CY7C373-83JI J83 CY7C373-66AC A100 CY7C373-66JC J83 CY7C373-66AI A100 CY7C373-66AI J83 CY7C373-66JI J83 | Ordering Code Type Type CY7C373-125AC A100 100-Pin Thin Quad Flatpack CY7C373-125JC J83 84-Lead Plastic Leaded Chip Carrier CY7C373-100AC A100 100-Pin Thin Quad Flatpack CY7C373-100JC J83 84-Lead Plastic Leaded Chip Carrier CY7C373-83AC A100 100-Pin Thin Quad Flatpack CY7C373-83JC J83 84-Lead Plastic Leaded Chip Carrier CY7C373-83AI A100 100-Pin Thin Quad Flatpack CY7C373-66AC A100 100-Pin Thin Quad Flatpack CY7C373-66AC J83 84-Lead Plastic Leaded Chip Carrier CY7C373-66AI A100 100-Pin Thin Quad Flatpack | Shaded area contains preliminary information Document #: 38-00216-D UltraLogic, FLASH370, Warp2, and Warp3 are trademarks of Cypress Semiconductor Corporation. ABEL is a trademark of Data I/O Corporation. LOG/iC is a trademark of Isdata Corporation. CUPL is a trademark of Logical Devices Incorporated. # **Package Diagrams** #### 100-Pin Thin Quad Flat Pack A100 #### 84-Lead Plastic Leaded Chip Carrier J83 [©] Cypress Semiconductor Corporation, 1996. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.