
Low noise low drop voltage regulator with shutdown function

Features

- Output current up to 150 mA
- Low dropout voltage (350 mV at I_{OUT} = 50 mA)
- Very low quiescent current: 0.1 μA in OFF mode and max. 250 μA in ON mode at I_{OUT} = 0 mA
- Low output noise: typ 30 µV at I_{OUT} = 60 mA and 10 Hz < f < 80 kHz
- Wide range of output voltages
- Internal current and thermal limit
- Operative input voltage from:
 V_{OUT} + 0.5 to 14 V (for V_{OUT} > 2 V)
 or from 2.5 V to 14 V (for V_{OUT} < 2 V)

Description

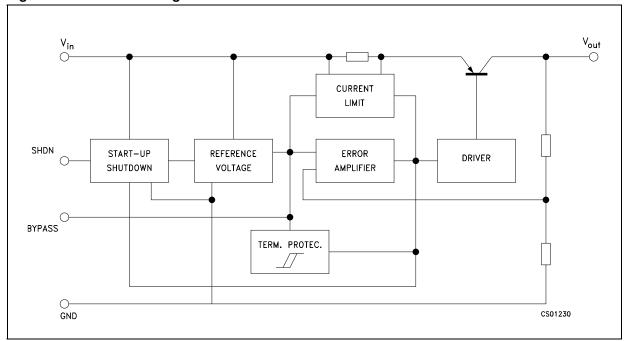
The LK112xx is a low dropout linear regulator with a built in electronic switch. The internal switch can be controlled by TTL or CMOS logic levels. The device is ON state when the control pin is pulled to a logic high level. An external capacitor can be used connected to the noise bypass pin to lower the output noise level to 30 $\mu Vrms.$ An internal PNP pass transistor is used to achieve a low dropout voltage.

The LK112xx has a very low quiescent current in ON MODE while in OFF MODE the $\rm I_q$ is reduced down to 100 nA max. The internal thermal shutdown circuitry limits the junction temperature to below 150 °C. The load current is internally monitored and the device will shutdown in the presence of a short circuit or overcurrent condition at the output.

Table 1. Device summary

Part numbers					
LK112XX14	LK112XX24	LK112XX35	LK112XX45		
LK112XX15	LK112XX25	LK112XX37	LK112XX46		
LK112XX18	LK112XX26	LK112XX39	LK112XX48		
LK112XX19	LK112XX29	LK112XX41	LK112XX49		
LK112XX20	LK112XX31	LK112XX42	LK112XX50		
LK112XX22	LK112XX33	LK112XX43	LK112XX60		
LK112XX23	LK112XX34	LK112XX44	LK112XX80		

Contents LK112xx


Contents

1	Diagram3
2	Pin configuration
3	Maximum ratings
4	Electrical characteristics 6
5	Typical characteristics
6	Package mechanical data
7	Order codes
8	Revision history

LK112xx Diagram

1 Diagram

Figure 1. Schematic diagram

Pin configuration LK112xx

2 Pin configuration

Figure 2. Pin connection (top view)

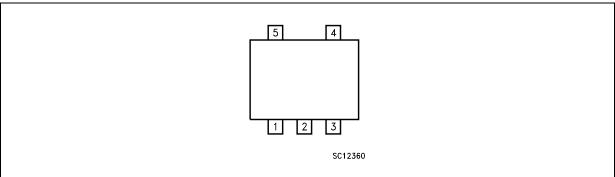


Table 2. Pin description

Pin n°	Symbol	Note
1	SHDN	Shutdown input: disables the regulator when is connected to GND or to positive voltage less than 0.6 V
2	GND	Ground pin: Internally connected to the die attach flag to decrease the total thermal resistance and increase the package ability to dissipate power.
3	Bypass	Bypass pin: bypass with 0.1 μF to improve the V_{REF} thermal noise performances.
4	OUT	Output port
5	IN	Input port

LK112xx Maximum ratings

3 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
VI	DC input voltage	16	V
V _{SHDN}	DC input voltage	16	V
I _O	Output current	Internally limited	
T _{STG}	Storage temperature range	-55 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Table 4. Thermal data

Symbol	Parameter	SOT23-5L	Unit
R _{thJC}	Thermal resistance junction-case	81	°C/W
R _{thJA}	Thermal resistance junction-ambient	255	°C/W

