FEATURES

- 36 V highside switch/level shifter
- p-channel output driver without charge pump for short activation time
- Decoupling of input and output reference voltages (SOT23-6L) permits control by 5V logic
- 200 mA of output current
- Short-circuit protected
- Output with an active freewheeling circuit
- On-chip overtemperature protection with hysteresis
- 4 to 36 V input voltage range
- Input with hysteresis
- 3-pin configuration possible
- Wide temperature range of -40 to $120^{\circ} \mathrm{C}$
- Package option: (SOT223-4L, SC59-3L, DFN, CSP)

APPLICATIONS

- Highside switch for industrial applications, such as relays, inductive proximity sensors and light barriers

BLOCK DIAGRAM

3-pin configuration

DESCRIPTION

iC-DP is a monolithic highside switch for ohmic, inductive and capacitive loads.

Designed for a wide input voltage range of 4 to 36 V , it is capable of supplying a minimum output current of 200 mA . The output acts as a current source with a low saturation voltage; protection against shortcircuiting is provided by the device shutting down with excessive temperature. The chip is activated when
the input voltage threshold $\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})$ of typically 3.5 V is exceeded.

When used as a 4-pin element (with the SOT23-6L package only), the input (PI, NI) and output (DP, VP) reference voltages are decoupled. The maximum permissive voltage difference between VP and PI is 36 V.

PACKAGES SOT23-6L (JEDEC)

PIN CONFIGURATION
SOT23-6L (JEDEC), 1.6 mm (top view)

PIN FUNCTIONS

No. Name Function
$1 \mathrm{NI} \quad$ Negative Input
2 PI Positive Input
3 DP Output
4 VP Supply
5 n.c.
6 n.c.

SOT223-4L, SC59-3L , DFN and CSP packages are available on request.

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed. Absolute Maximum Ratings are no Operating Conditions. Integrated circuits with system interfaces, e.g. via cable accessible pins (I/O pins, line drivers) are per principle endangered by injected interferences, which may compromise the function or durability. The robustness of the devices has to be verified by the user during system development with regards to applying standards and ensured where necessary by additional protective circuitry. By the manufacturer suggested protective circuitry is for information only and given without responsibility and has to be verified within the actual system with respect to actual interferences.

Item No.	Symbol	Parameter	Conditions	Fig.	Min.	Max.	Unit
G001	V()	VP, PI Input Voltage with reference to NI	V()$=\mathrm{V}(\mathrm{VP})-\mathrm{V}(\mathrm{NI})$ bzw. V()$=\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})$		-0.3	40	V
G002	V (DP)	DP Output Voltage with reference to VP	no free wheeling		-40	0.3	V
G003	I(DP)	DP Output Current			-300		mA
G004	I(PI)	PI Input Current				10	mA
G005	I(NI)	NI Input Current			-10		mA
G006	Vd ()	ESD Susceptibility	HBM 100 pF / discharged throught $1.5 \mathrm{k} \Omega$			2	kV
G007	Tj	Max. Junction Temperature			-40	150	${ }^{\circ} \mathrm{C}$
G008	Ts	Storage Temperature Range			-40	150	${ }^{\circ} \mathrm{C}$
G009	Eas	Inductive load switch-off energy dissipation	temperature monitor not active, Tj < Ton			5	mJ

THERMAL DATA

Operating Conditions: $\mathrm{V}(\mathrm{PI})=4 \ldots 36 \mathrm{~V}$, unless otherwise stated

Item No.	Symbol	Parameter	Conditions	Fig.	Min.	Typ.
Max.	Unit					
T01	Ta	Ambient Temperature Range			-40	

ELECTRICAL CHARACTERISTICS

Operating Conditions: $\mathrm{V}(\mathrm{PI})=4 \ldots 36 \mathrm{~V}, \mathrm{Tj}=-40 \ldots 120^{\circ} \mathrm{C}$, unless otherwise stated

