
Crystal to LVPECL Clock Generator

Features

- One LVPECL Output Pair
- Selectable Output Frequency: 156.25 MHz or 187.5 MHz
- External Crystal Frequency: 25 MHz
- Low RMS Phase Jitter at 156.25 MHz, using 25 MHz crystal (1.875 MHz to 20 MHz): 0.33 ps (typical)
- Pb-Free 8-Pin TSSOP Package
- Supply Voltage: 3.3V or 2.5V
- Commercial and Industrial Temperature Ranges

Functional Description

The CY2XP24 is a PLL (Phase Locked Loop) based high performance clock generator. It is optimized to generate 10 Gb Ethernet, Fibre Channel, and other high performance clock frequencies. It produces an output frequency that is either 6.25 times or 7.5 times the crystal frequency. It uses Cypress's low noise VCO technology to achieve less than 1 ps typical RMS phase jitter, that meets both 10Gb Ethernet, Fibre Channel, and SATA jitter requirements. The CY2XP24 has a crystal oscillator interface input and one LVPECL output pair.

Pinouts

Figure 1. Pin Diagram - 8 Pin TSSOP

VDD 1	8 🔤 VDD
VSS 📩 2	7 📩 CLK
XOUT 🖂 3	6 📩 CLK#
XIN 4	5 🖂 F_SEL

Table 1. Pin Definitions - 8 Pin TSSOP

)

Pin	Name	Туре	Description
1, 8	VDD	Power	3.3V or 2.5V power supply. All supply current flows through pin 1
2	VSS	Power	Ground
3, 4	XOUT, XIN	XTAL Output and Input	Parallel resonant crystal interface
5	F_SEL	CMOS Input	Frequency select. When HIGH, the output frequency is 7.5 times of the crystal frequency. When LOW, the output frequency is 6.25 times of the crystal frequency
6,7	CLK#, CLK	LVPECL Output	Differential clock output

198 Champion Court

•

San Jose, CA 95134-1709 • 408-943-2600 Revised June 12, 2009

Frequency Table

Inputs	3	PLL Multiplier Value	Output Frequency (MHz)		
Crystal Frequency (MHz)	F_SEL				
25	1	7.5	187.5		
25	0	6.25	156.25		

Absolute Maximum Conditions

Parameter	Description	Condition	Min	Max	Unit
V _{DD}	Supply Voltage		-0.5	4.4	V
V _{IN} ^[1]	Input Voltage, DC	Relative to V _{SS}	-0.5	V _{DD} + 0.5	V
Τ _S	Temperature, Storage	Non operating	-65	150	°C
TJ	Temperature, Junction			135	°C
ESD _{HBM}	ESD Protection (Human Body Model)	JEDEC STD 22-A114-B	2000		V
UL-94	Flammability Rating	At 1/8 in.	V	-0	
$\Theta_{JA}^{[2]}$	Thermal Resistance, Junction to Ambient	0 m/s airflow	100		°C/W
		1 m/s airflow	9	1	
		2.5 m/s airflow	8	7	

Operating Conditions

Parameter	Description	Min	Max	Unit
V _{DD}	3.3V Supply Voltage	3.135	3.465	V
	2.5V Supply Voltage	2.375	2.625	V
T _A	Ambient Temperature, Commercial	0	70	°C
	Ambient Temperature, Industrial	-40	85	°C
T _{PU}	Power up time for all V_{DD} to reach minimum specified voltage (ensure power ramps are monotonic)	0.05	500	ms

DC Electrical Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
I _{DD} ^[3]	Power Supply Current with output terminated	V _{DD} = 3.465V, F _{OUT} = 187.5 MHz, output terminated	-	-	150	V
		V _{DD} = 2.625V, F _{OUT} = 187.5 MHz, output terminated	-	-	145	V
V _{OH}	LVPECL Output High Voltage	V_{DD} = 3.3V or 2.5V, R_{TERM} = 50 Ω to V_{DD} – 2.0V	V _{DD} –1.15	-	V _{DD} -0.75	V
V _{OL}	LVPECL Output Low Voltage	V_{DD} = 3.3V or 2.5V, R_{TERM} = 50 Ω to V_{DD} – 2.0V	V _{DD} -2.0	_	V _{DD} -1.625	V
V _{OD1}	LVPECL Peak-to-Peak Output Voltage Swing	V_{DD} = 3.3V or 2.5V, R_{TERM} = 50 Ω to V_{DD} – 2.0V	600	_	1000	mV
V _{OD2}	LVPECL Output Voltage Swing $(V_{OH} - V_{OL})$	V_{DD} = 2.5V, R_{TERM} = 50 Ω to V_{DD} – 1.5V	500	-	1000	mV

Note

The voltage on any input or I/O pin cannot exceed the power pin during power up. Power supply sequencing is NOT required.
 Simulated using Apache Sentinel TI software. The board is derived from the JEDEC multilayer standard. It measures 76 x 114 x 1.6 mm and has 4-layers of copper (2/1/1/2 oz.). The internal layers are 100% copper planes, while the top and bottom layers have 50% metalization. No vias are included in the model.
 I_{DD} includes approximately 24 mA of current that is dissipated externally in the output termination resistors.