Electrical characteristics LK112xx

4 Electrical characteristics

Table 5. Electrical characteristics for LK112 (T_J = 25 °C, V_{IN} = V_{OUT} + 1 V ⁽¹⁾, I_{OUT} = 0 mA, V_{SHDN} = 1.8 V, C_I = 1 μ F, C_O = 2.2 μ F, C_{BYPASS} = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
L Quiacant aurrent	ON MODE (except I _{SHDN})		175	250	μΑ	
Iq	Quiescent current	OFF MODE, V _I = 8V, V _{SHDN} = 0V		0	0.1	μΑ
V _O	Output voltage	I _O = 30mA	(see table)	
41/	Line regulation	$V_{I} = V_{O} + 1V \text{ to } V_{O} + 6V, V_{O} \le 5.6V$		0.7	20	mV
ΔV_{O}	Line regulation	$V_1 = V_O + 1V \text{ to } V_O + 6V, V_O > 5.6V$		0.8	40	mV
41/	Load regulation	I _O = 1 to 60mA		15	30	mV
ΔV_{O}	Load regulation	I _O = 1 to 150mA		25	90	mV
\/	Dranavitvaltaria	I _O = 60 mA ⁽²⁾		0.17	0.24	V
V_d	Dropout voltage	I _O = 150 mA ⁽²⁾		0.29	0.35	V
I _O	Output current limit		150			mA
SVR	Supply voltage rejection	$V_I = V_O + 1.5V$, $C_{BYP} = 0.1 \mu F$ $C_O = 10 \mu F$, $f = 400 Hz$, $I_O = 30 mA$		55		dB
eN	Output noise voltage	B= 10Hz to 80kHz, $C_{BYP} = 0.1 \mu F$ $C_O = 10 \mu F$, $V_I = V_O + 1.5 V$, $I_O = 60 mA$		30		μVrms
I _{SHDN}	Shutdown input current	V _{SHDN} = 1.8V, Output ON		12	35	μΑ
V _{SHDN} Shu	Shutdown input logic	Output ON	1.8			V
	Shutdown input logic	Output OFF			0.6] v
$\Delta V_{O}/T_{J}$	Output voltage temperature coefficient	I _O = 10mA		0.09		mV/°C

^{1.} For version with output voltage less than 2 V, V_{IN} = 2.4 V

^{2.} Only for version with output voltage more than 2.1 V

5 Typical characteristics

(Unless otherwise specified, T_J = 25 °C, C_I = 1 $\mu F,\,C_O$ = 2.2 $\mu F,\,C_{BYP}$ = 100 nF)

Figure 3. Output voltage vs temperature

Figure 4. Output voltage vs temperature

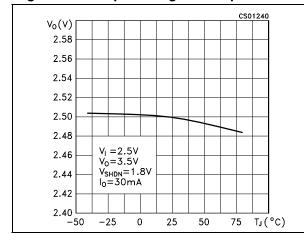
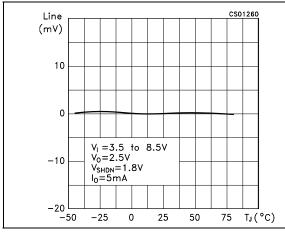



Figure 5. Line regulation vs temperature

Figure 6. Load regulation vs temperature

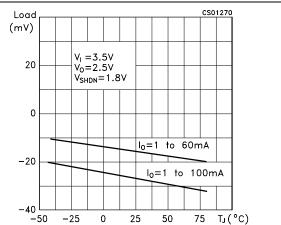
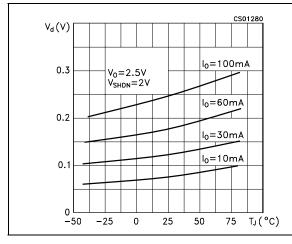
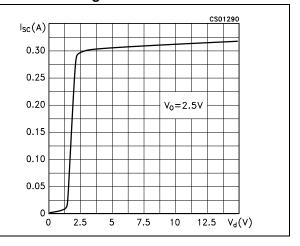
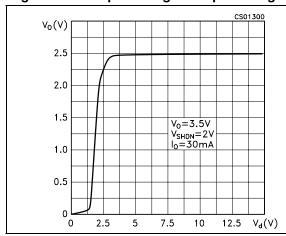
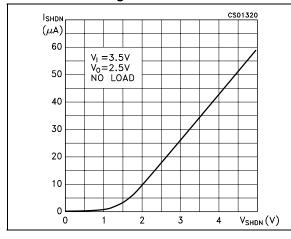




Figure 7. Dropout voltage vs temperature


Figure 8. Short circuit current vs dropout voltage

Output voltage vs input voltage Figure 9.


