
Copyright © 1994-2001. All rights reserved.
ARM DDI 0029G

ARM7TDMI
(Rev 3)

Technical Reference Manual

ii Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

ARM7TDMI
Technical Reference Manual

Copyright © 1994-2001. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Figure B-2 on page B-5 reprinted with permission IEEE Std 1149.1-1990. IEEE Standard Test Access Port
and Boundary Scan Architecture Copyright 1994-2001, by IEEE. The IEEE disclaims any responsibility or
liability resulting from the placement and use in the described manner.

Change history

Date Issue Change

October 1994 A Released.

December 1994 B First formal release.

December 1994 C Review comments added.

March 1995 D Technical changes.

August 1995 E Review comments added.

November 2000 F SGML, new layout, new title, incorporation of errata, and technical changes.

April 2001 G Addition of timing parameters and editorial changes.

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. iii

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.

Product Status

The information in this document is final (information on a developed product).

Web Address

http://www.arm.com

iv Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. v

Contents
ARM7TDMI Technical Reference Manual

Preface
About this document .. xviii
Further reading .. xxi
Feedback .. xxii

Chapter 1 Introduction
1.1 About the ARM7TDMI core ... 1-2
1.2 Architecture ... 1-5
1.3 Block, core, and functional diagrams .. 1-7
1.4 Instruction set summary .. 1-10

Chapter 2 Programmer’s Model
2.1 About the programmer’s model ... 2-2
2.2 Processor operating states ... 2-3
2.3 Memory formats .. 2-4
2.4 Data types ... 2-6
2.5 Operating modes .. 2-7
2.6 Registers ... 2-8
2.7 The program status registers .. 2-13
2.8 Exceptions .. 2-16
2.9 Interrupt latencies ... 2-23
2.10 Reset ... 2-24

Contents

vi Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Chapter 3 Memory Interface
3.1 About the memory interface ... 3-2
3.2 Bus interface signals .. 3-3
3.3 Bus cycle types ... 3-4
3.4 Addressing signals ... 3-11
3.5 Address timing .. 3-14
3.6 Data timed signals .. 3-17
3.7 Stretching access times .. 3-29
3.8 Action of ARM7TDMI core in debug state .. 3-31
3.9 Privileged mode access .. 3-32
3.10 Reset sequence after power up .. 3-33

Chapter 4 Coprocessor Interface
4.1 About coprocessors .. 4-2
4.2 Coprocessor interface signals .. 4-4
4.3 Pipeline following signals .. 4-5
4.4 Coprocessor interface handshaking ... 4-6
4.5 Connecting coprocessors ... 4-12
4.6 If you are not using an external coprocessor .. 4-15
4.7 Undefined instructions .. 4-16
4.8 Privileged instructions ... 4-17

Chapter 5 Debug Interface
5.1 About the debug interface .. 5-2
5.2 Debug systems ... 5-4
5.3 Debug interface signals .. 5-6
5.4 ARM7TDMI core clock domains ... 5-10
5.5 Determining the core and system state .. 5-12
5.6 About EmbeddedICE Logic .. 5-13
5.7 Disabling EmbeddedICE .. 5-15
5.8 Debug Communications Channel ... 5-16

Chapter 6 Instruction Cycle Timings
6.1 About the instruction cycle timing tables .. 6-3
6.2 Branch and branch with link ... 6-4
6.3 Thumb branch with link ... 6-5
6.4 Branch and Exchange .. 6-6
6.5 Data operations .. 6-7
6.6 Multiply and multiply accumulate .. 6-9
6.7 Load register ... 6-12
6.8 Store register .. 6-14
6.9 Load multiple registers ... 6-15
6.10 Store multiple registers ... 6-17
6.11 Data swap ... 6-18
6.12 Software interrupt and exception entry ... 6-19
6.13 Coprocessor data operation ... 6-20

Contents

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. vii

6.14 Coprocessor data transfer from memory to coprocessor 6-21
6.15 Coprocessor data transfer from coprocessor to memory 6-23
6.16 Coprocessor register transfer, load from coprocessor 6-25
6.17 Coprocessor register transfer, store to coprocessor 6-26
6.18 Undefined instructions and coprocessor absent 6-27
6.19 Unexecuted instructions .. 6-28
6.20 Instruction speed summary ... 6-29

Chapter 7 AC and DC Parameters
7.1 Timing diagram information ... 7-3
7.2 General timing ... 7-4
7.3 Address bus enable control .. 7-6
7.4 Bidirectional data write cycle ... 7-7
7.5 Bidirectional data read cycle ... 7-8
7.6 Data bus control .. 7-9
7.7 Output 3-state timing ... 7-10
7.8 Unidirectional data write cycle timing .. 7-11
7.9 Unidirectional data read cycle timing .. 7-12
7.10 Configuration pin timing .. 7-13
7.11 Coprocessor timing ... 7-14
7.12 Exception timing .. 7-15
7.13 Synchronous interrupt timing .. 7-16
7.14 Debug timing ... 7-17
7.15 Debug communications channel output timing ... 7-19
7.16 Breakpoint timing .. 7-20
7.17 Test clock and external clock timing ... 7-21
7.18 Memory clock timing ... 7-22
7.19 Boundary scan general timing .. 7-23
7.20 Reset period timing ... 7-24
7.21 Output enable and disable times .. 7-25
7.22 Address latch enable control ... 7-26
7.23 Address pipeline control timing ... 7-27
7.24 Notes on AC Parameters .. 7-28
7.25 DC parameters .. 7-34

Appendix A Signal Description
A.1 Signal description .. A-2

Appendix B Debug in Depth
B.1 Scan chains and JTAG interface .. B-3
B.2 Resetting the TAP controller ... B-6
B.3 Pullup resistors ... B-7
B.4 Instruction register .. B-8
B.5 Public instructions ... B-9
B.6 Test data registers .. B-14
B.7 The ARM7TDMI core clocks ... B-22

Contents

viii Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.8 Determining the core and system state .. B-24
B.9 Behavior of the program counter during debug .. B-29
B.10 Priorities and exceptions .. B-32
B.11 Scan chain cell data ... B-33
B.12 The watchpoint registers .. B-40
B.13 Programming breakpoints .. B-45
B.14 Programming watchpoints .. B-47
B.15 The debug control register .. B-48
B.16 The debug status register ... B-50
B.17 Coupling breakpoints and watchpoints ... B-52
B.18 EmbeddedICE timing .. B-54
B.19 Programming Restriction .. B-55

Glossary

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. ix

List of Tables
ARM7TDMI Technical Reference Manual

Change history .. ii
Table 1-1 Key to tables ... 1-10
Table 1-2 ARM instruction summary ... 1-12
Table 1-3 Addressing modes .. 1-15
Table 1-4 Operand 2 ... 1-18
Table 1-5 Fields ... 1-18
Table 1-6 Condition fields .. 1-19
Table 1-7 Thumb instruction set summary .. 1-21
Table 2-1 Register mode identifiers .. 2-7
Table 2-2 PSR mode bit values ... 2-15
Table 2-3 Exception entry and exit .. 2-16
Table 2-4 Exception vectors .. 2-21
Table 2-5 Exception priority order ... 2-22
Table 3-1 Bus cycle types ... 3-5
Table 3-2 Burst types .. 3-7
Table 3-3 Significant address bits ... 3-12
Table 3-4 nOPC .. 3-12
Table 3-5 nTRANS encoding .. 3-13
Table 3-6 Tristate control of processor outputs ... 3-21
Table 3-7 Read accesses .. 3-27
Table 3-8 Use of nM[4:0] to indicate current processor mode .. 3-32
Table 4-1 Coprocessor availability .. 4-3
Table 4-2 Handshaking signals ... 4-6

List of Tables

x Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Table 4-3 Summary of coprocessor signaling ... 4-7
Table 4-4 Mode identifier signal meanings (nTRANS) .. 4-17
Table 5-1 DCC register access instructions .. 5-17
Table 6-1 Branch instruction cycle operations .. 6-4
Table 6-2 Thumb long branch with link ... 6-5
Table 6-3 Branch and exchange instruction cycle operations .. 6-6
Table 6-4 Data operation instruction cycles .. 6-8
Table 6-5 Multiply instruction cycle operations ... 6-9
Table 6-6 Multiply accumulate instruction cycle operations .. 6-9
Table 6-7 Multiply long instruction cycle operations ... 6-10
Table 6-8 Multiply accumulate long instruction cycle operations .. 6-10
Table 6-9 Load register instruction cycle operations .. 6-13
Table 6-10 MAS[1:0] signal encoding ... 6-13
Table 6-11 Store register instruction cycle operations .. 6-14
Table 6-12 Load multiple registers instruction cycle operations ... 6-15
Table 6-13 Store multiple registers instruction cycle operations ... 6-17
Table 6-14 Data swap instruction cycle operations .. 6-18
Table 6-15 Software Interrupt instruction cycle operations ... 6-19
Table 6-16 Coprocessor data operation instruction cycle operations 6-20
Table 6-17 Coprocessor data transfer instruction cycle operations .. 6-21
Table 6-18 coprocessor data transfer instruction cycle operations ... 6-23
Table 6-19 Coprocessor register transfer, load from coprocessor .. 6-25
Table 6-20 Coprocessor register transfer, store to coprocessor ... 6-26
Table 6-21 Undefined instruction cycle operations ... 6-27
Table 6-22 Unexecuted instruction cycle operations .. 6-28
Table 6-23 ARM instruction speed summary .. 6-29
Table 7-1 General timing parameters ... 7-5
Table 7-2 ABE control timing parameters ... 7-6
Table 7-3 Bidirectional data write cycle timing parameters ... 7-7
Table 7-4 Bidirectional data read cycle timing parameters ... 7-8
Table 7-5 Data bus control timing parameters .. 7-9
Table 7-6 Output 3-state time timing parameters ... 7-10
Table 7-7 Unidirectional data write cycle timing parameters .. 7-11
Table 7-8 Unidirectional data read cycle timing parameters ... 7-12
Table 7-9 Configuration pin timing parameters ... 7-13
Table 7-10 Coprocessor timing parameters .. 7-14
Table 7-11 Exception timing parameters .. 7-15
Table 7-12 Synchronous interrupt timing parameters ... 7-16
Table 7-13 Debug timing parameters ... 7-17
Table 7-14 DCC output timing parameters ... 7-19
Table 7-15 Breakpoint timing parameters ... 7-20
Table 7-16 TCK and ECLK timing parameters ... 7-21
Table 7-17 MCLK timing parameters .. 7-22
Table 7-18 Boundary scan general timing parameters ... 7-23
Table 7-19 Reset period timing parameters .. 7-24
Table 7-20 Output enable and disable timing parameters .. 7-25
Table 7-21 ALE address control timing parameters .. 7-26

List of Tables

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. xi

Table 7-22 APE control timing parameters ... 7-27
Table 7-23 AC timing parameters used in this chapter ... 7-28
Table A-1 Transistor sizes ... A-2
Table A-2 Signal types ... A-2
Table A-3 Signal Descriptions ... A-3
Table B-1 Public instructions ... B-9
Table B-2 Scan chain number allocation ... B-16
Table B-3 Scan chain 0 cells ... B-33
Table B-4 Scan chain 1 cells ... B-37
Table B-5 Function and mapping of EmbeddedICE registers ... B-40
Table B-6 MAS[1:0] signal encoding ... B-43
Table B-7 Interrupt signal control ... B-48

List of Tables

xii Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. xiii

List of Figures
ARM7TDMI Technical Reference Manual

Figure P-1 Key to timing diagram conventions ... xx
Figure 1-1 Instruction pipeline .. 1-3
Figure 1-2 ARM7TDMI processor block diagram ... 1-7
Figure 1-3 Main processor .. 1-8
Figure 1-4 ARM7TDMI processor functional diagram .. 1-9
Figure 1-5 ARM instruction set formats .. 1-11
Figure 1-6 Thumb instruction set formats ... 1-20
Figure 2-1 LIttle-endian addresses of bytes and halfwords within words 2-4
Figure 2-2 Big-endian addresses of bytes and halfwords within words 2-5
Figure 2-3 Register organization in ARM state ... 2-9
Figure 2-4 Register organization in Thumb state ... 2-10
Figure 2-5 Mapping of Thumb-state registers onto ARM-state registers 2-11
Figure 2-6 Program status register format .. 2-13
Figure 3-1 Simple memory cycle .. 3-4
Figure 3-2 Nonsequential memory cycle .. 3-6
Figure 3-3 Sequential access cycles .. 3-7
Figure 3-4 Internal cycles ... 3-8
Figure 3-5 Merged IS cycle .. 3-9
Figure 3-6 Coprocessor register transfer cycles ... 3-10
Figure 3-7 Memory cycle timing ... 3-10
Figure 3-8 Pipelined addresses .. 3-14
Figure 3-9 Depipelined addresses .. 3-15
Figure 3-10 SRAM compatible address timing ... 3-16

List of Figures

xiv Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 3-11 External bus arrangement .. 3-17
Figure 3-12 Bidirectional bus timing ... 3-18
Figure 3-13 Unidirectional bus timing ... 3-18
Figure 3-14 External connection of unidirectional buses ... 3-19
Figure 3-15 Data write bus cycle .. 3-20
Figure 3-16 Data bus control circuit ... 3-20
Figure 3-17 Test chip data bus circuit .. 3-23
Figure 3-18 Memory access ... 3-25
Figure 3-19 Two cycle memory access .. 3-26
Figure 3-20 Data replication ... 3-28
Figure 3-21 Typical system timing ... 3-30
Figure 3-22 Reset sequence .. 3-33
Figure 4-1 Coprocessor busy-wait sequence ... 4-8
Figure 4-2 Coprocessor register transfer sequence ... 4-9
Figure 4-3 Coprocessor data operation sequence ... 4-10
Figure 4-4 Coprocessor load sequence ... 4-11
Figure 4-5 Coprocessor connections with bidirectional bus ... 4-12
Figure 4-6 Coprocessor connections with unidirectional bus ... 4-13
Figure 4-7 Connecting multiple coprocessors .. 4-14
Figure 5-1 Typical debug system ... 5-4
Figure 5-2 ARM7TDMI block diagram .. 5-5
Figure 5-3 Debug state entry ... 5-7
Figure 5-4 Clock switching on entry to debug state ... 5-10
Figure 5-5 ARM7TDM, TAP controller, and EmbeddedICE Logic ... 5-13
Figure 5-6 DCC control register format .. 5-16
Figure 7-1 General timing .. 7-4
Figure 7-2 ABE control timing .. 7-6
Figure 7-3 Bidirectional data write cycle timing .. 7-7
Figure 7-4 Bidirectional data read cycle timing .. 7-8
Figure 7-5 Data bus control timing ... 7-9
Figure 7-6 Output 3-state timing .. 7-10
Figure 7-7 Unidirectional data write cycle timing .. 7-11
Figure 7-8 Unidirectional data read cycle timing .. 7-12
Figure 7-9 Configuration pin timing .. 7-13
Figure 7-10 Coprocessor timing ... 7-14
Figure 7-11 Exception timing ... 7-15
Figure 7-12 Synchronous interrupt timing .. 7-16
Figure 7-13 Debug timing ... 7-17
Figure 7-14 DCC output timing .. 7-19
Figure 7-15 Breakpoint timing .. 7-20
Figure 7-16 TCK and ECLK timing ... 7-21
Figure 7-17 MCLK timing ... 7-22
Figure 7-18 Boundary scan general timing .. 7-23
Figure 7-19 Reset period timing ... 7-24
Figure 7-20 Output enable and disable times due to HIGHZ TAP instruction 7-25
Figure 7-21 Output enable and disable times due to data scanning .. 7-25
Figure 7-22 ALE control timing ... 7-26

List of Figures

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. xv

Figure 7-23 APE control timing ... 7-27
Figure B-1 ARM7TDMI core scan chain arrangements .. B-4
Figure B-2 Test access port controller state transitions .. B-5
Figure B-3 ID code register format .. B-14
Figure B-4 Input scan cell ... B-17
Figure B-5 Clock switching on entry to debug state .. B-22
Figure B-6 Debug exit sequence .. B-28
Figure B-7 EmbeddedICE block diagram ... B-41
Figure B-8 Watchpoint control value and mask format ... B-42
Figure B-9 Debug control register format .. B-48
Figure B-10 Debug status register format ... B-50
Figure B-11 Debug control and status register structure .. B-51

List of Figures

xvi Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. xvii

Preface

This preface introduces the ARM7TDMI core and its reference documentation. It
contains the following sections:

• About this document on page xviii

• Further reading on page xxi

• Feedback on page xxii.

Preface

xviii Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

About this document

This document is a reference manual for the ARM7TDMI core.

Intended audience

This document has been written for experienced hardware and software engineers who
are working with the ARM7TDMI processor.

Using this manual

This document is organized into the following chapters:

Chapter 1 Introduction

Introduction to the architecture.

Chapter 2 Programmer’s Model

32-bit ARM and 16-bit Thumb instruction sets.

Chapter 3 Memory Interface

Nonsequential, sequential, internal, and coprocessor register transfer
memory cycles.

Chapter 4 Coprocessor Interface

Implementation of the specialized additional instructions for use with
coprocessors and a description of the interface.

Chapter 5 Debug Interface

ARM7TDMI core hardware extensions for advanced debugging to make
it simpler to develop application software, operating systems, and
hardware.

Chapter 6 Instruction Cycle Timings

Instruction cycle timings.

Chapter 7 AC and DC Parameters

AC and DC parameters, timing diagrams, definitions, and operating data.

Appendix A Signal Description

ARM7TDMI core signals.

Appendix B Debug in Depth

Further information on the debug interface and EmbeddedICE macrocell.

Preface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. xix

Typographical conventions

The following typographical conventions are used in this book:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names and buttons. Also
used for terms in descriptive lists, where appropriate.

typewriter Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

typewriter italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

typewriter bold

Denotes language keywords when used outside example code and ARM
processor signal names.

Preface

xx Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Timing diagram conventions

The key provided in Figure P-1 explains the components used in timing diagrams. Any
variations are labeled when they occur. Therefore, no additional meaning must be
attached unless specifically stated.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Figure P-1 Key to timing diagram conventions

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus

Preface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. xxi

Further reading

This section lists publications by ARM Limited and third parties.

ARM periodically provides updates and corrections to its documentation. For current
errata sheets, addenda, and list of Frequently Asked Questions go to the ARM website:

www.arm.com

ARM publications

This document contains information that is specific to the ARM7TDMI core. Refer to
the following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DDI 0100).

Other publications

This section lists relevant documents published by third parties.

• IEEE Std. 1149.1-1990 Standard Test Access Port and Boundary-Scan
Architecture.

Preface

xxii Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Feedback

ARM Limited welcomes feedback both on the ARM7TDMI core, and on the
documentation.

Feedback on the ARM7TDMI core

If you have any comments or suggestions about this product, please contact your
supplier giving:

• the product name

• a concise explanation of your comments.

Feedback on this document

If you have any comments about this document, please send email to errata@arm.com
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 1-1

Chapter 1
Introduction

This chapter introduces the ARM7TDMI core. It contains the following sections:

• About the ARM7TDMI core on page 1-2

• Architecture on page 1-5

• Block, core, and functional diagrams on page 1-7

• Instruction set summary on page 1-10.

Introduction

1-2 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

1.1 About the ARM7TDMI core

The ARM7TDMI core is a member of the ARM family of general-purpose 32-bit
microprocessors. The ARM family offers high performance for very low power
consumption, and small size.

The ARM architecture is based on Reduced Instruction Set Computer (RISC)
principles. The RISC instruction set, and related decode mechanism are much simpler
than those of Complex Instruction Set Computer (CISC) designs. This simplicity gives:

• a high instruction throughput

• an excellent real-time interrupt response

• a small, cost-effective, processor macrocell.

This section describes:

• The instruction pipeline on page 1-2

• Memory access on page 1-3

• Memory interface on page 1-4.

• EmbeddedICE Logic on page 1-4.

1.1.1 The instruction pipeline

The ARM7TDMI core uses a pipeline to increase the speed of the flow of instructions
to the processor. This allows several operations to take place simultaneously, and the
processing and memory systems to operate continuously.

A three-stage pipeline is used, so instructions are executed in three stages:

• Fetch

• Decode

• Execute.

The instruction pipeline is shown in Figure 1-1 on page 1-3.

Introduction

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 1-3

Figure 1-1 Instruction pipeline

During normal operation, while one instruction is being executed, its successor is being
decoded, and a third instruction is being fetched from memory.

The program counter points to the instruction being fetched rather than to the instruction
being executed. This is important because it means that the Program Counter (PC)
value used in an executing instruction is always two instructions ahead of the address.

1.1.2 Memory access

The ARM7TDMI core has a Von Neumann architecture, with a single 32-bit data bus
carrying both instructions and data. Only load, store, and swap instructions can access
data from memory.

Data can be:

• 8-bit (bytes)

• 16-bit (halfwords)

• 32-bit (words).

Words must be aligned to 4-byte boundaries. Halfwords must be aligned to 2-byte
boundaries.

Fetch

Decode

Execute

Instruction fetched from memory

Decoding of registers used in

instruction

Register(s) read from register bank

Perform shift and ALU operations

Write register(s) back to register bank

Introduction

1-4 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

1.1.3 Memory interface

The ARM7TDMI processor memory interface has been designed to allow performance
potential to be realized, while minimizing the use of memory. Speed-critical control
signals are pipelined to allow system control functions to be implemented in standard
low-power logic. These control signals facilitate the exploitation of the fast-burst access
modes supported by many on-chip and off-chip memory technologies.

The ARM7TDMI core has four basic types of memory cycle:

• idle cycle

• nonsequential cycle

• sequential cycle

• coprocessor register transfer cycle.

1.1.4 EmbeddedICE Logic

EmbeddedICE Logic is the additional hardware provided by debuggable ARM
processors to aid debugging. It allows software tools to debug code running on a target
processor. The EmbeddedICE Logic is controlled through the Joint Test Action Group
(JTAG) test access port, using the EmbeddedICE interface. See Chapter 5 Debug
Interface and Appendix B Debug in Depth for more information.

Introduction

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 1-5

1.2 Architecture

The ARM7TDMI processor has two instruction sets:

• the 32-bit ARM instruction set

• the 16-bit Thumb instruction set.

The ARM7TDMI processor is an implementation of the ARMv4T architecture. For full
details of both the ARM and Thumb instruction sets refer to the ARM Architecture
Reference Manual.

This section describes:

• Instruction compression on page 1-5

• The Thumb instruction set on page 1-5.

1.2.1 Instruction compression

Microprocessor architectures traditionally had the same width for instructions, and data.
Therefore 32-bit architectures had higher performance manipulating 32-bit data, and
could address a large address space much more efficiently than 16-bit architectures.

16-bit architectures typically had higher code density than 32-bit architectures, but
approximately half the performance.

Thumb implements a 16-bit instruction set on a 32-bit architecture to provide:

• higher performance than a 16-bit architecture

• higher code density than a 32-bit architecture.

1.2.2 The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM
instructions. Thumb instructions are each 16 bits long, and have a corresponding 32-bit
ARM instruction that has the same effect on the processor model. Thumb instructions
operate with the standard ARM register configuration, allowing excellent
interoperability between ARM and Thumb states.

On execution, 16-bit Thumb instructions are transparently decompressed to full 32-bit
ARM instructions in real time, without performance loss.

Thumb has all the advantages of a 32-bit core:

• 32-bit address space

• 32-bit registers

• 32-bit shifter, and Arithmetic Logic Unit (ALU)

• 32-bit memory transfer.

Introduction

1-6 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Thumb therefore offers a long branch range, powerful arithmetic operations, and a large
address space.

Thumb code is typically 65% of the size of ARM code, and provides 160% of the
performance of ARM code when running from a 16-bit memory system. Thumb,
therefore, makes the ARM7TDMI core ideally suited to embedded applications with
restricted memory bandwidth, where code density and footprint is important.

The availability of both 16-bit Thumb and 32-bit ARM instruction sets gives designers
the flexibility to emphasize performance or code size on a subroutine level, according
to the requirements of their applications. For example, critical loops for applications
such as fast interrupts and DSP algorithms can be coded using the full ARM instruction
set then linked with Thumb code.

Introduction

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 1-7

1.3 Block, core, and functional diagrams

The ARM7TDMI processor architecture, core, and functional diagrams are illustrated
in the following figures:

• Figure 1-2 shows a block diagram of the ARM7TDMI processor components and
major signal paths

• Figure 1-3 on page 1-8 shows the main processor (this is the logic at the core of
the ARM7TDMI

• Figure 1-4 on page 1-9 shows the major signal paths for the ARM7TDMI
processor.

Figure 1-2 ARM7TDMI processor block diagram

RANGEOUT0

RANGEOUT1

EXTERN0

EXTERN1

nOPC
nRW

MAS[1:0]

nTRANS

nMREQ
A[31:0]

D[31:0]

DIN[31:0]

DOUT[31:0]

TCK

All other
signals

S
c
a
n

c
h
a
in

2

TMS nTRST TDI TDO

TAP controller

B
u

s
s
p

lit
te

r

IR[3:0]

SCREG[3:0]

EmbeddedICE
Logic

ARM7TDMI
main

processor
logic

Scan chain 0

TAPSM[3:0]

S
c
a
n

c
h
a
in

1

Introduction

1-8 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 1-3 Main processor

Scan control

Instruction

decoder and

logic control

Instruction pipeline

Read data register

Thumb instruction controller

Write data register

nENOUT

DBE

nENIN

B
b
u
s

32-bit ALU

Barrel shifter

32 x 8

Multiplier

D[31:0]

DBGRQI

BREAKPTI

DBGACK

ECLK

nEXEC

ISYNC

BL[3:0]

APE

MCLK

nWAIT

nRW

MAS[1:0]

nIRQ

nFIQ

nRESET

ABORT

nTRANS

nMREQ

nOPC

SEQ

LOCK

nCPI

CPA

CPB

nM[4:0]

TBE

TBIT

HIGHZ

A
L
U

b
u
s

Register bank

(31 x 32-bit registers)

(6 status registers)

A
b
u
s

Address

incrementer

Address register

P
C

b
u
s

A[31:0]
ALE ABE

In
c
re

m
e
n
te

r
b
u
s

Introduction

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 1-9

Figure 1-4 ARM7TDMI processor functional diagram

11

DIN[31:0]

ARM7TDMI

MCLK

nWAIT

ECLK

nIRQ

nFIQ

ISYNC

nRESET

BUSEN

HIGHZ

BIGEND

nENIN

nENOUT

nENOUTI

ABE

ALE

DBE

TBE

BUSDIS

ECAPCLK

V
DD

V
SS

DBGRQ

BREAKPT

DBGACK

nEXEC

EXTERN1

EXTERN0

DBGEN

RANGEOUT0

RANGEOUT1

DBGRQI

COMMRX

COMMTX

TCK

TMS

TDI

nTRST

TDO

TAPSM[3:0]

IR[3:0]

nTDOEN

TCK1

TCK2

SCREG[3:0]

nM[4:0]

TBIT

A[31:0]

DOUT[31:0]

D[31:0]

nMREQ

SEQ

nRW

MAS[1:0]

BL[3:0]

LOCK

nTRANS

ABORT

nOPC

nCPI

CPA

CPB

Clocks and

timing

Interrupts

Bus

controls

Power

Debug

Boundary

scan

Processor

mode

Memory

interface

Boundary

scan

control

signals

Processor

state

Coprocessor

interface

Memory

management

interface

APE

nHIGHZ

Introduction

1-10 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

1.4 Instruction set summary

This section provides a description of the instruction sets used on the ARM7TDMI
processor.

This section describes:

• Format summary on page 1-10

• ARM instruction summary on page 1-12

• Thumb instruction summary on page 1-19.

1.4.1 Format summary

This section provides a summary of the ARM, and Thumb instruction sets:

• ARM instruction summary on page 1-12

• Thumb instruction summary on page 1-19.

A key to the instruction set tables is provided in Table 1-1.

The ARM7TDMI processor uses an implementation of the ARMv4T architecture. For
a complete description of both instruction sets, refer to the ARM Architecture Reference
Manual.

The ARM instruction set formats are shown in Figure 1-5 on page 1-11.

Table 1-1 Key to tables

Type Description

{cond} Condition field, see Table 1-6 on page 1-19.

<Oprnd2> Operand2, see Table 1-4 on page 1-18.

{field} Control field, see Table 1-5 on page 1-18.

S Sets condition codes, optional.

B Byte operation, optional.

H Halfword operation, optional.

T Forces address translation. Cannot be used with pre-indexed addresses.

Addressing modes See Addressing modes on page 1-15.

#32bit_Imm A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits.

<reglist> A comma-separated list of registers, enclosed in braces ({ and }).

Introduction

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 1-11

Refer to the ARM Architectural Reference Manual for more information about the ARM
instruction set formats.

Figure 1-5 ARM instruction set formats

Data processing and

FSR transfer

Multiply long

Single data swap

Branch and exchange

Halfword data transfer,

register offset

Halfword data transfer,

immediate offset

Single data transfer

Undefined

Block data transfer

Branch

Coprocessor data

transfer

Coprocessor data

operation

Coprocessor register

transfer

Software interrupt

Multiply

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

0

0

1

1

0

1

0

1

1

1

Opcode

0

1

1

P

P

P

P

0

0

1

1

1

0

0

U

U

U

U

B

0

0

1

B

A

0

1

W

W

W

S

0

0

L

L

L

S

P U S W L

Cond 0 0 0 0 0 0 A S

L Offset

Rn

Rd

RdHi

Rn

1 1 1 1

Rn

Rn

Rn

Rn

U N W L Rn

CP Opc

CP Opc

Ignored by processor

L

Rd

Rn

RdLo

Rd

1 1 1 1

Rd

Rd

Rd

Operand 2

Offset

Register list

Rs

CRn

CRn

CRd

CRd

Rd

CP#

CP#

CP#

Rn

1 0 0 1

1 0 0 1

0 0 0 0 1 0 0 1

1 1 1 1 0 0 0 1

0 0 0 0 1 S H 1

Offset 1 S H 1

Rm

Rm

Rm

Rn

Rm

Offset

Offset

CP

CP

0

1

CRm

CRm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Introduction

1-12 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Note
 Some instruction codes are not defined but do not cause the Undefined instruction trap
to be taken, for instance a multiply instruction with bit 6 changed to a 1. These
instructions must not be used because their action might change in future ARM
implementations. The behavior of these instruction codes on the ARM7TDMI
processor is unpredictable.

1.4.2 ARM instruction summary

The ARM instruction set summary is listed in Table 1-2.

Table 1-2 ARM instruction summary

Operation Assembly syntax

Move Move MOV{cond}{S} Rd, <Oprnd2>

Move NOT MVN{cond}{S} Rd, <Oprnd2>

Move SPSR to register MRS{cond} Rd, SPSR

Move CPSR to register MRS{cond} Rd, CPSR

Move register to SPSR MSR{cond} SPSR{field}, Rm

Move register to CPSR MSR{cond} CPSR{field}, Rm

Move immediate to SPSR flags MSR{cond} SPSR_f, #32bit_Imm

Move immediate to CPSR flags MSR{cond} CPSR_f, #32bit_Imm

Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2>

Add with carry ADC{cond}{S} Rd, Rn, <Oprnd2>

Subtract SUB{cond}{S} Rd, Rn, <Oprnd2>

Subtract with carry SBC{cond}{S} Rd, Rn, <Oprnd2>

Subtract reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2>

Subtract reverse subtract with carry RSC{cond}{S} Rd, Rn, <Oprnd2>

Multiply MUL{cond}{S} Rd, Rm, Rs

Multiply accumulate MLA{cond}{S} Rd, Rm, Rs, Rn

Multiply unsigned long UMULL{cond}{S} RdLo, RdHi, Rm, Rs

Introduction

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 1-13

Multiply unsigned accumulate long UMLAL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply signed long SMULL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply signed accumulate long SMLAL{cond}{S} RdLo, RdHi, Rm, Rs

Compare CMP{cond} Rd, <Oprnd2>

Compare negative CMN{cond} Rd, <Oprnd2>

Logical Test TST{cond} Rn, <Oprnd2>

Test equivalence TEQ{cond} Rn, <Oprnd2>

AND AND{cond}{S} Rd, Rn, <Oprnd2>

EOR EOR{cond}{S} Rd, Rn, <Oprnd2>

ORR ORR{cond}{S} Rd, Rn, <Oprnd2>

Bit clear BIC{cond}{S} Rd, Rn, <Oprnd2>

Branch Branch B{cond} label

Branch with link BL{cond} label

Branch and exchange instruction set BX{cond} Rn

Load Word LDR{cond} Rd, <a_mode2>

Word with user-mode privilege LDR{cond}T Rd, <a_mode2P>

Byte LDR{cond}B Rd, <a_mode2>

Byte with user-mode privilege LDR{cond}BT Rd, <a_mode2P>

Byte signed LDR{cond}SB Rd, <a_mode3>

Halfword LDR{cond}H Rd, <a_mode3>

Halfword signed LDR{cond}SH Rd, <a_mode3>

Multiple block data operations -

• Increment before LDM{cond}IB Rd{!}, <reglist>{^}

• Increment after LDM{cond}IA Rd{!}, <reglist>{^}

• Decrement before LDM{cond}DB Rd{!}, <reglist>{^}

Table 1-2 ARM instruction summary (continued)

Operation Assembly syntax

Introduction

1-14 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

• Decrement after LDM{cond}DA Rd{!}, <reglist>{^}

• Stack operation LDM{cond}<a_mode4L> Rd{!}, <reglist>

• Stack operation, and restore CPSR LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>^

• Stack operation with user registers LDM{cond}<a_mode4L> Rd{!}, <reglist>^

Store Word STR{cond} Rd, <a_mode2>

Word with user-mode privilege STR{cond}T Rd, <a_mode2P>

Byte STR{cond}B Rd, <a_mode2>

Byte with user-mode privilege STR{cond}BT Rd, <a_mode2P>

Halfword STR{cond}H Rd, <a_mode3>

Multiple block data operations -

• Increment before STM{cond}IB Rd{!}, <reglist>{^}

• Increment after STM{cond}IA Rd{!}, <reglist>{^}

• Decrement before STM{cond}DB Rd{!}, <reglist>{^}

• Decrement after STM{cond}DA Rd{!}, <reglist>{^}

• Stack operation STM{cond}<a_mode4S> Rd{!}, <reglist>

• Stack operation with user registers STM{cond}<a_mode4S> Rd{!}, <reglist>^

Swap Word SWP{cond} Rd, Rm, [Rn]

Byte SWP{cond}B Rd, Rm, [Rn]

Coprocessors Data operation CDP{cond} p<cpnum>, <op1>, CRd, CRn, CRm, <op2>

Move to ARM register from coprocessor MRC{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

Move to coprocessor from ARM register MCR{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

Load LDC{cond} p<cpnum>, CRd, <a_mode5>

Store STC{cond} p<cpnum>, CRd, <a_mode5>

Software interrupt SWI 24bit_Imm

Table 1-2 ARM instruction summary (continued)

Operation Assembly syntax

Introduction

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 1-15

Addressing modes

The addressing modes are procedures shared by different instructions for generating
values used by the instructions. The five addressing modes used by the ARM7TDMI
processor are:

Mode 1 Shifter operands for data processing instructions.

Mode 2 Load and store word or unsigned byte.

Mode 3 Load and store halfword or load signed byte.

Mode 4 Load and store multiple.

Mode 5 Load and store coprocessor.

The addressing modes are listed with their types and mnemonics Table 1-3.

Table 1-3 Addressing modes

Addressing mode
Type or
addressing mode

Mnemonic or stack type

Mode 2 <a_mode2> Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Pre-indexed offset -

Immediate [Rn, #+/-12bit_Offset]!

Register [Rn, +/-Rm]!

Scaled register [Rn, +/-Rm, LSL #5bit_shift_imm]!

[Rn, +/-Rm, LSR #5bit_shift_imm]!

[Rn, +/-Rm, ASR #5bit_shift_imm]!

[Rn, +/-Rm, ROR #5bit_shift_imm]!

[Rn, +/-Rm, RRX]!

Post-indexed offset -

Introduction

1-16 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Immediate [Rn], #+/-12bit_Offset

Register [Rn], +/-Rm

Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Mode 2, privileged <a_mode2P> Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Post-indexed offset -

Immediate [Rn], #+/-12bit_Offset

Register [Rn], +/-Rm

Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Table 1-3 Addressing modes (continued)

Addressing mode
Type or
addressing mode

Mnemonic or stack type

Introduction

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 1-17

Mode 3, <a_mode3> Immediate offset [Rn, #+/-8bit_Offset]

Pre-indexed [Rn, #+/-8bit_Offset]!

