

600V, 12A, 0.9Ω Max t_{rr} ≤210ns

N-Channel FREDFET

POWER MOS 8® is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- · Ultra low Crss for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
	Continuous Drain Current @ T _C = 25°C	12	
	Continuous Drain Current @ T _C = 100°C	8	Α
I _{DM}	Pulsed Drain Current ^①	46	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy ©	524	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	6	А

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			337	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.37	- °C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
T _L	Soldering Temperature for 10 Seconds (1.6mm from case)			300		
W _T	Package Weight		0.22		OZ	
			6.2		g	
Torque	Mounting Torque (TO-247 Package), 6-32 or M3 screw			10	in·lbf	
				1.1	N·m	

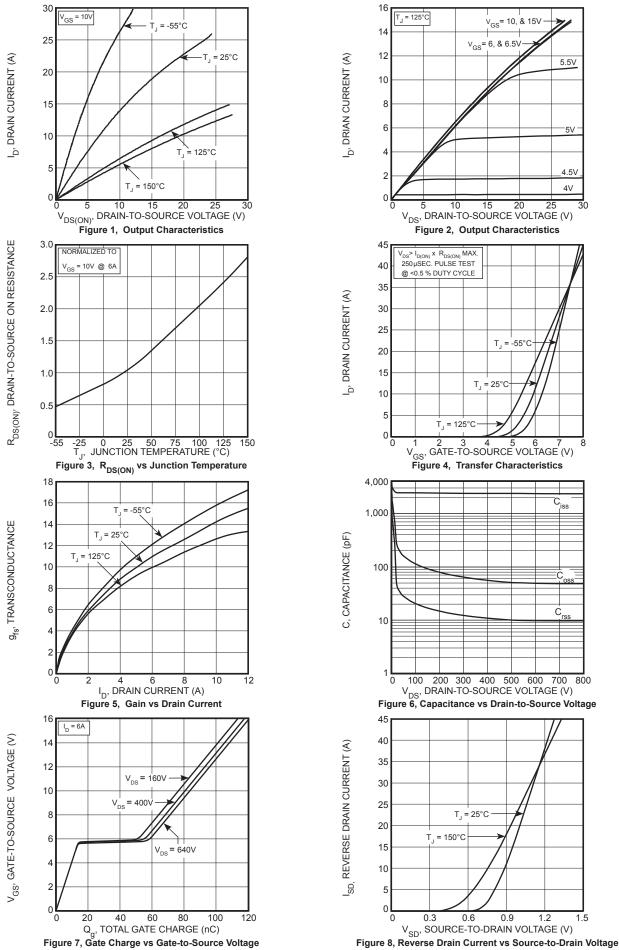
- J							
Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250μA		800			V
$\Delta V_{BR(DSS)}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250μA			0.87		V/°C
R _{DS(on)}	Drain-Source On Resistance®	$V_{GS} = 10V, I_D = 6A$			0.65	0.9	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1 \text{mA}$		2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	Zara Cata Valtara Dunin Current	V _{DS} = 533V	T _J = 25°C			250	
DSS	Zero Gate Voltage Drain Current	V _{GS} = 0V	T _J = 125°C			1000	μA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V				±100	nA

Dynamic Characteristics

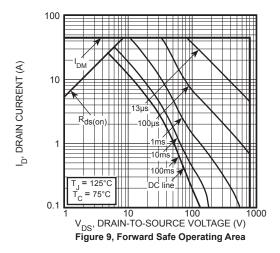
T₁ = 25°C unless otherwise specified

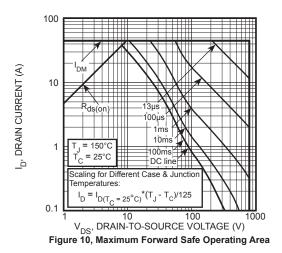
APT11F80B S

Symbol	Parameter	Test Conditions Min		Тур	Max	Unit
g _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 6A		11		S
C _{iss}	Input Capacitance)/ O)/)/ O5)/		2471		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		42		
C _{oss}	Output Capacitance	1 111112		246		
$C_{o(cr)} @$	Effective Output Capacitance, Charge Related	V = 0V V = 0V to 400V		116		pF
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 400V$		58		
Q _g	Total Gate Charge	V 04: 40V 1 04		80		
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 6A,$		13		nC
Q _{gd}	Gate-Drain Charge	V _{DS} = 400V		41		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		14		
t _r	Current Rise Time	V _{DD} = 400V, I _D = 6A		20		ns
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 4.7\Omega^{\textcircled{6}}, V_{GG} = 15V$		61		115
t _f	Current Fall Time			18		1


Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Is	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n			12	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	junction diode (body diode)			46	
V _{SD}	Diode Forward Voltage	$I_{SD} = 6A, T_{J} = 25^{\circ}C, V_{GS} = 0V$			1.0	V
t _{rr}	Reverse Recovery Time	T _J = 25°C		181	210	ns
Tr Tr	Reverse Recovery Time	T _J = 125°C		300	360	115
Q _{rr}	Reverse Recovery Charge	I _{SD} = 6A ^③ T _J = 25°C		0.71		μC
rr		$di_{SD}/dt = 100A/\mu s$ $T_J = 125^{\circ}C$		1.61		μΟ
1	Reverse Recovery Current	$V_{DD} = 100V$ $T_J = 25^{\circ}C$		8.3		Α
'rrm		T _J = 125°C		11.9		_ A
dv/dt	Peak Recovery dv/dt	I_{SD} ≤ 6A, di/dt ≤1000A/µs, V_{DD} = 400V, T_{J} = 125°C			25	V/ns


- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25$ °C, L = 29.1mH, $R_G = 25\Omega$, $I_{AS} = 6A$.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.


- \bigcirc R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

050-8170 Rev B 04-2009

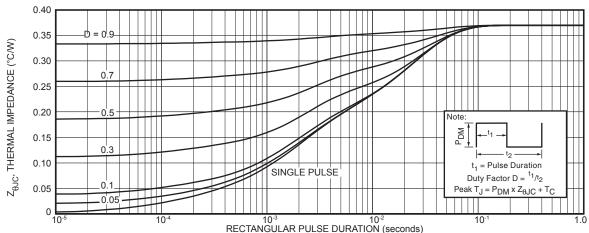
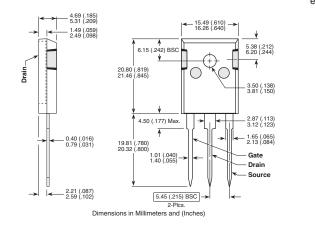
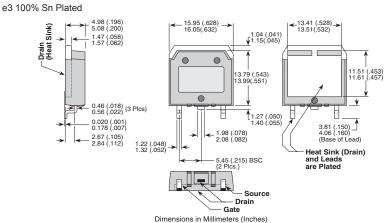




Figure 11. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration

TO-247 (B) Package Outline

D³PAK Package Outline