Shutdown voltage vs temperature Figure 10. CS01310

VSHDN (V) 1.5 ON 1.0 OFF $V_1 = 3.5V$ $V_0 = 2.5V$ 0.5 $I_0=1$ mA T_J(°C) -50 -25 0 25 50 75

Figure 11. Shutdown current vs shutdown voltage

Figure 12. Supply voltage rejection vs temperature

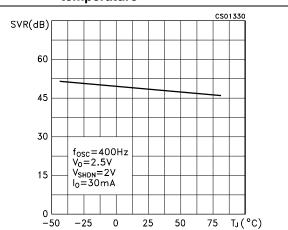
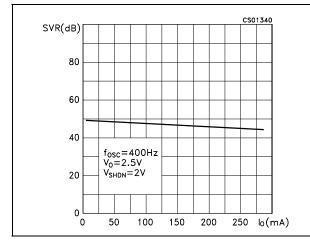



Figure 13. current

Supply voltage rejection vs output Figure 14. Supply voltage rejection vs frequency

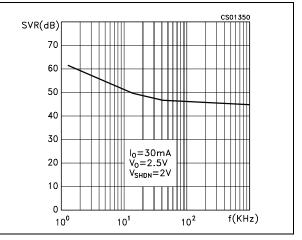


Figure 15. Supply voltage rejection vs temperature

Figure 16. Quiescent current vs temperature

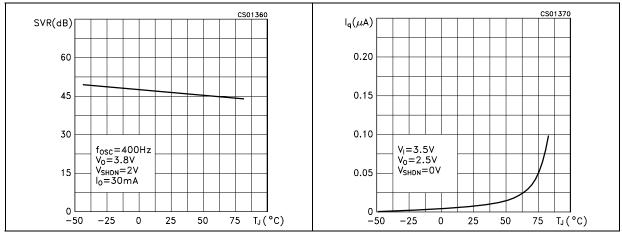


Figure 17. Quiescent current vs input voltage Figure 18. Quiescent current vs shutdown voltage

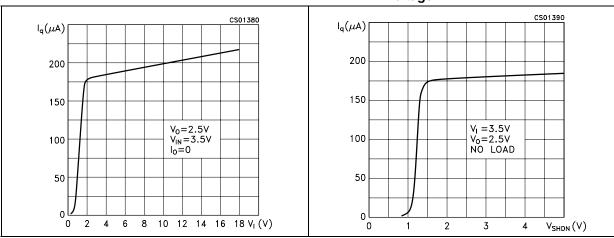


Figure 19. Quiescent current vs output current Figure 20. Reverse current vs reverse voltage