Post-indexed [Rn], #+/-8bit_Offset

Register [Rn, +/-Rm]

Pre-indexed [Rn, +/-Rm]!

Post-indexed [Rn], +/-Rm

Mode 4, load <a_mode4L> IA, increment after FD, full descending

IB, increment before ED, empty descending

DA, decrement after FA, full ascending

DB decrement before EA, empty ascending

Mode 4, store <a_mode4S> IA, increment after FD, full descending

IB, increment before ED, empty descending

DA, decrement after FA, full ascending

DB decrement before EA, empty ascending

Mode 5, coprocessor data transfer <a_mode5> Immediate offset [Rn, #+/-(8bit_Offset*4)]

Pre-indexed [Rn, #+/-(8bit_Offset*4)]!

Post-indexed [Rn], #+/-(8bit_Offset*4)

Table 1-3 Addressing modes (continued)

Addressing mode
Type or
addressing mode

Mnemonic or stack type

Introduction

1-18 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Operand 2

An operand is the part of the instruction that references data or a peripheral device.
Operand 2 is listed in Table 1-4.

Fields

Fields are listed in Table 1-5.

Table 1-4 Operand 2

Operand Type Mnemonic

Operand 2 <Oprnd2> Immediate value #32bit_Imm

Logical shift left Rm LSL #5bit_Imm

Logical shift right Rm LSR #5bit_Imm

Arithmetic shift right Rm ASR #5bit_Imm

Rotate right Rm ROR #5bit_Imm

Register Rm

Logical shift left Rm LSL Rs

Logical shift right Rm LSR Rs

Arithmetic shift right Rm ASR Rs

Rotate right Rm ROR Rs

Rotate right extended Rm RRX

Table 1-5 Fields

Type Suffix Sets Bit

Field {field} _c Control field mask bit 3

_f Flags field mask bit 0

_s Status field mask bit 1

_x Extension field mask bit 2

Introduction

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 1-19

Condition fields

Condition fields are listed in Table 1-6.

1.4.3 Thumb instruction summary

The Thumb instruction set formats are shown in Figure 1-6 on page 1-20.

Refer to the ARM Architectural Reference Manual for more information about the ARM
instruction set formats.

Table 1-6 Condition fields

Field type Suffix Description Condition

Condition {cond} EQ Equal Z set

NE Not equal Z clear

CS Unsigned higher, or same C set

CC Unsigned lower C clear

MI Negative N set

PL Positive, or zero N clear

VS Overflow V set

VC No overflow V clear

HI Unsigned higher C set, Z clear

LS Unsigned lower, or same C clear, Z set

GE Greater, or equal N=V (N and V set or N and V clear)

LT Less than N<>V (N set and V clear) or (N clear and V set)

GT Greater than Z clear, N=V (N and V set or N and V clear)

LE Less than, or equal Z set or N<>V (N set and V clear) or (N clear and V set)

AL Always Flag ignored

Introduction

1-20 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 1-6 Thumb instruction set formats

Format

Format

Move shifted register

Move, compare, add, and subtract

immediate

ALU operation

High register operations and branch

exchange

PC-relative load

Load and store with relative offset

Load and store sign-extended byte and

halfword

Load and store with immediate offset

Load and store halfword

SP-relative load and store

Load address

Add offset to stack pointer

Push and pop registers

Multiple load and store

Add and subtract

Conditional branch

Software interrupt

Unconditional branch

Long branch with link

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rd

RdRb

Rb

Op

0 0 1

H1H2

0 1 0 0 0 0

0 1 0 0 1

Ro1 L B 0

Offset8

Op

Word8

Rd

Rn/

offset3
RdRsOp000 111

RdOp

RdRs

RdHdRs/Hs0 1 0 0 0 1

0 1 0

RdRbRo1 H S 10 1 0

Offset5B L0 1 1

Rb RdOffset50 L1 0 0

Rd Word81 L1 0 0

Rd Word80 SP1 0 1

SWord70 0 0 S1 1 01 0

Rlist1 0 R1 1 L1 0

RlistRb0 0 L1 1

Softset8Cond0 11 1

Value81 1 1 11 0 11

Offset1101 1 01

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

03

04

06

02

05

07

08

09

10

11

12

13

14

15

16

17

18

19 OffsetH1 1 11

Offset5 RdRsOp00001

Introduction

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 1-21

The Thumb instruction set summary is listed in Table 1-7.

Table 1-7 Thumb instruction set summary

Operation Assembly syntax

Move Immediate MOV Rd, #8bit_Imm

High to Low MOV Rd, Hs

Low to High MOV Hd, Rs

High to High MOV Hd, Hs

Arithmetic Add ADD Rd, Rs, #3bit_Imm

Add Low, and Low ADD Rd, Rs, Rn

Add High to Low ADD Rd, Hs

Add Low to High ADD Hd, Rs

Add High to High ADD Hd, Hs

Add Immediate ADD Rd, #8bit_Imm

Add Value to SP ADD SP, #7bit_Imm ADD SP, #-7bit_Imm

Add with carry ADC Rd, Rs

Subtract SUB Rd, Rs, Rn SUB Rd, Rs, #3bit_Imm

Subtract Immediate SUB Rd, #8bit_Imm

Subtract with carry SBC Rd, Rs

Negate NEG Rd, Rs

Multiply MUL Rd, Rs

Compare Low, and Low CMP Rd, Rs

Compare Low, and High CMP Rd, Hs

Compare High, and Low CMP Hd, Rs

Compare High, and High CMP Hd, Hs

Compare Negative CMN Rd, Rs

Compare Immediate CMP Rd, #8bit_Imm

Logical AND AND Rd, Rs

Introduction

1-22 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

EOR EOR Rd, Rs

OR ORR Rd, Rs

Bit clear BIC Rd, Rs

Move NOT MVN Rd, Rs

Test bits TST Rd, Rs

Shift/Rotate Logical shift left LSL Rd, Rs, #5bit_shift_imm LSL Rd, Rs

Logical shift right LSR Rd, Rs, #5bit_shift_imm LSR Rd, Rs

Arithmetic shift right ASR Rd, Rs, #5bit_shift_imm ASR Rd, Rs

Rotate right ROR Rd, Rs

Branch Conditional -

• if Z set BEQ label

• if Z clear BNE label

• if C set BCS label

• if C clear BCC label

• if N set BMI label

• if N clear BPL label

• if V set BVS label

• if V clear BVC label

• if C set and Z clear BHI label

• if C clear and Z set BLS label

• if ((N set and V set) or (N clear and V clear)) BGE label

• if ((N set and V clear) or if (N clear and V set)) BLT label

• if (Z clear and ((N or V set) or (N or V clear))) BGT label

• if (Z set or ((N set and V clear) or (N clear and
V set)))

BLE label

Table 1-7 Thumb instruction set summary (continued)

Operation Assembly syntax

Introduction

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 1-23

Unconditional B label

Long branch with link BL label

Optional state change -

• to address held in Lo reg BX Rs

• to address held in Hi reg BX Hs

Load With immediate offset -

• word LDR Rd, [Rb, #7bit_offset]

• halfword LDRH Rd, [Rb, #6bit_offset]

• byte LDRB Rd, [Rb, #5bit_offset]

With register offset -

• word LDR Rd, [Rb, Ro]

• halfword LDRH Rd, [Rb, Ro]

• signed halfword LDRSH Rd, [Rb, Ro]

• byte LDRB Rd, [Rb, Ro]

• signed byte LDRSB Rd, [Rb, Ro]

PC-relative LDR Rd, [PC, #10bit_Offset]

SP-relative LDR Rd, [SP, #10bit_Offset]

Address -

• using PC ADD Rd, PC, #10bit_Offset

• using SP ADD Rd, SP, #10bit_Offset

Multiple LDMIA Rb!, <reglist>

Store With immediate offset -

• word STR Rd, [Rb, #7bit_offset]

• halfword STRH Rd, [Rb, #6bit_offset]

• byte STRB Rd, [Rb, #5bit_offset]

Table 1-7 Thumb instruction set summary (continued)

Operation Assembly syntax

Introduction

1-24 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

With register offset -

• word STR Rd, [Rb, Ro]

• halfword STRH Rd, [Rb, Ro]

• byte STRB Rd, [Rb, Ro]

SP-relative STR Rd, [SP, #10bit_offset]

Multiple STMIA Rb!, <reglist>

Push/Pop Push registers onto stack PUSH <reglist>

Push LR, and registers onto stack PUSH <reglist, LR>

Pop registers from stack POP <reglist>

Pop registers, and PC from stack POP <reglist, PC>

Software Interrupt - SWI 8bit_Imm

Table 1-7 Thumb instruction set summary (continued)

Operation Assembly syntax

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 2-1

Chapter 2
Programmer’s Model

This chapter describes the ARM7TDMI core programmer’s model. It contains the
following sections:

• About the programmer’s model on page 2-2

• Processor operating states on page 2-3

• Memory formats on page 2-4

• Data types on page 2-6

• Operating modes on page 2-7

• Registers on page 2-8

• The program status registers on page 2-13

• Exceptions on page 2-16

• Interrupt latencies on page 2-23

• Reset on page 2-24.

Programmer’s Model

2-2 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

2.1 About the programmer’s model

The ARM7TDMI processor core implements ARM architecture v4T, which includes
the 32-bit ARM instruction set, and the 16-bit Thumb instruction set. The programmer’s
model is described in the ARM Architecture Reference Manual.

Programmer’s Model

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 2-3

2.2 Processor operating states

The ARM7TDMI processor has two operating states:

ARM 32-bit, word-aligned ARM instructions are executed in this state.

Thumb 16-bit, halfword-aligned Thumb instructions are executed in this state.

In Thumb state, the Program Counter (PC) uses bit 1 to select between alternate
halfwords.

Note
 Transition between ARM and Thumb states does not affect the processor mode or the
register contents.

2.2.1 Switching state

The operating state of the ARM7TDMI core can be switched between ARM state and
Thumb state using the BX instruction. This is described in the ARM Architecture
Reference Manual.

All exception handling is entered in ARM state. If an exception occurs in Thumb state,
the processor reverts to ARM state. The transition back to Thumb state occurs
automatically on return. An exception handler can change to Thumb state but it must
return to ARM state to allow the exception handler to terminate correctly.

Programmer’s Model

2-4 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

2.3 Memory formats

The ARM7TDMI processor views memory as a linear collection of bytes numbered in
ascending order from zero. For example:

• bytes zero to three hold the first stored word

• bytes four to seven hold the second stored word.

The ARM7TDMI processor is bi-endian and can treat words in memory as being stored
in either:

• Little-endian on page 2-4.

• Big-Endian on page 2-5

Note

 Little-endian is traditionally the default format for ARM processors.

The endian format of a CPU dictates where the most significant byte or digits must be
placed in a word. Because numbers are calculated by the CPU starting with the least
significant digits, little-endian numbers are already set up for the processing order.

Endian configuration has no relevance unless data is stored as words and then accessed
in smaller sized quantities (halfwords or bytes).

2.3.1 Little-endian

In little-endian format, the lowest addressed byte in a word is considered the
least-significant byte of the word and the highest addressed byte is the most significant.
So the byte at address 0 of the memory system connects to data lines 7 through 0.

For a word-aligned address A, Figure 2-1 shows how the word at address A, the
halfword at addresses A and A+2, and the bytes at addresses A, A+1, A+2, and A+3
map on to each other when the core is configured as little-endian.

Figure 2-1 LIttle-endian addresses of bytes and halfwords within words

31 24 23 16 15 8 7 0

Halfword at address A+2 Halfword at address A

Word at address A

Byte at address A+3 Byte at address A+2 Byte at address A+1 Byte at address A

Programmer’s Model

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 2-5

2.3.2 Big-Endian

In big-endian format, the ARM7TDMI processor stores the most significant byte of a
word at the lowest-numbered byte, and the least significant byte at the
highest-numbered byte. So the byte at address 0 of the memory system connects to data
lines 31 through 24.

For a word-aligned address A, Figure 2-2 shows how the word at address A, the
halfword at addresses A and A+2, and the bytes at addresses A, A+1, A+2, and A+3
map on to each other when the core is configured as big-endian.

Figure 2-2 Big-endian addresses of bytes and halfwords within words

31 24 23 16 15 8 7 0

Halfword at address A Halfword at address A+2

Word at address A

Byte at address A Byte at address A+1 Byte at address A+2 Byte at address A+3

Programmer’s Model

2-6 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

2.4 Data types

The ARM7TDMI processor supports the following data types:

• words, 32-bit

• halfwords, 16-bit

• bytes, 8-bit.

You must align these as follows:

• word quantities must be aligned to four-byte boundaries

• halfword quantities must be aligned to two-byte boundaries

• byte quantities can be placed on any byte boundary.

Note
 Memory systems are expected to support all data types. In particular, the system must
support subword writes without corrupting neighboring bytes in that word.

Programmer’s Model

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 2-7

2.5 Operating modes

The ARM7TDMI processor has seven modes of operation:

• User mode is the usual ARM program execution state, and is used for executing
most application programs.

• Fast Interrupt (FIQ) mode supports a data transfer or channel process.

• Interrupt (IRQ) mode is used for general-purpose interrupt handling.

• Supervisor mode is a protected mode for the operating system.

• Abort mode is entered after a data or instruction Prefetch Abort.

• System mode is a privileged user mode for the operating system.

Note
 You can only enter System mode from another privileged mode by modifying the

mode bit of the Current Program Status Register (CPSR).

• Undefined mode is entered when an undefined instruction is executed.

Modes other than User mode are collectively known as privileged modes. Privileged
modes are used to service interrupts or exceptions, or to access protected resources.

Each register has a mode identifier as listed in Table 2-1.

Table 2-1 Register mode identifiers

Mode Mode identifier

User usr

Fast interrupt fiq

Interrupt irq

Supervisor svc

Abort abt

System sys

Undefined und

Programmer’s Model

2-8 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

2.6 Registers

The ARM7TDMI processor has a total of 37 registers:

• 31 general-purpose 32-bit registers

• 6 status registers.

These registers are not all accessible at the same time. The processor state and operating
mode determine which registers are available to the programmer.

2.6.1 The ARM-state register set

In ARM state, 16 general registers and one or two status registers are accessible at any
one time. In privileged modes, mode-specific banked registers become available. Figure
2-3 on page 2-10 shows which registers are available in each mode.

The ARM-state register set contains 16 directly-accessible registers, r0 to r15. A further
register, the CPSR, contains condition code flags and the current mode bits. Registers
r0 to r13 are general-purpose registers used to hold either data or address values.
Registers r14 and r15 have the following special functions:

Link register Register 14 is used as the subroutine Link Register (LR).

Register r14 receives a copy of r15 when a Branch with Link (BL)
instruction is executed.

At all other times you can treat r14 as a general-purpose register.
The corresponding banked registers r14_svc, r14_irq, r14_fiq,
r14_abt and r14_und are similarly used to hold the return values
of r15 when interrupts and exceptions arise, or when BL
instructions are executed within interrupt or exception routines.

Program counter Register 15 holds the PC.

In ARM state, bits [1:0] of r15 are undefined and must be ignored.
Bits [31:2] contain the PC.

In Thumb state, bit [0] is undefined and must be ignored. Bits
[31:1] contain the PC.

By convention, r13 is used as the Stack Pointer (SP).

In privileged modes, another register, the Saved Program Status Register (SPSR), is
accessible. This contains the condition code flags and the mode bits saved as a result of
the exception which caused entry to the current mode.

Banked registers are discrete physical registers in the core that are mapped to the
available registers depending on the current processor operating mode. Banked register
contents are preserved across operating mode changes.

Programmer’s Model

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 2-9

FIQ mode has seven banked registers mapped to r8–r14 (r8_fiq–r14_fiq).

In ARM state, many FIQ handlers do not have to save any registers.

The User, IRQ, Supervisor, Abort, and undefined modes each have two banked registers
mapped to r13 and r14, allowing a private SP and LR for each mode.

System mode shares the same registers as User mode.

Figure 2-3 shows the ARM-state registers.

Figure 2-3 Register organization in ARM state

ARM-state general registers and program counter

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

System and User

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

ARM-state program status registers

= banked register

r0

r1

r2

r3

r4

r5

r6

r7

r8_fiq

r9_fiq

r10_fiq

r11_fiq

r12_fiq

r13_fiq

r14_fiq

r15 (PC)

FIQ

r0

r1

r2

r3

r4

r5

r6

r7

r13_svc

r14_svc

r15 (PC)

Supervisor

r8

r9

r10

r11

r12

r0

r1

r2

r3

r4

r5

r6

r7

r13_abt

r14_abt

r15 (PC)

Abort

r8

r9

r10

r11

r12

r0

r1

r2

r3

r4

r5

r6

r7

r13_irq

r14_irq

r15 (PC)

IRQ

r8

r9

r10

r11

r12

r0

r1

r2

r3

r4

r5

r6

r7

r13_und

r14_und

r15 (PC)

Undefined

r8

r9

r10

r11

r12

Programmer’s Model

2-10 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

2.6.2 The Thumb-state register set

The Thumb-state register set is a subset of the ARM-state set. The programmer has
access to:

• 8 general registers, r0–r7

• the PC

• the SP

• the LR

• the CPSR.

There are banked SPs, LRs, and SPSRs for each privileged mode. This register set is
shown in Figure 2-4.

Figure 2-4 Register organization in Thumb state

Thumb-state general registers and program counter

System and User

r0

r1

r2

r3

r4

r5

r6

r7

SP

LR

PC

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

Thumb-state program status registers

= banked register

FIQ

r0

r1

r2

r3

r4

r5

r6

r7

SP_fiq

LR_fiq

PC

Supervisor

r0

r1

r2

r3

r4

r5

r6

r7

SP_svc

LR_svc

PC

Abort

r0

r1

r2

r3

r4

r5

r6

r7

SP_abt

LR_abt

PC

IRQ

r0

r1

r2

r3

r4

r5

r6

r7

SP_irq

LR_irq

PC

Undefined

r0

r1

r2

r3

r4

r5

r6

r7

SP_und

LR_und

PC

Programmer’s Model

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 2-11

2.6.3 The relationship between ARM-state and Thumb-state registers

The Thumb-state registers relate to the ARM-state registers in the following way:

• Thumb-state r0–r7 and ARM-state r0–r7 are identical

• Thumb-state CPSR and SPSRs and ARM-state CPSR and SPSRs are identical

• Thumb-state SP maps onto the ARM-state r13

• Thumb-state LR maps onto the ARM-state r14

• the Thumb-state PC maps onto the ARM-state PC (r15).

These relationships are shown in Figure 2-5.

Figure 2-5 Mapping of Thumb-state registers onto ARM-state registers

Program counter (PC)

r1

r2

r3

r4

r5

Thumb state

r6

r7

Stack pointer (SP)

Link register (LR)

Current program

status register

(CPSR)

Saved program status

register (SPSR)

PC (r15)

r1

r2

r3

r4

r5

ARM state

r6

r7

r8

Stack pointer (r13)

Link register (r14)

CPSR

SPSR

r9

r10

r11

r12

r0 r0

Programmer’s Model

2-12 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Note
 Registers r0–r7 are known as the low registers. Registers r8–r15 are known as the high
registers.

2.6.4 Accessing high registers in Thumb state

In Thumb state, the high registers, r8–r15, are not part of the standard register set. The
assembly language programmer has limited access to them, but can use them for fast
temporary storage.

You can use special variants of the MOV instruction to transfer a value from a low
register, in the range r0–r7, to a high register, and from a high register to a low register.
The CMP instruction allows you to compare high register values with low register
values. The ADD instruction enables you to add high register values to low register
values. For more details, please refer to the ARM Architecture Reference Manual.

Programmer’s Model

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 2-13

2.7 The program status registers

The ARM7TDMI processor contains a CPSR and five SPSRs for exception handlers to
use. The program status registers:

• hold information about the most recently performed ALU operation

• control the enabling and disabling of interrupts

• set the processor operating mode.

The arrangement of bits is shown in Figure 2-6.

Figure 2-6 Program status register format

Note
 To maintain compatibility with future ARM processors, you must not alter any of the
reserved bits. One method of preserving these bits is to use a read-write-modify strategy
when changing the CPSR.

The remainder of this section describes:

• Condition code flags on page 2-13

• Control bits on page 2-14

• Reserved bits on page 2-15.

2.7.1 Condition code flags

The N, Z, C, and V bits are the condition code flags, you can set them by arithmetic and
logical operations. They can also be set by MSR and LDM instructions. The
ARM7TDMI processor tests these flags to determine whether to execute an instruction.

31 30 29 28 27 26 25 24 23 8 7 6 4 3 2 1 0

Reserved

Condition

code flags Control bits

Mode bits

State bit

FIQ disable

IRQ disable

Overflow

Carry or borrow or extend

Zero

Negative or less than

5

N Z C V • • • • • • I F M4 M3 M2 M1 M0T

Programmer’s Model

2-14 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

All instructions can execute conditionally in ARM state. In Thumb state, only the
Branch instruction can be executed conditionally. For more information about
conditional execution, refer to the ARM Architecture Reference Manual.

2.7.2 Control bits

The bottom eight bits of a PSR are known collectively as the control bits. They are the:

• interrupt disable bits

• T bit

• mode bits.

The control bits change when an exception occurs. When the processor is operating in
a privileged mode, software can manipulate these bits.

Interrupt disable bits

The I and F bits are the interrupt disable bits:

• when the I bit is set, IRQ interrupts are disabled

• when the F bit is set, FIQ interrupts are disabled.

T bit

The T bit reflects the operating state:

• when the T bit is set, the processor is executing in Thumb state

• when the T bit is clear, the processor executing in ARM state.

The operating state is reflected on the external signal TBIT.

Caution
 Never use an MSR instruction to force a change to the state of the T bit in the CPSR. If
you do this, the processor enters an unpredictable state.

Programmer’s Model

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 2-15

Mode bits

Bits M[4:0] determine the processor operating mode as shown in Table 2-2. Not all
combinations of the mode bits define a valid processor mode, so take care to use only
the bit combinations shown.

An illegal value programmed into M[4:0] causes the processor to enter an
unrecoverable state. If this occurs, apply reset.

2.7.3 Reserved bits

The remaining bits in the PSRs are unused, but are reserved. When changing a PSR flag
or control bits, make sure that these reserved bits are not altered. Also, make sure that
your program does not rely on reserved bits containing specific values because future
processors might have these bits set to 1 or 0.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb-state registers Visible ARM-state registers

10000 User r0–r7, SP, LR, PC, CPSR r0–r14, PC, CPSR

10001 FIQ r0–r7, SP_fiq, LR_fiq, PC, CPSR, SPSR_fiq r0–r7, r8_fiq–r14_fiq, PC, CPSR,
SPSR_fiq

10010 IRQ r0–r7, SP_irq, LR_irq, PC, CPSR, SPSR_irq r0–r12, r13_irq, r14_irq, PC, CPSR,
SPSR_irq

10011 Supervisor r0–r7, SP_svc, LR_svc, PC, CPSR,
SPSR_svc

r0–r12, r13_svc, r14_svc, PC, CPSR,
SPSR_svc

10111 Abort r0–r7, SP_abt, LR_abt, PC, CPSR,
SPSR_abt

r0–r12, r13_abt, r14_abt, PC, CPSR,
SPSR_abt

11011 Undefined r0–r7, SP_und, LR_und, PC, CPSR,
SPSR_und

r0–r12, r13_und, r14_und, PC, CPSR,
SPSR_und

11111 System r0–r7, SP, LR, PC, CPSR r0–r14, PC, CPSR

Programmer’s Model

2-16 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

2.8 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily,
for example, to service an interrupt from a peripheral. Before attempting to handle an
exception, the ARM7TDMI processor preserves the current processor state so that the
original program can resume when the handler routine has finished.

If two or more exceptions arise simultaneously, the exceptions are dealt with in the fixed
order given in Table 2-3.

This section provides details of the ARM7TDMI processor exception handling:

• Exception entry and exit summary on page 2-16

• Entering an exception on page 2-17

• Leaving an exception on page 2-18

• Fast interrupt request on page 2-18

• Interrupt request on page 2-19

• Software interrupt instruction on page 2-21

• Undefined instruction on page 2-21

• Exception vectors on page 2-21

• Exception priorities on page 2-22.

2.8.1 Exception entry and exit summary

Table 2-3 summarizes the PC value preserved in the relevant r14 on exception entry, and
the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry and exit

Exception
or entry

Return instruction
Previous state ARM r14_x
Thumb r14_x

Remarks

BL MOV PC, R14 PC+4 PC+2 Where PC is the address of the BL, SWI, or
undefined instruction fetch that had the
Prefetch AbortSWI MOVS PC, R14_svc PC+4 PC+2

UDEF MOVS PC, R14_und PC+4 PC+2

PABT SUBS PC, R14_abt, #4 PC+4 PC+4

Programmer’s Model

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 2-17

2.8.2 Entering an exception

The ARM7TDMI processor handles an exception as follows:

1. Preserves the address of the next instruction in the appropriate LR.

When the exception entry is from ARM state, the ARM7TDMI processor copies
the address of the next instruction into the LR, current PC+4 or PC+8 depending
on the exception.

When the exception entry is from Thumb state, the ARM7TDMI processor writes
the value of the PC into the LR, offset by a value, current PC+4 or PC+8
depending on the exception, that causes the program to resume from the correct
place on return.

The exception handler does not have to determine the state when entering an
exception. For example, in the case of a SWI, MOVS PC, r14_svc always returns to
the next instruction regardless of whether the SWI was executed in ARM or
Thumb state.

2. Copies the CPSR into the appropriate SPSR.

3. Forces the CPSR mode bits to a value that depends on the exception.

4. Forces the PC to fetch the next instruction from the relevant exception vector.

The ARM7TDMI processor can also set the interrupt disable flags to prevent otherwise
unmanageable nestings of exceptions.

FIQ SUBS PC, R14_fiq, #4 PC+4 PC+4 Where PC is the address of the instruction
that was not executed because the FIQ or
IRQ took priorityIRQ SUBS PC, R14_irq, #4 PC+4 PC+4

DABT SUBS PC, R14_abt, #8 PC+8 PC+8 Where PC is the address of the Load or Store
instruction that generated the Data Abort

RESET Not applicable - - The value saved in r14_svc upon reset is
unpredictable

Table 2-3 Exception entry and exit (continued)

Exception
or entry

Return instruction
Previous state ARM r14_x
Thumb r14_x

Remarks

Programmer’s Model

2-18 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Note
 Exceptions are always entered in ARM state. When the processor is in Thumb state and
an exception occurs, the switch to ARM state takes place automatically when the
exception vector address is loaded into the PC. An exception handler might change to
Thumb state but it must return to ARM state to allow the exception handler to terminate
correctly.

2.8.3 Leaving an exception

When an exception is completed, the exception handler must:

1. Move the LR, minus an offset to the PC. The offset varies according to the type
of exception, as shown in Table 2-3 on page 2-16.

2. Copy the SPSR back to the CPSR.

3. Clear the interrupt disable flags that were set on entry.

Note
 The action of restoring the CPSR from the SPSR automatically resets the T bit to
whatever value it held immediately prior to the exception.

2.8.4 Fast interrupt request

The Fast Interrupt Request (FIQ) exception supports data transfers or channel
processes. In ARM state, FIQ mode has eight banked registers to remove the
requirement for register saving. This minimizes the overhead of context switching.

An FIQ is externally generated by taking the nFIQ input LOW. The input passes into
the core through a synchronizer.

Irrespective of whether exception entry is from ARM state or from Thumb state, an FIQ
handler returns from the interrupt by executing:

SUBS PC,R14_fiq,#4

FIQ exceptions can be disabled within a privileged mode by setting the CPSR F flag.
When the F flag is clear, the ARM7TDMI processor checks for a LOW level on the
output of the FIQ synchronizer at the end of each instruction.

Programmer’s Model

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 2-19

2.8.5 Interrupt request

The Interrupt Request (IRQ) exception is a normal interrupt caused by a LOW level on
the nIRQ input. IRQ has a lower priority than FIQ, and is masked on entry to an FIQ
sequence. As with the nFIQ input, nIRQ passes into the core through a synchronizer.

Irrespective of whether exception entry is from ARM state or Thumb state, an IRQ
handler returns from the interrupt by executing:

SUBS PC,R14_irq,#4

You can disable IRQ at any time, by setting the I bit in the CPSR from a privileged
mode.

2.8.6 Abort

An abort indicates that the current memory access cannot be completed. An abort is
signaled by the external ABORT input. The ARM7TDMI processor checks for the abort
exception at the end of memory access cycles.

The abort mechanism allows the implementation of a demand-paged virtual memory
system. In such a system, the processor is allowed to generate arbitrary addresses. When
the data at an address is unavailable, the Memory Management Unit (MMU) signals an
abort.

The abort handler must then:

• Work out the cause of the abort and make the requested data available.

• Load the instruction that caused the abort using an LDR Rn,[R14_abt,#-8]
instruction to determine whether that instruction specifies base register
write-back. If it does, the abort handler must then:

— determine from the instruction what the offset applied to the base register
by the write-back was

— apply the opposite offset to the value that will be reloaded into the base
register when the abort handler returns.

This ensures that when the instruction is retried, the base register will have been
restored to the value it had when the instruction was originally executed.

The application program needs no knowledge of the amount of memory available to it,
nor is its state in any way affected by the abort.

There are two types of abort:

• a Prefetch Abort occurs during an instruction prefetch

• a Data Abort occurs during a data access.

Programmer’s Model

2-20 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Prefetch Abort

When a Prefetch Abort occurs, the ARM7TDMI processor marks the prefetched
instruction as invalid, but does not take the exception until the instruction reaches the
Execute stage of the pipeline. If the instruction is not executed, for example because it
fails its condition codes or because a branch occurs while it is in the pipeline, the abort
does not take place.

After dealing with the reason for the abort, the handler executes the following
instruction irrespective of the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the aborted instruction.

Data Abort

When a Data Abort occurs, the action taken depends on the instruction type:

• Single data transfer instructions (LDR and STR). If write back base register is
specified by the instruction then the abort handler must be aware of this. In the
case of a load instruction the ARM7TDMI processor prevents overwriting of the
destination register with the loaded data.

• Swap instruction (SWP):

— on a read access suppresses the write access and the write to the destination
register

— on a write access suppresses the write to the destination register.

• Block data transfer instructions (LDM and STM) complete. When write-back is
specified, the base register is updated.

If the base register is in the transfer list and has already been overwritten with
loaded data by the time that the abort is indicated then the base register reverts to
the original value. The ARM7TDMI processor prevents all register overwriting
with loaded data after an abort is indicated. This means that the final value of the
base register is always the written-back value, if write-back is specified, at its
original value. It also means that the ARM7TDMI core always preserves r15 in
an aborted LDM instruction, because r15 is always either the last register in the
transfer list or not present in the transfer list.

After fixing the reason for the abort, the handler must execute the following return
instruction irrespective of the processor operating state at the point of entry:

SUBS PC,R14_abt,#8

This action restores both the PC and the CPSR, and retries the aborted instruction.

Programmer’s Model

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 2-21

2.8.7 Software interrupt instruction

The Software Interrupt instruction (SWI) is used to enter Supervisor mode, usually to
request a particular supervisor function. The SWI handler reads the opcode to extract
the SWI function number.

A SWI handler returns by executing the following irrespective of the processor
operating state:

MOVS PC, R14_svc

This action restores the PC and CPSR, and returns to the instruction following the SWI.

2.8.8 Undefined instruction

When the ARM7TDMI processor encounters an instruction that neither it, nor any
coprocessor in the system can handle, the ARM7TDMI core takes the undefined
instruction trap. Software can use this mechanism to extend the ARM instruction set by
emulating undefined coprocessor instructions.

After emulating the failed instruction, the trap handler executes the following
irrespective of the processor operating state:

MOVS PC,R14_und

This action restores the CPSR and returns to the next instruction after the undefined
instruction.

For more information about undefined instructions, see the ARM Architecture Reference
Manual.

2.8.9 Exception vectors

Table 2-4 lists the exception vector addresses. In this table, I and F represent the
previous value of the IRQ and FIQ interrupt disable bits respectively in the CPSR.

Table 2-4 Exception vectors

Address Exception Mode on entry I state on entry F state on entry

0x00000000 Reset Supervisor Set Set

0x00000004 Undefined instruction Undefined Set Unchanged

0x00000008 Software interrupt Supervisor Set Unchanged

0x0000000C Prefetch Abort Abort Set Unchanged

Programmer’s Model

2-22 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

2.8.10 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines the
order in which they are handled. The priority order is listed in Table 2-5.

Some exceptions cannot occur together:

• The undefined instruction and SWI exceptions are mutually exclusive. Each
corresponds to a particular, non-overlapping, decoding of the current instruction.

• When FIQs are enabled, and a Data Abort occurs at the same time as an FIQ, the
ARM7TDMI processor enters the Data Abort handler, and proceeds immediately
to the FIQ vector.

A normal return from the FIQ causes the Data Abort handler to resume execution.

Data Aborts must have higher priority than FIQs to ensure that the transfer error
does not escape detection. You must add the time for this exception entry to the
worst-case FIQ latency calculations in a system that uses aborts to support virtual
memory.

0x00000010 Data Abort Abort Set Unchanged

0x00000014 Reserved Reserved - -

0x00000018 IRQ IRQ Set Unchanged

0x0000001C FIQ FIQ Set Set

Table 2-4 Exception vectors (continued)

Address Exception Mode on entry I state on entry F state on entry

Table 2-5 Exception priority order

Priority Exception

Highest Reset

Data Abort

FIQ

IRQ

Prefetch Abort

Lowest Undefined instruction and SWI

Programmer’s Model

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 2-23

2.9 Interrupt latencies

The calculations for maximum and minimum latency are described in:

• Maximum interrupt latencies on page 2-23

• Minimum interrupt latencies on page 2-23.

2.9.1 Maximum interrupt latencies

When FIQs are enabled, the worst-case latency for FIQ comprises a combination of:

• The longest time the request can take to pass through the synchronizer, Tsyncmax
(four processor cycles).

• The time for the longest instruction to complete, Tldm. The longest instruction, is
an LDM which loads all the registers including the PC. Tldm is 20 cycles in a zero
wait state system.

• The time for the Data Abort entry, Texc (three cycles).

• The time for FIQ entry, Tfiq (two cycles).

The total latency is therefore 29 processor cycles, just over 0.7 microseconds in a
system that uses a continuous 40MHz processor clock. At the end of this time, the
ARM7TDMI processor executes the instruction at 0x1c.

The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ,
having higher priority, can delay entry into the IRQ handling routine for an arbitrary
length of time.

2.9.2 Minimum interrupt latencies

The minimum latency for FIQ or IRQ is the shortest time the request can take through
the synchronizer, Tsyncmin, plus Tfiq, a total of five processor cycles.

Programmer’s Model

2-24 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

2.10 Reset

When the nRESET signal goes LOW a reset occurs, and the ARM7TDMI core
abandons the executing instruction and continues to increment the address bus as if still
fetching word or halfword instructions. nMREQ and SEQ indicates internal cycles
during this time.

When nRESET goes HIGH again, the ARM7TDMI processor:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and
CPSR into them. The values of the PC and CPSR are indeterminate.

2. Forces M[4:0] to b10011, Supervisor mode, sets the I and F bits, and clears the
T-bit in the CPSR.

3. Forces the PC to fetch the next instruction from address 0x00.

4. Reverts to ARM state if necessary and resumes execution.

After reset, all register values except the PC and CPSR are indeterminate.

More information is provided in Reset sequence after power up on page 3-33.

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-1

Chapter 3
Memory Interface

This chapter describes the ARM7TDMI processor memory interface. It contains the
following sections:

• About the memory interface on page 3-2

• Bus interface signals on page 3-3

• Bus cycle types on page 3-4

• Addressing signals on page 3-11

• Address timing on page 3-14

• Data timed signals on page 3-17

• Stretching access times on page 3-29

• Action of ARM7TDMI core in debug state on page 3-31

• Privileged mode access on page 3-32

• Reset sequence after power up on page 3-33.

Memory Interface

3-2 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

3.1 About the memory interface

The ARM7TDMI processor has a Von Neumann architecture, with a single 32-bit data
bus carrying both instructions and data. Only load, store, and swap instructions can
access data from memory.

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-3

3.2 Bus interface signals

The signals in the ARM7TDMI processor bus interface can be grouped into four
categories:

• clocking and clock control

• address class signals

• memory request signals

• data timed signals.

The clocking and clock control signals are:

• MCLK
• nWAIT
• ECLK
• nRESET.

The address class signals are:

• A[31:0]
• nRW
• MAS[1:0]
• nOPC
• nTRANS
• LOCK
• TBIT.