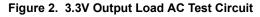
DC Electrical Characteristics (continued)

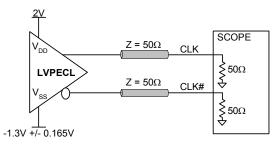
Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{OCM}	LVPECL Output Common Mode Voltage (V _{OH} + V _{OL})/2	V_{DD} = 2.5V, R_{TERM} = 50 Ω to V_{DD} – 1.5V	1.2	_	-	V
V _{IH}	Input High Voltage		0.7*V _{DD}	-	V _{DD} + 0.3	V
V _{IL}	Input Low Voltage		-0.3	-	0.3*V _{DD}	V
I _{IH}	Input High Current	F_SEL = V _{DD}	-	-	115	μA
IIL	Input Low Current	F_SEL = V _{SS}	-50	-	-	μA
C _{IN}	Input Capacitance			15		pF
C _{INX}	Pin Capacitance, XIN & XOUT			4.5		pF

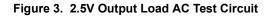
AC Electrical Characteristics

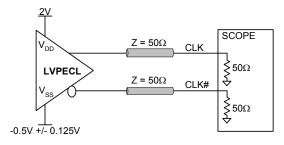
Parameter	Description	Conditions	Min	Тур	Max	Unit
F _{OUT}	Output Frequency		156.25	-	187.5	MHz
T _R , T _F ^[5]	Output Rise/Fall time	20% to 80% of full swing	_	500	-	ps
T _{Jitter(\u00f6)} [8]	RMS Phase Jitter (Random)	156.25 MHz, (1.875–20 MHz), 3.3V	-	0.33	-	ps
T _{DC} ^[9]	Duty Cycle	Measured at zero crossing point	45	-	55	%
T _{LOCK}	Startup Time	Time for CLK to reach valid frequency measured from the time $V_{DD} = V_{DD}$ (min.) or from F_SEL changing	-	_	10	ms

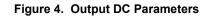
Recommended Crystal Specifications^[6]

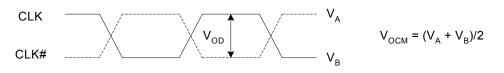
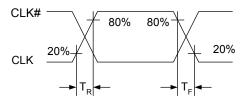
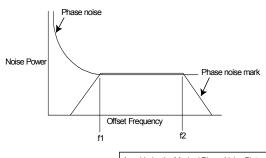

Parameter	Description	Min	Max	Unit
Mode	Mode of Oscillation	Funda	mental	
F	Frequency	25	25	MHz
ESR	Equivalent Series Resistance	-	50	Ω
C ₀	Shunt Capacitance	-	7	pF

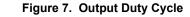

Notes

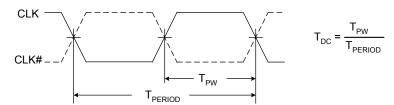

- Notes
 4. Outputs are terminated with 50Ω to V_{DD} 2V. Refer to Figure 2 on page 4 and Figure 3 on page 4.
 5. Refer to Figure 7 on page 5.
 6. Characterized using an 18 pF parallel resonant crystal.
 7. Not 100% tested, guaranteed by design and characterization.
 8. Refer to Figure 4 on page 4.
 9. Refer to Figure 7 on page 5.




Parameter Measurements


Figure 5. Output Rise and Fall Time



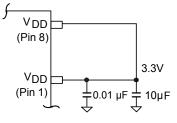

Application Information

Figure 9. LVPECL Output Termination

Power Supply Filtering Techniques

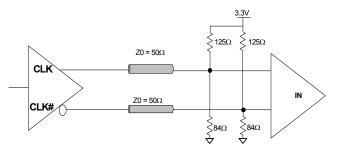
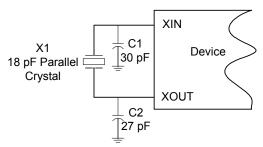

As in any high speed analog circuitry, noise at the power supply pins can degrade performance. To achieve optimum jitter performance, use good power supply isolation practices. Figure 8 illustrates a typical filtering scheme. Because all current flows through pin 1, the resistance and inductance between this pin and the supply is minimized. A 0.01 or 0.1 μ F ceramic chip capacitor is also located close to this pin to provide a short and low impedance AC path to ground. A 1 to 10 μ F ceramic or tantalum capacitor is located in the general vicinity of this device and may be shared with other devices.