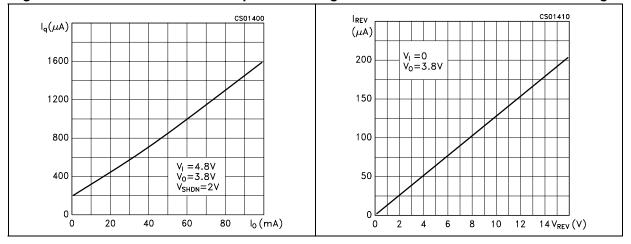


Figure 21. Stability

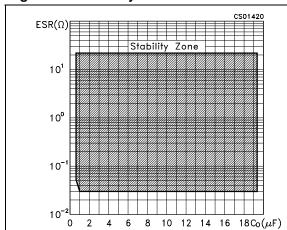


Figure 22. Spectrum noise

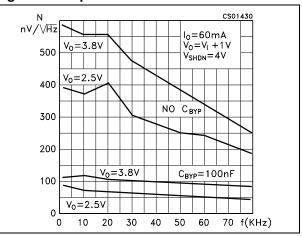


Figure 23. Start-up transient

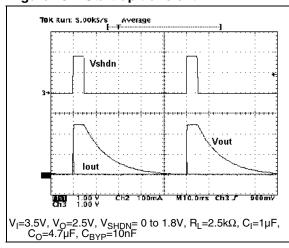


Figure 24. Start-up transient

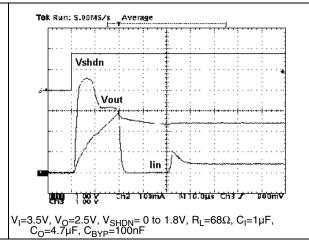


Figure 25. Line transient

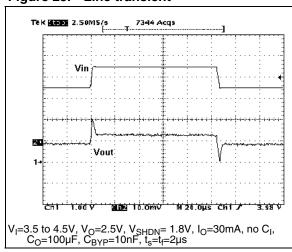


Figure 26. Line transient

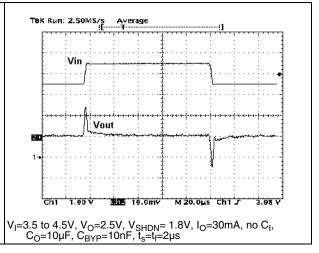


Figure 27. Line transient

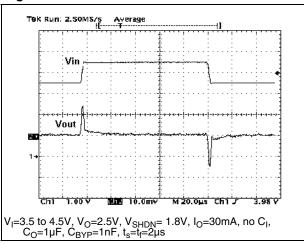


Figure 28. Load transient

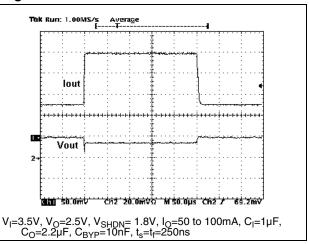


Figure 29. Load transient

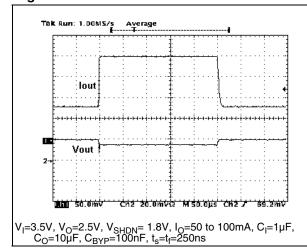
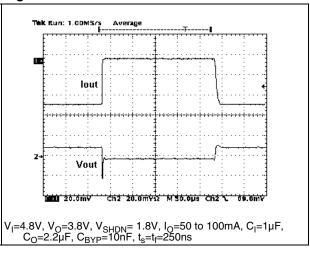
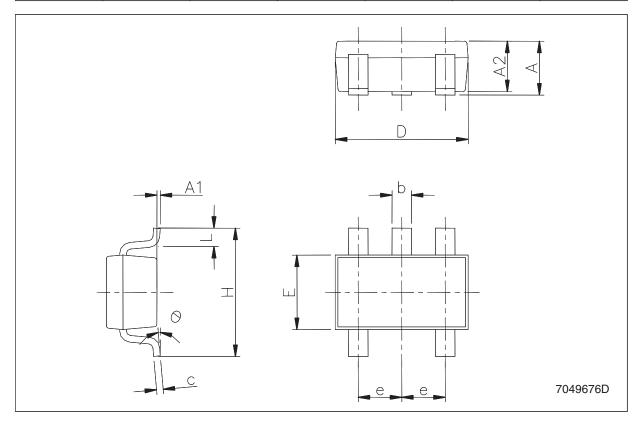