The memory request signals are:

• nMREQ
• SEQ.

The data timed signals are:

• D[31:0]
• DIN[31:0]
• DOUT[31:0]
• ABORT
• BL[3:0].

The ARM7TDMI processor uses both the rising and falling edges of MCLK.

Bus cycles can be extended using the nWAIT signal. This signal is described in
Stretching access times on page 3-29. All other sections of this chapter describe a
simple system in which nWAIT is permanently HIGH.

Memory Interface

3-4 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

3.3 Bus cycle types

The ARM7TDMI processor bus interface is pipelined. This gives the maximum time for
a memory cycle to decode the address and respond to the access request:

• memory request signals are broadcast in the bus cycle ahead of the bus cycle to
which they refer

• address class signals are broadcast half a clock cycle ahead of the bus cycle to
which they refer.

A single memory cycle is shown in Figure 3-1.

Figure 3-1 Simple memory cycle

The ARM7TDMI processor bus interface can perform four different types of bus cycle:

• a nonsequential cycle requests a transfer to or from an address which is unrelated
to the address used in the preceding cycle

• a sequential cycle requests a transfer to or from an address which is either the
same, one word, or one halfword greater than the address used in the preceding
cycle

• an internal cycle does not require a transfer because it is performing an internal
function, and no useful prefetching can be performed at the same time

• a coprocessor register transfer cycle uses the data bus to communicate with a
coprocessor, but does not require any action by the memory system.

MCLK

A[31:0]

D[31:0]

APE

nMREQ

SEQ

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-5

Bus cycle types are encoded on the nMREQ and SEQ signals as listed in Table 3-1.

A memory controller for the ARM7TDMI processor must commit to a memory access
only on an N-cycle or an S-cycle.

3.3.1 Nonsequential cycles

A nonsequential cycle is the simplest form of bus cycle, and occurs when the processor
requests a transfer to or from an address that is unrelated to the address used in the
preceding cycle. The memory controller must initiate a memory access to satisfy this
request.

The address class and (nMREQ and SEQ) signals that comprise an N-cycle are
broadcast on the bus. At the end of the next bus cycle the data is transferred between the
CPU and the memory. It is not uncommon for a memory system to require a longer
access time (extending the clock cycle) for nonsequential accesses. This is to allow time
for full address decoding or to latch both a row and column address into DRAM. This
is illustrated in Figure 3-2 on page 3-6.

Note

 In Figure 3-2 on page 3-6, nMREQ and SEQ are highlighted where they are valid to
indicate the N-cycle.

Table 3-1 Bus cycle types

nMREQ SEQ Bus cycle type Description

0 0 N-cycle Nonsequential cycle

0 1 S-cycle Sequential cycle

1 0 I-cycle Internal cycle

1 1 C-cycle Coprocessor register transfer cycle

Memory Interface

3-6 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 3-2 Nonsequential memory cycle

The ARM7TDMI processor can perform back-to-back, nonsequential memory cycles.
This happens, for example, when an STR instruction is executed. If you are designing a
memory controller for the ARM7TDMI core, and your memory system is unable to
cope with this case, use the nWAIT signal to extend the bus cycle to allow sufficient
cycles for the memory system. See Stretching access times on page 3-29.

3.3.2 Sequential cycles

Sequential cycles are used to perform burst transfers on the bus. This information can
be used to optimize the design of a memory controller interfacing to a burst memory
device, such as a DRAM.

During a sequential cycle, the ARM7TDMI processor requests a memory location that
is part of a sequential burst. For the first cycle in the burst, the address can be the same
as the previous internal cycle. Otherwise the address is incremented from the previous
cycle:

• for a burst of word accesses, the address is incremented by 4 bytes

• for a burst of halfword accesses, the address is incremented by 2 bytes.

Bursts of byte accesses are not possible.

A burst always starts with an N-cycle or a merged IS-cycle (see Nonsequential cycles
on page 3-5), and continues with S-cycles. A burst comprises transfers of the same type.
The A[31:0] signal increments during the burst. The other address class signals are
unaffected by a burst.

N-cycle S-cycle

a a+4

MCLK

A[31:0]

nMREQ

SEQ

nRAS

nCAS

D[31:0]

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-7

The possible burst types are listed in Table 3-2.

All accesses in a burst are of the same data width, direction, and protection type. For
more details, see Addressing signals on page 3-11.

Memory systems can often respond faster to a sequential access and can require a
shorter access time compared to a nonsequential access. An example of a burst access
is shown in Figure 3-3.

Figure 3-3 Sequential access cycles

3.3.3 Internal cycles

During an internal cycle, the ARM7TDMI processor does not require a memory access,
as an internal function is being performed, and no useful prefetching can be performed
at the same time.

Table 3-2 Burst types

Burst type Address increment Cause

Word read 4 bytes ARM7TDMIcore code fetches, or LDM instruction

Word write 4 bytes STM instruction

Halfword read 2 bytes Thumb code fetches

a a+4 a+8

MCLK

A[31:0]

nMREQ

SEQ

nRAS

nCAS

D[31:0]

N-cycle S-cycle S-cycle

a+12

Memory Interface

3-8 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Where possible the ARM7TDMI processor broadcasts the address for the next access,
so that decode can start, but the memory controller must not commit to a memory
access. This is shown in Figure 3-4 and, is further described in Nonsequential memory
cycle on page 3-6.

Figure 3-4 Internal cycles

3.3.4 Merged IS cycles

Where possible, the ARM7TDMI processor performs an optimization on the bus to
allow extra time for memory decode. When this happens, the address of the next
memory cycle is broadcast on this bus during an internal cycle. This enables the
memory controller to decode the address, but it must not initiate a memory access
during this cycle. In a merged IS cycle, the next cycle is a sequential cycle to the same
memory location. This commits to the access, and the memory controller must initiate
the memory access. This is shown in Figure 3-5 on page 3-9.

N-cycle S-cycle

a+4 a+8

I-cycle C-cycle

a a+12

MCLK

A[31:0]

nMREQ

SEQ

nRAS

nCAS

D[31:0]

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-9

Figure 3-5 Merged IS cycle

Note

 When designing a memory controller, ensure that the design also works when an I-cycle
is followed by an N-cycle to a different address. This sequence can occur during
exceptions, or during writes to the PC. It is essential that the memory controller does
not commit to the memory cycle during an I-cycle.

3.3.5 Coprocessor register transfer cycles

During a coprocessor register transfer cycle, the ARM7TDMI processor uses the data
buses to transfer data to or from a coprocessor. A memory cycle is not required and the
memory controller does not initiate a transaction. The memory system must not drive
onto the data bus during a coprocessor register transfer cycle.

The coprocessor interface is described in Chapter 4 Coprocessor Interface. The
coprocessor register transfer cycle is shown in Figure 3-6 on page 3-10.

MCLK

A[31:0]

nMREQ

SEQ

nRAS

nCAS

D[31:0]

I-cycle S-cycle

Memory Interface

3-10 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 3-6 Coprocessor register transfer cycles

3.3.6 Summary of ARM memory cycle timing

A summary of ARM7TDMI processor memory cycle timing is shown in Figure 3-7.

Figure 3-7 Memory cycle timing

Memory Memory Coprocessor

MCLK

A[31:0]

nMREQ

SEQ

D[31:0]

N-cycle C-cycle

C-cycleI-cycleS-cycle

a+8a+4a

MCLK

A[31:0]

nMREQ

SEQ

nRAS

nCAS

D[31:0]

N-cycle

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-11

3.4 Addressing signals

The address class signals are:

• A[31:0] on page 3-11

• nRW on page 3-11

• MAS[1:0] on page 3-11

• nOPC on page 3-12

• nTRANS on page 3-13

• LOCK on page 3-13

• TBIT on page 3-13.

3.4.1 A[31:0]

A[31:0] is the 32-bit address bus that specifies the address for the transfer. All addresses
are byte addresses, so a burst of word accesses results in the address bus incrementing
by four for each cycle.

The address bus provides 4GB of linear addressing space.

When a word access is signaled the memory system ignores the bottom two bits, A[1:0],
and when a halfword access is signaled the memory system ignores the bottom bit,
A[0].

All data values must be aligned on their natural boundaries. All words must be
word-aligned.

3.4.2 nRW

nRW specifies the direction of the transfer. nRW indicates an ARM7TDMI processor
write cycle when HIGH, and an ARM7TDMI processor read cycle when LOW. A burst
of S-cycles is always either a read burst, or a write burst. The direction cannot be
changed in the middle of a burst.

3.4.3 MAS[1:0]

The MAS[1:0] bus encodes the size of the transfer. The ARM7TDMI processor can
transfer word, halfword, and byte quantities.

All writable memory in an ARM7TDMI processor based system must support the
writing of individual bytes or halfwords to allow the use of the C Compiler and the
ARM debug tool chain, for example Multi-ICE.

Memory Interface

3-12 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

The address produced by the processor is always a byte address. However, the memory
system must ignore the bottom redundant bits of the address. The significant address
bits are listed in Table 3-3.

The size of transfer does not change during a burst of S-cycles.

The ARM7TDMI processor cannot generate bursts of byte transfers.

Note

 During instruction accesses the redundant address bits are undefined. The memory
system must ignore these redundant bits.

A writable memory system for the ARM7TDMI processor must have individual byte
write enables. Both the C Compiler and the ARM debug tool chain, for example,
Multi-ICE, assume that arbitrary bytes in the memory can be written. If individual byte
write capability is not provided, you might not be able to use either of these tools
without data corruption.

3.4.4 nOPC

The nOPC output conveys information about the transfer. An MMU can use this signal
to determine whether an access is an opcode fetch or a data transfer. This signal can be
used with nTRANS to implement an access permission scheme. The meaning of nOPC
is listed in Table 3-4.

Table 3-3 Significant address bits

MAS[1:0] Width Significant address bits

00 Byte A[31:0]

01 Halfword A[31:1]

10 Word A[31:2]

11 Reserved -

Table 3-4 nOPC

nOPC Opcode/data

0 Opcode

1 Data

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-13

3.4.5 nTRANS

The nTRANS output conveys information about the transfer. A MMU can use this
signal to determine whether an access is from a privileged mode or User mode. This
signal can be used with nOPC to implement an access permission scheme. The
meaning of nTRANS is listed in Table 3-5.

More information relevant to the nTRANS signal and security is provided in Privileged
mode access on page 3-32.

3.4.6 LOCK

LOCK is used to indicate to an arbiter that an atomic operation is being performed on
the bus. LOCK is normally LOW, but is set HIGH to indicate that a SWP or SWPB
instruction is being performed. These instructions perform an atomic read/write
operation, and can be used to implement semaphores.

3.4.7 TBIT

TBIT is used to indicate the operating state of the ARM7TDMI processor. When in:

• ARM state, the TBIT signal is LOW

• Thumb state, the TBIT signal is HIGH.

Note

 Memory systems do not usually have to use TBIT because MAS[1:0] indicates the size
of the instruction required.

Table 3-5 nTRANS encoding

nTRANS Mode

0 User

1 Privileged

Memory Interface

3-14 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

3.5 Address timing

The ARM7TDMI processor address bus can operate in one of two configurations:

• pipelined

• depipelined.

Note

 ARM Limited strongly recommends that pipelined address timing is used in new design
to obtain optimum system performance.

ARM Limited strongly recommends that ALE is tied HIGH and not used in new
designs.

Address depipelined configuration is controlled by the APE or ALE input signal. The
configuration is provided to ease the design of the ARM7TDMI processor in both
SRAM and DRAM-based systems.

APE affects the timing of the address bus A[31:0], plus nRW, MAS[1:0], LOCK,
nOPC, and nTRANS.

In most systems, particularly a DRAM-based system, it is desirable to obtain the
address from ARM7TDMI processor as early as possible. When APE is HIGH then the
ARM7TDMI processor address becomes valid after the rising edge of MCLK before
the memory cycle to which it refers. This timing allows longer periods for address
decoding and the generation of DRAM control signals. Figure 3-8 shows the effect on
the timing when APE is HIGH.

Figure 3-8 Pipelined addresses

SRAMs and ROMs require that the address is held stable throughout the memory cycle.
In a system containing SRAM and ROM only, APE can be tied permanently LOW,
producing the desired address timing. In this configuration the address becomes valid
after the falling edge of MCLK as shown in Figure 3-9 on page 3-15.

MCLK

APE

A[31:0]

D[31:0]

nMREQ

SEQ

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-15

Note
 The AMBA specification for Advanced High-performance Bus (AHB) and Advanced
System Bus (ASB) requires a pipelined address bus. This means that APE must be
configured HIGH.

Figure 3-9 Depipelined addresses

Many systems contain a mixture of DRAM, SRAM and ROM. To cater for the different
address timing requirements, APE can be safely changed during the LOW phase of
MCLK. Typically, APE is held at one level during a burst of sequential accesses to one
type of memory. When a nonsequential access occurs, the timing of most systems
enforce a wait state to allow for address decoding. As a result of the address decode,
APE can be driven to the correct value for the particular bank of memory being
accessed. The value of APE can be held until the memory control signals denote
another nonsequential access.

Previous ARM processors included the ALE signal, and this is retained for backwards
compatibility. This signal also enables you to modify the address timing to achieve the
same results as APE, but in a dynamic manner. To obtain clean MCLK low timing of
the address bus by this mechanism, ALE must be driven HIGH with the falling edge of
MCLK, and LOW with the rising edge of MCLK. ALE can simply be the inverse of
MCLK but the delay from MCLK to ALE must be carefully controlled so that the Tald
timing constraint is achieved. Figure 3-10 on page 3-16 shows how you can use ALE
to achieve SRAM compatible address timing. Refer to Chapter 7 AC and DC
Parameters for details of the exact timing constraints.

MCLK

nMREQ

SEQ

APE

A[31:0]

D[31:0]

Memory Interface

3-16 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 3-10 SRAM compatible address timing

Note
 If ALE is to be used to change address timing, then you must tie APE HIGH. Similarly,
if APE is to be used, ALE must be tied HIGH.

You can obtain better system performance when the address pipeline is enabled with
APE HIGH. This allows longer time for address decoding.

MCLK

nMREQ

SEQ

APE

D[31:0]

ALE

A[31:0]

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-17

3.6 Data timed signals

This section describes:

• D[31:0], DOUT[31:0], and DIN[31:0] on page 3-17

• ABORT on page 3-24

• Byte latch enables on page 3-24

• Byte and halfword accesses on page 3-26.

3.6.1 D[31:0], DOUT[31:0], and DIN[31:0]

The ARM7TDMI processor provides both unidirectional data buses, DIN[31:0],
DOUT[31:0], and a bidirectional data bus, D[31:0]. The configuration input BUSEN is
used to select which is active. Figure 3-11 shows the arrangement of the data buses and
bus-splitter logic.

Figure 3-11 External bus arrangement

When the bidirectional data bus is being used then you must disable the unidirectional
buses by driving BUSEN LOW. The timing of the bus for three cycles, load-store-load,
is shown in Figure 3-12 on page 3-18.

ARM7TDMI

EmbeddICE

Logic

Latch DOUT[31:0]

D[31:0]

DIN[31:0]

G

Latch control

Buffer control

Memory Interface

3-18 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 3-12 Bidirectional bus timing

Unidirectional data bus

When BUSEN is HIGH, all instructions and input data are presented on the input data
bus, DIN[31:0]. The timing of this data is similar to that of the bidirectional bus when
in input mode. Data must be set up and held to the falling edge of MCLK. For the exact
timing requirements refer to Chapter 7 AC and DC Parameters.

In this configuration, all output data is presented on DOUT[31:0]. The value on this bus
only changes when the processor performs a store cycle. Again, the timing of the data
is similar to that of the bidirectional data bus. The value on DOUT[31:0] changes after
the falling edge of MCLK.

The bus timing of a read-write-read cycle combination is shown in Figure 3-13.

Figure 3-13 Unidirectional bus timing

When the unidirectional data buses are being used, and BUSEN is HIGH, the
bidirectional bus, D[31:0], must be left unconnected.

The unidirectional buses are typically used internally in ASIC embedded applications.
Externally, most systems still require a bidirectional data bus to interface to external
memory. Figure 3-14 on page 3-19 shows how you can join the unidirectional buses up
at the pads of an ASIC to connect to an external bidirectional bus.

MCLK

D[31:0]

read cycle write cycle read cycle

D1

Dout

D2

D1 Dout

read cycle write cycle read cycle

D2

MCLK

DIN[31:0]

DOUT[31:0]

D[31:0]

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-19

Figure 3-14 External connection of unidirectional buses

Bidirectional data bus

When BUSEN is LOW, the buffer between DIN[31:0] and D[31:0] is disabled. Any
data presented on DIN[31:0] is ignored. Also, when BUSEN is LOW, the value on
DOUT[31:0] is forced to 0x00000000.

When the ARM7TDMI processor is reading from memory DIN[31:0] is acting as an
input. During write cycles the ARM7TDMI core must output data. During phase 2 of
the previous cycle, the signal nRW is driven HIGH to indicate a write cycle. During the
actual cycle, nENOUT is driven LOW to indicate that the processor is driving D[31:0]
as an output. Figure 3-15 on page 3-20 shows the bus timing with the data bus enabled.
Figure 3-16 on page 3-20 shows the circuit that exists in the processor for controlling
exactly when the external bus is driven out.

ARM7TDMI

PAD

DOUT[31:0]
XDATA[31:0]

DIN[31:0]

nENOUT

Memory Interface

3-20 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 3-15 Data write bus cycle

Figure 3-16 Data bus control circuit

MCLK

A[31:0]

nRW

nENOUT

D[31:0]

memory cycle

scan

cell

scan

cell

scan

cell

data direction

control from

core

DBE

nENOUT

nENIN

TBE

D[31:0]
write data

from core

read data to

core

ARM7TDMI

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-21

The macrocell has an additional bus control signal, nENIN that allows the external
system to manually tristate the bus. In the simplest systems, nENIN can be tied LOW
and nENOUT can be ignored. In many applications, when the external data bus is a
shared resource, greater control might be required. In this situation, nENIN can be used
to delay when the external bus is driven.

Note
 For backwards compatibility, DBE is also included. At the macrocell level, DBE and
nENIN have almost identical functionality and in most applications one can be tied to
keep the data bus enabled.

The processor has another output control signal called TBE. This signal is usually only
used during test and must be tied HIGH when not in use. When driven LOW, TBE
forces all tristateable outputs to high impedance, it is as though both DBE and ABE
have been driven LOW, causing the data bus, the address bus, and all other signals
normally controlled by ABE to become high impedance.

Note

 There is no scan cell on TBE. Therefore, TBE is completely independent of scan data
and can be used to put the outputs into a high impedance state while scan testing takes
place.

Table 3-6 lists the tristate control of the processor outputs.

Table 3-6 Tristate control of processor outputs

Processor output ABE DBE TBE

A[31:0] Yes - Yes

D[31:0] - Yes Yes

nRW Yes - Yes

LOCK Yes - Yes

MAS[1:0] Yes - Yes

nOPC Yes - Yes

nTRANS Yes - Yes

Memory Interface

3-22 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

ARM7TDMI core test chip example system

Connecting the ARM7TDMI processor data bus, D[31:0] to an external shared bus
requires additional logic that varies between applications in the case of a test chip.

In this application, care must be taken to prevent bus clash on D[31:0] when the data
bus drive changes direction. The timing of nENIN, and the pad control signals must be
arranged so that when the core starts to drive out, the pad drive onto D[31:0] is disabled
before the core starts to drive. Similarly, when the bus switches back to input, the core
must stop driving before the pad is enabled.

The circuit implemented in the ARM7TDMI processor test chip is shown in Figure 3-17
on page 3-23.

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-23

Figure 3-17 Test chip data bus circuit

Note

 At the core level, TBE and DBE are inactive, tied HIGH, because in a packaged part
you do not have to manually force the internal buses into a high impedance state. At the
pad level, the test chip signal EDBE is used by the bus control logic to allow the external
memory controller to arbitrate the bus and asynchronously disable the ARM7TDMI
core test chip if necessary.

scan

cell

scan

cell

scan

cell

Vdd

VssVdd

MCLK

DBE

nENOUT

nEDBE

MCLK

EDBE

nENIN

TBE

D[31:0]

XD[31:0]

Pad

ARM7TDMI core

ARM7TDMI test chip or product

nEN1

nEN2

Memory Interface

3-24 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

3.6.2 ABORT

ABORT indicates that a memory transaction failed to complete successfully. ABORT
is sampled at the end of the bus cycle during S-cycles and N-cycles.

If ABORT is asserted on a data access, it causes the processor to take the Data Abort
trap. If it is asserted on an opcode fetch, the abort is tracked down the pipeline, and the
Prefetch Abort trap is taken if the instruction is executed.

ABORT can be used by a memory management system to implement, for example, a
basic memory protection scheme, or a demand-paged virtual memory system.

3.6.3 Byte latch enables

To ease the connection of the ARM7TDMI core to sub-word sized memory systems,
input data and instructions can be latched on a byte-by-byte basis. This is achieved by
the use of the BL[3:0] signal as follows:

• BL[3] controls the latching of the data present on D[31:24]
• BL[2] controls the latching of the data present on D[23:16]
• BL[1] controls the latching of the data present on D[15:8]
• BL[0] controls the latching of the data present on D[7:0].

Note

 It is recommended that BL[3:0] is tied HIGH in new designs and word values from
narrow memory systems are latched onto latches that are external to the ARM7TDMI
core.

In a memory system that only contains word-wide memory, BL[3:0] can be tied HIGH.
For sub-word wide memory systems, the BL[3:0] signals are used to latch the data as it
is read out of memory. For example, a word access to halfword wide memory must take
place in two memory cycles:

• in the first cycle, the data for D[15:0] is obtained from the memory and latched
into the core on the falling edge of MCLK when BL[1:0] are both HIGH.

• in the second cycle, the data for D[31:16] is latched into the core on the falling
edge of MCLK when BL[3:2] are both HIGH and BL[1:0] are both LOW.

In Figure 3-18 on page 3-25, a word access is performed from halfword wide memory
in two cycles:

• in the first cycle, the read data is applied to the lower half of the bus

• in the second cycle, the read data is applied to the upper half of the bus.

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-25

Because two memory cycles are required, nWAIT is used to stretch the internal
processor clock. nWAIT does not affect the operation of the data latches. Using this
method, data can be taken from memory as word, halfword, or byte at a time and the
memory can have as many wait states as required. In multi-cycle memory accesses,
nWAIT must be held LOW until the final part is latched.

In the example shown in Figure 3-18, the BL[3:0] signals are driven to value 0x3 in the
first cycle so that only the latches on D[15:0] are open. BL[3:0] can be driven to value
0xF and all of the latches opened. This does not affect the operation of the core because
the latches on D[31:16] are written with the correct data during the second cycle.

Note

 BL[3:0] must be held HIGH during store cycles.

Figure 3-18 Memory access

Figure 3-19 on page 3-26 shows a halfword load from single-wait state byte wide
memory. In the figure, each memory access takes two cycles:

• in the first access:

— BL[3:0] are driven to 0xF

— the correct data is latched from D[7:0]
— unknown data is latched from D[31:8].

• in the second cycle, the byte for D[15:8] is latched so the halfword on D[15:0] is
correctly read from memory. It does not matter that D[31:16] are unknown
because the core only extracts the halfword that it is interested in.

MCLK

APE

nMREQ

SEQ

A[31:0]

nWAIT

D[15:0]

D[31:16]

BL[3:0] 0x3 0xC

Memory Interface

3-26 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 3-19 Two cycle memory access

3.6.4 Byte and halfword accesses

The processor indicates the size of a transfer by use of the MAS[1:0] signal as described
in MAS[1:0] on page 3-11.

Byte, halfword, and word accesses are described in:

• Reads on page 3-26

• Writes on page 3-27.

Reads

When a halfword or byte read is performed, a 32-bit memory system can return the
complete 32-bit word, and the processor extracts the valid halfword or byte field from
it. The fields extracted depend on the state of the BIGEND signal, which determines
the endian configuration of the system. See Memory formats on page 2-4.

A word read from 32-bit memory presents the word value on the whole data bus as listed
in Table 3-7.

When connecting 8-bit to 16-bit memory systems to the processor, ensure that the data
is presented to the correct byte lanes on the core as listed in Table 3-7 on page 3-27.

MCLK

APE

nMREQ

SEQ

A[31:0]

nWAIT

D[7:0]

D[15:8]

BL[3:0] 0xF 0x2

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-27

Note

 For subword reads the value is placed in the ARM register in the least significant bits
regardless of the byte lane used to read the data. For example, a byte read on A[1:0] =
01 in a little-endian system means that the byte is read on bits D[15:8] but is placed in
the ARM register bits [7:0].

Writes

When the ARM7TDMI processor performs a byte or halfword write, the data being
written is replicated across the data bus, as shown in Figure 3-20 on page 3-28. The
memory system can use the most convenient copy of the data.

A writable memory system must be capable of performing a write to any single byte in
the memory system. This capability is required by the ARM C Compiler and the debug
tool chain.

Table 3-7 Read accesses

Access type MAS[1:0] A[1:0] Little-endian BIGEND = 0 Big-endian BIGEND = 1

Word 10 XX D[31:0] D[31:0]

Halfword 01 0X D[15:0] D[31:16]

01 1X D[31:16] D[15:0]

Byte 00 00 D[7:0] D[31:24]

00 01 D[15:8] D[23:16]

00 10 D[23:16] D[15:8]

00 11 D[31:24] D[7:0]

Memory Interface

3-28 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 3-20 Data replication

0

A B C D

7815162331 24

ARM

register

Half word write (register [15:0])

CD

CDCD
D[31:16] D[15:0]

Word write (register [31:0])

ABCD

ABCD
D[31:0]

Byte write (register [7:0])

D

DDDD
D[31:24]

Memory

interface

D[15:8]D[23:16] D[7:0]

Bits

Memory

interface

Memory

interface

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-29

3.7 Stretching access times

The ARM7TDMI processor does not contain any dynamic logic that relies on regular
clocking to maintain the internal state. Therefore, there is no limit upon the maximum
period for which MCLK can be stretched, or nWAIT held LOW. There are two
methods available to stretch access times as described in:

• Modulating MCLK on page 3-29

• Use of nWAIT to control bus cycles on page 3-29.

Note

 If you wish to use an Embedded Trace Macrocell (ETM) to obtain instruction and data
trace information on a trace port then you must use the nWAIT signal to stretch access
times.

3.7.1 Modulating MCLK

All memory timing is defined by MCLK, and long access times can be accommodated
by stretching this clock. It is usual to stretch the LOW period of MCLK, as this allows
the memory manager to abort the operation if the access is eventually unsuccessful.

MCLK can be stretched before being applied to the processor, or the nWAIT input can
be used together with a free-running MCLK. Taking nWAIT LOW has the same effect
as stretching the LOW period of MCLK.

3.7.2 Use of nWAIT to control bus cycles

The pipelined nature of the processor bus interface means that there is a distinction
between clock cycles and bus cycles. nWAIT can be used to stretch a bus cycle, so that
it lasts for many clock cycles. The nWAIT input allows the timing of bus cycles to be
extended in increments of complete MCLK cycles:

• when nWAIT is HIGH on the falling edge of MCLK, a bus cycle completes

• when nWAIT is LOW, the bus cycle is extended by stretching the low phase of
the internal clock.

nWAIT must only change during the LOW phase of MCLK.

In the pipeline, the address class signals and the memory request signals are ahead of
the data transfer by one bus cycle. In a system using nWAIT this can be more than one
MCLK cycle. This is illustrated in Figure 3-21 on page 3-30, which shows nWAIT
being used to extend a nonsequential cycle. In the example, the first N-cycle is followed
a few cycles later by another N-cycle to an unrelated address, and the address for the
second access is broadcast before the first access completes.

Memory Interface

3-30 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 3-21 Typical system timing

Note

 When designing a memory controller, you are strongly advised to sample the values of
nMREQ, SEQ, and the address class signals only when nWAIT is HIGH. This ensures
that the state of the memory controller is not accidentally updated during an extended
bus cycle.

A A+4 A+8 B B+4 B+8 C C+4

MCLK

nMREQ

SEQ

A[31:0]

nRW

nWAIT

D[31:0]

nRAS

nCAS

S S

Cycles Decode Cycles

S S S

Decode

NN

Cycles

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-31

3.8 Action of ARM7TDMI core in debug state

When the ARM7TDMI core is in debug state, nMREQ and SEQ are forced to indicate
internal cycles. This allows the rest of the memory system to ignore the processor and
function as normal. Because the rest of the system continues operation, the core ignores
aborts and interrupts while in debug state.

The BIGEND signal must not be changed by the system during debug. If BIGEND
changes, not only is there a synchronization problem but the programmer view of the
processor changes without the knowledge of the debugger. Signal nRESET must also
be held stable during debug. If nRESET is driven LOW then the state of the processor
changes without the knowledge of the debugger.

When instructions are executed in debug state, all bus interface outputs, except
nMREQ and SEQ, change asynchronously to the memory system. For example, every
time a new instruction is scanned into the pipeline, the address bus changes. Although
this is asynchronous it does not affect the system as nMREQ and SEQ are forced to
indicate internal cycles regardless of what the rest of the processor is doing. The
memory controller must be designed to ensure that this asynchronous behavior does not
affect the rest of the system.

Memory Interface

3-32 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

3.9 Privileged mode access

ARM Limited usually recommends that if only privileged mode access is required from
a memory system then you are advised to use the nTRANS pin on the core. This signal
distinguishes between User and privileged accesses.

The reason that this is recommended is that if the Operating System (OS) accesses
memory on behalf of the current application then it must perform these accesses in User
mode. This is achieved using the LDRT and STRT instructions that set nTRANS
appropriately.

This measure avoids the possibility of a hacker deliberately passing an invalid pointer
to an OS and getting the OS to access this memory with privileged access. This
technique could otherwise be used by a hacker to enable the user application to access
any memory locations such as I/O space.

The least significant five bits of the CPSR are also output from the core as inverted
signals, nM[4:0]. These indicate the current processor mode as listed in Table 3-8.

Note

 The only time to use the nM[4:0] signals is for diagnostic and debug purposes.

Table 3-8 Use of nM[4:0] to indicate current processor mode

M[4:0] nM[4:0] Mode

10000 01111 User

10001 01110 FIQ

10010 01101 IRQ

10011 01100 Supervisor

10111 01000 Abort

11011 00100 Undefined

11111 00000 System

Memory Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 3-33

3.10 Reset sequence after power up

It is good practice to reset a static device immediately on power-up, to remove any
undefined conditions within the device that can otherwise combine to cause a DC path
and consequently increase current consumption. Most systems are reset by using a
simple RC circuit on the reset pin to remove the undefined states within devices whilst
clocking the device.

During reset, the signals nMREQ and SEQ show internal cycles where the address bus
continues to increment by two or four bytes. The initial address and increment values
are determined by the state of the core when nRESET was asserted. They are undefined
after power up.

After nRESET has been taken HIGH, the ARM core does two further internal cycles
before the first instruction is fetched from the reset vector (address 0x00000000). It then
takes three MCLK cycles to advance this instruction through the
Fetch-Decode-Execute stages of the ARM instruction pipeline before this first
instruction is executed. This is shown in Figure 3-22.

Note

 nRESET must be held asserted for a minimum of two MCLK cycles to fully reset the
core.

You must reset the EmbeddedICE Logic and the TAP controller as well, whether the
debug features are used or are not. This is done by taking nTRST LOW for at least Tbsr,
no later than nRESET.

In Figure 3-22, x, y, and z are incrementing address values.

Figure 3-22 Reset sequence

Fetch 1 Decode 1 Execute 1

MCLK

A[31:0]

D[31:0]

nMREQ

SEQ

nEXEC

x 0 4 8y z

nRESET

Memory Interface

3-34 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 4-1

Chapter 4
Coprocessor Interface

This chapter describes the ARM7TDMI core coprocessor interface. It contains the
following sections:

• About coprocessors on page 4-2

• Coprocessor interface signals on page 4-4

• Pipeline following signals on page 4-5

• Coprocessor interface handshaking on page 4-6

• Connecting coprocessors on page 4-12

• If you are not using an external coprocessor on page 4-15

• Undefined instructions on page 4-16

• Privileged instructions on page 4-17.

Coprocessor Interface

4-2 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

4.1 About coprocessors

The ARM7TDMI core instruction set enables you to implement specialized additional
instructions using coprocessors to extend functionality. These are separate processing
units that are tightly coupled to the ARM7TDMI processor. A typical coprocessor
contains:

• an instruction pipeline (pipeline follower)

• instruction decoding logic

• handshake logic

• a register bank

• special processing logic, with its own data path.

A coprocessor is connected to the same data bus as the ARM7TDMI processor in the
system, and tracks the pipeline in the ARM7TDMI processor. This means that the
coprocessor can decode the instructions in the instruction stream, and execute those that
it supports. Each instruction progresses down both the ARM7TDMI core pipeline and
the coprocessor pipeline at the same time.

The execution of instructions is shared between the ARM7TDMI core and the
coprocessor.

The ARM7TDMI processor:

1. Evaluates the instruction type and the condition codes to determine whether the
instructions are executed by the coprocessor, and communicates this to any
coprocessors in the system, using nCPI.

2. Generates any addresses that are required by the instruction, including
prefetching the next instruction to refill the pipeline.

3. Takes the undefined instruction trap if no coprocessor accepts the instruction.

The coprocessor:

1. Decodes instructions to determine whether it can accept the instruction.

2. Indicates whether it can accept the instruction by using CPA and CPB.

3. Fetches any values required from its own register bank.

4. Performs the operation required by the instruction.

If a coprocessor cannot execute an instruction, the instruction takes the undefined
instruction trap. You can choose whether to emulate coprocessor functions in software,
or to design a dedicated coprocessor.

Coprocessor Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 4-3

4.1.1 Coprocessor availability

Up to 16 coprocessors can be referenced by a system, each with a unique coprocessor
ID number to identify it. The ARM7TDMI core contains one internal coprocessor:

• CP14, the debug communications channel coprocessor.

Other coprocessor numbers have also been reserved. Coprocessor availability is listed
in Table 4-1.

If you intend to design a coprocessor send an email with coprocessor in the subject line
to info@arm.com for up-to-date information on which coprocessor numbers have been
allocated.

Table 4-1 Coprocessor availability

Coprocessor number Allocation

15 Reserved for system control

14 Debug controller

13:8 Reserved

7:4 Available to users

3:0 Reserved

Coprocessor Interface

4-4 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

4.2 Coprocessor interface signals

The signals used to interface the ARM7TDMI core to a coprocessor are grouped into
four categories.

The clock and clock control signals are:

• MCLK
• nWAIT
• nRESET.

The pipeline following signals are:

• nMREQ
• SEQ
• nTRANS
• nOPC
• TBIT.

The handshake signals are:

• nCPI
• CPA
• CPB.

The data signals are:

• D[31:0]
• DIN[31:0]
• DOUT[31:0].

Coprocessor Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 4-5

4.3 Pipeline following signals

Every coprocessor in the system must contain a pipeline follower to track the
instructions in the ARM7TDMI processor pipeline. The coprocessors connect to the
configured ARM7TDMI core input data bus, D[31:0] or DIN[31:0], over which
instructions are fetched, and to MCLK and nWAIT.

It is essential that the two pipelines remain in step at all times. When designing a
pipeline follower for a coprocessor, the following rules must be observed:

• At reset, with nRESET LOW, the pipeline must either be marked as invalid, or
filled with instructions that do not decode to valid instructions for that
coprocessor.

• The coprocessor state must only change when nWAIT is HIGH, except during
reset.

• An instruction must be loaded into the pipeline on the falling edge of MCLK, and
only when nOPC, nMREQ, and TBIT were all LOW in the previous bus cycle.

These conditions indicate that this cycle is an ARM instruction fetch, so the new
opcode must be read into the pipeline.

• The pipeline must be advanced on the falling edge of MCLK when nOPC,
nMREQ and TBIT are all LOW in the current bus cycle.

These conditions indicate that the current instruction is about to complete
execution, because the first action of any instruction performing an instruction
fetch is to refill the pipeline.

Any instructions that are flushed from the ARM7TDMI processor pipeline:

• never signal on nCPI that they have entered execute

• are automatically replaced in the coprocessor pipeline follower by the prefetches
required to refill the core pipeline.

There are no coprocessor instructions in the Thumb instruction set, and so coprocessors
must monitor the state of the TBIT signal to ensure that they do not decode pairs of
Thumb instructions as ARM instructions.

Coprocessor Interface

4-6 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

4.4 Coprocessor interface handshaking

Coprocessor interface handshaking is described as follows:

• The coprocessor on page 4-6

• The ARM7TDMI processor on page 4-7

• Coprocessor signaling on page 4-7

• Consequences of busy-waiting on page 4-8

• Coprocessor register transfer instructions on page 4-9

• Coprocessor data operations on page 4-10

• Coprocessor load and store operations on page 4-10.