Figure 8. Power Supply Filtering

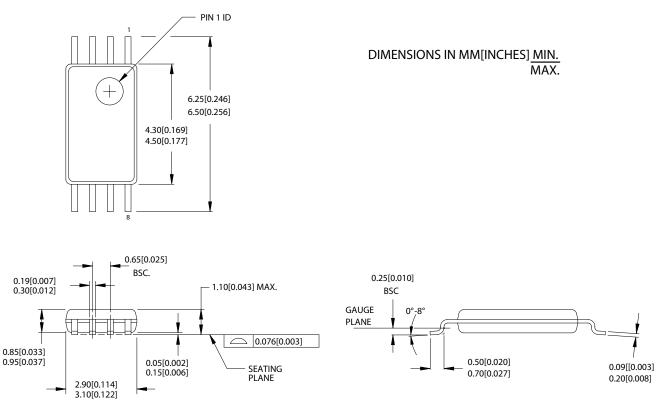
Termination for LVPECL Output


The CY2XP24 implements its LVPECL driver with a current steering design. For proper operation, it requires a 50 ohm dc termination on each of the two output signals. For 3.3V operation, this data sheet specifies output levels for termination to V_{DD} -2.0V. This termination voltage can also be used for V_{DD} = 2.5V operation, or it can be terminated to V_{DD} -1.5V. Note that it is also possible to terminate with 50 ohms to ground (V_{SS}), but the high and low signal levels differ from the data sheet values. Termination resistors are best located close to the destination device. To avoid reflections, trace characteristic impedance (Z_0) should match the termination impedance. Figure 9 shows a standard termination scheme.

Crystal Input Interface

The CY2XP24 is characterized with 18 pF parallel resonant crystals. The capacitor values shown in Figure 10 are determined using a 25 MHz 18 pF parallel resonant crystal and are chosen to minimize the ppm error. Note that the optimal values for C1 and C2 depend on the parasitic trace capacitance and are therefore layout dependent.

Figure 10. Crystal Input Interface



Ordering Information

Part Number	Package Type	Product Flow
CY2XP24ZXC	8-Pin TSSOP	Commercial, 0°C to 70°C
CY2XP24ZXCT	8-Pin TSSOP–Tape and Reel	Commercial, 0°C to 70°C
CY2XP24ZXI	8-Pin TSSOP	Industrial, -40°C to 85°C
CY2XP24ZXIT	8-Pin TSSOP–Tape and Reel	Industrial, -40°C to 85°C

Package Drawing and Dimensions

Figure 11. 8-Pin Thin Shrunk Small Outline Package (4.40 MM Body) Z8

51-85093-*A

Document History Page

Docume Docume	Document Title: CY2XP24 Crystal to LVPECL Clock Generator Document Number: 001-15705					
Rev.	ECN No.	Submission Date	Orig. of Change	Description of Change		
**	1285703	See ECN	WWZ/KVM/ ARI	New data sheet		
*A	1451704	See ECN	WWZ/AESA	Added I-temp devices		
*В	2669117	03/05/2009	KVM/AESA	Changed crystal frequency and output frequencies Updated phase jitter value Rise & fall times changed from 350 ps to 500 ps (typ.) Junction temperature changed from 125°C to 135°C Changed IIL and IIH values Entered value for IDD Removed MSL spec Changed Data Sheet Status to Final		
*C	2700242	04/30/2009	KVM/PYRS	Typos: changed VCC to VDD, changed ps to MHz Changed footnote about external power dissipation Reformatted AC and DC tables Changed LVPECL parameters from VPP to VOD and VOCM Added CINX spec Added IDD for 2.5V Added TLOCK timing Revised text in Application Information section Changed recommended crystal load capacitor values		
*D	2718433	06/12/2009	WWZ/HMT	No change. Submit to ECN for product launch.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products		PSoC Solutions	
PSoC	psoc.cypress.com	General	psoc.cypress.com/solutions
Clocks & Buffers	clocks.cypress.com	Low Power/Low Voltage	psoc.cypress.com/low-power
Wireless	wireless.cypress.com	Precision Analog	psoc.cypress.com/precision-analog
Memories	memory.cypress.com	LCD Drive	psoc.cypress.com/lcd-drive
Image Sensors	image.cypress.com	CAN 2.0b	psoc.cypress.com/can
		USB	psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2007-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-15705 Rev. *D

Revised June 12, 2009

Page 8 of 8

All products and company names mentioned in this document may be the trademarks of their respective holders.