Item No.	Symbol	Parameter	Conditions	$\begin{aligned} & \hline \hline \mathrm{Tj} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Fig.	Min.	Typ.	Max.	Unit
Total Device									
001	V ()	VP, PI Supply Voltage	$\begin{aligned} & \mathrm{V}()=\mathrm{V}(\mathrm{VP})-\mathrm{V}(\mathrm{NI}) \text { bzw. } \mathrm{V}()=\mathrm{V}(\mathrm{PI})- \\ & \mathrm{V}(\mathrm{NI}) \end{aligned}$			4		36	V
002	1(PI)	PI Supply Current	No load; $\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})>\mathrm{V}(\mathrm{PI})$ on $\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})<\mathrm{V}(\mathrm{PI})$ off			$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 300 \\ & 190 \end{aligned}$	${ }_{\mu \mathrm{A}}^{\mu \mathrm{A}}$
003	I(VP)	VP Supply Current	No load; $\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})>\mathrm{V}(\mathrm{PI})$ on $\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})<\mathrm{V}(\mathrm{PI})$ off			$\begin{gathered} 80 \\ 0 \end{gathered}$		$\begin{gathered} 680 \\ 2000 \end{gathered}$	$\underset{\mu \mathrm{A}}{\mu \mathrm{~A}}$
004	(NI)	NI Input Current	No load; $\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})>\mathrm{V}(\mathrm{PI})$ on $\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})<\mathrm{V}(\mathrm{PI})$ off			$\begin{array}{r} -850 \\ -2000 \\ \hline \end{array}$		$\begin{gathered} -130 \\ 0 \end{gathered}$	${ }_{\mu \mathrm{A}}^{\mu \mathrm{A}}$
005	IIk(DP)	DP Output Leakage Current	$\begin{aligned} & \mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})<\mathrm{V}(\mathrm{PI}) \text { off, } \\ & \mathrm{V}(\mathrm{DP})=0 . . \mathrm{V}(\mathrm{VP}) \end{aligned}$			-100		100	$\mu \mathrm{A}$
006	Vc(DP)lo	DP Clamp Voltage low	$\begin{aligned} & \mathrm{Vc}(\mathrm{DP}) \mathrm{lo}=\mathrm{V}(\mathrm{DP})-\mathrm{V}(\mathrm{VP}), \\ & \mathrm{l}(\mathrm{DP})=-10 \mathrm{~mA} \end{aligned}$			-70	-45	-40	V
007	Vc(DP)hi	DP Clamp Voltage high	$\begin{aligned} & \mathrm{Vc}(\mathrm{DP}) \mathrm{hi}=\mathrm{V}(\mathrm{DP})-\mathrm{V}(\mathrm{VP}), \\ & \mathrm{l}(\mathrm{DP})=10 \mathrm{~mA} \end{aligned}$			0.3		1	V
008	Vc()hi	PI, VP Clamp Voltage high	Vc() $\mathrm{hi}=\mathrm{V}()-\mathrm{V}(\mathrm{NI}), \mathrm{l}()=4 \mathrm{~mA}$			37	40		V
009	tpiohi	Activation Delay $\mathrm{NI} \rightarrow$ DP	$\mathrm{V}(\mathrm{PI}) \mathrm{on}<\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})<48 \mathrm{~V}$, $\mathrm{V}($ Rload $)=48 \mathrm{~V}$, Rload $=360 \Omega$, $1(D P)=0 \rightarrow-90 \mathrm{~mA}$			1		25	$\mu \mathrm{s}$
010	tpiolo	Deactivation Delay $\mathrm{NI} \rightarrow$ DP	$\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})<\mathrm{V}(\mathrm{PI})$ off, V (Rload) $=36 \mathrm{~V}$, Rload $=360 \Omega$, I(DP) $=-100 \rightarrow-10 \mathrm{~mA}$			1		15	$\mu \mathrm{s}$
Highside Output DP									
101	Vs (DP)	Output Saturation Voltage	$\begin{aligned} & \begin{array}{l} D P=\text { hi, with reference to } \mathrm{VP} \\ \mathrm{l}(\mathrm{DP})=-200 \mathrm{~mA}, \\ \mathrm{l}(\mathrm{DP})=-50 \mathrm{~mA} \end{array} \end{aligned}$			$\begin{array}{r} -600 \\ -150 \end{array}$			$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
102	lsc (DP)	Output Short-Circuit Current	$\mathrm{V}(\mathrm{VP})-\mathrm{V}(\mathrm{DP})=1 \mathrm{~V}$...VB, DP $=$ hi	$\begin{gathered} -40 \\ 27 \\ 120 \end{gathered}$		-800	-400	$\begin{aligned} & -200 \\ & -200 \\ & -200 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
103	SR(DP)on	Slew Rate, V(DP) \rightarrow VP	$\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})>\mathrm{V}(\mathrm{PI})$ on, V (Rload) $=36 \mathrm{~V}, \mathrm{Rload}=360 \Omega$, $\mathrm{V}(\mathrm{VP})-\mathrm{V}(\mathrm{DP})=32.4 \rightarrow 3.6 \mathrm{~V}$				50		V/us
104	SR(DP)off	Slew Rate, V(DP) \rightarrow V(NI)	$\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})<\mathrm{V}(\mathrm{PI})$ off, $\mathrm{V}($ Rload $)=36 \mathrm{~V}$, Rload $=360 \Omega$, $\mathrm{V}(\mathrm{VP})-\mathrm{V}(\mathrm{DP})=3.6 \rightarrow 32.4 \mathrm{~V}$				20		V/us
105	Vfw(DP)	Freewheeling Voltage	$\mathrm{I}(\mathrm{DP})=-200 \mathrm{~mA},$ with reference to VP			-70	-45	-40	V
Temperature Monitor									
201	Toff	Thermal Shutdown Threshold				120		150	${ }^{\circ} \mathrm{C}$
202	Ton	Thermal Release Threshold	Decreasing temperature			110		135	${ }^{\circ} \mathrm{C}$
203	Thys	Thermal Shutdown Hysteresis	Thys = Toff - Ton				15		${ }^{\circ} \mathrm{C}$
Input Threshold									
301	V (PI)on	Power-On Threshold Voltage	$\mathrm{V}(\mathrm{PI})-\mathrm{V}(\mathrm{NI})$			2.7		4.1	V
302	V(PI)off	Power-Off Threshold Voltage	$\mathrm{V}(\mathrm{PI})$-V(NI), decreasing voltage			2.3		3.7	V
303	V(P) hys	Hysteresis	V (PI)hys = V(PI)on - V(PI)off			170	380	590	mV