The ARM7TDMI core and any coprocessors in the system perform a handshake using
the signals shown in Table 4-2.

These signals are explained in more detail in Coprocessor signaling on page 4-7.

4.4.1 The coprocessor

The coprocessor decodes the instruction currently in the Decode stage of its pipeline,
and checks whether that instruction is a coprocessor instruction. A coprocessor
instruction contains a coprocessor number that matches the coprocessor ID of the
coprocessor.

If the instruction currently in the Decode stage is a relevant coprocessor instruction:

1. The coprocessor attempts to execute the instruction.

2. The coprocessor handshakes with the ARM7TDMI core using CPA and CPB.

Note

 The coprocessor can drive CPA and CPB as soon as it decodes the instruction. It does
not have to wait for nCPI to be LOW but it must not commit to execute the instruction
until nCPI has gone LOW.

Table 4-2 Handshaking signals

Signal Direction Meaning

nCPI ARM7TDMI core to coprocessor NOT coprocessor instruction

CPA Coprocessor to ARM7TDMI core Coprocessor absent

CPB Coprocessor to ARM7TDMI core Coprocessor busy

Coprocessor Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 4-7

4.4.2 The ARM7TDMI processor

Coprocessor instructions progress down the ARM7TDMI core pipeline in step with the
coprocessor pipeline. A coprocessor instruction is executed if the following are true:

1. The coprocessor instruction has reached the Execute stage of the pipeline. It
might not if it is preceded by a branch.

2. The ARM7TDMI processor cannot execute the instruction because the
instruction is in the coprocessor or undefined part of the instruction set.

3. The instruction has passed its conditional execution tests.

If all these requirements are met, the ARM7TDMI core signals by taking nCPI LOW,
this commits the coprocessor to the execution of the coprocessor instruction.

4.4.3 Coprocessor signaling

The coprocessor responses are listed in Table 4-3.

Table 4-3 Summary of coprocessor signaling

CPA CPB Response Remarks

0 0 Coprocessor present If a coprocessor can accept an instruction, and can start that instruction
immediately, it must signal this by driving both CPA and CPB LOW. The
ARM7TDMI processor then ignores the coprocessor instruction and
executes the next instruction as normal.

0 1 Coprocessor busy If a coprocessor can accept an instruction, but is currently unable to process
that request, it can stall the ARM7TDMI processor by asserting busy-wait.
This is signaled by driving CPA LOW, but leaving CPB HIGH. When the
coprocessor is ready to start executing the instruction it signals this by
driving CPB LOW. This is shown in Figure 4-1 on page 4-8.

1 0 Invalid response -

1 1 Coprocessor absent If a coprocessor cannot accept the instruction currently in Decode it must
leave CPA and CPB both HIGH. The ARM7TDMI processor takes the
undefined instruction trap.

Coprocessor Interface

4-8 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 4-1 Coprocessor busy-wait sequence

CPA and CPB are ignored by the ARM7TDMI processor when it does not have a
undefined or coprocessor instruction in the Execute stage of the pipeline.

A summary of coprocessor signaling is listed in Table 4-3 on page 4-7.

4.4.4 Consequences of busy-waiting

A busy-waited coprocessor instruction can be interrupted. If a valid FIQ or IRQ occurs
and the appropriate bit is clear in the CSPR, then the ARM7TDMI processor abandons
the coprocessor instruction, and signals this by taking nCPI HIGH. A coprocessor that
is capable of busy-waiting must monitor nCPI to detect this condition. When the
ARM7TDMI core abandons a coprocessor instruction, the coprocessor also abandons
the instruction, and continues tracking the ARM7TDMI processor pipeline.

ADD SUB CDP TST SUB

ADD SUB CDP TST SUB

ADD SUB CDP TST SUB

Instr fetch

(ADD)

Instr fetch

(CDP)
Instr fetch

(TST)

Instr fetch

(SUB)
Instr fetch Instr fetch

Instr fetch

(SUB)

MCLK

Fetch stage

Decode stage

Execute

stage

nCPI

CPA

CPB

D[31:0]

Coprocessor

busy waiting

Coprocessor Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 4-9

Caution
 It is essential that any action taken by the coprocessor while it is busy-waiting is
idempotent. This means that the actions taken by the coprocessor must not corrupt the
state of the coprocessor, and must be repeatable with identical results. The coprocessor
can only change its own state once the instruction has been executed.

The ARM7TDMI processor usually returns from processing the interrupt to retry the
coprocessor instruction. Other coprocessor instructions can be executed before the
interrupted instruction is executed again.

4.4.5 Coprocessor register transfer instructions

The coprocessor register transfer instructions, MCR and MRC, are used to transfer data
between a register in the ARM7TDMI processor register bank and a register in the
coprocessor register bank. An example sequence for a coprocessor register transfer is
shown in Figure 4-2.

Figure 4-2 Coprocessor register transfer sequence

ADD SUB MCR TST

ADD SUB MCR SUB

ADD SUB TST SUB

MCLK

Fetch stage

Decode stage

Execute stage

nCPI

CPA

CPB

SUB

TST

MCR

ADD SUB MCR TST SUB DATA INSTRD[31:0]

Coprocessor Interface

4-10 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

4.4.6 Coprocessor data operations

Coprocessor data operations, CDP instructions, perform processing operations on the
data held in the coprocessor register bank. No information is transferred between the
ARM7TDMI processor and the coprocessor as a result of this operation. An example
sequence is shown in Figure 4-3.

Figure 4-3 Coprocessor data operation sequence

4.4.7 Coprocessor load and store operations

The coprocessor load and store instructions are used to transfer data between a
coprocessor and memory. They can be used to transfer either a single word of data, or
a number of the coprocessor registers. There is no limit to the number of words of data
that can be transferred by a single LDC or STC instruction, but by convention no more
than 16 words should be transferred in a single instruction. An example sequence is
shown in Figure 4-4 on page 4-11.

Note
 If you transfer more than 16 words of data in a single instruction, the worst case
interrupt latency of the ARM7TDMI processor increases.

ADD SUB MCR TST SUB

ADD SUB MCR TST SUB

ADD SUB MCR TST SUB

MCLK

Fetch stage

Decode stage

Execute stage

nCPI

(from ARM)

CPA (from

coprocessor)

CPB (from

coprocessor)

D[31:0]
Instr fetch

(ADD)

Instr fetch

(MCR)
Instr fetch

(TST)

Instr fetch

(SUB)
Instr fetch

Instr fetch

(SUB)

Coprocessor Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 4-11

Figure 4-4 Coprocessor load sequence

ADD SUB LDC n=4 TST SUB

ADD SUB LDC TST SUB

ADD SUB LDC TST SUB

MCLK

Fetch stage

Decode

stage

Execute

stage

nCPI

CPA

CPB

D[31:0] CP Data Instr fetch
Instr fetch

(SUB)
CP Data CP Data CP Data

Instr fetch

(ADD)

Instr fetch

(LDC)
Instr fetch

(TST)

Instr fetch

(SUB)

Coprocessor Interface

4-12 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

4.5 Connecting coprocessors

A coprocessor in an ARM7TDMI processor system must have 32-bit connections to:

• the instruction stream from memory

• data written by the core, MCR

• data read by the core, MRC.

The coprocessor can optionally have connections to:

• data written from memory, LDC

• data read to memory, STC.

This section describes:

• Connecting a single coprocessor on page 4-12

• Connecting multiple coprocessors on page 4-13.

4.5.1 Connecting a single coprocessor

An example of how to connect:

• a coprocessor into an ARM7TDMI processor system if you are using a
bidirectional bus is shown in Figure 4-5

• a coprocessor into an ARM7TDMI processor system if you are using a
unidirectional bus is shown in Figure 4-6 on page 4-13.

Figure 4-5 Coprocessor connections with bidirectional bus

ARM core
Memory

system

Coprocessor

D[31:0]

CPDRIVE

Coprocessor Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 4-13

Figure 4-6 Coprocessor connections with unidirectional bus

The logic for Figure 4-6 is as follows:

on FALLING MCLK
 ASEL = ((nMREQ = 1 and SEQ = 1) and (not nRW))
 CSEL = ((nMREQ = 1 and SEQ = 1) and (nRW))

4.5.2 Connecting multiple coprocessors

If you have multiple coprocessors in your system, connect the handshake signals as
follows:

nCPI Connect this signal to all coprocessors present in the system.

CPA and CPB

The individual CPA and CPB outputs from each coprocessor must be
ANDed together, and connected to the CPA and CPB inputs on the
ARM7TDMI processor.

You must multiplex the output data from the coprocessors.

Connecting multiple coprocessors is shown in Figure 4-7 on page 4-14.

ARM core Memory

system

Coprocessor

CPDRIVE

ASEL

DIN

DOUT

CPDOUTCPDIN

CSEL

0

1

0

1

0

1

Coprocessor Interface

4-14 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure 4-7 Connecting multiple coprocessors

ARM core

Coprocessor

1

Coprocessor

2

CPA

CPB

nCPI

CPB1 CPA1 CPA2

CPB2

Coprocessor

n

CPBn

CPAn

Coprocessor Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 4-15

4.6 If you are not using an external coprocessor

If you are implementing a system that does not include any external coprocessors, you
must tie both CPA and CPB HIGH. This indicates that no external coprocessors are
present in the system. If any coprocessor instructions are received, they take the
undefined instruction trap so that they can be emulated in software if required. The
internal coprocessor, CP14, can still be used.

The coprocessor outputs from the ARM7TDMI processor are usually left unconnected
but these outputs can be used in other parts of a system as follows:.

• nCPI
• nOPC
• TBIT.

Coprocessor Interface

4-16 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

4.7 Undefined instructions

Undefined instructions are treated by the ARM7TDMI processor as coprocessor
instructions. All coprocessors must be absent, CPA and CPB must be HIGH, when an
undefined instruction is presented. The ARM7TDMI processor takes the undefined
instruction trap.

For undefined instructions to be handled correctly, any coprocessors in a system must
give the absent response (CPA and CPB HIGH) to an undefined instruction. This allows
the core to take the undefined instruction exception.

The coprocessor must check bit 27 of the instruction to differentiate between the
following instruction types:

• undefined instructions have 0 in bit 27

• coprocessor instructions have 1 in bit 27.

Coprocessor instructions are not supported in the Thumb instruction set but undefined
instructions are. All coprocessors must monitor the state of the TBIT output from
ARM7TDMI core. When the ARM7TDMI core is in Thumb state, coprocessors must
drive CPA and CPB HIGH, and the instructions seen on the data bus must be ignored.
In this way, coprocessors do not execute Thumb instructions in error, and all undefined
instructions are handled correctly.

Coprocessor Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 4-17

4.8 Privileged instructions

The output signal nTRANS allows the implementation of coprocessors, or coprocessor
instructions, that can only be accessed from privileged modes. The signal meanings are
given in Table 4-4.

If used, the nTRANS signal must be sampled at the same time as the coprocessor
instruction is fetched and is used in the coprocessor pipeline Decode stage.

Note

 If a User mode process, with nTRANS LOW, tries to access a coprocessor instruction
that can only be executed in a privileged mode, the coprocessor responds with CPA and
CPB HIGH. This causes the ARM7TDMI processor to take the undefined instruction
trap.

Table 4-4 Mode identifier signal meanings (nTRANS)

nTRANS Meaning

0 User mode instruction

1 Privileged mode instruction

Coprocessor Interface

4-18 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 5-1

Chapter 5
Debug Interface

This chapter describes the ARM7TDMI processor debug interface. It contains the
following sections:

• About the debug interface on page 5-2

• Debug systems on page 5-4

• Debug interface signals on page 5-6

• ARM7TDMI core clock domains on page 5-10

• Determining the core and system state on page 5-12.

This chapter also describes the ARM7TDMI processor EmbeddedICE Logic module in
the following sections:

• About EmbeddedICE Logic on page 5-13

• Disabling EmbeddedICE on page 5-15

• Debug Communications Channel on page 5-16.

Debug Interface

5-2 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

5.1 About the debug interface

The ARM7TDMI processor debug interface is based on IEEE Std. 1149.1 - 1990,
Standard Test Access Port and Boundary-Scan Architecture. Refer to this standard for
an explanation of the terms used in this chapter and for a description of the Test Access
Port (TAP) controller states. A flow diagram of the TAP controller state transitions is
provided in Figure B-2 on page B-5.

The ARM7TDMI processor contains hardware extensions for advanced debugging
features. These make it easier to develop application software, operating systems and
the hardware itself.

The debug extensions enable you to force the core into debug state. In debug state, the
core is stopped and isolated from the rest of the system. This allows the internal state of
the core and the external state of the system, to be examined while all other system
activity continues as normal. When debug has completed, the debug host restores the
core and system state, program execution resumes.

5.1.1 Stages of debug

A request on one of the external debug interface signals, or on an internal functional unit
known as the EmbeddedICE Logic, forces the ARM7TDMI processor into debug state.
The events that activate debug are:

• a breakpoint, an instruction fetch

• a watchpoint, a data access

• an external debug request.

The internal state of the ARM7TDMI processor is then examined using a JTAG-style
serial interface. This allows instructions to be inserted serially into the core pipeline
without using the external data bus. So, for example, when in debug state, a Store
Multiple (STM) can be inserted into the instruction pipeline and this exports the
contents of the ARM7TDMI core registers. This data can be serially shifted out without
affecting the rest of the system.

5.1.2 Clocks

The ARM7TDMI core has two clocks:

• MCLK is the memory clock

• DCLK is an internal debug clock, generated by the test clock, TCK.

During normal operation, the core is clocked by MCLK and internal logic holds DCLK
LOW.

Debug Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 5-3

When the ARM7TDMI processor is in the debug state, the core is clocked by DCLK
under control of the TAP state machine and MCLK can free run. The selected clock is
output on the signal ECLK for use by the external system.

Note
 nWAIT has no effect if the CPU core is being debugged and is running from DCLK.

Debug Interface

5-4 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

5.2 Debug systems

 Figure 5-1 shows a typical debug system using an ARM core.

Figure 5-1 Typical debug system

A debug system typically has three parts:

• Debug host on page 5-4

• Protocol converter on page 5-4

• Debug target on page 5-5.

The debug host and the protocol converter are system-dependent.

5.2.1 Debug host

The debug host is a computer that is running a software debugger such as the ARM
Debugger for Windows (ADW). The debug host allows you to issue high-level
commands such as setting breakpoints or examining the contents of memory.

5.2.2 Protocol converter

The protocol converter communicates with the high-level commands issued by the
debug host and the low-level commands of the ARM7TDMI processor JTAG interface.
Typically it interfaces to the host through an interface such as an enhanced parallel port.

Debug host

Protocol

converter

Debug target

Host computer running

ARM or third party

toolkit

For example Multi-ICE

Development system

containing an

ARM7TDMI processor

Debug Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 5-5

The ARM7TDMI processor has hardware extensions that ease debugging at the lowest
level. The debug extensions:

• allow you to halt program execution

• examine and modify the core internal state of the core

• view and modify the state of the memory system

• resume program execution.

5.2.3 Debug target

The major blocks of the debug target are shown in Figure 5-2.

Figure 5-2 ARM7TDMI block diagram

The ARM CPU core

This has hardware support for debug.

The EmbeddedICE Logic

This is a set of registers and comparators used to generate debug
exceptions such as breakpoints. This unit is described in About
EmbeddedICE Logic on page 5-13.

The TAP controller

This controls the action of the scan chains using a JTAG serial interface.

EmbeddedICE

Logic
Main processor

logic

TAP controller

Scan chain 2

Scan chain 1

Scan chain 0

Debug Interface

5-6 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

5.3 Debug interface signals

There are three primary external signals associated with the debug interface:

• BREAKPT and DBGRQ are system requests for the processor to enter debug
state

• DBGACK is used to indicate that the core is in debug state.

Note
 DBGEN must be configured HIGH to fully enable the debug features of the

processor. Refer to Disabling EmbeddedICE on page 5-15.

The following sections describe:

• Entry into debug state on page 5-6

• Action of the processor in debug state on page 5-9.

5.3.1 Entry into debug state

The ARM7TDMI processor is forced into debug state following a breakpoint,
watchpoint, or debug request.

You can use the EmbeddedICE Logic to program the conditions under which a
breakpoint or watchpoint can occur. Alternatively, you can use the BREAKPT signal
to allow external logic to flag breakpoints or watchpoints and monitor the following:

• address bus

• data bus

• control signals.

The timing is the same for externally-generated breakpoints and watchpoints. Data must
always be valid on the falling edge of MCLK. When this is an instruction to be
breakpointed, the BREAKPT signal must be HIGH on the next rising edge of MCLK.
Similarly, when the data is for a load or store, asserting BREAKPT on the rising edge
of MCLK marks the data as watchpointed.

When the processor enters debug state, the DBGACK signal is asserted. The timing for
an externally-generated breakpoint is shown in Figure 5-3 on page 5-7.

The following sections describe:

• Entry into debug state on breakpoint on page 5-7

• Entry into debug state on watchpoint on page 5-8

• Entry into debug state on debug request on page 5-8.

Debug Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 5-7

Figure 5-3 Debug state entry

Entry into debug state on breakpoint

The ARM7TDMI core marks instructions as being breakpointed as they enter the
instruction pipeline, but the core does not enter debug state until the instruction reaches
the Execute stage.

Breakpointed instructions are not executed. Instead, the processor enters debug state.
When you examine the internal state, you see the state before the breakpointed
instruction. When your examination is complete, remove the breakpoint. This is usually
handled automatically by the debugger which also restarts program execution from the
previously-breakpointed instruction.

When a breakpointed conditional instruction reaches the Execute stage of the pipeline,
the breakpoint is always taken.

Note

 The processor enters debug state regardless of whether the condition is met.

A breakpointed instruction does not cause the ARM7TDMI core to enter debug state
when:

• A branch or a write to the PC precedes the breakpointed instruction. In this case,
when the branch is executed, the core flushes the instruction pipeline and so
cancels the breakpoint.

Memory cycles Internal cycles

MCLK

A[31:0]

D[31:0]

BREAKPT

DBGACK

nMREQ

SEQ

Debug Interface

5-8 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

• An exception occurs, causing the processor to flush the instruction pipeline and
cancel the breakpoint. In normal circumstances, on exiting from an exception, the
ARM7TDMI core branches back to the next instruction to be executed before the
exception occurred. In this case, the pipeline is refilled and the breakpoint is
reflagged.

Entry into debug state on watchpoint

Watchpoints occur on data accesses. A watchpoint is always taken, but the core might
not enter debug state immediately. In all cases, the current instruction completes. If the
current instruction is a multi-word load or store, with an LDM or STM, many cycles can
elapse before the watchpoint is taken.

When a watchpoint occurs, the current instruction completes, and all changes to the core
state are made, load data is written into the destination registers and base write-back
occurs.

Note

 Watchpoints are similar to Data Aborts. The difference is that when a Data Abort
occurs, although the instruction completes, the processor prevents all subsequent
changes to the ARM7TDMI processor state. This action allows the abort handler to cure
the cause of the abort and the instruction to be re-executed.

If a watchpoint occurs when an exception is pending, the core enters debug state in the
same mode as the exception.

Entry into debug state on debug request

The ARM7TDMI processor can be forced into debug state on debug request in either of
the following ways:

• through EmbeddedICE Logic programming (see Programming breakpoints on
page B-45 and Programming watchpoints on page B-47)

• by asserting the DBGRQ pin.

The DBGRQ pin is an asynchronous input and is therefore synchronized by logic inside
the ARM7TDMI processor before it takes effect. Following synchronization, the core
normally enters debug state at the end of the current instruction. However, if the current
instruction is a busy-waiting access to a coprocessor, the instruction terminates and
ARM7TDMI processor enters debug state immediately. This is similar to the action of
nIRQ and nFIQ.

Debug Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 5-9

5.3.2 Action of the processor in debug state

When the ARM7TDMI core enters debug state, the core forces nMREQ and SEQ to
indicate internal cycles. This action allows the rest of the memory system to ignore the
core and to function as normal. Because the rest of the system continues to operate, the
ARM7TDMI is forced to ignore aborts and interrupts.

The system must not change the BIGEND signal during debug because the debugger is
unaware that the core has been reconfigured.

nRESET must be held stable during debug because resetting the core while debugging
causes the debugger to lose track of the core.

When the system applies reset to the ARM7TDMI processor, with nRESET driven
LOW, the processor state changes with the debugger unaware that the core has reset.

When instructions are executed in debug state, all memory interface outputs, except
nMREQ and SEQ, change asynchronously to the memory system. For example, every
time a new instruction is scanned into the pipeline, the address bus changes. Although
this is asynchronous it does not affect the system, as nMREQ and SEQ are forced to
indicate internal cycles regardless of what the rest of the core is doing. The memory
controller must be designed to ensure that this asynchronous behavior does not affect
the rest of the system.

Debug Interface

5-10 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

5.4 ARM7TDMI core clock domains

The ARM7TDMI clocks are described in Clocks on page 5-2.

This section describes:

• Clock switch during debug on page 5-10

• Clock switch during test on page 5-11.

5.4.1 Clock switch during debug

When the ARM7TDMI processor enters debug state, it switches automatically from
MCLK to DCLK, it then asserts DBGACK in the HIGH phase of MCLK. The switch
between the two clocks occurs on the next falling edge of MCLK. This is shown in
Figure 5-4.

The core is forced to use DCLK as the primary clock until debugging is complete. On
exit from debug, the core must be allowed to synchronize back to MCLK. This must be
done by the debugger in the following sequence:

1. The final instruction of the debug sequence is shifted into the data bus scan chain
and clocked in by asserting DCLK.

2. RESTART is clocked into the TAP instruction register.

The core now automatically resynchronizes back to MCLK and starts fetching
instructions from memory at MCLK speed.

See Exit from debug state on page B-26.

Figure 5-4 Clock switching on entry to debug state

Multiplexer

switching point

MCLK

DBGACK

DCLK

ECLK

Debug Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 5-11

5.4.2 Clock switch during test

When serial test patterns are being applied to the ARM7TDMI core through the JTAG
interface, the processor must be clocked using DCLK, MCLK must be held LOW.

Entry into test is less automatic than debug and you must take care to prevent spurious
clocking on the way into test.

The TAP controller can now be used to serially test the processor. If scan chain 0 and
INTEST are selected, DCLK is generated while the state machine is in the
RUN-TEST/IDLE state. During EXTEST, DCLK is not generated.

On exit from test, RESTART must be selected as the TAP controller instruction. When
this is done, MCLK can be resumed. After INTEST testing, you must take care to
ensure that the core is in a sensible state before reverting to normal operation. The safest
ways to do this is are by using one of the following:

• select RESTART, then cause a system reset

• insert MOV PC, #0 into the instruction pipeline before reverting.

Debug Interface

5-12 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

5.5 Determining the core and system state

When the core is in debug state, you can examine the core and system state by forcing
the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine
whether the processor entered debug from Thumb state or ARM state, by examining
bit 4 of the EmbeddedICE Logic debug status register. When bit 4 is HIGH, the core has
entered debug from Thumb state.

For more details about determining the core state, see Determining the core and system
state on page B-24.

Debug Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 5-13

5.6 About EmbeddedICE Logic

The ARM7TDMI processor EmbeddedICE Logic provides integrated on-chip debug
support for the ARM7TDMI core.

The EmbeddedICE Logic is programmed serially using the ARM7TDMI processor
TAP controller. Figure 5-5 illustrates the relationship between the core, EmbeddedICE
Logic, and the TAP controller, showing only the pertinent signals.

Figure 5-5 ARM7TDM, TAP controller, and EmbeddedICE Logic

nOPC

ARM7TDM

DBGRQI

A[31:0]

D[31:0]

nRW

TBIT

MAS[1:0]

nTRANS

DBGACKI

BREAKPTI

IFEN

ECLK

nMREQ

EmbeddedICE

Logic
RANGEOUT1

DBGACK

BREAKPT

RANGEOUT0

EXTERN0

DBGRQ

EXTERN1

DBGEN

DBGRQI

TAP

TCK

TMS

TDI

TDO

nTRST

SDOUT CONTROLSDIN

Debug Interface

5-14 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

The EmbeddedICE Logic comprises:

• two real-time watchpoint units

• two independent registers:

— the debug control register

— debug status register.

• Debug Communications Channel (DCC).

The debug control register and the debug status register provide overall control of
EmbeddedICE operation.

You can program one or both watchpoint units to halt the execution of instructions by
the core. Execution halts when the values programmed into EmbeddedICE match the
values currently appearing on the address bus, data bus, and various control signals.

Note

 You can mask any bit so that its value does not affect the comparison.

You can configure each watchpoint unit for either a watchpoint or a breakpoint.
Watchpoints and breakpoints can be data-dependent.

Debug Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 5-15

5.7 Disabling EmbeddedICE

The EmbeddedICE Logic is disabled by setting DBGEN LOW.

Caution
 Hard-wiring the DBGEN input LOW permanently disables the EmbeddedICE Logic.
However, you must not rely upon this for system security.

When DBGEN is LOW:

• BREAKPT and DBGRQ are forced LOW to the core

• DBGACK is forced LOW from the ARM7TDMI core

• interrupts pass through to the processor uninhibited by the debug logic

• EmbeddedICE Logic is put into a low-power mode.

Debug Interface

5-16 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

5.8 Debug Communications Channel

The ARM7TDMI processor EmbeddedICE Logic contains a DCC to pass information
between the target and the host debugger. This is implemented as coprocessor 14
(CP14).

The DCC comprises:

• a 32-bit communications data read register

• a 32-bit wide communications data write register

• a 6-bit communications control register for synchronized handshaking between
the processor and the asynchronous debugger.

These registers are located in fixed locations in the EmbeddedICE Logic register map,
as shown in Figure B-7 on page B-41, and are accessed from the processor using MCR
and MRC instructions to coprocessor 14.

The following sections describe:

• DCC registers on page 5-16

• Communications through the DCC on page 5-17.

5.8.1 DCC registers

The DCC control register is read-only. It controls synchronized handshaking between
the processor and the debugger. The control register format is shown in Figure 5-6.

Figure 5-6 DCC control register format

31 30 29 28 27 2 1 0

Reserved

EmbeddedICE

version
Control

bits

DCC data read register

0 0 0 1 • • W R

DCC data write register

Debug Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 5-17

The function of each register bit is as follows:

Bits 31:28 Contain a fixed pattern that denotes the EmbeddedICE version
number, in this case 0001.

Bits 27:2 Reserved.

Bit 1 If W is clear, the DCC data write register is ready to accept data
from the processor.

If W is set, there is data in the DCC data write register and the
debugger can scan it out.

Bit 0 If R is clear, the DCC data read register is free and data can be
placed there from the debugger.

If R is set, DCC data read register has data that has not been read
by the processor and the debugger must wait.

From the point of view of the debugger, the registers are accessed through scan chain 2
in the usual way. From the point of view of the processor, these registers are accessed
through coprocessor register transfer instructions.

Use the instructions listed in Table 5-1 to access the DCC registers.

Because the Thumb instruction set does not contain coprocessor instructions, you are
advised to access this data through SWI instructions when in Thumb state.

5.8.2 Communications through the DCC

You can send and receive messages through the DCC. The following sections describe:

• Sending a message to the debugger on page 5-18

• Receiving a message from the debugger on page 5-18

• Interrupt driven use of the DCC on page 5-18.

Table 5-1 DCC register access instructions

Instructions Explanation

MRC CP14, 0, Rd, C0, C0, 0 Places the value from the DCC control register into the destination register (Rd)

MCR CP14, 0, Rn, C1, C0, 0 Writes the value in the source register (Rn) to the DCC data write register

MRC CP14, 0, Rd, C1, C0, 0 Returns the value in the DCC data read register into Rd

Debug Interface

5-18 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Sending a message to the debugger

When the processor has to send a message to the debugger, it must check that the
communications data write register is free for use by finding out if the W bit of the
debug communications control register is clear.

The processor reads the DCC control register to check status of the bit 1:

If the W bit is clear then the communications data write register is clear.

• If the W bit is set, previously written data has not been read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

As the data transfer occurs from the processor to the DCC data write register, the W bit
is set in the DCC control register. When the debugger polls this register it sees a
synchronized version of both the R and W bit. When the debugger sees that the W bit
is set, it can read the DCC data write register and scan the data out. The action of reading
this data register clears the W bit of the DCC control register. At this point, the
communications process can begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a
message to the debugger. In this case, the debugger polls the R bit of the DCC control
register:

• if the R bit is clear, the DCC data read register is free and data can be placed there
for the processor to read

• if the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the DCC data read register is free, data is written there using the JTAG interface.
The action of this write sets the R bit in the DCC control register.

The processor polls the DCC control register. If the R bit is set, there is data that can be
read using an MRC instruction to coprocessor 14. The action of this load clears the R
bit in the DCC control register. When the debugger polls this register and sees that the
R bit is clear, the data has been taken and the process can now be repeated.

Interrupt driven use of the DCC

An alternative, and potentially more efficient, method to polling the debug
communications control register is to use the COMMTX and COMMRX outputs from
the ARM7TDMI processor. You can use these outputs to interrupt the processor when:

• a word is available to be read from the DCC data read register

Debug Interface

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 5-19

• the DCC data write register is empty and available for use.

These outputs are usually connected to the system interrupt controller, that drives the
nIRQ and nFIQ ARM7TDMI processor inputs.

Debug Interface

5-20 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-1

Chapter 6
Instruction Cycle Timings

This chapter describes the ARM7TDMI processor instruction cycle operations. It
contains the following sections:

• About the instruction cycle timing tables on page 6-3

• Branch and branch with link on page 6-4

• Thumb branch with link on page 6-5

• Branch and Exchange on page 6-6

• Data operations on page 6-7

• Multiply and multiply accumulate on page 6-9

• Load register on page 6-12

• Store register on page 6-14

• Load multiple registers on page 6-15

• Store multiple registers on page 6-17

• Data swap on page 6-18

• SSoftware interrupt and exception entry on page 6-19

• Coprocessor data operation on page 6-20

• Coprocessor data transfer from memory to coprocessor on page 6-21

• Coprocessor data transfer from coprocessor to memory on page 6-23

• Coprocessor register transfer, load from coprocessor on page 6-25

Instruction Cycle Timings

6-2 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

• Coprocessor register transfer, store to coprocessor on page 6-26

• Undefined instructions and coprocessor absent on page 6-27

• Unexecuted instructions on page 6-28

• Instruction speed summary on page 6-29.

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-3

6.1 About the instruction cycle timing tables

In the following tables:

• nMREQ and SEQ, are pipelined up to one cycle ahead of the cycle to which they
apply. They are shown in the cycle in which they appear and indicate the next
cycle type.

• The address, MAS[1:0], nRW, nOPC, nTRANS, and TBIT signals, that appear
up to half a cycle ahead, are shown in the cycle to which they apply. The address
is incremented to prefetch instructions in most cases. Because the instruction
width is four bytes in ARM state and two bytes in Thumb state, the increment
varies accordingly.

• The letter L is used to indicate instruction length:

— four bytes in ARM state

— two bytes in Thumb state.

• The letter i is used to indicate the width of the instruction fetch output by
MAS[1:0]:
— i=2 in ARM state represents word accesses

— i=1 in Thumb state represents halfword accesses.

• Terms placed inside brackets represent the contents of an address.

• The • symbol indicates zero or more cycles.

Instruction Cycle Timings

6-4 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

6.2 Branch and branch with link

A branch instruction calculates the branch destination in the first cycle, while
performing a prefetch from the current PC. This prefetch is done in all cases because,
by the time the decision to take the branch has been reached, it is already too late to
prevent the prefetch.

During the second cycle a fetch is performed from the branch destination, and the return
address is stored in register 14 if the link bit is set.

The third cycle performs a fetch from the destination +L, refilling the instruction
pipeline. If the instruction is a branch with link (R14 is modified) four is subtracted from
R14 to simplify the return instruction from SUB PC,R14,#4 to MOV PC,R14. This allows
subroutines to push R14 onto the stack and pop directly into PC upon completion.

The cycle timings are listed in Table 6-1 where:

• pc is the address of the branch instruction

• alu is the destination address calculated by the ARM7TDMI core

• (alu) is the contents of that address.

Note

 Branch with link is not available in Thumb state.

Table 6-1 Branch instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

1 pc+2L i 0 (pc+2L) 0 0 0

2 alu i 0 (alu) 0 1 0

3 alu+L i 0 (alu+L) 0 1 0

alu+2L

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-5

6.3 Thumb branch with link

A Thumb Branch with Link operation consists of two consecutive Thumb instructions.
Refer to the ARM Architecture Reference Manual for more information.

The first instruction acts like a simple data operation to add the PC to the upper part of
the offset, storing the result in Register 14, LR.

The second instruction which takes a single cycle acts in a similar fashion to the ARM
state branch with link instruction. The first cycle therefore calculates the final branch
destination whilst performing a prefetch from the current PC.

The second cycle of the second instruction performs a fetch from the branch destination
and the return address is stored in R14.

The third cycle of the second instruction performs a fetch from the destination +2,
refilling the instruction pipeline and R14 is modified, with 2 subtracted from it, to
simplify the return to MOV PC, R14. This makes the PUSH {..,LR} ; POP {..,PC} type of
subroutine work correctly.

The cycle timings of the complete operation are listed in Table 6-2 where:

• pc is the address of the first instruction of the operation.

Table 6-2 Thumb long branch with link

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

1 pc+4 1 0 (pc+4) 0 1 0

2 pc+6 1 0 (pc+6) 0 0 0

3 alu 1 0 (alu) 0 1 0

4 alu+2 1 0 (alu+2) 0 1 0

alu+4

Instruction Cycle Timings

6-6 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

6.4 Branch and Exchange

A Branch and Exchange (BX) operation takes three cycles and is similar to a branch. In
the first cycle, the branch destination and the new core state are extracted from the
register source, whilst performing a prefetch from the current PC. This prefetch is
performed in all cases, since by the time the decision to take the branch has been
reached, it is already too late to prevent the prefetch.

During the second cycle, a fetch is performed from the branch destination address using
the new instruction width, dependent on the state that has been selected.

The third cycle performs a fetch from the destination address +2 or +4 (dependent on
the new specified state), refilling the instruction pipeline.

The cycle timings are listed in Table 6-3 where:

• W and w represent the instruction width before and after the BX respectively. The
width equals four bytes in ARM state and two bytes in Thumb state. For example,
when changing from ARM to Thumb state, W equals four and w equals two

• I and i represent the memory access size before and after the BX respectively.
MAS[1:0] equals two in ARM state and one in Thumb state. When changing
from Thumb to ARM state, I equals one and i equals two.

• T and t represent the state of the TBIT before and after the BX respectively. TBIT
equals 0 in ARM state and 1 in Thumb state. When changing from ARM to
Thumb state, T equals 0 and t equals 1.

Table 6-3 Branch and exchange instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC TBIT

1 pc + 2W I 0 (pc+2W) 0 0 0 T

2 alu i 0 (alu) 0 1 0 t

3 alu+w i 0 (alu+w) 0 1 0 t

alu + 2w

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-7

6.5 Data operations

A data operation executes in a single datapath cycle unless a shift is determined by the
contents of a register. A register is read onto the A bus, and a second register or the
immediate field onto the B bus (see Figure 1-3 on page 1-8). The ALU combines the A
bus source and the shifted B bus source according to the operation specified in the
instruction, and the result, when required, is written to the destination register.

Note
 Compare and test operations do not produce results. Only the ALU status flags are
affected.

An instruction prefetch occurs at the same time as the data operation, and the program
counter is incremented.

When the shift length is specified by a register, an additional datapath cycle occurs
during this cycle. The data operation occurs on the next cycle which is an internal cycle
that does not access memory. This internal cycle can be merged with the following
sequential access by the memory manager as the address remains stable through both
cycles.

The PC can be one or more of the register operands. When it is the destination, external
bus activity can be affected. If the result is written to the PC, the contents of the
instruction pipeline are invalidated, and the address for the next instruction prefetch is
taken from the ALU rather than the address incrementer. The instruction pipeline is
refilled before any further execution takes place, and during this time exceptions are
ignored.

PSR transfer operations (MSR and MRS) exhibit the same timing characteristics as the
data operations except that the PC is never used as a source or destination register.

The cycle timings are listed in Table 6-4 on page 6-8 where:

• pc is the address of the branch instruction

• alu is the destination address calculated by the ARM7TDMI core

• (alu) is the contents of that address.

Instruction Cycle Timings

6-8 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Note
 The shifted register operations where the destination is the PC are not available in
Thumb state.