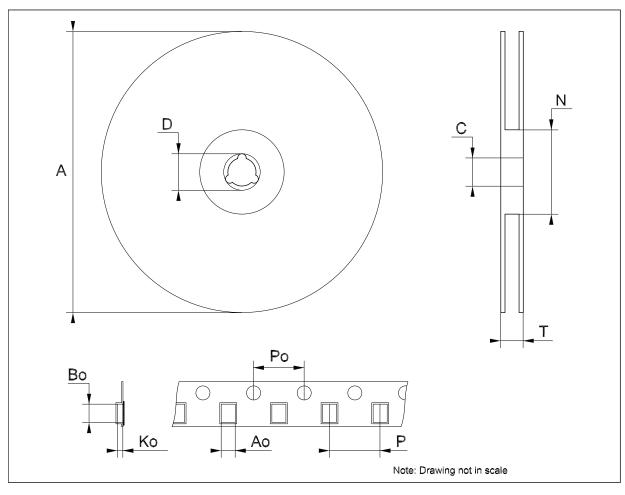
Figure 30. Load transient



6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

SOT23-5L mechanical data


Dim		mm.				
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.90		1.45	35.4		57.1
A1	0.00		0.10	0.0		3.9
A2	0.90		1.30	35.4		51.2
b	0.35		0.50	13.7		19.7
С	0.09		0.20	3.5		7.8
D	2.80		3.00	110.2		118.1
E	1.50		1.75	59.0		68.8
е		0.95			37.4	
Н	2.60		3.00	102.3		118.1
L	0.10		0.60	3.9		23.6

577

Tape & reel SOT23-xL mechanical data

Dim.		mm.		inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	3.13	3.23	3.33	0.123	0.127	0.131
Во	3.07	3.17	3.27	0.120	0.124	0.128
Ko	1.27	1.37	1.47	0.050	0.054	0.0.58
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	3.9	4.0	4.1	0.153	0.157	0.161

LK112xx Order codes

7 Order codes

Table 6. Order codes

Part number	Output voltage	V _{OUT} Min	V _{OUT} Max	Test voltage
LK112M14TR ⁽¹⁾	1.4V	1.34V	1.46V	2.4V
LK112M15TR	1.5V	1.44V	1.56V	2.4V
LK112M18TR	1.8V	1.74V	1.86V	2.4V
LK112M19TR ⁽¹⁾	1.9V	1.84V	1.96V	2.4V
LK112M20TR ⁽¹⁾	2.0V	1.94V	2.06V	3.0V
LK112M22TR ⁽¹⁾	2.2V	2.14V	2.26V	3.2V
LK112M23TR ⁽¹⁾	2.3V	2.24V	2.36V	3.3V
LK112M24TR ⁽¹⁾	2.4V	2.34V	2.46V	3.4V
LK112M25TR	2.5V	2.44V	2.56V	3.5V
LK112M26TR ⁽¹⁾	2.6V	2.54V	2.66V	3.6V
LK112M29TR ⁽¹⁾	2.9V	2.84V	2.96V	3.9V
LK112M31TR ⁽¹⁾	3.1V	3.04V	3.16V	4.1V
LK112M33TR	3.3V	3.24V	3.36V	4.3V
LK112M34TR ⁽¹⁾	3.4V	3.335V	3.465V	4.4V
LK112M35TR ⁽¹⁾	3.5V	3.435V	3.565V	4.5V
LK112M37TR ⁽¹⁾	3.7V	3.630V	3.770V	4.7V
LK112M39TR ⁽¹⁾	3.9V	3.825V	3.975V	4.9V
LK112M41TR ⁽¹⁾	4.1V	4.020V	4.180V	5.1V
LK112M42TR ⁽¹⁾	4.2V	4.120V	4.280V	5.2V
LK112M43TR ⁽¹⁾	4.3V	4.215V	4.385V	5.3V
LK112M44TR ⁽¹⁾	4.4V	4.315V	4.485V	5.4V
LK112M45TR ⁽¹⁾	4.5V	4.410V	4.590V	5.5V
LK112M46TR ⁽¹⁾	4.6V	4.510V	4.690V	5.6V
LK112M48TR ⁽¹⁾	4.8V	4.705V	4.895V	5.8V
LK112M49TR ⁽¹⁾	4.9V	4.800V	5.000V	5.9V
LK112M50TR	5.0V	4.900V	5.100V	6.0V
LK112M60TR	6.0V	5.880V	6.120V	7.0V
LK112M80TR	8.0V	7.840V	8.160V	9.0V

^{1.} Available on request.

Revision history LK112xx

8 Revision history

Table 7. Document revision history

Date	Revision	Changes
31-Jan-2005	8	Change maturity code.
13-Jun-2006	9	Order codes updated and new template.
17-Oct-2006	10	The T _{OP} value on table 2 has been updated.
18-Jul-2007	11	Add <i>Table 1</i> in cover page.
21-Sep-2007	12	Features updated.
11-Dec-2007	13	Modified: Table 6.
12-Feb-2008	14	Modified: Table 6 on page 15.
10-Jul-2008	15	Modified: Table 1 on page 1 and Table 6 on page 15.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