ELECTRICAL CHARACTERISTIC: DIAGRAMS

Simulation Data

(current consumption without load; leakage currents not included)

Figure 1: NI input current, no load

Figure 3: NI input current, $\mathrm{I}(\mathrm{DP})=-100 \mathrm{~mA}$

Figure 5: VP supply current, no load

Figure 7: DP output characteristic

Figure 2: NI input current, $\mathrm{I}(\mathrm{DP})=-5 \mathrm{~mA}$

Figure 4: PI input current, load independent

Figure 6: DP short-circuit output current

APPLICATION NOTES

Example application circuits for SOT23-6L package

Figure 8: 36 V supply, NPN input control

Figure 10: $5 \mathrm{~V} \mu \mathrm{C}$ operating at 5 to 0 V input control, 36 V output supply

Figure 9: 36 V supply, PNP input control

Figure 11: 12 V PNP input control, 36 V output supply

Figure 12: 12 V NPN input control, 36 V output supply

[^0]Rev B1, Page 7/7

ORDERING INFORMATION

Type	Package	Order Designation
iC-DP	SOT23-6L (JEDEC)	iC-DP SOT23-6L

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY

Tel.: +49 (61 35) 92 92-0
Fax: +49 (61 35) 92 92-192
Web: http://www.ichaus.com
E-Mail: sales@ichaus.com
Appointed local distributors: http://www.ichaus.de/support_distributors.php

[^0]: This specification is for a newly developed product. iC-Haus therefore reserves the right to change or update, without notice, any information contained herein, design and specification; and to discontinue or limit production or distribution of any product versions. Please contact iC-Haus to ascertain the current data.
 Copying - even as an excerpt - is only permitted with iC-Haus approval in writing and precise reference to source.
 iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.
 iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