Table 6-4 Data operation instruction cycles

Operation type Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

normal 1 pc+2L i 0 (pc+2L) 0 1 0

pc+3L

dest=pc 1 pc+2L i 0 (pc+2L) 0 0 0

2 alu i 0 (alu) 0 1 0

3 alu+L i 0 (alu+L) 0 1 0

alu+2L

shift(Rs) 1 pc+2L i 0 (pc+2L) 1 0 0

2 pc+3L i 0 - 0 1 1

pc+3L

shift(Rs) 1 pc+8 2 0 (pc+8) 1 0 0

dest=pc 2 pc+12 2 0 - 0 0 1

3 alu 2 0 (alu) 0 1 0

4 alu+4 2 0 (alu+4) 0 1 0

alu+8

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-9

6.6 Multiply and multiply accumulate

The multiply instructions use special hardware that implements integer multiplication
with early termination. All cycles except the first are internal

The cycle timings are listed in the following tables:

• multiply instruction cycle operations are listed in Table 6-5

• multiply accumulate instruction cycle operations are listed in Table 6-6 on
page 6-9

• multiply long instruction cycle operations are listed in Table 6-7 on page 6-10

• multiply accumulate long instruction cycle operations are listed in Table 6-8 on
page 6-10.

In Table 6-5 to Table 6-8 on page 6-10:

• m is the number of cycles required by the multiplication algorithm. See
Instruction speed summary on page 6-29.

Table 6-5 Multiply instruction cycle operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC

1 pc+2L 0 i (pc+2L) 1 0 0

2 pc+3L 0 i - 1 0 1

• pc+3L 0 i - 1 0 1

m pc+3L 0 i - 1 0 1

m+1 pc+3L 0 i - 0 1 1

pc+3L

Table 6-6 Multiply accumulate instruction cycle operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC

1 pc+8 0 2 (pc+8) 1 0 0

2 pc+8 0 2 - 1 0 1

• pc+12 0 2 - 1 0 1

m pc+12 0 2 - 1 0 1

Instruction Cycle Timings

6-10 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

m+1 pc+12 0 2 - 1 0 1

m+2 pc+12 0 2 - 0 1 1

pc+12

Table 6-7 Multiply long instruction cycle operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC

1 pc+8 0 i (pc+8) 1 0 0

2 pc+12 0 i - 1 0 1

• pc+12 0 i - 1 0 1

m pc+12 0 i - 1 0 1

m+1 pc+12 0 i - 1 0 1

m+2 pc+12 0 i - 0 1 1

pc+12

Table 6-8 Multiply accumulate long instruction cycle operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC

1 pc+8 0 2 (pc+8) 1 0 0

2 pc+8 0 2 - 1 0 1

• pc+12 0 2 - 1 0 1

m pc+12 0 2 - 1 0 1

m+1 pc+12 0 2 - 1 0 1

m+2 pc+12 0 2 - 1 0 1

m+3 pc+12 0 2 - 0 1 1

pc+12

Table 6-6 Multiply accumulate instruction cycle operations (continued)

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-11

Note
 The multiply accumulate, multiply long, and multiply accumulate long operations are
not available in Thumb state.

Instruction Cycle Timings

6-12 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

6.7 Load register

The first cycle of a load register instruction performs the address calculation. During the
second cycle the data is fetched from memory and the base register modification is
performed, if required. During the third cycle the data is transferred to the destination
register, and external memory is unused. This third cycle can normally be merged with
the next prefetch cycle to form one memory N-cycle.

Either the base, or destination, or both, can be the PC, and the prefetch sequence is
changed if the PC is affected by the instruction.

The data fetch can abort, and in this case the destination modification is prevented. In
addition, if the processor is configured for early abort, the base register write-back is
also prevented.

The cycle timings are listed in Table 6-9 where:

• c represents the current processor mode:

— c=0 for User mode

— c=1 for all other modes

• d=0 if the T bit has been specified in the instruction (such as LDRT) and d=c at
all other times

• s represents the size of the data transfer shown by MAS[1:0] (see Table 6-10 on
page 6-13).

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-13

Note

 Operations where the destination is the PC are not available in Thumb state.

Table 6-9 Load register instruction cycle operations

Operation type Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC nTRANS

normal 1 pc+2L i 0 (pc+2L) 0 0 0 c

2 alu s 0 (alu) 1 0 1 d

3 pc+3L i 0 - 0 1 1 c

pc+3L

dest=pc 1 pc+8 2 0 (pc+8) 0 0 0 c

2 alu 0 pc’ 1 0 1 d

3 pc+12 2 0 - 0 0 1 c

4 pc’ 2 0 (pc’) 0 1 0 c

5 pc’+4 2 0 (pc’+4) 0 1 0 c

pc’+8

Table 6-10 MAS[1:0] signal encoding

bit 1 bit 0 Data size

0 0 byte

0 1 halfword

1 0 word

1 1 reserved

Instruction Cycle Timings

6-14 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

6.8 Store register

The first cycle of a store register instruction is similar to the first cycle of load register
instruction. During the second cycle the base modification is performed, and at the same
time the data is written to memory. There is no third cycle.

The cycle timings are listed in Table 6-11 where:

• c represents the current processor mode:

— c=0 for User mode

— c=1 for all other modes

• d=0 if the T bit has been specified in the instruction (such as LDRT) and d=c at
all other times.

• s represents the size of the data transfer shown by MAS[1:0] (see Table 6-10 on
page 6-13).

Table 6-11 Store register instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC nTRANS

1 pc+2L i 0 (pc+2L) 0 0 0 c

2 alu s 1 Rd 0 0 1 d

pc+3L

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-15

6.9 Load multiple registers

The first cycle of the LDM instruction is used to calculate the address of the first word
to be transferred, while performing a prefetch from memory. The second cycle fetches
the first word, and performs the base modification. During the third cycle, the first word
is moved to the appropriate destination register while the second word is fetched from
memory, and the modified base is latched internally in case it is needed to restore
processor state after an abort. The third cycle is repeated for subsequent fetches until the
last data word has been accessed, then the final (internal) cycle moves the last word to
its destination register. The cycle timings are listed in Table 6-12.

The last cycle can be merged with the next instruction prefetch to form a single memory
N-cycle. If an abort occurs, the instruction continues to completion, but all register
modification after the abort is prevented. The final cycle is altered to restore the
modified base register (that could have been overwritten by the load activity before the
abort occurred).

When the PC is in the list of registers to be loaded the current instruction pipeline must
be invalidated.

Note

 The PC is always the last register to be loaded, so an abort at any point prevents the PC
from being overwritten.

LDM with PC as a destination register is not available in Thumb state. Use
POP{Rlist,PC} to perform the same function.

Table 6-12 Load multiple registers instruction cycle operations

Destination registers Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

Single register 1 pc+2L i 0 (pc+2L) 0 0 0

2 alu 2 0 (alu) 1 0 1

3 pc+3L i 0 - 0 1 1

pc+3L

Instruction Cycle Timings

6-16 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Single register dest=pc 1 pc+2L i 0 (pc+2L) 0 0 0

2 alu 2 0 pc’ 1 0 1

3 pc+3L i 0 - 0 0 1

4 pc’ i 0 (pc’) 0 1 0

5 pc’+L i 0 (pc’+L) 0 1 0

pc’+2L

n registers (n>1) 1 pc+2L i 0 (pc+2L) 0 0 0

2 alu 2 0 (alu) 0 1 1

• alu+• 2 0 (alu+•) 0 1 1

n alu+• 2 0 (alu+•) 0 1 1

n+1 alu+• 2 0 (alu+•) 1 0 1

n+2 pc+3L i 0 - 0 1 1

pc+3L

n registers (n>1) including pc 1 pc+2L i 0 (pc+2L) 0 0 0

2 alu 2 0 (alu) 0 1 1

• alu+• 2 0 (alu+•) 0 1 1

n alu+• 2 0 (alu+•) 0 1 1

n+1 alu+• 2 0 pc’ 1 0 1

n+2 pc+3L i 0 - 0 0 1

n+3 pc’ i 0 (pc’) 0 1 0

n+4 pc’+L i 0 (pc’+L) 0 1 0

pc’+2L

Table 6-12 Load multiple registers instruction cycle operations (continued)

Destination registers Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-17

6.10 Store multiple registers

The store multiple instruction proceeds very much as load multiple instruction, without
the final cycle. The abort handling is much more straightforward as there is no
wholesale overwriting of registers.

The cycle timings are listed in Table 6-13 where:

• Ra is the first register specified

• R• are the subsequent registers specified.

Table 6-13 Store multiple registers instruction cycle operations

Register Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

Single register 1 pc+2L i 0 (pc+2L) 0 0 0

2 alu 2 1 Ra 0 0 1

pc+3L

n registers (n>1) 1 pc+8 i 0 (pc+2L) 0 0 0

2 alu 2 1 Ra 0 1 1

• alu+• 2 1 R• 0 1 1

n alu+• 2 1 R• 0 1 1

n+1 alu+• 2 1 R• 0 0 1

pc+12

Instruction Cycle Timings

6-18 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

6.11 Data swap

This is similar to the load and store register instructions, but the actual swap takes place
in the second and third cycles. In the second cycle, the data is fetched from external
memory. In the third cycle, the contents of the source register are written out to the
external memory. The data read in the second cycle is written into the destination
register during the fourth cycle.

LOCK is driven HIGH during the second and third cycles to indicate that both cycles
must be allowed to complete without interruption.

The data swapped can be a byte or word quantity. Halfword quantities cannot be
specified.

The swap operation can be aborted in either the read or write cycle, and in both cases
the destination register is not affected.

The cycle timings are listed in Table 6-14 where:

• s represents the size of the data transfer shown by MAS[1:0] (see Table 6-10 on
page 6-13), s can only represent byte and word transfers. Halfword transfers are
not available.

Note

 The data swap operation is not available in Thumb state.

Table 6-14 Data swap instruction cycle operations

Cycle Address MAS [1:0] nRW Data nMREQ SEQ nOPC LOCK

1 pc+8 2 0 (pc+8) 0 0 0 0

2 Rn b/w 0 (Rn) 0 0 1 1

3 Rn b/w 1 Rm 1 0 1 1

4 pc+12 2 0 - 0 1 1 0

pc+12

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-19

6.12 Software interrupt and exception entry

Exceptions (including software interrupts) force the PC to a particular value and cause
the instruction pipeline to be refilled. During the first cycle the forced address is
constructed, and a mode change can take place. The return address is moved to R14 and
the CPSR to SPSR_svc.

During the second cycle the return address is modified to facilitate return, though this
modification is less useful than in the case of the branch with link instruction.

The third cycle is required only to complete the refilling of the instruction pipeline.

The cycle timings are listed in Table 6-15 where:

• pc for:

— software interrupts is the address of the SWI instruction

— Prefetch Aborts is the address of the aborting instruction

— Data Aborts is the address of the instruction following the one which
attempted the aborted data transfer

— other exceptions is the address of the instruction following the last one to
be executed before entering the exception

• C represents the current mode-dependent value

• T represents the current state-dependent value

• Xn is the appropriate trap address.

Table 6-15 Software Interrupt instruction cycle operations

Cycle Address
MAS
[1:0]

nRW Data nMREQ SEQ nOPC nTRANS Mode TBIT

1 pc+2L i 0 (pc+2L) 0 0 0 C old T

2 Xn 2 0 (Xn) 0 1 0 1 exception 0

3 Xn+4 2 0 (Xn+4) 0 1 0 1 exception 0

Xn+8

Instruction Cycle Timings

6-20 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

6.13 Coprocessor data operation

A coprocessor data operation is a request from the core for the coprocessor to initiate
some action. The action does not have to be completed for some time, but the
coprocessor must commit to doing it before driving CPB LOW.

If the coprocessor is not capable of performing the requested task, it must leave CPA
and CPB HIGH. If it can do the task, but cannot commit right now, it must drive CPA
LOW but leave CPB HIGH until it can commit. The core busy-waits until CPB goes
LOW.

The cycle timings are listed in Table 6-16 where:

• b represents the busy cycles.

Note

 Coprocessor data operations are not available in Thumb state.

Table 6-16 Coprocessor data operation instruction cycle operations

CP
status

Cycle Address nRW
MAS
[1:0]

Data nMREQ SEQ nOPC nCPI CPA CPB

ready 1 pc+8 0 2 (pc+8) 0 0 0 0 0 0

pc+12

not ready 1 pc+8 0 2 (pc+8) 1 0 0 0 0 1

2 pc+8 0 2 - 1 0 1 0 0 1

• pc+8 0 2 - 1 0 1 0 0 1

b pc+8 0 2 - 0 0 1 0 0 0

pc+12

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-21

6.14 Coprocessor data transfer from memory to coprocessor

For coprocessor transfer instructions from memory the coprocessor must commit to the
transfer only when it is ready to accept the data. When CPB goes LOW, the processor
produces the addresses and expects the coprocessor to take the data at sequential cycle
rates. The coprocessor is responsible for determining the number of words to be
transferred, and indicates the last transfer cycle by driving CPA and CPB HIGH.

The ARM7TDMI processor spends the first cycle (and any busy-wait cycles) generating
the transfer address, and updates the base address during the transfer cycles.

The cycle timings are listed in Table 6-17 where:

• b represents the busy cycles

• n represents the number of registers.

Table 6-17 Coprocessor data transfer instruction cycle operations

CP
register
status

Cycles Address
MAS
[1:0]

nRW Data nMREQ SEQ nOPC nCPI CPA CPB

Single 1 pc+8 2 0 (pc+8) 0 0 0 0 0 0

register 2 alu 2 0 (alu) 0 0 1 1 1 1

ready pc+12

Single 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1

register 2 pc+8 2 0 - 1 0 1 0 0 1

not ready • pc+8 2 0 - 1 0 1 0 0 1

b pc+8 2 0 - 0 0 1 0 0 0

b+1 alu 2 0 (alu) 0 0 1 1 1 1

pc+12

n registers 1 pc+8 2 0 (pc+8) 0 0 0 0 0 0

(n>1) 2 alu 2 0 (alu) 0 1 1 1 0 0

ready • alu+• 2 0 (alu+•) 0 1 1 1 0 0

n alu+• 2 0 (alu+•) 0 1 1 1 0 0

n+1 alu+• 2 0 (alu+•) 0 0 1 1 1 1

pc+12

Instruction Cycle Timings

6-22 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Note
 Coprocessor data transfer operations are not available in Thumb state.

n registers 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1

(n>1) 2 pc+8 2 0 - 1 0 1 0 0 1

not ready • pc+8 2 0 - 1 0 1 0 0 1

b pc+8 2 0 - 0 0 1 0 0 0

b+1 alu 2 0 (alu) 0 1 1 1 0 0

• alu+• 0 (alu+•) 0 1 1 1 0 0

n+b alu+• 2 0 (alu+•) 0 1 1 1 0 0

n+b+1 alu+• 2 0 (alu+•) 0 0 1 1 1 1

pc+12

Table 6-17 Coprocessor data transfer instruction cycle operations (continued)

CP
register
status

Cycles Address
MAS
[1:0]

nRW Data nMREQ SEQ nOPC nCPI CPA CPB

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-23

6.15 Coprocessor data transfer from coprocessor to memory

The ARM7TDMI processor controls these instructions in the same way as for memory
to coprocessor transfers, with the exception that the nRW line is inverted during the
transfer cycle.

The cycle timings are listed in Table 6-18 where:

• b represents the busy cycles

• n represents the number of registers.

Table 6-18 coprocessor data transfer instruction cycle operations

CP
register
status

Cycle Address
MAS
[1:0]

nRW Data nMREQ SEQ nOPC nCPI CPA CPB

Single 1 pc+8 2 0 (pc+8) 0 0 0 0 0 0

register 2 alu 2 1 CPdata 0 0 1 1 1 1

ready - pc+12 - - - - - - - - -

Single 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1

register 2 pc+8 2 0 - 1 0 1 0 0 1

not ready • pc+8 2 0 - 1 0 1 0 0 1

b pc+8 2 0 - 0 0 1 0 0 0

b+1 alu 2 1 CPdata 0 0 1 1 1 1

pc+12

n registers 1 pc+8 2 0 (pc+8) 0 0 0 0 0 0

(n>1) 2 alu 2 1 CPdata 0 1 1 1 0 0

ready • alu+• 2 1 CPdata 0 1 1 1 0 0

n alu+• 2 1 CPdata 0 1 1 1 0 0

n+1 alu+• 2 1 CPdata 0 0 1 1 1 1

pc+12

Instruction Cycle Timings

6-24 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Note
 Coprocessor data transfer operations are not available in Thumb state.

n registers 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1

(n>1) 2 pc+8 2 0 - 1 0 1 0 0 1

not ready • pc+8 2 0 - 1 0 1 0 0 1

b pc+8 2 0 - 0 0 1 0 0 0

b+1 alu 2 1 CPdata 0 1 1 1 0 0

• alu+• 2 1 CPdata 0 1 1 1 0 0

n+b alu+• 2 1 CPdata 0 1 1 1 0 0

n+b+1 alu+• 2 1 CPdata 0 0 1 1 1 1

pc+12

Table 6-18 coprocessor data transfer instruction cycle operations (continued)

CP
register
status

Cycle Address
MAS
[1:0]

nRW Data nMREQ SEQ nOPC nCPI CPA CPB

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-25

6.16 Coprocessor register transfer, load from coprocessor

The busy-wait cycles are similar to those described in Coprocessor data transfer from
memory to coprocessor on page 6-21, but the transfer is limited to one word, and the
ARM7TDMI core puts the data into the destination register in the third cycle. The third
cycle can be merged with the next prefetch cycle into one memory N-cycle as with all
processor register load instructions.

The cycle timings are listed in Table 6-19 where:

• b represents the busy cycles.

Note

 Coprocessor register transfer operations are not available in Thumb state.

Table 6-19 Coprocessor register transfer, load from coprocessor

Cycle Address
MAS
[1:0]

nRW Data nMREQ SEQ nOPC nCPI CPA CPB

ready 1 pc+8 2 0 (pc+8) 1 1 0 0 0 0

2 pc+12 2 0 CPdata 1 0 1 1 1 1

3 pc+12 2 0 - 0 1 1 1 - -

- pc+12

not ready 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1

2 pc+8 2 0 - 1 0 1 0 0 1

• pc+8 2 0 - 1 0 1 0 0 1

b pc+8 2 0 - 1 1 1 0 0 0

b+1 pc+12 2 0 CPdata 1 0 1 1 1 1

b+2 pc+12 2 0 - 0 1 1 1 - -

pc+12

Instruction Cycle Timings

6-26 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

6.17 Coprocessor register transfer, store to coprocessor

This is the same as described in Coprocessor register transfer, load from coprocessor
on page 6-25, except that the last cycle is omitted.

The cycle timings are listed in Table 6-20 where:

• b represents the busy cycles.

Note

 Coprocessor register transfer operations are not available in Thumb state.

Table 6-20 Coprocessor register transfer, store to coprocessor

Cycle Address
MAS
[1:0]

nRW Data nMREQ SEQ nOPC nCPI CPA CPB

ready 1 pc+8 2 0 (pc+8) 1 1 0 0 0 0

2 pc+12 2 1 Rd 0 0 1 1 1 1

pc+12

not ready 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1

2 pc+8 2 0 - 1 0 1 0 0 1

• pc+8 2 0 - 1 0 1 0 0 1

b pc+8 2 0 - 1 1 1 0 0 0

b+1 pc+12 2 1 Rd 0 0 1 1 1 1

pc+12

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-27

6.18 Undefined instructions and coprocessor absent

When the processor attempts to execute an instruction that neither it nor a coprocessor
can perform (including all undefined instructions) this causes the processor to take the
undefined instruction trap.

Cycle timings are listed in Table 6-21 where:

• C represents the current mode-dependent value

• T represents the current state-dependent value.

Note
 • Coprocessor instructions are not available in Thumb state.

• CPA and CPB are HIGH during the undefined instruction trap.

Table 6-21 Undefined instruction cycle operations

Cycle Address
MAS
[1:0]

nRW Data nMREQ SEQ nOPC nCPI nTRANS Mode TBIT

1 pc+2L i 0 (pc+2L) 1 0 0 0 C Old T

2 pc+2L i 0 - 0 0 0 1 C Old T

3 Xn 2 0 (Xn) 0 1 0 1 1 00100 0

4 Xn+4 2 0 (Xn+4) 0 1 0 1 1 00100 0

Xn+8

Instruction Cycle Timings

6-28 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

6.19 Unexecuted instructions

Any instruction whose condition code is not met does not execute and adds one cycle
to the execution time of the code segment in which it is embedded (see Table 6-22).

Table 6-22 Unexecuted instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

1 pc+2L i 0 (pc+2L) 0 1 0

pc+3L

Instruction Cycle Timings

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 6-29

6.20 Instruction speed summary

Due to the pipelined architecture of the CPU, instructions overlap considerably. In a
typical cycle, one instruction can be using the data path while the next is being decoded
and the one after that is being fetched. For this reason Table 6-23 presents the
incremental number of cycles required by an instruction, rather than the total number of
cycles for which the instruction uses part of the processor. Elapsed time, in cycles, for
a routine can be calculated from these figures listed in Table 6-23. These figures assume
that the instruction is actually executed. Unexecuted instructions take one cycle.

If the condition is not met then all instructions take one S-cycle. The cycle types N, S,
I, and C are described in Bus cycle types on page 3-4.

In Table 6-23:

• b is the number of cycles spent in the coprocessor busy-wait loop

• m is:

— 1 if bits [32:8] of the multiplier operand are all zero or one

— 2 if bits [32:16] of the multiplier operand are all zero or one

— 3 if bits [31:24] of the multiplier operand are all zero or all one

• n is the number of words transferred.

Table 6-23 ARM instruction speed summary

Instruction Cycle count Additional

Data Processing S +I for SHIFT(Rs)

+S + N if R15 written

MSR, MRS S -

LDR S+N+I +S +N if R15 loaded

STR 2N -

LDM nS+N+I +S +N if R15 loaded

STM (n-1)S+2N -

SWP S+2N+I -

B,BL 2S+N -

SWI, trap 2S+N -

MUL S+mI -

MLA S+(m+1)I -

Instruction Cycle Timings

6-30 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

MULL S+(m+1)I -

MLAL S+(m+2)I -

CDP S+bI -

LDC, STC (n-1)S+2N+bI -

MCR N+bI+C -

MRC S+(b+1)I+C -

Table 6-23 ARM instruction speed summary (continued)

Instruction Cycle count Additional

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-1

Chapter 7
AC and DC Parameters

This chapter gives the AC timing parameters of the ARM7TDMI core. It contains the
following sections:

• Timing diagram information on page 7-3

• General timing on page 7-4

• Address bus enable control on page 7-6

• Bidirectional data write cycle on page 7-7

• Bidirectional data read cycle on page 7-8

• Data bus control on page 7-9

• Output 3-state timing on page 7-10

• Unidirectional data write cycle timing on page 7-11

• Unidirectional data read cycle timing on page 7-12

• Configuration pin timing on page 7-13

• Coprocessor timing on page 7-14

• Exception timing on page 7-15

• Synchronous interrupt timing on page 7-16

• Debug timing on page 7-17

• Debug communications channel output timing on page 7-19

• Breakpoint timing on page 7-20

AC and DC Parameters

7-2 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

• Test clock and external clock timing on page 7-21

• Memory clock timing on page 7-22

• Boundary scan general timing on page 7-23

• Reset period timing on page 7-24

• Output enable and disable times on page 7-25

• Address latch enable control on page 7-26

• Address pipeline control timing on page 7-27

• Notes on AC Parameters on page 7-28

• DC parameters on page 7-34.

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-3

7.1 Timing diagram information

Each timing diagram in this chapter is provided with a table that shows the timing
parameters. In the tables:

• the letter f at the end of a signal name indicates the falling edge

• the letter r at the end of a signal name indicates the rising edge.

AC and DC Parameters

7-4 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.2 General timing

Figure 7-1 shows the ARM7TDMI general timing. The timing parameters used in
Figure 7-1 are listed in Table 7-1 on page 7-5.

Figure 7-1 General timing

T
cdel

T
cdel

MCLK

ECLK

T
ah

T
addr

T
rwd

T
rwh

T
blh

T
bld

T
mdd

T
mdh

T
opch

T
opcd

nRW

MAS[1:0]

LOCK

nM[4:0]

nTRANS

TBIT

nOPC

A[31:0]

T
msh

T
msd

T
exh

T
exd

nMREQ

SEQ

nEXEC

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-5

Note
 In Figure 7-1 on page 7-4, nWAIT, APE, ALE, and ABE are all HIGH during the cycle
shown. Tcdel is the delay, on either edge (whichever is greater), from the edge of MCLK
to ECLK.

Table 7-1 General timing parameters

Symbol Parameter Parameter type

Taddr MCLKr to address valid Maximum

Tah Address hold time from MCLKr Minimum

Tbld MCLKr to MAS[1:0] and LOCK Maximum

Tblh MAS[1:0] and LOCK hold from MCLKr Minimum

Tcdel MCLK to ECLK delay Maximum

Texd MCLKf to nEXEC valid Maximum

Texh nEXEC hold time from MCLKf Minimum

Tmdd MCLKr to nTRANS, nM[4:0], and TBIT valid Maximum

Tmdh nTRANS and nM[4:0] hold time from MCLKr Minimum

Tmsd MCLKf to nMREQ and SEQ valid Maximum

Tmsh nMREQ and SEQ hold time from MCLKf Minimum

Topcd MCLKr to nOPC valid Maximum

Topch nOPC hold time from MCLKr Minimum

Trwd MCLKr to nRW valid Maximum

Trwh nRW hold time from MCLKr Minimum

AC and DC Parameters

7-6 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.3 Address bus enable control

Figure 7-2 shows the ARM7TDMI ABE control timing. The timing parameters used in
Figure 7-2 are listed in Table 7-2.

Figure 7-2 ABE control timing

Table 7-2 ABE control timing parameters

Symbol Parameter Parameter type

Tabe Address bus enable time Maximum

Tabz Address bus disable time Maximum

MCLK

ABE

A[31:0]

nRW

LOCK

nOPC

nTRANS

MAS[1:0]

T
abz

T
abe

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-7

7.4 Bidirectional data write cycle

Figure 7-3 shows the ARM7TDMI processor bidirectional data write cycle timing. The
timing parameters used in Figure 7-3 are listed in Table 7-3.

Figure 7-3 Bidirectional data write cycle timing

Note
 In Figure 7-3 DBE is HIGH and nENIN is LOW during the cycle shown.

MCLK

nENOUT

D[31:0]

T
nen

T
dout

T
nenh

T
doh

Table 7-3 Bidirectional data write cycle timing parameters

Symbol Parameter Parameter type

Tdoh DOUT[31:0] hold from MCLKf Minimum

Tdout MCLKf to D[31:0] valid Maximum

Tnen MCLKf to nENOUT valid Maximum

Tnenh nENOUT hold time from MCLKf Minimum

AC and DC Parameters

7-8 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.5 Bidirectional data read cycle

Figure 7-4 shows the ARM7TDMI processor bidirectional data read cycle timing. The
timing parameters used in Figure 7-4 are listed in Table 7-4.

Figure 7-4 Bidirectional data read cycle timing

Note

 In Figure 7-4, DBE is HIGH and nENIN is LOW during the cycle shown.

MCLK

nENOUT

D[31:0]

T
nen

T
dis

BL[3:0]

T
bylh

T
byls

T
dih

Table 7-4 Bidirectional data read cycle timing parameters

Symbol Parameter Parameter type

Tbylh BL[3:0] hold time from MCLKf Minimum

Tbyls BL[3:0] set up to from MCLKr Minimum

Tdih DIN[31:0] hold time from MCLKf Minimum

Tdis DIN[31:0] setup time to MCLKf Minimum

Tnen MCLKf to nENOUT valid Maximum

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-9

7.6 Data bus control

Figure 7-5 shows the ARM7TDMI data bus control timing. The timing parameters used
in Figure 7-5 are listed in Table 7-5.

Figure 7-5 Data bus control timing

Note

 The cycle shown in Figure 7-5 is a data write cycle because nENOUT was driven LOW
during phase one. Here, DBE has first been used to modify the behavior of the data bus,
and then nENIN.

T
dbz

nENOUT

DBE

T
dbnen

D[31:0]

T
dout

T
dbe

T
dbnen

T
doh

nENIN

T
dbz

T
dbe

MCLK

Table 7-5 Data bus control timing parameters

Symbol Parameter Parameter type

Tdbe Data bus enable time from DBEr Maximum

Tdbnen DBE to nENOUT valid Maximum

Tdbz Data bus disable time from DBEf Maximum

Tdoh DOUT[31:0] hold from MCLKf Minimum

Tdout MCLKf to D[31:0] valid Maximum

AC and DC Parameters

7-10 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.7 Output 3-state timing

Figure 7-6 shows the ARM7TDMI processor output 3-state timing. The timing
parameters used in Figure 7-6 are listed in Table 7-6.

Figure 7-6 Output 3-state timing

Table 7-6 Output 3-state time timing parameters

Symbol Parameter Parameter type

Ttbe Address and Data bus enable time from TBEr Maximum

Ttbz Address and Data bus disable time from TBEf Maximum

MCLK

TBE

A[31:0]

D[31:0]

nRW

LOCK

nOPC

nTRANS

MAS[1:0]

T
tbz

T
tbe

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-11

7.8 Unidirectional data write cycle timing

Figure 7-7 shows the ARM7TDMI processor unidirectional data write cycle timing.
The timing parameters used in Figure 7-6 are listed in Table 7-6.

Figure 7-7 Unidirectional data write cycle timing

Table 7-7 Unidirectional data write cycle timing parameters

Symbol Parameter Parameter type

Tdohu DOUT[31:0] hold time from MCLKf Minimum

Tdoutu MCLKf to DOUT[31:0] valid Maximum

Tnen MCLKf to nENOUT valid Maximum

MCLK

nENOUT

DOUT[31:0]

T
dohu

T
doutu

T
nen

AC and DC Parameters

7-12 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.9 Unidirectional data read cycle timing

Figure 7-8 shows the ARM7TDMI processor unidirectional data read cycle timing. The
timing parameters used in Figure 7-7 are listed in Table 7-7.

Figure 7-8 Unidirectional data read cycle timing

Table 7-8 Unidirectional data read cycle timing parameters

Symbol Parameter Parameter type

Tbylh BL[3:0] hold time from MCLKf Minimum

Tbyls BL[3:0] set up to from MCLKr Minimum

Tdihu DIN[31:0] hold time from MCLKf Minimum

Tdisu DIN[31:0] set up time to MCLKf Minimum

Tnen MCLKf to nENOUT valid Maximum

MCLK

nENOUT

DIN[31:0]

T
nen

T
disu

BL[3:0]

T
bylh

T
byls

T
dihu

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-13

7.10 Configuration pin timing

Figure 7-9 shows the ARM7TDMI processor configuration pin timing. The timing
parameters used in Figure 7-9 are listed in Table 7-9.

Figure 7-9 Configuration pin timing

Table 7-9 Configuration pin timing parameters

Symbol Parameter Parameter type

Tcth Configurations hold time Minimum

Tcts Configuration setup time Minimum

T
cth

T
cts

T
cts

T
cth

MCLK

BIGEND

ISYNC

AC and DC Parameters

7-14 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.11 Coprocessor timing

Figure 7-10 shows the ARM7TDMI processor coprocessor timing. The timing
parameters used in Figure 7-10 are listed in Table 7-10.

Figure 7-10 Coprocessor timing

Note

 In Figure 7-10, usually nMREQ and SEQ become valid Tmsd after the falling edge of
MCLK. In this cycle the core has been busy-waiting for a coprocessor to complete the
instruction. If CPA and CPB change during phase 1, the timing of nMREQ and SEQ
depends on Tcpms. Most systems can generate CPA and CPB during the previous phase
2, and so the timing of nMREQ and SEQ is always Tmsd.

T
cps

T
cpi

Phase 2

T
cph

T
cpih

MCLK

nCPI

CPA

CPB

nMREQ

SEQ
T

cpms

Phase 1

Table 7-10 Coprocessor timing parameters

Symbol Parameter Parameter type

Tcph CPA,CPB hold time from MCLKr Minimum

Tcpi MCLKf to nCPI valid Maximum

Tcpih nCPI hold time from MCLKf Minimum

Tcpms CPA, CPB to nMREQ, SEQ Maximum

Tcps CPA, CPB setup to MCLKr Minimum

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-15

7.12 Exception timing

Figure 7-11 shows the ARM7TDMI processor exception timing. The timing parameters
used in Figure 7-11 are listed in Table 7-11.

Figure 7-11 Exception timing

Note

 In Figure 7-11, to guarantee recognition of the asynchronous interrupt (ISYNC=0) or
reset source, the appropriate signals must be setup or held as follows:

• setup Tis and Trs respectively before the corresponding clock edge

• hold Tim and Tis respectively after the corresponding clock edge.

These inputs can be applied fully asynchronously where the exact cycle of recognition
is unimportant.

T
im

T
abth

T
rs

T
abts

T
is

T
rm

MCLK

ABORT

nFIQ

nIRQ

nRESET

Table 7-11 Exception timing parameters

Symbol Parameter
Parameter
type

Tabth ABORT hold time from MCLKf Minimum

Tabts ABORT set up time to MCLKf Minimum

Tim Asynchronous interrupt guaranteed nonrecognition time, with ISYNC=0 Maximum

Tis Asynchronous interrupt set up time to MCLKf for guaranteed recognition, with ISYNC=0 Minimum

Trm Reset guaranteed nonrecognition time Maximum

Trs Reset setup time to MCLKr for guaranteed recognition Minimum

AC and DC Parameters

7-16 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.13 Synchronous interrupt timing

Figure 7-12 shows the ARM7TDMI processor synchronous interrupt timing. The
timing parameters used in Figure 7-12 are listed in Table 7-12.

Figure 7-12 Synchronous interrupt timing

Table 7-12 Synchronous interrupt timing parameters

Symbol Parameter Parameter type

Tsih Synchronous nFIQ, nIRQ hold from MCLKf with ISYNC=1 Minimum

Tsis Synchronous nFIQ, nIRQ setup to MCLKf, with ISYNC=1 Minimum

T
sih

MCLK

T
sis

nFIQ

nIRQ

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-17

7.14 Debug timing

Figure 7-13 shows the ARM7TDMI processor synchronous interrupt timing. The
timing parameters used in Figure 7-13 are listed in Table 7-13.

Figure 7-13 Debug timing

Table 7-13 Debug timing parameters

Symbol Parameter Parameter type

Tbrkh Hold time of BREAKPT from MCLKr Minimum

Tbrks Set up time of BREAKPT to MCLKr Minimum

Tdbgd MCLKr to DBGACK valid Maximum

Tdbgh DGBACK hold time from MCLKr Minimum

Tdbgrq DBGRQ to DBGRQI valid Maximum

Texth EXTERN[1:0] hold time from MCLKf Minimum

Texts EXTERN[1:0] set up time to MCLKf Minimum

Trg MCLKf to RANGEOUT0, RANGEOUT1 valid Maximum

T
rgh

T
dbgrq

T
brkh

T
brks

T
dbgh

T
dbgd

T
rqs

T
rqh

T
exts

T
exth

MCLK

DBGACK

BREAKPT

DBGRQ

EXTERN[1]

DBGRQI

RANGEOUT0

RANGEOUT1

T
rg

AC and DC Parameters

7-18 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Trgh RANGEOUT0, RANGEOUT1 hold time from MCLKf Minimum

Trqh DBGRQ guaranteed non-recognition time Minimum

Trqs DBGRQ set up time to MCLKr for guaranteed recognition Minimum

Table 7-13 Debug timing parameters (continued)

Symbol Parameter Parameter type

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-19

7.15 Debug communications channel output timing

Figure 7-14 shows the ARM7TDMI processor DCC output timing. The timing
parameter used in Figure 7-14 is listed in Table 7-14.

Figure 7-14 DCC output timing

Table 7-14 DCC output timing parameters

Symbol Parameter
Parameter
type

Tcommd MCLKr to COMMRX, COMMTX valid Maximum

MCLK

T
commd

COMMTX

COMMRX

AC and DC Parameters

7-20 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.16 Breakpoint timing

Figure 7-15 shows the ARM7TDMI processor synchronous interrupt timing. The
timing parameter used in Figure 7-12 is listed in Table 7-12.

Figure 7-15 Breakpoint timing

Note

 In Figure 7-15, BREAKPT changing in the LOW phase of MCLK (to signal a
watchpointed store) affects nCPI, nEXEC, nMREQ, and SEQ in the same phase.

T
bcems

MCLK

BREAKPT

nCPI

nEXEC

nMREQ

SEQ

Table 7-15 Breakpoint timing parameters

Symbol Parameter
Parameter
type

Tbcems BREAKPT to nCPI, nEXEC, nMREQ, SEQ delay Maximum

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-21

7.17 Test clock and external clock timing

Figure 7-16 shows the ARM7TDMI processor test clock and external clock timing. The
timing parameter used in Figure 7-16 is listed in Table 7-16.

Figure 7-16 TCK and ECLK timing

Note
 In Figure 7-16, Tctdel is the delay, on either edge (whichever is greater), from the edge
of TCK to ECLK.

T
ctdel

TCK

ECLK

T
ctdel

Table 7-16 TCK and ECLK timing parameters

Symbol Parameter Parameter type

Tctdel TCK to ECLK delay Maximum

AC and DC Parameters

7-22 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.18 Memory clock timing

Figure 7-17 shows the ARM7TDMI processor memory clock timing. The timing
parameters used in Figure 7-17 are listed in Table 7-17.

Figure 7-17 MCLK timing

Note

 In Figure 7-17, the core is not clocked by the HIGH phase of MCLK when nWAIT is
LOW. During the cycles shown, nMREQ and SEQ change once, during the first LOW
phase of MCLK, and A[31:0] change once, during the second HIGH phase of MCLK.
Phase 2 is shown for reference. This is the internal clock from which the core times all
its activity. This signal is included to show how the HIGH phase of the external MCLK
has been removed from the internal core clock.

T
mckh

T
mckl

T
ws

T
wh

T
msd

T
addr

MCLK

nWAIT

nMREQ

SEQ

ECLK

A[31:0]

Table 7-17 MCLK timing parameters

Symbol Parameter Parameter type

Taddr MCLKr to address valid Maximum

Tmckh MCLK HIGH time Minimum

Tmckl MCLK LOW time Minimum

Tmsd MCLKf to nMREQ and SEQ valid Maximum

Twh nWAIT hold from MCLKf Minimum

Tws nWAIT setup to MCLKr Minimum

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-23

7.19 Boundary scan general timing

Figure 7-18 shows the ARM7TDMI processor boundary scan general timing. The
timing parameters used in Figure 7-18 are listed in Table 7-18.

Figure 7-18 Boundary scan general timing

Table 7-18 Boundary scan general timing parameters

Symbol Parameter Parameter type

Tbsch TCK high period Minimum

Tbscl TCK low period Minimum

Tbsdd TCK to data output valid Maximum

Tbsdh Data output hold time from TCK Minimum

Tbsih TDI, TMS hold from TCKr Minimum

Tbsis TDI, TMS setup to TCKr Minimum

Tbsod TCKf to TDO valid Maximum

Tbsoh TDO hold time from TCKf Minimum

Tbssh I/O signal setup from TCKr Minimum

Tbsss I/O signal setup to TCKr, Minimum

T
bsss

T
bssh

T
bsod

T
bsih

T
bsis

T
bscl

T
bsch

T
bsoh

T
bsdh

T
bsdd

T
bsdh

T
bsdd

TCK

TMS

TDI

TDO

Data in

Data out

AC and DC Parameters

7-24 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.20 Reset period timing

Figure 7-19 shows the ARM7TDMI reset period timing. The timing parameters used in
Figure 7-19 are listed in Table 7-19.

Figure 7-19 Reset period timing

Table 7-19 Reset period timing parameters

Symbol Parameter Parameter type

Tbsr nTRST reset period Minimum

Trstd nRESETf to D[31:0], DBGACK, nCPI, nENOUT, nEXEC, nMREQ, SEQ valid Maximum

Trstl nRESET LOW for guaranteed reset Minimum

T
bsr

nTRST

T
rstl

nRESET

T
rstd

D[31:0]

DBGACK

nCPI

nENOUT

nEXEC

nMREQ

SEQ

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-25

7.21 Output enable and disable times

Figure 7-20 shows the output enable and disable times due to a HIGHZ TAP instruction.
Figure 7-21 shows the output enable and disable times due to data scanning.The timing
parameters used in Figure 7-20 and Figure 7-21 are listed in Table 7-20.

Figure 7-20 Output enable and disable times due to HIGHZ TAP instruction

Note

 Figure 7-20 shows the Tbse, output enable time, parameter and Tbsz, output disable time,
when the HIGHZ TAP instruction is loaded into the instruction register.

Figure 7-21 Output enable and disable times due to data scanning

Note

 Figure 7-21 shows the Tbse, output enable time, parameter and Tbsz, output disable time
when data scanning, due to different logic levels being scanned through the scan cells
for ABE and DBE.

T
bsz T

bse

TCK

A[]

D[]

T
bsz

T
bse

TCK

A[]

D[]

Table 7-20 Output enable and disable timing parameters

Symbol Parameter Parameter type

Tbse Output enable time Maximum

Tbsz Output disable time Maximum

AC and DC Parameters

7-26 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.22 Address latch enable control

Figure 7-22 shows the ARM7TDMI reset period timing. The timing parameters used in
Figure 7-22 are listed in Table 7-21.

Figure 7-22 ALE control timing

Note
 In Figure 7-22, Tald is the time by which ALE must be driven LOW to latch the current
address in phase 2. If ALE is driven LOW after Tald, then a new address is latched. This
is known as address breakthrough.

Phase 2

T
ale

T
ald

MCLK

ALE

A[31:0]

nRW

LOCK

nOPC

nTRANS

MAS[1:0]

Phase 1

T
aleh

Table 7-21 ALE address control timing parameters

Symbol Parameter
Parameter
type

Tald Address group latch output time Maximum

Tale Address group latch open output delay Maximum

Taleh Address group latch output hold time Minimum

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-27

7.23 Address pipeline control timing

Figure 7-23 shows the ARM7TDMI APE control timing. The timing parameters used
in Figure 7-23 are listed in Table 7-22.

Figure 7-23 APE control timing

Table 7-22 APE control timing parameters

Symbol Parameter
Parameter
type

Tape MCLKf to address group valid Maximum

Tapeh Address group output hold time from MCLKf Minimum

Taph APE hold time from MCLKf Minimum

Taps APE set up time to MCLKr Minimum

MCLK

T
aph

A[31:0]

nRW

LOCK

nOPC

nTRANS

MAS[1:0]

T
aps

APE

T
ape

T
apeh

AC and DC Parameters

7-28 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.24 Notes on AC Parameters

Table 7-23 lists the AC timing parameters in alphabetical order.

Contact your supplier for AC timing parameter values.

In Table 7-23:

• the letter f at the end of a signal name indicates the falling edge

• the letter r at the end of a signal name indicates the rising edge.

Table 7-23 AC timing parameters used in this chapter

Symbol Parameter
Parameter
Type

Figure
cross
reference

Tabe Address bus enable time Maximum Figure 7-2

Tabth ABORT hold time from MCLKf Minimum Figure 7-11

Tabts ABORT set up time to MCLKf Minimum Figure 7-11

Tabz Address bus disable time Maximum Figure 7-2

Taddr MCLKr to address valid Maximum Figure 7-1
Figure 7-17

Tah Address hold time from MCLKr Minimum Figure 7-1

Tald Address group latch time Maximum Figure 7-22

Tale Address group latch open output delay Maximum Figure 7-22

Taleh Address group latch output hold time Minimum Figure 7-22

Tape MCLKf to address group valid Maximum Figure 7-23

Tapeh Address group output hold time from MCLKf Minimum Figure 7-23

Taph APE hold time from MCLKf Minimum Figure 7-23

Taps APE set up time to MCLKr Minimum Figure 7-23

Tbcems BREAKPT to nCPI, nEXEC, nMREQ, SEQ delay Maximum Figure 7-13

Tbld MCLKr to MAS[1:0] and LOCK Maximum Figure 7-1

Tblh MAS[1:0] and LOCK hold from MCLKr Minimum Figure 7-1

Tbrkh Hold time of BREAKPT from MCLKr Minimum Figure 7-13

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-29

Tbrks Set up time of BREAKPT to MCLKr Minimum Figure 7-13

Tbsch TCK high period Minimum Figure 7-18

Tbscl TCK low period Minimum Figure 7-18

Tbsdd TCK to data output valid Maximum Figure 7-18

Tbsdh Data output hold time from TCK Minimum Figure 7-18

Tbse Output enable time Maximum Figure 7-20
Figure 7-21

Tbsih TDI, TMS hold from TCKr Minimum Figure 7-18

Tbsis TDI, TMS setup to TCKr Minimum Figure 7-18

Tbsod TCKf to TDO valid Maximum Figure 7-18

Tbsoh TDO hold time from TCKf Minimum Figure 7-18

Tbsr nTRST reset period Minimum Figure 7-19

Tbssh I/O signal setup from TCKr Minimum Figure 7-18

Tbsss I/O signal setup to TCKr, Minimum Figure 7-18

Tbsz Output disable time Maximum Figure 7-20
Figure 7-21

Tbylh BL[3:0] hold time from MCLKf Minimum Figure 7-4
Figure 7-8

Tbyls BL[3:0] set up to from MCLKr Minimum Figure 7-4
Figure 7-8

Tcdel MCLK to ECLK delay Maximum Figure 7-1

Tclkbs TCK to boundary scan clocks Maximum -

Tcommd MCLKr to COMMRX, COMMTX valid Maximum Figure 7-14

Tcph CPA,CPB hold time from MCLKr Minimum Figure 7-10

Tcpi MCLKf to nCPI valid Maximum Figure 7-10

Table 7-23 AC timing parameters used in this chapter (continued)

Symbol Parameter
Parameter
Type

Figure
cross
reference

AC and DC Parameters

7-30 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Tcpih nCPI hold time from MCLKf Minimum Figure 7-10

Tcpms CPA, CPB to nMREQ, SEQ Maximum Figure 7-10

Tcps CPA, CPB setup to MCLKr Minimum Figure 7-10

Tctdel TCK to ECLK delay Maximum Figure 7-16

Tcth Config hold time Minimum Figure 7-9

Tcts Config setup time Minimum Figure 7-9

Tdbe Data bus enable time from DBEr Maximum Figure 7-5

Tdbgd MCLKr to DBGACK valid Maximum Figure 7-13

Tdbgh DGBACK hold time from MCLKr Minimum Figure 7-13

Tdbgrq DBGRQ to DBGRQI valid Maximum Figure 7-13

Tdbnen DBE to nENOUT valid Maximum Figure 7-5

Tdbz Data bus disable time from DBEf Maximum Figure 7-5

Tdckf DCLK induced, TCKf to various outputs valid Maximum -

Tdckfh DCLK induced, various outputs hold from TCKf Minimum -

Tdckr DCLK induced, TCKr to various outputs valid Maximum -

Tdckrh DCLK induced, various outputs hold from TCKr Minimum -

Tdih DIN[31:0] hold time from MCLKf Minimum Figure 7-4

Tdihu DIN[31:0] hold time from MCLKf Minimum Figure 7-8

Tdis DIN[31:0] setup time to MCLKf Minimum Figure 7-4

Tdisu DIN[31:0] set up time to MCLKf Minimum Figure 7-8

Tdoh DOUT[31:0] hold from MCLKf Minimum Figure 7-3
Figure 7-5

Tdohu DOUT[31:0] hold time from MCLKf Minimum Figure 7-7

Table 7-23 AC timing parameters used in this chapter (continued)

Symbol Parameter
Parameter
Type

Figure
cross
reference

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-31

Tdout MCLKf to D[31:0] valid Maximum Figure 7-3
Figure 7-5

Tdoutu MCLKf to DOUT[31:0] valid Maximum Figure 7-7

Tecapd TCK to ECAPCLK changing Maximum -

Texd MCLKf to nEXEC valid Maximum Figure 7-1

Texh nEXEC hold time from MCLKf Minimum Figure 7-1

Texth EXTERN[1:0] hold time from MCLKf Minimum Figure 7-13

Texts EXTERN[1:0] set up time to MCLKf Minimum Figure 7-13

Tim Asynchronous interrupt guaranteed nonrecognition time, with ISYNC=0 Maximum Figure 7-11

Tis Asynchronous interrupt set up time to MCLKf for guaranteed recognition,
with ISYNC=0

Minimum Figure 7-11

Tmckh MCLK HIGH time Minimum Figure 7-17

Tmckl MCLK LOW time Minimum Figure 7-17

Tmdd MCLKr to nTRANS, nM[4:0], and TBIT valid Maximum Figure 7-1

Tmdh nTRANS and nM[4:0] hold time from MCLKr Minimum Figure 7-1

Tmsd MCLKf to nMREQ and SEQ valid Maximum Figure 7-1
Figure 7-17

Tmsh nMREQ and SEQ hold time from MCLKf Minimum Figure 7-1

Tnen MCLKf to nENOUT valid Maximum Figure 7-3
Figure 7-4
Figure 7-7
Figure 7-8

Tnenh nENOUT hold time from MCLKf Minimum Figure 7-3

Topcd MCLKr to nOPC valid Maximum Figure 7-1

Topch nOPC hold time from MCLKr Minimum Figure 7-1

Trg MCLKf to RANGEOUT0, RANGEOUT1 valid Maximum Figure 7-13

Table 7-23 AC timing parameters used in this chapter (continued)

Symbol Parameter
Parameter
Type

Figure
cross
reference

AC and DC Parameters

7-32 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Trgh RANGEOUT0, RANGEOUT1 hold time from MCLKf Minimum Figure 7-13

Trm Reset guaranteed nonrecognition time Maximum Figure 7-11

Trqh DBGRQ guaranteed non-recognition time Minimum Figure 7-13

Trqs DBGRQ set up time to MCLKr for guaranteed recognition Minimum Figure 7-13

Trs Reset setup time to MCLKr for guaranteed recognition Minimum Figure 7-11

Trstd nRESETf to D[31:0], DBGACK, nCPI, nENOUT, nEXEC, nMREQ,
SEQ valid

Maximum Figure 7-19

Trstl nRESET LOW for guaranteed reset Minimum Figure 7-19

Trwd MCLKr to nRW valid Maximum Figure 7-1

Trwh nRW hold time from MCLKr Minimum Figure 7-1

Tsdtd SDOUTBS to TDO valid Maximum -

Tshbsf TCK to SHCLKBS, SHCLK2BS falling Maximum -

Tshbsr TCK to SHCLKBS, SHCLK2BS rising Maximum -

Tsih Synchronous nFIQ, nIRQ hold from MCLKf with ISYNC=1 Minimum Figure 7-12

Tsis Synchronous nFIQ, nIRQ setup to MCLKf, with ISYNC=1 Minimum Figure 7-12

Ttbe Address and Data bus enable time from TBEr Maximum Figure 7-6

Ttbz Address and Data bus disable time from TBEf Maximum Figure 7-6

Ttckf TCK to TCK1, TCK2 falling Maximum -

Ttckr TCK to TCK1, TCK2 rising Maximum -

Ttdbgd TCK to DBGACK, DBGRQI changing Maximum -

Ttpfd TCKf to TAP outputs Maximum -

Ttpfh TAP outputs hold time from TCKf Minimum -

Ttprd TCKr to TAP outputs Maximum -

Ttprh TAP outputs hold time from TCKr Minimum -

Table 7-23 AC timing parameters used in this chapter (continued)

Symbol Parameter
Parameter
Type

Figure
cross
reference

AC and DC Parameters

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. 7-33

Ttrstd nTRSTf to every output valid Maximum -

Ttrstd nTRSTf to TAP outputs valid Maximum -

Ttrsts nTRSTr setup to TCKr Maximum -

Twh nWAIT hold from MCLKf Minimum Figure 7-17

Tws nWAIT setup to MCLKr Minimum Figure 7-17

Table 7-23 AC timing parameters used in this chapter (continued)

Symbol Parameter
Parameter
Type

Figure
cross
reference

AC and DC Parameters

7-34 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

7.25 DC parameters

Contact your supplier for information on:

• operating conditions

• maximum ratings.

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. A-1

Appendix A
Signal Description

This appendix lists and describes the signals for the ARM7TDMI processor. It contains
the following section:

• Signal description on page A-2.

Signal Description

A-2 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

A.1 Signal description

This section describes all of the signals for the ARM7TDMI processor.

A.1.1 Transistor dimensions

Table A-1 on page A-2 lists the transistor sizes for a 0.18 µm ARM7TDMI processor.

A.1.2 Signal types

Table A-2 on page A-2 lists the signal types used in this appendix.

Table A-1 Transistor sizes

Driver Layer Width Length

INV4 P p = 7.45µm 0.18µm

N N = 4.2µm 0.18µm

INV8 P p = 14.9µm 0.18µm

N N = 8.1µm 0.18µm

Table A-2 Signal types

Type Description

IC Input CMOS thresholds

P Power

O4 Output with INV4 inverter

O8 Output with INV8 inverter

Signal Description

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. A-3

A.1.3 Signals

 Table A-3 lists and describes all of the signals used for the ARM7TDMI processor.

Table A-3 Signal Descriptions

Name Type Description

A[31:0]
Addresses

O8 This is the 32-bit address bus. ALE, ABE, and APE are used to control
when the address bus is valid.

ABE

Address bus enable

IC The address bus drivers are disabled when this is LOW, putting the
address bus into a high impedance state. This also controls the LOCK,
MAS[1:0], nRW, nOPC, and nTRANS signals in the same way. ABE
must be tied HIGH if there is no system requirement to disable the
address drivers.

ABORT

Memory abort

IC The memory system uses this signal to tell the processor that a requested
access is not allowed.

ALE

Address latch enable

IC This signal is provided for backwards compatibility with older ARM
processors. For new designs, if address retiming is required, ARM
Limited recommends the use of APE, and for ALE to be connected
HIGH.

The address bus, LOCK, MAS[1:0], nRW, nOPC, and nTRANS
signals are latched when this is held LOW. This allows these address
signals to be held valid for the complete duration of a memory access
cycle. For example, when interfacing to ROM, the address must be valid
until after the data has been read.

APE
Address pipeline enable

IC Selects whether the address bus, LOCK, MAS[1:0], nRW, nTRANS,
and nOPC signals operate in pipelined (APE is HIGH) or depipelined
mode (APE is LOW).

Pipelined mode is particularly useful for DRAM systems, where it is
desirable to provide the address to the memory as early as possible, to
allow longer periods for address decoding and the generation of DRAM
control signals. In this mode, the address bus does not remain valid to the
end of the memory cycle.

Depipelined mode can be useful for SRAM and ROM access. Here the
address bus, LOCK, MAS[1:0], nRW, nTRANS, and nOPC signals
must be kept stable throughout the complete memory cycle. However,
this does not provide optimum performance.

See Address timing on page 3-14 for details of this timing.

BIGEND
Big endian configuration

IC Selects how the processor treats bytes in memory:

• HIGH for big-endian format

• LOW for little-endian format.

Signal Description

A-4 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

BL[3:0]
Byte latch control

IC The values on the data bus are latched on the falling edge of MCLK
when these signals are HIGH. For most designs these signals must be tied
HIGH.

BREAKPT

Breakpoint

IC A conditional request for the processor to enter debug state is made by
placing this signal HIGH.
If the memory access at that time is an instruction fetch, the processor
enters debug state only if the instruction reaches the execution stage of
the pipeline.
If the memory access is for data, the processor enters debug state after the
current instruction completes execution. This allows extension of the
internal breakpoints provided by the EmbeddedICE Logic.

See Behavior of the program counter during debug on page B-29 for
details on the use of this signal.

BUSDIS

Bus disable

O4 When INTEST is selected on scan chain 0, 4, or 8 this is HIGH. It can be
used to disable external logic driving onto the bidirectional data bus
during scan testing. This signal changes after the falling edge of TCK.

BUSEN

Data bus configuration

IC A static configuration signal that selects whether the bidirectional data
bus (D[31:0]) or the unidirectional data busses (DIN[31:0] and
DOUT[31:0]) are used for transfer of data between the processor and
memory.

When BUSEN is LOW, D[31:0] is used; DOUT[31:0] is driven to a
value of zero, and DIN[31:0] is ignored, and must be tied LOW.

When BUSEN is HIGH, DIN[31:0] and DOUT[31:0] are used; D[31:0]
is ignored and must be left unconnected.

See Chapter 3 Memory Interface for details on the use of this signal.

COMMRX
Communications channel receive

O4 When the communications channel receive buffer is full this is HIGH.

This signal changes after the rising edge of MCLK.

See Debug Communications Channel on page 5-16 for more
information.

COMMTX
Communications channel transmit

O4 When the communications channel transmit buffer is empty this is
HIGH.

This signal changes after the rising edge of MCLK.

See Debug Communications Channel on page 5-16 for more
information.

CPA
Coprocessor absent

IC Placed LOW by the coprocessor if it is capable of performing the
operation requested by the processor.

Table A-3 Signal Descriptions (continued)

Name Type Description

Signal Description

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. A-5

CPB
Coprocessor busy

IC Placed LOW by the coprocessor when it is ready to start the operation
requested by the processor.

It is sampled by the processor when MCLK goes HIGH in each cycle in
which nCPI is LOW.

D[31:0]
Data bus

IC
O8

Used for data transfers between the processor and external memory.

During read cycles input data must be valid on the falling edge of
MCLK.

During write cycles output data remains valid until after the falling edge
of MCLK.

This bus is always driven except during read cycles, irrespective of the
value of BUSEN. Consequently it must be left unconnected if using the
unidirectional data buses.

See Chapter 3 Memory Interface.

DBE

Data bus enable

IC Must be HIGH for data to appear on either the bidirectional or
unidirectional data output bus.

When LOW the bidirectional data bus is placed into a high impedance
state and data output is prevented on the unidirectional data output bus.

It can be used for test purposes or in shared bus systems.

DBGACK
Debug acknowledge

O4 When the processor is in a debug state this is HIGH.

DBGEN

Debug enable

IC A static configuration signal that disables the debug features of the
processor when held LOW.

This signal must be HIGH to allow the EmbeddedICE Logic to function.

DBGRQ
Debug request

IC This is a level-sensitive input, that when HIGH causes ARM7TDMI core
to enter debug state after executing the current instruction. This allows
external hardware to force the ARM7TDMI core into debug state, in
addition to the debugging features provided by the EmbeddedICE Logic.

See Appendix B Debug in Depth.

DBGRQI

Internal debug request

O4 This is the logical OR of DBGRQ and bit 1 of the debug control register.

DIN[31:0]
Data input bus

IC Unidirectional bus used to transfer instructions and data from the
memory to the processor.

This bus is only used when BUSEN is HIGH. If unused then it must be
tied LOW.

This bus is sampled during read cycles on the falling edge of MCLK.

Table A-3 Signal Descriptions (continued)

Name Type Description

Signal Description

A-6 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

DOUT[31:0]
Data output bus

O8 Unidirectional bus used to transfer data from the processor to the
memory system.

This bus is only used when BUSEN is HIGH. Otherwise it is driven to a
value of zero.

During write cycles the output data becomes valid while MCLK is LOW,
and remains valid until after the falling edge of MCLK.

DRIVEBS
Boundary scan cell enable

O4 Controls the multiplexors in the scan cells of an external boundary-scan
chain.

This must be left unconnected, if an external boundary-scan chain is not
connected.

ECAPCLK
EXTEST capture clock

O4 Only used on the ARM7TDMI test chip, and must otherwise be left
unconnected.

ECAPCLKBS
EXTEST capture clock for
boundary-scan

O4 Used to capture the device inputs of an external boundary-scan chain
during EXTEST.

When scan chain 3 is selected, the current instruction is EXTEST and the
TAP controller state machine is in the CAPTURE- DR state, then this
signal is a pulse equal in width to TCK2.

This must be left unconnected, if an external boundary-scan chain is not
connected.

ECLK

External clock output

O4 In normal operation, this is simply MCLK, optionally stretched with
nWAIT, exported from the core. When the core is being debugged, this
is DCLK, which is generated internally from TCK.

EXTERN0
External input 0

IC This is connected to the EmbeddedICE Logic and allows breakpoints and
watchpoints to be dependent on an external condition.

EXTERN1
External input 1

IC This is connected to the EmbeddedICE Logic and allows breakpoints and
watchpoints to be dependent on an external condition.

HIGHZ

High impedance

O4 When the HIGHZ instruction has been loaded into the TAP controller
this signal is HIGH.

See Appendix B Debug in Depth for details.

ICAPCLKBS
INTEST capture clock

O4 This is used to capture the device outputs in an external boundary-scan
chain during INTEST.

This must be left unconnected, if an external boundary-scan chain is not
connected.

Table A-3 Signal Descriptions (continued)

Name Type Description

Signal Description

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. A-7

IR[3:0]
TAP controller instruction register

O4 Reflects the current instruction loaded into the TAP controller instruction
register. These bits change on the falling edge of TCK when the state
machine is in the UPDATE-IR state.

The instruction encoding is described in Public instructions on page B-9.

ISYNC
Synchronous interrupts

IC Set this HIGH if nIRQ and nFIQ are synchronous to the processor
clock; LOW for asynchronous interrupts.

LOCK

Locked operation

O8 When the processor is performing a locked memory access this is HIGH.
This is used to prevent the memory controller allowing another device to
access the memory.

It is active only during the data swap (SWP) instruction.

This is one of the signals controlled by APE, ALE and ABE.

MAS[1:0]
Memory access size

O8 Used to indicate to the memory system the size of data transfer (byte,
halfword or word) required for both read and write cycles, become valid
before the falling edge of MCLK and remain valid until the rising edge
of MCLK during the memory cycle.

The binary values 00, 01, and 10 represent byte, halfword and word
respectively (11 is reserved).

This is one of the signals controlled by APE, ALE, and ABE.

MCLK
Memory clock input

IC This is the main clock for all memory accesses and processor operations.
The clock speed can be reduced to allow access to slow peripherals or
memory.

Alternatively, the nWAIT can be used with a free-running MCLK to
achieve the same effect.

nCPI

Not coprocessor instruction

O4 LOW when a coprocessor instruction is processed. The processor then
waits for a response from the coprocessor on the CPA and CPB lines.

If CPA is HIGH when MCLK rises after a request has been initiated by
the processor, then the coprocessor handshake is aborted, and the
processor enters the undefined instruction trap.

If CPA is LOW at this time, then the processor will enters a busy-wait
period until CPB goes LOW before completing the coprocessor
handshake.

nENIN
NOT enable input

IC This must be LOW for the data bus to be driven during write cycles.

Can be used in conjunction with nENOUT to control the data bus during
write cycles.

See Chapter 3 Memory Interface.

Table A-3 Signal Descriptions (continued)

Name Type Description

Signal Description

A-8 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

nENOUT
Not enable output

O4 During a write cycle, this signal is driven LOW before the rising edge of
MCLK, and remains LOW for the entire cycle. This can be used to aid
arbitration in shared bus applications.

See Chapter 3 Memory Interface.

nENOUTI
Not enable output

O4 During a coprocessor register transfer C-cycle from the EmbeddedICE
communications channel coprocessor to the ARM core, this signal goes
LOW. This can be used to aid arbitration in shared bus systems.

nEXEC

Not executed

O4 This is HIGH when the instruction in the execution unit is not being
executed because, for example, it has failed its condition code check.

nFIQ
Not fast interrupt request

IC Taking this LOW causes the processor to be interrupted if the appropriate
enable in the processor is active. The signal is level-sensitive and must be
held LOW until a suitable response is received from the processor. nFIQ
can be synchronous or asynchronous to MCLK, depending on the state
of ISYNC.

nHIGHZ

Not HIGHZ

O4 When the current instruction is HIGHZ this signal is LOW. This is used
to place the scan cells of that scan chain in the high impedance state.

This must be left unconnected, if an external boundary-scan chain is not
connected.

nIRQ

Not interrupt request

IC As nFIQ, but with lower priority. Can be taken LOW to interrupt the
processor when the appropriate enable is active. nIRQ can be
synchronous or asynchronous, depending on the state of ISYNC.

nM[4:0]

Not processor mode

O4 These are the inverse of the internal status bits indicating the current
processor mode.

nMREQ
Not memory request

O4 When the processor requires memory access during the following cycle
this is LOW.

nOPC

Not op-code fetch

O8 When the processor is fetching an instruction from memory this is LOW.

This is one of the signals controlled by APE, ALE, and ABE.

Table A-3 Signal Descriptions (continued)

Name Type Description

Signal Description

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. A-9

nRESET
Not reset

IC Used to start the processor from a known address.

A LOW level causes the instruction being executed to terminate
abnormally.

This signal must be held LOW for at least two clock cycles, with nWAIT
held HIGH.

When LOW the processor performs internal cycles with the address
incrementing from the point where reset was activated. The address
overflows to zero if nRESET is held beyond the maximum address limit.

When HIGH for at least one clock cycle, the processor restarts from
address 0.

nRW
Not read, write

O8 When the processor is performing a read cycle, this is LOW.

This is one of the signals controlled by APE, ALE, and ABE.

nTDOEN

Not TDO enable

O4 When serial data is being driven out on TDO this is LOW.

Usually used as an output enable for a TDO pin in a packaged part.

nTRANS

Not memory translate

O8 When the processor is in User mode, this is LOW.

It can be used either to tell the memory management system when
address translation is turned on, or as an indicator of non-User mode
activity.

This is one of the signals controlled by APE, ALE, and ABE.

nTRST
Not test reset

IC Reset signal for the boundary-scan logic. This pin must be pulsed or
driven LOW to achieve normal device operation, in addition to the
normal device reset, nRESET.

See Chapter 5 Debug Interface.

nWAIT
Not wait

IC When LOW the processor extends an access over a number of cycles of
MCLK, which is useful for accessing slow memory or peripherals.

Internally, nWAIT is logically ANDed with MCLK and must only
change when MCLK is LOW.

If nWAIT is not used it must be tied HIGH.

PCLKBS
Boundary scan

update clock

O4 This is used by an external boundary-scan chain as the update clock.

This must be left unconnected, if an external boundary-scan chain is not
connected.

Table A-3 Signal Descriptions (continued)

Name Type Description

Signal Description

A-10 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

RANGEOUT0
EmbeddedICE RANGEOUT0

O4 When the EmbeddedICE watchpoint unit 0 has matched the conditions
currently present on the address, data, and control busses, then this is
HIGH.

This signal is independent of the state of the watchpoint enable control
bit.

RANGEOUT0 changes when ECLK is LOW.

RANGEOUT1
EmbeddedICE RANGEOUT1

O4 As RANGEOUT0 but corresponds to the EmbeddedICE watchpoint
unit 1.

RSTCLKBS

Boundary scan Reset Clock

O4 When either the TAP controller state machine is in the RESET state or
when nTRST is LOW, then this is HIGH. This can be used to reset
external boundary-scan cells.

SCREG[3:0]

Scan chain register

O4 These reflect the ID number of the scan chain currently selected by the
TAP controller. These change on the falling edge of TCK when the TAP
state machine is in the UPDATE-DR state.

SDINBS
Boundary scan serial input data

O4 This provides the serial data for an external boundary-scan chain input.
It changes from the rising edge of TCK and is valid at the falling edge of
TCK.

SDOUTBS
Boundary scan serial output data

IC Accepts serial data from an external boundary-scan chain output,
synchronized to the rising edge of TCK.

This must be tied LOW, if an external boundary-scan chain is not
connected.

SEQ
Sequential address

O4 When the address of the next memory cycle is closely related to that of
the last memory access, this is HIGH.

In ARM state the new address can be for the same word or the next. In
THUMB state, the same halfword or the next.

It can be used, in combination with the low-order address lines, to
indicate that the next cycle can use a fast memory mode (for example
DRAM page mode) or to bypass the address translation system.

SHCLKBS

Boundary scan shift clock, phase
one

O4 Used to clock the master half of the external scan cells and follows
TCK1 when in the SHIFT-DR state of the state machine and scan chain
3 is selected. When not in the SHIFT-DR state or when scan chain 3 is
not selected, this clock is LOW.

SHCLK2BS
Boundary scan shift clock, phase
two

O4 As SHCLKBS but follows TCK2 instead of TCK1.

This must be left unconnected, if an external boundary-scan chain is not
connected.

Table A-3 Signal Descriptions (continued)

Name Type Description

Signal Description

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. A-11

TAPSM[3:0]
TAP controller

state machine

O4 These reflect the current state of the TAP controller state machine. These
bits change on the rising edge of TCK.

See Figure B-2 on page B-5.

TBE
Test bus enable

IC When LOW, D[31:0], A[31:0], LOCK, MAS[1:0], nRW, nTRANS,
and nOPC are set to high impedance.

Similar in effect as if both ABE and DBE had been driven LOW.
However, TBE does not have an associated scan cell and so allows
external signals to be driven high impedance during scan testing.

Under normal operating conditions TBE must be HIGH.

TBIT O4 When the processor is executing the THUMB instruction set, this is
HIGH. It is LOW when executing the ARM instruction set.

This signal changes in phase two in the first execute cycle of a BX
instruction.

TCK IC Clock signal for all test circuitry. When in debug state, this is used to
generate DCLK, TCK1, and TCK2.

TCK1
TCK, phase one

O4 HIGH when TCK is HIGH (slight phase lag due to the internal clock
non-overlap).

TCK2
TCK, phase two

O4 HIGH when TCK is LOW (slight phase lag due to the internal clock
non-overlap).

It is the non-overlapping complement of TCK1.

TDI IC Serial data for the scan chains.

TDO

Test data output

O4 Serial data from the scan chains.

TMS IC Mode select for scan chains.

VDD

Power supply

P Provide power to the device.

VSS
Ground

P These connections are the ground reference for all signals.

Table A-3 Signal Descriptions (continued)

Name Type Description

Signal Description

A-12 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-1

Appendix B
Debug in Depth

This appendix describes the debug features of the ARM7TDMI core in further detail
and includes additional information about the EmbeddedICE Logic. It contains the
following sections:

• Scan chains and JTAG interface on page B-3

• Resetting the TAP controller on page B-6

• Instruction register on page B-8

• Public instructions on page B-9

• Test data registers on page B-14

• The ARM7TDMI core clocks on page B-22

• Determining the core and system state on page B-24

• Behavior of the program counter during debug on page B-29

• Priorities and exceptions on page B-32

• Scan chain cell data on page B-33

• The watchpoint registers on page B-40

• Programming breakpoints on page B-45

• Programming watchpoints on page B-47

• The debug control register on page B-48

• The debug status register on page B-50

Debug in Depth

B-2 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

• Coupling breakpoints and watchpoints on page B-52

• EmbeddedICE timing on page B-54

• Programming Restriction on page B-55.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-3

B.1 Scan chains and JTAG interface

There are three JTAG-style scan chains within the ARM7TDMI core. These enable
debugging and configuration of EmbeddedICE Logic.

A JTAG style Test Access Port (TAP) controller controls the scan chains. For further
details of the JTAG specification, refer to IEEE Standard 1149.1 - 1990 Standard Test
Access Port and Boundary-Scan Architecture.

In addition, support is provided for an optional fourth scan chain. This is intended to be
used for an external boundary-scan chain around the pads of a packaged device. The
control signals provided for this scan chain are described in Scan chain 3 on page B-20.

Note

 The scan cells are not fully JTAG compliant.

The following sections describe:

• Scan chain implementation on page B-3

• TAP state machine on page B-5.

B.1.1 Scan chain implementation

The three scan paths are referred to as:

1. Scan chain 0 on page B-4

2. Scan chain 1 on page B-4

3. Scan chain 2 on page B-4.

The scan chains are shown in Figure B-1 on page B-4.

Debug in Depth

B-4 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure B-1 ARM7TDMI core scan chain arrangements

Scan chain 0

Scan chain 0 enables access to the entire periphery of the ARM7TDMI core, including
the data bus. The scan chain functions enable inter-device testing (EXTEST) and serial
testing of the core (INTEST). The order of the scan chain, from search data in to out, is:

1. Data bus bits 0 to 31.

2. The control signals.

3. Address bus bits 31 to 0.

A[0] is scanned out first.

Scan chain 1

Scan chain 1 is a subset of scan chain 0. It provides serial access to the core data bus
D[31:0] and the BREAKPT signal.

There are 33 bits in this scan chain, the order from serial data in to serial data out, is:

1. Data bus bits 0 to 31.

2. The BREAKPT bit, the first to be shifted out.

Scan chain 2

Scan chain 2 enables access to the EmbeddedICE Logic registers. Refer to Test data
registers on page B-14 for details.

Embedded-ICE

Logic
ARM7TDM

(CPU core)

TAP controller

Scan chain 2

Scan chain 1

Scan chain 0

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-5

B.1.2 TAP state machine

The process of serial test and debug is best explained in conjunction with the JTAG state
machine. Figure B-2 on page B-5 shows the state transitions that occur in the TAP
controller.

Figure B-2 Test access port controller state transitions

From IEEE Std 1149.1-1990. Copyright 1994-2001 IEEE. All rights reserved.

Test-Logic Reset
0xF

Run-Test/Idle
0xC

Select-DR-Scan
0x7

Capture-DR
0x6

Capture-IR
0xE

Shift-DR
0x2

Shift-IR
0xA

Exit1-DR
0x1

Exit1-IR
0x9

Pause-DR
0x3

Pause-IR
0xB

Exit2-DR
0x0

Exit2-IR
0x8

Update-DR
0x5

Update-IR
0xD

Select-IR-Scan
0x4

tms=1

tms=0

tms=0

tms=1 tms=1 tms=1

tms=0

tms=0

tms=1

tms=0

tms=1

tms=1tms=1

tms=0 tms=0

tms=1 tms=1

tms=1

tms=0

tms=1

tms=0

tms=0

tms=1

tms=0

tms=1

tms=1

tms=0tms=1

tms=0

tms=0 tms=0

tms=0

Debug in Depth

B-6 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.2 Resetting the TAP controller

The boundary-scan (JTAG) interface includes a state machine controller named the TAP
controller. To force the TAP controller into the correct state after power-up, you must
apply a reset pulse to the nTRST signal:

• When the boundary-scan interface or EmbeddedICE is to be used, nTRST must
be driven LOW and then HIGH again.

• When the boundary-scan interface or EmbeddedICE is not to be used, the nTRST
input can be tied permanently LOW.

Note

 A clock on TCK is not necessary to reset the device.

The nTRST signal:

1. Selects system mode. This means that the boundary-scan cells do not intercept
any of the signals passing between the external system and the core.

2. Selects the IDCODE instruction.

When the TAP controller is put into the SHIFT-DR state and TCK is pulsed, the
contents of the ID register are clocked out of TDO.

3. Sets the TAP controller state machine to the TEST-LOGIC RESET state.

4. Sets the scan chain select register to 0x3, which selects the external boundary-scan
chain, if present.

Note
 You must use nTRST to reset the boundary-scan interface at least once after power up.
After this the TAP controller state machine can be put into the TEST-LOGIC RESET
state to subsequently reset the boundary-scan interface.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-7

B.3 Pullup resistors

The IEEE 1149.1 standard implies that nTRST, TDI, and TMS must have internal
pullup resistors. To minimize static current draw, these resistors are not fitted to the
ARM7TDMI core. Accordingly, the four inputs to the test interface, the nTRST, TDI,
and TMS signal plus TCK, must all be driven to good logic levels to achieve normal
circuit operation.

Debug in Depth

B-8 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.4 Instruction register

The instruction register is 4 bits in length.

There is no parity bit.

The fixed value 0001 is loaded into the instruction register during the CAPTURE-IR
controller state.

The least significant bit of the instruction register is scanned in and scanned out first.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-9

B.5 Public instructions

Table B-1 lists the public instructions.

In the following instruction descriptions, TDI and TMS are sampled on the rising edge
of TCK and all output transitions on TDO occur as a result of the falling edge of TCK.
The following sections describe:

• EXTEST (0000) on page B-9

• SCAN_N (0010) on page B-10

• SAMPLE/PRELOAD (0011) on page B-10

• RESTART (0100) on page B-10

• CLAMP (0101) on page B-11

• HIGHZ (0111) on page B-11

• CLAMPZ (1001) on page B-11

• INTEST (1100) on page B-12

• IDCODE (1110) on page B-12

• BYPASS (1111) on page B-12.

B.5.1 EXTEST (0000)

The selected scan chain is placed in test mode by the EXTEST instruction.

Table B-1 Public instructions

Instruction Binary Hexadecimal

EXTEST 0000 0x0

SCAN_N 0010 0x2

SAMPLE/PRELOAD 0011 0x3

RESTART 0100 0x4

CLAMP 0101 0x5

HIGHZ 0111 0x7

CLAMPZ 1001 0x9

INTEST 1100 0xC

IDCODE 1110 0xE

BYPASS 1111 0xF

Debug in Depth

B-10 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

The EXTEST instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all of the scan
cells are placed in their test mode of operation:

• In the CAPTURE-DR state, inputs from the system logic and outputs from the
output scan cells to the system are captured by the scan cells.

• In the SHIFT-DR state, the previously captured test data is shifted out of the scan
chain using TDO, while new test data is shifted in using the TDI input. This data
is applied immediately to the system logic and system pins.

B.5.2 SCAN_N (0010)

The SCAN_N instruction connects the scan path select register between TDI and TDO:

• In the CAPTURE-DR state, the fixed value 1000 is loaded into the register.

• In the SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

• In the UPDATE-DR state, the scan register of the selected scan chain is connected
between TDI and TDO and remains connected until a subsequent SCAN_N
instruction is issued.

• On reset, scan chain 3 is selected by default.

The scan path select register is 4 bits long in this implementation, although no finite
length is specified. The least significant bit of the scan path select register is shifted
in/out first.

B.5.3 SAMPLE/PRELOAD (0011)

This instruction is included for production test only and must never be used on the scan
chains provided by the ARM7TDMI core. It can be used on user-added scan chains such
as boundary-scan chains.

B.5.4 RESTART (0100)

The RESTART instruction restarts the processor on exit from debug state. The
RESTART instruction connects the bypass register between TDI and TDO. The TAP
controller behaves as if the BYPASS instruction had been loaded.

The processor exits debug state when the RUN-TEST-IDLE state is entered.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-11

B.5.5 CLAMP (0101)

This instruction connects a 1 bit shift register, the BYPASS register, between TDI and
TDO. When the CLAMP instruction is loaded into the instruction register, the state of
all the scan cell output signals is defined by the values previously loaded into the
currently loaded scan chain. This instruction must only be used when scan chain 0 is the
currently selected scan chain:

• In the CAPTURE-DR state, a logic 0 is captured by the bypass register.

• In the SHIFT-DR state, test data is shifted into the bypass register using TDI and
out using TDO after a delay of one TCK cycle. The first bit shifted out is a zero.

• In the UPDATE-DR state the bypass register is not affected.

B.5.6 HIGHZ (0111)

This instruction connects a 1 bit shift register, the BYPASS register, between TDI and
TDO. When the HIGHZ instruction is loaded into the instruction register, the Address
bus, A[31:0], the data bus, D[31:0], nRW, nOPC, LOCK, MAS[1:0], and nTRANS
are all driven to the high impedance state and the external HIGHZ signal is driven
HIGH. This is as if the signal TBE had been driven LOW:

• In the CAPTURE-DR state, a logic 0 is captured by the bypass register.

• In the SHIFT-DR state, test data is shifted into the bypass register using TDI and
out using TDO after a delay of one TCK cycle. The first bit shifted out is a zero.

• In the UPDATE-DR state, the bypass register is not affected.

B.5.7 CLAMPZ (1001)

This instruction connects a 1 bit shift register, the BYPASS register, between TDI and
TDO.

When the CLAMPZ instruction is loaded into the instruction register, all the 3-state
outputs are placed in their inactive state, but the data supplied to the scan cell outputs is
derived from the scan cells. The purpose of this instruction is to ensure that, during
production test, each output can be disabled when its data value is either a logic 0 or a
logic 1:

• In the CAPTURE-DR state, a logic 0 is captured by the bypass register.

• In the SHIFT-DR state, test data is shifted into the bypass register using TDI and
out using TDO after a delay of one TCK cycle. The first bit shifted out is a zero.

• In the UPDATE-DR state, the bypass register is not affected.

Debug in Depth

B-12 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.5.8 INTEST (1100)

The INTEST instruction places the selected scan chain in test mode:

• The INTEST instruction connects the selected scan chain between TDI and TDO.

• When the INTEST instruction is loaded into the instruction register, all the scan
cells are placed in their test mode of operation.

• In the CAPTURE-DR state, the value of the data applied from the core logic to
the output scan cells and the value of the data applied from the system logic to the
input scan cells is captured.

• In the SHIFT-DR state, the previously-captured test data is shifted out of the scan
chain through the TDO pin, while new test data is shifted in through the TDI pin.

Single-step operation of the core is possible using the INTEST instruction.

B.5.9 IDCODE (1110)

The IDCODE instruction connects the device identification code register or ID register
between TDI and TDO. The register is a 32-bit register that enables the manufacturer,
part number, and version of a component to be read through the TAP. See ARM7TDMI
core device IDentification (ID) code register on page B-14 for details of the ID register
format.

When the IDCODE instruction is loaded into the instruction register, all the scan cells
are placed in their normal system mode of operation:

• In the CAPTURE-DR state, the device identification code is captured by the ID
register.

• In the SHIFT-DR state, the previously captured device identification code is
shifted out of the ID register through the TDO pin, while data is shifted into the
ID register through the TDI pin.

• In the UPDATE-DR state, the ID register is unaffected.

B.5.10 BYPASS (1111)

The BYPASS instruction connects a 1-bit shift register, the bypass register, between
TDI and TDO.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-13

When the BYPASS instruction is loaded into the instruction register, all the scan cells
assume their normal system mode of operation. The BYPASS instruction has no effect
on the system pins:

• In the CAPTURE-DR state, a logic 0 is captured the bypass register.

• In the SHIFT-DR state, test data is shifted into the bypass register through TDI
and shifted out through TDO after a delay of one TCK cycle. The first bit to shift
out is a zero.

• In the UPDATE-DR state, the bypass register is not affected.

All unused instruction codes default to the BYPASS instruction.

Note

 BYPASS does not enable the processor to exit debug state or synchronize to MCLK for
a system speed access while in debug state. You must use RESTART to achieve this.

Debug in Depth

B-14 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.6 Test data registers

There are seven test data registers that can connect between TDI and TDO:

• Bypass register on page B-14

• ARM7TDMI core device IDentification (ID) code register on page B-14

• Instruction register on page B-15

• Scan path select register on page B-15

• Scan chains 0, 1, 2, and 3 on page B-16.

In the following test data register descriptions, data is shifted during every TCK cycle.

B.6.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path
between TDI and TDO.

Length 1 bit.

Operating mode When the BYPASS instruction is the current instruction in the
instruction register, serial data is transferred from TDI to TDO in
the SHIFT-DR state with a delay of one TCK cycle. There is no
parallel output from the bypass register.

A logic 0 is loaded from the parallel input of the bypass register in
the CAPTURE-DR state.

B.6.2 ARM7TDMI core device IDentification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.

Length 32 bits. The format of the register is as shown in Figure B-3.

Figure B-3 ID code register format

Contact your supplier for the correct device identification code.

Operating mode When the IDCODE instruction is current, the ID register is
selected as the serial path between TDI and TDO. There is no
parallel output from the ID register.

011112272831

Version Part number Manufacturer identity 1

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-15

The 32-bit device identification code is loaded into the ID register
from its parallel inputs during the CAPTURE-DR state.

The least significant bit of the register is scanned out first.

B.6.3 Instruction register

Purpose Changes the current TAP instruction.

Length 4 bits.

Operating mode In the SHIFT-IR state, the instruction register is selected as the
serial path between TDI and TDO.

During the UPDATE-IR state, the value in the instruction register
becomes the current instruction.

During the CAPTURE-IR state, the binary value 0001 is loaded
into this register. This value is shifted out during SHIFT-IR. On
reset, IDCODE becomes the current instruction.

The least significant bit of the register is scanned in or out first.

B.6.4 Scan path select register

Purpose Changes the current active scan chain.

Length 4 bits.

Operating mode SCAN_N as the current instruction in the SHIFT-DR state selects
the scan path select register as the serial path between TDI and
TDO.

During the CAPTURE-DR state, the value 1000 binary is loaded
into this register. This value is loaded out during SHIFT-DR, while
a new value is loaded in.

During the UPDATE-DR state, the value in the register selects a
scan chain to become the currently active scan chain. All further
instructions, such as INTEST, then apply to that scan chain. The
currently selected scan chain changes only when a SCAN_N
instruction is executed, or when a reset occurs. On reset, scan
chain 0 is selected as the active scan chain.

The least significant bit of the register is scanned in or out first.

The number of the currently selected scan chain is reflected on the SCREG[3:0]
outputs. The TAP controller can be used to drive external scan chains in addition to
those within the ARM7TDMI macrocell. The external scan chain must be assigned a
number and control signals for it can be derived from SCREG[3:0], IR[3:0],

Debug in Depth

B-16 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

TAPSM[3:0], TCK1, and TCK2.The list of scan chain numbers allocated by ARM are
shown in Table B-2 on page B-16. An external scan chain can take any other
number.The serial data stream to be applied to the external scan chain is made present
on SDINBS, the serial data back from the scan chain must be presented to the TAP
controller on the SDOUTBS input. The scan chain present between SDINBS and
SDOUTBS is connected between TDI and TDO whenever scan chain 3 is selected, or
when any of the unassigned scan chain numbers is selected. If there is more than one
external scan chain, a multiplexor must be built externally to apply the desired scan
chain output to SDOUTBS. The multiplexor can be controlled by decoding
SCREG[3:0].

Table B-2 lists the scan chain number allocation.

B.6.5 Scan chains 0, 1, 2, and 3

These enable serial access to the core logic and to EmbeddedICE Logic for
programming purposes. They are described in detail below.

Scan chain 0 and 1

Purpose Enables access to the processor core for test and debug.

Length Scan chain 0: 105 bits. Scan chain 1: 33 bits

Each scan chain cell is fairly simple and consists of a serial register and a multiplexor
as shown in Figure B-4 on page B-17. The scan cells perform two basic functions:

• CAPTURE

Table B-2 Scan chain number allocation

Scan chain
number

Function

0 Macrocell scan test

1 Debug

2 EmbeddedICE Logic
programming

3a

a. To be implemented by ASIC designer.

External boundary-scan

4 Reserved

8 Reserved

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-17

• SHIFT.

For input cells, the capture stage involves copying the value of the system input to the
core into the serial register. During shift, this value is output serially. The value applied
to the core from an input cell is either the system input or the contents of the serial
register and this is controlled by the multiplexor.

Figure B-4 Input scan cell

For output cells, capture involves placing the output value of a core into the serial
register. During shift, this value is serially output as before. The value applied to the
system from an output cell is either the core output, or the contents of the serial register.

All of the control signals for the scan cells are generated internally by the TAP
controller. The action of the TAP controller is determined by the current instruction and
the state of the TAP state machine.

There are three basic modes of operation of the scan chains, INTEST, EXTEST, and
SYSTEM that are selected by the various TAP controller instructions:

• In INTEST mode, the core is internally tested. The data serially scanned in is
applied to the core and the resulting outputs are captured in the output cells and
scanned out.

• In EXTEST mode, data is scanned onto the outputs of the core and applied to the
external system. System input data is captured in the input cells and then shifted
out.

Serial data in

Shift

register

latch

System data in

CAPTURE clock

SHIFT clock

Serial data out

Data to core

Debug in Depth

B-18 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

• In SYSTEM mode, the scan cells are idle. System data is applied to inputs and
core outputs are applied to the system.

Note
 The scan cells are not fully JTAG-compliant in that they do not have an update stage.
Therefore, while data is being moved around the scan chain, the contents of the scan cell
are not isolated from the output. From these operations, the output from the scan cell to
the core or to the external system can change on every scan clock. This does not affect
the ARM7TDMI core because its internal state does not change until it is clocked.
However, the rest of the system must be aware that every output can change
asynchronously as data is moved around the scan chain. External logic must ensure that
this does not harm the rest of the system.

Scan chain 0

Scan chain 0 is intended primarily for inter-device testing, EXTEST, and testing the
core, INTEST. Scan chain 0 is selected using the SCAN_N instruction as described at
SCAN_N (0010) on page B-10.

INTEST enables serial testing of the core. The TAP controller must be placed in
INTEST mode after scan chain 0 has been selected:

• During CAPTURE-DR, the current outputs from the core logic are captured in the
output cells.

• During SHIFT-DR, this captured data is shifted out while a new serial test pattern
is scanned in, therefore applying known stimuli to the inputs.

• During RUN-TEST-IDLE, the core is clocked. Usually, the TAP controller only
spends one cycle in RUN-TEST-IDLE. The whole operation can then be repeated.

For a description of the core clocks during test and debug, see The ARM7TDMI core
clocks on page B-22.

EXTEST enables inter-device testing, useful for verifying the connections between
devices on a circuit board. The TAP controller must be placed in EXTEST mode after
scan chain 0 has been selected:

• During CAPTURE-DR, the current inputs to the core logic from the system are
captured in the input cells.

• During SHIFT-DR, this captured data is shifted out while a new serial test pattern
is scanned in, thus applying known values on the outputs of the core.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-19

• During UPDATE-DR, the value shifted into the data bus D[31:0] scan cells
appears on the outputs. For all other outputs, the value appears as the data is
shifted round.

Note
 During RUN-TEST-IDLE, the core is not clocked.

The operation can then be repeated.

Scan chain 1

The primary use for scan chain 1 is for debugging, although it can be used for EXTEST
on the data bus. Scan chain 1 is selected using the SCAN_N TAP controller instruction.
Debugging is similar to INTEST and the procedure described above for scan chain 0
must be followed.

Scan chain 1 is 33 bits long, 32 bits for the data value, plus the scan cell on the
BREAKPT core input. This 33rd bit serves four purposes:

1. Under normal INTEST test conditions, it enables a known value to be scanned
into the BREAKPT input.

2. During EXTEST test conditions, the value applied to the BREAKPT input from
the system can be captured.

3. While debugging, the value placed in the 33rd bit determines if the ARM7TDMI
core synchronizes back to system speed before executing the instruction. See
System speed access on page B-31 for further details.

4. After the ARM7TDMI core has entered debug state, the first time this bit is
captured and scanned out, its value tells the debugger if the core entered debug
state due to a breakpoint, bit 33 clear, or a watchpoint, bit 33 set.

Scan chain 2

Purpose Enables the EmbeddedICE macrocell registers to be accessed. The order
of the scan chain, from TDI to TDO is:

1. Read/write, register address bits 4 to 0.

2. Data value bits 31 to 0.

 See EmbeddedICE block diagram on page B-41.

Length 38 bits.

Debug in Depth

B-20 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

To access this serial register, scan chain 2 must first be selected using the SCAN_N TAP
controller instruction. The TAP controller must then be placed in INTEST mode.

• During CAPTURE-DR, no action is taken.

• During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36
specify the address of the EmbeddedICE Logic register to be accessed.

• During UPDATE-DR, this register is either read or written depending on the value
of bit 37, with 0=read).

Scan chain 3

Purpose Enables the ARM7TDMI core to control an external boundary-scan
chain.

Length User defined.

Scan chain 3 control signals are provided so that an optional external boundary-scan
chain can be controlled through the ARM7TDMI core. Typically, this is used for a scan
chain around the pad ring of a packaged device.

The following control signals are provided which are generated only when scan chain
3 has been selected. These outputs are inactive at all other times:

DRIVEBS This is used to switch the scan cells from system mode to test mode. This
signal is asserted whenever either the INTEST, EXTEST, CLAMP, or
CLAMPZ instruction is selected.

PCLKBS This is an update clock, generated in the UPDATE-DR state. Typically
the value scanned into a chain is transferred to the cell output on the rising
edge of this signal.

ICAPCLKBS, ECAPCLKBS

These are capture clocks used to sample data into the scan cells during
INTEST and EXTEST respectively. These clocks are generated in the
CAPTURE-DR state.

SHCLKBS, SHCLK2BS

These are non-overlapping clocks generated in the SHIFT-DR state used
to clock the master and slave element of the scan cells respectively. When
the state machine is not in the SHIFT-DR state, both these clocks are
LOW.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-21

The following scan chain control signals can also be used for scan chain 3:

nHIGHZ This signal can be used to drive the outputs of the scan cells to the HIGH
impedance state. This signal is driven LOW when the HIGHZ instruction
is loaded into the instruction register and HIGH at all other times.

RSTCLKBS This signal is active when the TAP controller state machine is in the
RESET-TEST LOGIC state. It can be used to reset any additional scan
cells.

In addition to these control outputs, SDINBS output and SDOUTBS input are also
provided. When an external scan chain is in use, SDOUTBS must be connected to the
serial data output of the external scan chain and SDINBS must be connected to the serial
data input of the scan chain.

Debug in Depth

B-22 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.7 The ARM7TDMI core clocks

The ARM7TDMI core has two clocks:

• the memory clock, MCLK
• an internally TCK generated clock, DCLK.

During normal operation, the core is clocked by MCLK and internal logic holds DCLK
LOW. When the ARM7TDMI core is in the debug state, the core is clocked by DCLK
under control of the TAP state machine and MCLK can free-run. The selected clock is
output on the signal ECLK for use by the external system.

Note
 When the CPU core is being debugged and is running from DCLK, nWAIT has no
effect.

B.7.1 Clock switch during debug

When the ARM7TDMI core enters debug state, it must switch from MCLK to DCLK.
This is handled automatically by logic in the ARM7TDMI core. On entry to debug state,
the core asserts DBGACK in the HIGH phase of MCLK. The switch between the two
clocks occurs on the next falling edge of MCLK. This is shown in Figure B-5.

Figure B-5 Clock switching on entry to debug state

The ARM7TDMI core is forced to use DCLK as the primary clock until debugging is
complete. On exit from debug, the core must be enabled to synchronize back to MCLK.
This must be done in the following sequence:

1. The final instruction of the debug sequence must be shifted into the data bus scan
chain and clocked in by asserting DCLK.

Multiplexer

switching point

MCLK

DBGACK

DCLK

ECLK

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-23

2. At this point, RESTART must be clocked into the TAP instruction register.

3. The ARM7TDMI core now automatically resynchronizes back to MCLK and
starts fetching instructions from memory at MCLK speed.

Refer to Exit from debug state on page B-26.

B.7.2 Clock switch during test

When under serial test conditions, that is when test patterns are being applied to the
ARM7TM core through the JTAG interface, the ARM7TDMI core must be clocked
using DCLK. Entry into test is less automatic than debug and some care must be taken.
On the way into test, MCLK must be held LOW. The TAP controller can now be used
to serially test the ARM7TDMI core. If scan chain 0 and INTEST are selected, DCLK
is generated while the state machine is in the RUN-TEST-IDLE state. During EXTEST,
DCLK is not generated.

On exit from test, RESTART must be selected as the TAP controller instruction. When
this is done, MCLK can be enabled to resume.

Note
 After INTEST testing, care must be taken to ensure that the core is in a sensible state
before switching back. The safest way to do this is to either select RESTART and then
cause a system reset, or to insert MOV PC, #0 into the instruction pipeline before
switching back.

Debug in Depth

B-24 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.8 Determining the core and system state

When the ARM7TDMI core is in debug state, you examine the core and system state
by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine if the
processor entered debug from Thumb state or ARM state, by examining bit 4 of the
EmbeddedICE debug status register. When bit 4 is HIGH, the core has entered debug
from Thumb state, when bit 4 is LOW, the core has entered debug entered from ARM
state.

B.8.1 Determining the core state

When the processor has entered debug state from Thumb state, the simplest course of
action is for the debugger to force the core back into ARM state. The debugger can then
execute the same sequence of instructions to determine the processor state.

To force the processor into ARM state while in debug, execute the following sequence
of Thumb instructions on the core:

STR R0, [R0]; Save R0 before use
MOV R0, PC ; Copy PC into R0
STR R0, [R0]; Now save the PC in R0
BX PC ; Jump into ARM state
MOV R8, R8 ; NOP
MOV R8, R8 ; NOP

Note
 Because all Thumb instructions are only 16 bits long, the simplest course of action,
when shifting scan chain 1, is to repeat the instruction. For example, the encoding for
BX R0 is 0x4700, so when 0x47004700 shifts into scan chain 1, the debugger does not have
to keep track of the half of the bus on which the processor expects to read the data.

You can use the sequences of ARM instructions in Example B-1 and Example B-2 on
page B-25 to determine the state of the processor.

With the processor in the ARM state, the instruction to execute is shown in
Example B-1.

Example B-1 Instruction to determine core state

STM R0, {R0-R15}

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-25

The instruction in Example B-1 on page B-24 causes the contents of the registers to
appear on the data bus. You can then sample and shift out these values.

Note
 The use of r0 as the base register for the STM is only for illustration and you can use
any register.

After you have determined the values in the current bank of registers, you might want
to access the banked registers. To do this, you must change mode. Typically, a mode
change can occur only if the core is already in a privileged mode. However, while in
debug state, a mode change from one mode into any other mode can occur. The
debugger must restore the original mode before exiting debug state.

For example, if the debugger has been requested to return the state of the User mode
registers and FIQ mode registers and debug state was entered in Supervisor mode, the
instruction sequence can be as listed in Example B-2.

Example B-2 Determining state of User and FIQ mode registers

STM R0, {R0-R15}; Save current registers
MRS R0, CPSR
STR R0, R0; Save CPSR to determine current mode
BIC R0, 0x1F; Clear mode bits
ORR R0, 0x10; Select user mode
MSR CPSR, R0; Enter USER mode
STM R0, {R13,R14}; Save register not previously visible
ORR R0, 0x01; Select FIQ mode
MSR CPSR, R0; Enter FIQ mode
STM R0, {R8-R14}; Save banked FIQ registers

All these instructions execute at debug speed. Debug speed is much slower than system
speed. This is because between each core clock, 33 clocks occur in order to shift in an
instruction, or shift out data. Executing instructions this slowly is acceptable for
accessing the core state because the ARM7TDMI core is fully static. However, you
cannot use this method for determining the state of the rest of the system.

While in debug state, only the following instructions can be scanned into the instruction
pipeline for execution:

• all data processing operations

• all load, store, load multiple, and store multiple instructions

• MSR and MRS.

Debug in Depth

B-26 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.8.2 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur synchronously to it. The ARM7TDMI core must be forced to
synchronize back to system speed. This is controlled by the 33rd bit of scan chain 1.

Any instruction can be placed in scan chain 1 with bit 33, the BREAKPT bit, clear. This
instruction is then executed at debug speed. To execute an instruction at system speed,
the instruction prior to it must be scanned into scan chain 1 with bit 33 set.

After the system speed instruction has been scanned into the data bus and clocked into
the pipeline, the RESTART instruction must be loaded into the TAP controller. This
causes the ARM7TDMI core to automatically synchronize back to MCLK, the system
clock, execute the instruction at system speed, and then re-enter debug state and switch
itself back to the internally generated DCLK. When the instruction has completed,
DBGACK is HIGH and the core is switched back to DCLK. At this point, INTEST can
be selected in the TAP controller and debugging can resume.

To determine that a system speed instruction has completed, the debugger must look at
both DBGACK and nMREQ. To access memory, the ARM7TDMI core drives
nMREQ LOW, after it has synchronized back to system speed. This transition is used
by the memory controller to arbitrate if the ARM7TDMI core can have the bus in the
next cycle. If the bus is not available, the core can have its clock stalled indefinitely.
Therefore, the only way to tell that the memory access has completed, is to examine the
state of both nMREQ and DBGACK. When both are HIGH, the access has completed.
Usually, the debugger uses the EmbeddedICE macrocell to control debugging and by
reading the EmbeddedICE macrocell status register, the state of nMREQ and
DBGACK can be determined.

By using system speed load multiples and debug speed store multiples, the system
memory state can be fed back to the debug host.

There are restrictions on which instructions can have the 33rd bit set. The only valid
instructions on which to set this bit are loads, stores, load multiple, and store multiple.
See also Exit from debug state on page B-26. When the core returns to debug state after
a system speed access, bit 33 of scan chain 1 is set HIGH. This gives the debugger
information about why the core entered debug state the first time this scan chain is read.

B.8.3 Exit from debug state

Leaving debug state involves restoring the internal state of the ARM7TDMI core,
causing a branch to the next instruction to be executed and synchronizing back to
MCLK. After restoring internal state, a branch instruction must be loaded into the
pipeline. See Behavior of the program counter during debug on page B-29 for a
description of how to calculate the branch.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-27

Bit 33 of scan chain 1 is used to force the ARM7TDMI core to resynchronize back to
MCLK. The penultimate instruction of the debug sequence is scanned in with bit 33 set
HIGH. The final instruction of the debug sequence is the branch and this is scanned in
with bit 33 LOW. The core is then clocked to load the branch into the pipeline. Now, the
RESTART instruction is selected in the TAP controller. When the state machine enters
the RUN-TEST-IDLE state, the scan chain reverts back to system mode and clock
resynchronization to MCLK occurs in the core. The ARM7TDMI core then resumes
normal operation, fetching instructions from memory. The delay, until the state machine
is in the RUN-TEST-IDLE state, enables conditions to be set up in other devices in a
multiprocessor system without taking immediate effect. Then, when the
RUN-TEST-IDLE state is entered, all processors resume operation simultaneously.

The function of DBGACK is to tell the rest of the system when the core is in debug
state. This can be used to inhibit peripherals such as watchdog timers that have real time
characteristics. Also, DBGACK can be used to mask out memory accesses which are
caused by the debugging process. For example, when the core enters debug state after a
breakpoint, the instruction pipeline contains the breakpointed instruction plus two other
instructions that have been prefetched. On entry to debug state, the pipeline is flushed.
Therefore, on exit from debug state, the pipeline must be refilled to its previous state.
Because of the debugging process, more memory accesses occur than is normally
expected. Any system peripheral that is sensitive to the number of memory accesses can
be inhibited by using DBGACK.

For example, imagine a fictitious peripheral that simply counts the number of memory
cycles. This device must return the same answer after a program has been run both with
and without debugging. Figure B-6 on page B-28 shows the behavior of the core on exit
from the debug state.

Debug in Depth

B-28 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Figure B-6 Debug exit sequence

You can see from Figure 5-3 on page 5-7 that the final memory access occurs in the
cycle after DBGACK goes HIGH, this is the point at which the cycle counter must be
disabled. Figure B-6 shows that the first memory access that the cycle counter has not
seen before occurs in the cycle after DBGACK goes LOW and so this is when the
counter must be re-enabled.

Note

 When a system speed access from debug state occurs, the core temporarily drops out of
debug state and so DBGACK can go LOW. If there are peripherals that are sensitive to
the number of memory accesses, they must be led to believe that the core is still in debug
state. By programming the EmbeddedICE macrocell control register, the value on
DBGACK can be forced to be HIGH.

CLK

nMREQ
SEQ

A[31:0]

D[31:0]

DBGACK

N S S

Ab Ab+4 Ab+8

Internal cycles

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-29

B.9 Behavior of the program counter during debug

The debugger must keep track of what happens to the PC, so that the ARM7TDMI core
can be forced to branch back to the place at which program flow was interrupted by
debug. Program flow can be interrupted by any of the following:

• Breakpoints on page B-29

• Watchpoints on page B-29

• Watchpoint with another exception on page B-30

• Debug request on page B-30

• System speed access on page B-31.

B.9.1 Breakpoints

Entry into debug state from a breakpoint advances the PC by four addresses or 16 bytes.
Each instruction executed in debug state advances the PC by one address or four bytes.

The usual way to exit from debug state after a breakpoint is to remove the breakpoint
and branch back to the previously-breakpointed address.

For example, if the ARM7TDMI core entered debug state from a breakpoint set on a
given address and two debug speed instructions were executed, a branch of minus seven
addresses must occur:

• four for debug entry

• two for the instructions

• one for the final branch.

The following sequence shows the data scanned into scan chain 1, most significant bit
first. The value of the first digit goes to the BREAKPT bit and then the instruction data
into the remainder of scan chain 1:

0 E0802000; ADD R2, R0, R0
1 E1826001; ORR R6, R2, R1
0 EAFFFFF9; B-7, two’s complement, seven instructions backwards

After the ARM7TDMI core enters debug state, it must execute a minimum of two
instructions before the branch, although these can both be NOPs (MOV R0, R0). For small
branches, you can replace the final branch with a subtract, with the PC as the
destination, SUB PC, PC, #28 in the above example.

B.9.2 Watchpoints

The return to program execution after entry to debug state from a watchpoint is done in
the same way as the procedure described in Breakpoints on page B-29.

Debug in Depth

B-30 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Debug entry adds four addresses to the PC and every instruction adds one address. The
difference from breakpoint is that the instruction that caused the watchpoint has
executed and the program must return to the next instruction.

B.9.3 Watchpoint with another exception

If a watchpointed access simultaneously causes a Data Abort, the ARM7TDMI core
enters debug state in abort mode. Entry into debug is held off until the core changes into
abort mode and has fetched the instruction from the abort vector.

A similar sequence follows when an interrupt, or any other exception, occurs during a
watchpointed memory access. The ARM7TDMI core enters debug state in the mode of
the exception. The debugger must check to see if an exception has occurred by
examining the current and previous mode, in the CPSR and SPSR, and the value of the
PC. When an exception has taken place, you must give the user the choice of servicing
the exception before debugging.

Entry to debug state when an exception has occurred causes the PC to be incremented
by three instructions rather than four and this must be considered in return branch
calculation when exiting debug state. For example, suppose that an abort occurs on a
watchpointed access and ten instructions have been executed to determine this
eventuality. You can use the following sequence to return to program execution:

0 E1A00000; MOV R0, R0
1 E1A00000; MOV R0, R0
0 EAFFFFF0; B -16

This code forces a branch back to the abort vector, causing the instruction at that
location to be refetched and executed.

Note
 After the abort service routine, the instruction that caused the abort and watchpoint is
refetched and executed. This triggers the watchpoint again and the ARM7TDMI core
re-enters debug state.

B.9.4 Debug request

Entry into debug state through a debug request is similar to a breakpoint. However,
unlike a breakpoint, the last instruction has completed execution and so must not be
refetched on exit from debug state. You can assume that entry to debug state adds three
addresses to the PC and every instruction executed in debug state adds one address.

For example, suppose that you have invoked a debug request and decided to return to
program execution straight away. You can use the following sequence:

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-31

0 E1A00000; MOV R0, R0
1 E1A00000; MOV R0, R0
0 EAFFFFFA; B -6

This code restores the PC and restarts the program from the next instruction.

B.9.5 System speed access

When a system speed access is performed during debug state, the value of the PC
increases by three addresses. System speed instructions access the memory system and
so it is possible for aborts to take place. If an abort occurs during a system speed
memory access, the ARM7TDMI core enters abort mode before returning to debug
state.

This is similar to an aborted watchpoint, but the problem is much harder to fix because
the abort was not caused by an instruction in the main program and so the PC does not
point to the instruction that caused the abort. An abort handler usually looks at the PC
to determine the instruction that caused the abort and also the abort address. In this case,
the value of the PC is invalid, but because the debugger can determine which location
was being accessed, the debugger can be written to help the abort handler fix the
memory system.

B.9.6 Summary of return address calculations

The calculation of the branch return address is as follows:

• for normal breakpoint and watchpoint, the branch is:

- (4+N+3S)

• for entry through debug request, DBGRQ, or watchpoint with exception, the
branch is:

- (3+N+3S)

where N is the number of debug speed instructions executed, including the final branch,
and S is the number of system speed instructions executed.

Debug in Depth

B-32 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.10 Priorities and exceptions

When a breakpoint, or a debug request occurs, the normal flow of the program is
interrupted. Debug can be treated as another type of exception. The interaction of the
debugger with other exceptions is described in Behavior of the program counter during
debug on page B-29. This section covers the following priorities:

• Breakpoint with Prefetch Abort on page B-32

• Interrupts on page B-32

• Data Aborts on page B-32.

B.10.1 Breakpoint with Prefetch Abort

When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken and
the breakpoint is disregarded. Usually, Prefetch Aborts occur when, for example, an
access is made to a virtual address that does not physically exist and the returned data
is therefore invalid. In such a case, the normal action of the operating system is to swap
in the page of memory and to return to the previously-invalid address. This time, when
the instruction is fetched and providing the breakpoint is activated, it can be
data-dependent, the ARM7TDMI core enters debug state.

The Prefetch Abort, therefore, takes higher priority than the breakpoint.

B.10.2 Interrupts

When the ARM7TDMI core enters debug state, interrupts are automatically disabled.

If an interrupt is pending during the instruction prior to entering debug state, the
ARM7TDMI core enters debug state in the mode of the interrupt. On entry to debug
state, the debugger cannot assume that the ARM7TDMI core is in the mode expected
by the user program. The ARM7TDMI core must check the PC, the CPSR, and the
SPSR to accurately determine the reason for the exception.

Debug, therefore, takes higher priority than the interrupt, but the ARM7TDMI core
does remember that an interrupt has occurred.

B.10.3 Data Aborts

When a Data Abort occurs on a watchpointed access, the ARM7TDMI core enters
debug state in abort mode. The watchpoint, therefore, has higher priority than the abort,
but the ARM7TDMI core remembers that the abort happened.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-33

B.11 Scan chain cell data

This section provides data for:

• Scan chain 0 cells on page B-33

• Scan chain 1 cells on page B-37.

B.11.1 Scan chain 0 cells

The ARM7TDMI core provides data for scan chain 0 cells as listed in Table B-3.

Table B-3 Scan chain 0 cells

Number Signal Type

1 D[0] Input/output

2 D[1] Input/output

3 D[2] Input/output

4 D[3] Input/output

5 D[4] Input/output

6 D[5] Input/output

7 D[6] Input/output

8 D[7] Input/output

9 D[8] Input/output

10 D[9] Input/output

11 D[10] Input/output

12 D[11] Input/output

13 D[12] Input/output

14 D[13] Input/output

15 D[14] Input/output

16 D[15] Input/output

17 D[16] Input/output

18 D[17] Input/output

19 D[18] Input/output

Debug in Depth

B-34 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

20 D[19] Input/output

21 D[20] Input/output

22 D[21] Input/output

23 D[22] Input/output

24 D[23] Input/output

25 D[24] Input/output

26 D[25] Input/output

27 D[26] Input/output

28 D[27] Input/output

29 D[28] Input/output

30 D[29] Input/output

31 D[30] Input/output

32 D[31] Input/output

33 BREAKPT Input

34 NENIN Input

35 NENOUT Output

36 LOCK Output

37 BIGEND Input

38 DBE Input

39 MAS[0] Output

40 MAS[1] Output

41 BL[0] Input

42 BL[1] Input

43 BL[2] Input

44 BL[3] Input

Table B-3 Scan chain 0 cells (continued)

Number Signal Type

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-35

45 DCTLa Output

46 nRW Output

47 DBGACK Output

48 CGENDBGACK Output

49 nFIQ Input

50 nIRQ Input

51 nRESET Input

52 ISYNC Input

53 DBGRQ Input

54 ABORT Input

55 CPA Input

56 nOPC Output

57 IFEN Input

58 nCPI Output

59 nMREQ Output

60 SEQ Output

61 nTRANS Output

62 CPB Input

63 nM[4] Output

64 nM[3] Output

65 nM[2] Output

66 nM[1] Output

67 nM[0] Output

68 nEXEC Output

69 ALE Input

Table B-3 Scan chain 0 cells (continued)

Number Signal Type

Debug in Depth

B-36 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

70 ABE Input

71 APE Input

72 TBIT Output

73 nWAIT Input

74 A[31] Output

75 A[30] Output

76 A[29] Output

77 A[28] Output

78 A[27] Output

79 A[26] Output

80 A[25] Output

81 A[24] Output

82 A[23] Output

83 A[22] Output

84 A[21] Output

85 A[20] Output

86 A[19] Output

87 A[18] Output

88 A[17] Output

89 A[16] Output

90 A[15] Output

91 A[14] Output

92 A[13] Output

93 A[12] Output

94 A[11] Output

Table B-3 Scan chain 0 cells (continued)

Number Signal Type

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-37

B.11.2 Scan chain 1 cells

The ARM7TDMI core provides data for scan chain 1 cells as listed in Table B-4.

95 A[10] Output

96 A[9] Output

97 A[8] Output

98 A[7] Output

99 A[6] Output

100 A[5] Output

101 A[4] Output

102 A[3] Output

103 A[2] Output

104 A[1] Output

105 A[0] Output

a. DCTL is an output from the processor
used to control the unidirectional data out
latch, DOUT[31:0]. The signal is not
visible from the periphery of the
ARM7TDMI core. DCTL is not
described further in this document.

Table B-3 Scan chain 0 cells (continued)

Number Signal Type

Table B-4 Scan chain 1 cells

Number Signal Type

1 D[0] Input/output

2 D[1] Input/output

3 D[2] Input/output

4 D[3] Input/output

5 D[4] Input/output

Debug in Depth

B-38 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

6 D[5] Input/output

7 D[6] Input/output

8 D[7] Input/output

9 D[8] Input/output

10 D[9] Input/output

11 D[10] Input/output

12 D[11] Input/output

13 D[12] Input/output

14 D[13] Input/output

15 D[14] Input/output

16 D[15] Input/output

17 D[16] Input/output

18 D[17] Input/output

19 D[18] Input/output

20 D[19] Input/output

21 D[20] Input/output

22 D[21] Input/output

23 D[22] Input/output

24 D[23] Input/output

25 D[24] Input/output

26 D[25] Input/output

27 D[26] Input/output

28 D[27] Input/output

29 D[28] Input/output

30 D[29] Input/output

Table B-4 Scan chain 1 cells (continued)

Number Signal Type

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-39

31 D[30] Input/output

32 D[31] Input/output

33 BREAKPT Input

Table B-4 Scan chain 1 cells (continued)

Number Signal Type

Debug in Depth

B-40 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.12 The watchpoint registers

The two watchpoint units, known as Watchpoint 0 and Watchpoint 1, each contain three
pairs of registers:

• address value and address mask

• data value and data mask

• control value and control mask.

Each register is independently programmable and has a unique address. The function
and mapping of the resisters is shown in Table B-5.

Table B-5 Function and mapping of EmbeddedICE registers

Address Width Function

00000 3 Debug control

00001 5 Debug status

00100 6 Debug comms control register

00101 32 Debug comms data register

01000 32 Watchpoint 0 address value

01001 32 Watchpoint 0 address mask

01010 32 Watchpoint 0 data value

01011 32 Watchpoint 0 data mask

01100 9 Watchpoint 0 control value

01101 8 Watchpoint 0 control mask

10000 32 Watchpoint 1 address value

10001 32 Watchpoint 1 address mask

10010 32 Watchpoint 1 data value

10011 32 Watchpoint 1 data mask

10100 9 Watchpoint 1 control value

10101 8 Watchpoint 1 control mask

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-41

B.12.1 Programming and reading watchpoint registers

A watchpoint register is programmed by shifting data into the EmbeddedICE scan
chain, scan chain 2. The scan chain is a 38-bit shift register comprising:

• a 32-bit data field

• a 5-bit address field

• a read/write bit.

This setup is shown in Figure B-7 on page B-41.

Figure B-7 EmbeddedICE block diagram

Read/write

0

4

31

0

Data

Scan chain

register

Address Address

decoder

TDI TDO

Value Mask Comparator

Control

D[31:0]

A[31:0]

+ Breakpoint

condition

Watchpoint registers and comparators

Update

Debug in Depth

B-42 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

The data to be written is shifted into the 32-bit data field. The address of the register is
shifted into the 5-bit address field. A 1 is shifted into the read/write bit.

A register is read by shifting its address into the address field and by shifting a 0 into
the read/write bit. The 32-bit data field is ignored.

The register addresses are shown in Table B-5 on page B-40.

Note
 A read or write actually takes place when the TAP controller enters the UPDATE-DR
state.

B.12.2 Using the mask registers

For each value register in a register pair, there is a mask register of the same format.
Setting a bit to 1 in the mask register has the effect of making the corresponding bit in
the value register disregarded in the comparison.

For example, when a watchpoint is required on a particular memory location, but the
data value is irrelevant, the data mask register can be programmed to 0xFFFFFFFF, all bits
set to 1, to ignore the entire data bus field.

Note
 The mask is an XNOR mask rather than a conventional AND mask. When a mask bit is
set to 1, the comparator for that bit position always matches, irrespective of the value
register or the input value.

Setting the mask bit to 0 means that the comparator matches only if the input value
matches the value programmed into the value register.

B.12.3 The control registers

The control value and control mask registers are mapped identically in the lower eight
bits, as shown in Figure B-8 on page B-42.

Figure B-8 Watchpoint control value and mask format

Bit 8 of the control value register is the ENABLE bit and cannot be masked.

ENABLE CHAINRANGE EXTERN nOPCnTRANS MAS[1] nRWMAS[0]

8 67 5 34 2 01

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-43

The bits have the following functions:

nRW Compares against the write signal from the core to detect the
direction of bus activity. nRW is 0 for a read cycle and 1 for a
write cycle.

MAS[1:0] Compares against the MAS[1:0] signal from the core to detect the
size of bus activity.

The encoding is listed in Table B-6 on page B-43.

nOPC Detects if the current cycle is an instruction fetch, with nOPC=0,
or a data access, with nOPC=1.

nTRANS Compares against the not translate signal from the core to
distinguish between User Mode, with nTRANS=0, and non-user
mode, with nTRANS=1, accesses.

EXTERN[1:0] Is an external input to EmbeddedICE that enables the watchpoint
to be dependent upon some external condition. The EXTERN
input for Watchpoint 0 is labeled EXTERN[0]. The EXTERN
input for Watchpoint 1 is labeled EXTERN[1].

CHAIN Can be connected to the chain output of another watchpoint to
implement, for example, debugger requests of the form:
breakpoint on address YYY only when in process XXX. In the
ARM7TDMI core EmbeddedICE Logic, the CHAINOUT output
of Watchpoint 1 is connected to the CHAIN input of Watchpoint
0. The CHAINOUT output is derived from a register. The
address/control field comparator drives the write enable for the
register. The input to the register is the value of the data field
comparator. The CHAINOUT register is cleared when the control
value register is written, or when nTRST is LOW.

RANGE Can be connected to another watchpoint unit.

Table B-6 MAS[1:0] signal encoding

bit 1 bit 0 Data size

0 0 Byte

0 1 Halfword

1 0 Word

1 1 Reserved

Debug in Depth

B-44 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

In the ARM7TDMI core EmbeddedICE Logic, the RANGEOUT
output of Watchpoint 1 is connected to the RANGE input of
Watchpoint 0. Connection enables the two watchpoints to be
coupled for detecting conditions that occur simultaneously, such
as for range checking.

ENABLE When a watchpoint match occurs, the internal BREAKPT signal
is asserted only when the ENABLE bit is set. This bit exists only
in the value register. It cannot be masked.

For each of the bits 7:0 in the control value register, there is a corresponding bit in the
control mask register. These bits remove the dependency on particular signals.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-45

B.13 Programming breakpoints

 Breakpoints are classified as hardware breakpoints or software breakpoints:

Hardware breakpoints on page B-45

Typically monitor the address value and can be set in any code, even in
code that is in ROM or code that is self-modifying.

Software breakpoints on page B-46

Monitor a particular bit pattern being fetched from any address. One
EmbeddedICE watchpoint can therefore be used to support any number
of software breakpoints. Software breakpoints can normally be set only
in RAM because a special bit pattern chosen to cause a software
breakpoint has to replace the instruction.

B.13.1 Hardware breakpoints

To make a watchpoint unit cause hardware breakpoints on instruction fetches:

1. Program its address value register with the address of the instruction to be
breakpointed.

2. For an ARM-state breakpoint, program bits [1:0] of the address mask register to
11. For a breakpoint in Thumb state, program bits [1:0] of the address mask
register to 01.

3. Program the data value register only when you require a data-dependent
breakpoint, that is only when you need to match the actual instruction code
fetched as well as the address. If the data value is not required, program the data
mask register to 0xFFFFFFFF, all bits to 1. Otherwise program it to 0x00000000.

4. Program the control value register with nOPC = 0.

5. Program the control mask register with nOPC = 0.

6. When you need to make the distinction between User and non-User mode
instruction fetches, program the nTRANS value and mask bits appropriately.

7. If required, program the EXTERN, RANGE, and CHAIN bits in the same way.

8. Program the mask bits for all unused control values to 1.

Debug in Depth

B-46 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.13.2 Software breakpoints

To make a watchpoint unit cause software breakpoints on instruction fetches of a
particular bit pattern:

1. Program its address mask register to 0xFFFFFFFF, all bits set to 1, so that the
address is disregarded.

2. Program the data value register with the particular bit pattern that has been chosen
to represent a software breakpoint.

If you are programming a Thumb software breakpoint, repeat the 16-bit pattern
in both halves of the data value register. For example, if the bit pattern is 0xdeee,
program 0xDEEEDEEE. When a 16-bit instruction is fetched, EmbeddedICE
compares only the valid half of the data bus against the contents of the data value
register. In this way, you can use a single watchpoint register to catch software
breakpoints on both the upper and lower halves of the data bus.

3. Program the data mask register to 0x00000000.

4. Program the control value register with nOPC = 0.

5. Program the control mask register with nOPC = 0 and all other bits to 1.

6. If you wish to make the distinction between User and non-User mode instruction
fetches, program the nTRANS bit in the control value and control mask registers
accordingly.

7. If required, program the EXTERN, RANGE, and CHAIN bits in the same way.

Note

 You do not have to program the address value register.

Setting the breakpoint

To set the software breakpoint:

1. Read the instruction at the desired address and store it away.

2. Write the special bit pattern representing a software breakpoint at the address.

Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-47

B.14 Programming watchpoints

To make a watchpoint unit cause watchpoints on data accesses:

1. Program its address value register with the address of the data access to be
watchpointed.

2. Program the address mask register to 0x00000000.

3. Program the data value register only if you require a data-dependent watchpoint,
that is, only if you need to match the actual data value read or written as well as
the address. If the data value is irrelevant, program the data mask register to
0xFFFFFFFF, all bits set to 1. Otherwise program the data mask register to
0x00000000.

4. Program the control value register with nOPC = 1, nRW = 0 for a read, or nRW
= 1 for a write, MAS[1:0] with the value corresponding to the appropriate data
size.

5. Program the control mask register with nOPC = 0, nRW = 0, MAS[1:0] = 0 and
all other bits to 1. You can set nRW, or MAS[1:0] to 1 when both reads and
writes, or data size accesses are to be watchpointed respectively.

6. If you wish to make the distinction between User and non-User mode data
accesses, program the nTRANS bit in the control value and control mask
registers accordingly.

7. If required, program the EXTERN, RANGE, and CHAIN bits in the same way.

Note
 The above are examples of how to program the watchpoint register to generate
breakpoints and watchpoints. Many other ways of programming the registers are
possible. For instance, you can provide simple range breakpoints by setting one or more
of the address mask bits.

Debug in Depth

B-48 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.15 The debug control register

The debug control register is 3 bits wide. Writing control bits occurs during a register
write access with the read/write bit HIGH. Reading control bits occurs during a register
read access with the read/write bit LOW.

Figure B-9 on page B-48 shows the function of each bit in this register.

Figure B-9 Debug control register format

If Bit 2, INTDIS, is asserted, the interrupt enable signal, IFEN of the core is forced
LOW. Therefore. all interrupts, IRQ and FIQ, are disabled during debugging,
DBGACK is HIGH, or if the INTDIS bit is asserted. The IFEN signal is driven as listed
in Table B-7 on page B-48.

Bits 1 and 0 enable the values on DBGRQ and DBGACK to be forced.

Figure B-11 on page B-51 shows that the value stored in bit 1 of the control register is
synchronized and then ORed with the external DBGRQ before being applied to the
processor. The output of this OR gate is the signal DBGRQI which is brought out
externally from the macrocell.

The synchronization between control bit 1 and DBGRQI is to assist in multiprocessor
environments. The synchronization latch only opens when the TAP controller state
machine is in the RUN-TEST-IDLE state. This enables an enter debug condition to be
set up in all the processors in the system while they are still running. When the condition
is set up in all the processors, it can then be applied to them simultaneously by entering
the RUN-TEST-IDLE state.

INTDIS DBGRQ DBGACK

2 1 0

Table B-7 Interrupt signal control

DBGACK INTDIS IFEN Interrupts

LOW LOW HIGH Permitted

HIGH x LOW Inhibited

x HIGH LOW Inhibited

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-49

In the case of DBGACK, the value of DBGACK from the core is ORed with the value
held in bit 0 to generate the external value of DBGACK seen at the periphery of the
ARM7TDMI core. This enables the debug system to signal to the rest of the system that
the core is still being debugged even when system-speed accesses are being performed,
in which case the internal DBGACK signal from the core is LOW.

Debug in Depth

B-50 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.16 The debug status register

The debug status register is 5 bits wide. If it is accessed for a write, with the read/write
bit set, the status bits are written. If it is accessed for a read, with the read/write bit clear,
the status bits are read. The format of the debug status register is shown in Figure B-10.

Figure B-10 Debug status register format

The function of each bit in this register is as follows:

Bit 4 Enables TBIT to be read. This enables the debugger to determine
the processor state and therefore which instructions to execute.

Bit 3 Enables the debugger to determine if a memory access from the
debug state has completed.

Bit 2 Enables the state of the core interrupt enable signal, IFEN, to be
read. Enables the state of the NMREQ signal from the core,
synchronized to TCK, to be read. This enables the debugger to
determine that a memory access from the debug state has
completed.

Bits 1:0 Enable the values on the synchronized versions of DBGRQ and
DBGACK to be read.

The structure of the debug control and status registers is shown in Figure B-11 on
page B-51.

4

TBIT

3

cgenL

2

IFEN

1

DBGRQ

0

DBGACK

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-51

Figure B-11 Debug control and status register structure

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Bit 0

Bit 2

Bit 1

Debug

control

register

Debug

status

register

TBIT
(from core)

cgenL
(from core)

DBGACK
(from core)

IFEN

(to core)

DBGRQ
(from ARM7TDMI input)

DBGACKI
(from core)

DBGACK
(to ARM7TDMI

output)

DBGRQI
(to core and

ARM7TDMI output)

Synch

Synch

Synch

Synch

Synch

Debug in Depth

B-52 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.17 Coupling breakpoints and watchpoints

You can couple watchpoint units 1 and 0 together using the CHAIN and RANGE
inputs. Using CHAIN enables Watchpoint 0 to be triggered only if Watchpoint 1 has
previously matched. The use of RANGE enables simple range checking to be
performed by combining the outputs of both watchpoints.

B.17.1 Breakpoint and watchpoint coupling example

Let:

Av[31:0] be the value in the address value register

Am[31:0] be the value in the address mask register

A[31:0] be the address bus from the ARM7TDMI core

Dv[31:0] be the value in the data value register

Dm[31:0] be the value in the data mask register

D[31:0] be the data bus from the ARM7TDMI core

Cv[8:0] be the value in the control value register

Cm[7:0] be the value in the control mask register

C[9:0] be the combined control bus from the ARM7TDMI core, other
watchpoint registers and the EXTERN signal.

CHAINOUT signal

The CHAINOUT signal is derived as follows:

WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]} == 0xFFFFFFFFF)
CHAINOUT = ((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF)

The CHAINOUT output of watchpoint register 1 provides the CHAIN input to
Watchpoint 0. This CHAIN input enables for quite complicated configurations of
breakpoints and watchpoints.

Note

 There is no CHAIN input to Watchpoint 1 and no CHAIN output from Watchpoint 0.

Take, for example, the request by a debugger to breakpoint on the instruction at location
YYY when running process XXX in a multi process system. If the current process ID
is stored in memory, you can implement the above function with a watchpoint and
breakpoint chained together. The watchpoint address points to a known memory
location containing the current process ID, the watchpoint data points to the required
process ID and the ENABLE bit is set to off.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-53

The address comparator output of the watchpoint is used to drive the write enable for
the CHAINOUT latch. The input to the latch is the output of the data comparator from
the same watchpoint. The output of the latch drives the CHAIN input of the breakpoint
comparator. The address YYY is stored in the breakpoint register and when the CHAIN
input is asserted, the breakpoint address matches and the breakpoint triggers correctly.

B.17.2 RANGEOUT signal

The RANGEOUT signal is derived as follows:

RANGEOUT = ((({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]}) == 0xFFFFFFFFF) AND
((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR
Dm[31:0],Cm[7:5]}) == 0x7FFFFFFFF)

The RANGEOUT output of watchpoint register 1 provides the RANGE input to
watchpoint register 0. This RANGE input enables you to couple two breakpoints
together to form range breakpoints.

Selectable ranges are restricted to being powers of 2. For example, if a breakpoint is to
occur when the address is in the first 256 bytes of memory, but not in the first 32 bytes,
program the watchpoint as follows:

For Watchpoint 1:

1. Program Watchpoint 1 with an address value of 0x00000000 and an address mask
of 0x0000001F.

2. Clear the ENABLE bit.

3. Program all other Watchpoint 1 registers as normal for a breakpoint. An address
within the first 32 bytes causes the RANGE output to go HIGH but does not
trigger the breakpoint.

For Watchpoint 0:

1. Program Watchpoint 0 with an address value of 0x00000000 and an address mask
of 0x000000FF.

2. Set the ENABLE bit.

3. Program the RANGE bit to match a 0.

4. Program all other Watchpoint 0 as normal for a breakpoint.

If Watchpoint 0 matches but Watchpoint 1 does not, that is the RANGE input to
Watchpoint 0 is 0, the breakpoint is triggered.

Debug in Depth

B-54 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

B.18 EmbeddedICE timing

EmbeddedICE samples the EXTERN[1] and EXTERN[0] inputs on the falling edge
of ECLK. Sufficient set-up and hold time must therefore be enabled for these signals.

Refer to Chapter 7 AC and DC Parameters for details of the required setup and hold
times for these signals.

Debug in Depth

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. B-55

B.19 Programming Restriction

The EmbeddedICE Logic watchpoint units must only be programmed when the clock
to the core is stopped. This can be achieved by putting the core into the debug state.

The reason for this restriction is that if the core continues to run at ECLK rates when
EmbeddedICE Logic is being programmed at TCK rates, it is possible for the
BREAKPT signal to be asserted asynchronously to the core.

This restriction does not apply if MCLK and TCK are driven from the same clock, or
if it is known that the breakpoint or watchpoint condition can only occur some time after
EmbeddedICE Logic has been programmed.

Note

 This restriction does not apply in any event to the debug control or status registers.

Debug in Depth

B-56 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. Glossary-1

Glossary

This glossary describes some of the terms used in this manual. Where terms can have
several meanings, the meaning presented here is intended.

Abort Is caused by an illegal memory access. Abort can be caused by the external memory
system, an external MMU or the EmbeddedICE Logic.

Addressing modes A procedure shared by many different instructions, for generating values used by the
instructions. For four of the ARM addressing modes, the values generated are memory
addresses (which is the traditional role of an addressing mode). A fifth addressing mode
generates values to be used as operands by data-processing instructions.

Arithmetic Logic Unit
The part of a computer that performs all arithmetic computations, such as addition and
multiplication, and all comparison operations.

ALU See Arithmetic Logic Unit.

ARM state A processor that is executing ARM (32-bit) instructions is operating in ARM state.

Big-endian Memory organization where the least significant byte of a word is at a higher address
than the most significant byte.

Banked registers Register numbers whose physical register is defined by the current processor mode. The
banked registers are registers R8 to R14.

Glossary

Glossary-2 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Breakpoint A location in the image. If execution reaches this location, the debugger halts execution
of the image.

See also Watchpoint.

CISC See Complex Instruction Set Computer.

Complex Instruction Set Computer
A microprocessor that recognizes a large number od instructions.

See also Reduced Instruction Set Computer.

CPSR See Program Status Register.

Control bits The bottom eight bits of a program status register. The control bits change when an
exception arises and can be altered by software only when the processor is in a
privileged mode.

Current Program Status Register

See Program Status Register

Debug state A condition that allows the monitoring and control of the execution of a processor.
Usually used to find errors in the application program flow.

Debugger A debugging system which includes a program, used to detect, locate, and correct
software faults, together with custom hardware that supports software debugging.

EmbeddedICE The EmbeddedICE Logic is controlled via the JTAG test access port, using a protocol
converter such as MultiICE: an extra piece of hardware that allows software tools to
debug code running on a target processor. See also ICE and JTAG

Exception modes Privileged modes that are entered when specific exceptions occur.

Exception Handles an event. For example, an exception could handle an external interrupt or an
undefined instruction.

External abort An abort that is generated by the external memory system.

FIQ Fast interrupt.

ICE See In-circuit emulator.

Idempotent A mathematical quantity that when applied to itself under a given binary operation
equals itself.

In-circuit emulator An In-Circuit Emulator (ICE), is a device that aids the debugging of hardware and
software. Debuggable ARM processors such as the ARM7TDMI have extra hardware
called EmbeddedICE to assist this process.

See also EmbeddedICE.

Glossary

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. Glossary-3

IRQ Interrupt request.

Joint Test Action Group
The name of the organization that developed standard IEEE 1149.1. This standard
defines a boundary-scan architecture used for in-circuit testing of integrated circuit
devices.

JTAG See Joint Test Action Group.

Link register This register holds the address of the next instruction after a branch with link
instruction.

Little-endian memory
Memory organization where the most significant byte of a word is at a higher address
than the least significant byte.

LR See Link register

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system
will comprise several macrocells (such as an ARM7TDMI, an ETM7, and a memory
block) plus application-specific logic.

Memory Management Unit
Allows control of a memory system. Most of the control is provided through translation
tables held in memory. The ARM7TDMI processor does not include a memory
management unit, but you can add one if required.

MMU See Memory Management Unit

PC See Program Counter.

Privileged mode Any processor mode other than User mode. Memory systems typically check memory
accesses from privileged modes against supervisor access permissions rather than the
more restrictive user access permissions. The use of some instructions is also restricted
to privileged modes.

Processor Status Register

See Program Status Register

Program Counter Register 15, the Program Counter, is used in most instructions as a pointer to the
instruction that is two instructions after the current instruction.

Program Status Register
Contains some information about the current program and some information about the
current processor. Also referred to as Processor Status Register.

Glossary

Glossary-4 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Also referred to as Current PSR (CPSR), to emphasize the distinction between it and
the Saved PSR (SPSR). The SPSR holds the value the PSR had when the current
function was called, and which will be restored when control is returned.

PSR See Program Status Register.

Reduced Instruction Set Computer
A type of microprocessor that recognizes a lower number of instructions in comparison
with a Complex Instruction Set Computer. The advantages of RISC architectures are:

• they can execute their instructions very fast because the instructions are so simple

• they require fewer transistors, this makes them cheaper to produce and more
power efficient.

See also Complex Instruction Set Computer.

RISC See Reduced Instruction Set Computer

Saved Program Status Register
The Saved Program Status Register which is associated with the current processor mode
and is undefined if there is no such Saved Program Status Register, as in User mode or
System mode.

See also Program Status Register.

SBO See Should Be One fields.

SBZ See Should Be Zero fields.

Should Be One fields
Should be written as one (or all ones for bit fields) by software. Values other than one
produces unpredictable results.

See also Should Be Zero fields.

Should Be Zero fields
Should be written as zero (or all 0s for bit fields) by software. Values other than zero
produce unpredictable results.

See also Should Be One fields.

Software Interrupt Instruction
This instruction enters Supervisor mode to request a particular operating system
function.

SPSR See Saved Program Status Register.

Stack pointer A register or variable pointing to the top of a stack. If the stack is full stack the SP points
to the most recently pushed item, else if the stack is empty, the SP points to the first
empty location, where the next item will be pushed.

Glossary

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. Glossary-5

Status registers See Program Status Register.

SP See Stack pointer

SWI See Software Interrupt Instruction.

TAP See Test access port.

Test Access Port The collection of four mandatory and one optional terminals that form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
are TDI, TDO, TMS, and TCK. The optional terminal is nTRST.

Thumb instruction A halfword which specifies an operation for an ARM processor in Thumb state to
perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) instructions is operating in Thumb state.

UND See Undefined.

Undefined Indicates an instruction that generates an undefined instruction trap.

UNP See Unpredictable

Unpredictable Means the result of an instruction cannot be relied upon. Unpredictable instructions
must not halt or hang the processor, or any parts of the system.

Unpredictable fields Do not contain valid data, and a value can vary from moment to moment, instruction to
instruction, and implementation to implementation.

Watchpoint A location in the image that is monitored. If the value stored there changes, the debugger
halts execution of the image.

See also Breakpoint.

Glossary

Glossary-6 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. Index-1

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.

A
Abort 3-24
Abort Mode 2-7
AC Timing diagrams

ABE address control 7-6
ALE address control 7-26
APE address control 7-27
bidirectional data read cycle 7-8
bidirectional data write cycle 7-7
breakpoint timing 7-20
configuration pin timing 7-13
coprocessor timing 7-14
data bus control 7-9
DCC output 7-19
debug timing 7-17
exception timing 7-15
general timings 7-4, 7-5
MCLK 7-22
output 3-state time 7-10
scan general timing 7-23
synchronous interrupt 7-16
TCK and ECLK realtionship 7-21

unidirectional data read cycle 7-12
unidirectional data write cycle 7-11
units of nanoseconds 7-28

Access times
stretching 3-29

Accesses
byte 3-26
halfword 3-26
reads 3-26
writes 3-27

Accessing high registers in Thumb state
2-12

Address bits
significant 3-12

Address bus
configuring 3-14

Address timing 3-14
Addressing signals 3-11
Architecture

v4T 2-2
ARM

instruction summary 1-12
ARM-state

addressing modes 1-15
condition fields 1-19
fields 1-18
operand 2 1-18
register orgnaization 2-9
register set 2-8

B
Bidirectional bus timing 3-18
Bidirectional data bus 3-19
Big-endian 2-4, 2-5
Block diagram 1-7
Breakpoints

hardware B-45
programming B-45
software B-46

clearing B-46
setting B-46

timing 7-20
Burst types 3-7
Bus cycle types 3-4

Index

Index-2 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

coprocessor register transfer 3-9
internal 3-7
merged I-S 3-8
nonsequential 3-5
sequential 3-6

Bus cycles
use of nWAIT 3-29

Bus interface
cycle types 3-4
signals 3-3

Bus interface signals 3-3
Byte accesses 3-26, 3-27

C
Clock domains 5-10
Clocks 5-2
Code density 1-6
Condition code flags 2-13
Control bits 2-14
Coprocessor

busy-wait sequence 4-8
Coprocessor connections

bidirectional bus 4-12
unidirectional bus 4-13

Coprocessor interface
handshaking 4-6

Coprocessor register cycles 3-9
Coprocessors

about 4-2
absence of external 4-15
availability 4-3
connecting 4-12
connecting multiple 4-13
connecting single 4-12
consequences of busy-waiting 4-8
data operation sequence 4-10
data operations 4-10
external 4-15
interface

signals 4-4
load and store operations 4-10
load sequence 4-11
privileged instructions 4-17
register transfer instructions 4-9
register transfer sequence 4-9
signaling 4-7
timing 7-14

undefined instructions 4-16
Core clocks B-22
Core scan chain arrangements B-4
CPA 4-7
CPB 4-7
CPnCPI 4-7

D
Data

multiplexing 4-13
Data Aborts B-32
Data bus control circuit 3-20
Data replication 3-28
Data timed signals 3-17
Data types 2-6
Data write bus cycle 3-20
Debug

action of core 5-9
behavior of PC B-29
breakpoints B-29

hardware B-45
programming B-45
software B-46

bypass register B-14
clock switch during B-22
clock switch during test 5-11, B-23
clock switching 5-10
clocks 5-2
communications channel 5-16
communications channel registers

5-16
communications through the comms

channel 5-17
control and status register format

B-51
control register B-48
control registers B-42
core clocks B-22
core state B-24
coupling breakpoints and

watchpoints B-52
determining core state 5-12, B-24
determining system state 5-12, B-26
EmbeddedICE

block diagram B-41
timing B-54

entry into 5-6

entry into on breakpoint 5-7
entry into on debug request 5-8
entry into on watchpoint 5-8
exit B-26
exit sequence B-28
function and mapping of

EmbeddedICE registers B-40
host 5-4
ID code register B-14
instruction register B-8, B-15
interface 5-2
interface signals 5-6
interrupt driven use of comms

channel 5-18
mask registers B-42
output enable and disable times due

to HIGHZ TAP instruction 7-25
priorities and exceptions B-32

Data Aborts B-32
interrupts B-32
Prefetch Abort B-32

programming restriction B-55
protocol converter 5-4
public instructions B-9

BYPASS B-12
CLAMP B-11
CLAMPZ B-11
EXTEST B-9
HIGHZ B-11
IDCODE B-12
INTEST B-12
RESTART B-10
SAMPLE/PRELOAD B-10
SCAN_N B-10

receiving a message from debugger
5-18

request B-30
reset period timing 7-24
return address calculation B-31
scan chain 0 B-18
scan chain 0 cells B-33
scan chain 1 B-19
scan chain 1 cells B-37
scan chain 2 B-19
scan chain 3 B-20
scan chains B-16
scan path select register B-15
sending a message to debugger 5-18
stages 5-2

Index

ARM DDI 0029G Copyright © 1994-2001. All rights reserved. Index-3

state 3-31
status register B-50
system sppeed access B-31
system state B-24
systems 5-4
target 5-5
test data registers B-14

bypass B-14
ID code B-14
instruction B-15
scan path select B-15

timing 7-17
watchpoint registers B-40

programming and reading B-41
watchpoint with another exception

B-30
watchpoints B-29

programming B-47
Depipelined address timings 3-15

E
EmbeddedICE

logic 5-13
registers

function and mapping B-40
timing B-54

EmbeddedICE Logic 1-4
disabling 5-15

Exception
timing 7-15

Exception entry/exit summary 2-16
Exception priorities 2-22
Exception vectors 2-21
Exceptions 2-16

abort 2-19
data 2-20
prefetch 2-20

entering 2-17
FIQ 2-18
IRQ 2-19
leaving 2-18
SWI 2-21
undefined instruction 2-21

External bus arrangement 3-17
External connection of unidirectional

buses 3-19
External coprocessors 4-15

F
FIQ mode 2-7

H
Halfword accesses 3-26, 3-27

I
ID code register B-14
Instruction cycle timings

branch 6-4
branch and exchange 6-6
branch with link 6-4
coprocessor absent 6-27
coprocessor data operation 6-20
coprocessor data transfer 6-21
coprocessor register transfer 6-25
data operations 6-7
data swap 6-18
exceptions 6-19
instruction speed summary 6-29
load multiple registers 6-15
load register 6-12
multiply 6-9
multiply accumulate 6-9
store multiple registers 6-17
store register 6-14
SWI 6-19
Thumb branch with link 6-5
undefined instructions 6-27
unexecuted instructions 6-28

Instruction pipeline 1-2, 1-3, 1-4
Instruction register B-8
Instruction set

ARM 1-5
ARM formats 1-11
summary 1-10
Thumb 1-5, 1-19
Thumb formats 1-20
Thumb summary 1-21

Instruction set formats 1-10
Instruction speed summary 6-29
Instructions

LDC 4-10
STC 4-10

Internal cycles 3-7
Interrupt disable bits 2-14
Interrupt latencies 2-23

maximum 2-23
minimum 2-23

IRQ mode 2-7

L
LDC 4-10
Link register 2-8
Little-endian 2-4

M
Memory access 1-3
Memory cycle timing

summary 3-10
Memory formats 2-4

big-endian 2-4
little-endian 2-4

Merged I-S cycles 3-8
Mode bits 2-15
Modulating MCLK 3-29

N
Nonsequential cycles 3-5

O
Operating modes 2-7
Operating states 2-3

switching states 2-3

P
PC register 2-8
Pipeline 1-3, 1-4

follower 4-5
Pipelined address timings 3-14
Prefetch Abort B-32
Privileged mode access 3-32
Processor operating states 2-3

Index

Index-4 Copyright © 1994-2001. All rights reserved. ARM DDI 0029G

Program status register format 2-13
ProgrammerÕs model 2-2
Protocol converter 5-4
Public instructions B-9
Pullup resistors B-7

R
Register organization in ARM-state

2-9
Register organization in Thumb-state

2-10
Registers 2-8

mapping of Thumb-state onto
ARM-state 2-11

program status 2-13
relationship between ARM-state and

Thumb-state 2-11
Reserved bits 2-15
Reset 2-24
Reset sequence after power up 3-33

S
Scan chain 0 B-4, B-18

cells B-33
Scan chain 1 B-4, B-19

cells B-37
Scan chain 2 B-4, B-19
Scan chain 3 B-20
Scan chains

implementation B-3
JTAG interface B-3

Sequential access cycle 3-7
Sequential cycles 3-6
Signal descriptions A-3
Signal types 3-3, 4-4, A-2

address class 3-11
Signals

bus interface 3-3
clock and clock control 4-4
coprocessor interface 4-4

Significant address bits 3-12
Simple memory cycle 3-4
SRAM compatible address timing 3-16
STC 4-10
Supervisor Mode 2-7

Switching state 2-3
System Mode 2-7
System speed access B-31
System timing 3-30

T
T bit 2-14
TAP

controller
resetting B-6

state machine B-5
Testchip data bus circuit 3-23
Testchip example system 3-22
Thumb

code 1-6
Thumb-state

register organization 2-10
Transistor sizes A-2
Tristate control of processor outputs

3-21

U
Undefined instruction trap 1-12
undefined instructions 6-27
Undefined Mode 2-7
Unidirectional bus timing 3-18
Unidirectional data bus 3-18
User Mode 2-7

W
Watchpoint registers B-40

programming and reading B-41
Watchpoints

coupling B-52
programming B-47

Word accesses 3-27

