

155M Bi-directional SFP Transceiver

(For 20km Point to Point Transmission)

Members of Flexon[™] Family

Features

- ◆ 125~155Mbps data links
- ♦ 20km point-point transmission
- ◆ 1310nm FP Tx/1550nm PIN Rx for FTM-9301C-SL20G
- ◆ 1550nm FP Tx/1310nm PIN Rx for FTM-9501C-SL20G
- Class I laser product
- Low EMI and excellent ESD protection
- ♦ SFP MSA package with LC receptacle
- Operation case temperature: 0 to +70°C
- Detailed product information in EEPROM

Applications

- Fast Ethernet
- Point to Point FTTH Application

Standard

- Compatible with SFP MSA
- ◆ Compatible with IEEE 802.3ah
- Compliant with RoHS

Description

Fiberxon FTM-9301C-SL20G/FTM-9501C-SL20G is high performance, cost effective transceiver. It is designed point-point FTTX applications at data rates of 155Mbps for 20km transmission.

FTM-9301C-SL20G is normally used in the client (ONU), which transmits 1310nm and receives 1550nm optical signal; while FTM-9501C-SL20G is used in the central office (OLT), which transmits 1550nm and receives 1310nm optical signal.

FTM-9301C-SL20G/FTM-9501C-SL20G features an EEPROM that contains the detailed product information stored for retrieval by host equipment. This information is accessed via the 2-wire serial CMOS EEPROM protocol. For further information, please refer to SFP Multi-Source Agreement (MSA).

An enhanced Digital Diagnostic Monitoring Interface compatible with SFF-8472 has been incorporated into the transceivers. It allows real time access to the transceiver operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage by reading a built-in memory with I2C interface.

 $\label{eq:ftm-9301C-SL20G} \mbox{ and } \mbox{FTM-9501C-SL20G are compliant with RoHS}$

Regulatory Compliance

The transceivers have been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to FlexonTM regulatory specification and safety guidelines, or contact with Fiberxon, Inc. America sales office listed at the end of the documentation.

Table 1 - Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883E	Class 2(>2000 V)
(ESD) to the Electrical Pins	Method 3015.7	Class 2(>2000 V)
Electrostatic Discharge (ESD)	IEC 61000-4-2	Compatible with standards
to LC Receptacle	GR-1089-CORE	Compatible with standards
Electromagnetic	FCC Part 15 Class B	
Interference (EMI)	EN55022 Class B (CISPR 22B) Compatible with standar	
microreroe (Eivir)	VCCI Class B	
Immunity	IEC 61000-4-3	Compatible with standards
Logar Evo Cafaty	FDA 21CFR 1040.10 and 1040.11	Compatible with Class 1 laser
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	product.
Component Recognition	UL and CSA	Compatible with standards
RoHS	2002/95/EC 4.1&4.2	Compliant with standards note
TO 13	2005/747/EC	

Note:

In light of item 5 in Annex of 2002/95/EC, "Pb in the glass of cathode ray tubes, electronic components and fluorescent tubes," and item 13 in Annex of 2005/747/EC, "Lead and cadmium in optical and filter glass.", the two exemptions are being concerned for Fiberxon's transceivers, because Fiberxon's transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Absolute Maximum Ratings

Absolute Maximum Ratings are those values beyond which damage to the devices may occur.

Table 2– Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{CC}	-0.5	3.6	V
Operating Humidity	-	5	95	%

Recommended Operating Conditions

Table 3 - Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature	T _C	0		+70	°C
Power Supply Voltage	V _{CC}	3.13	3.3	3.47	V
Power Supply Current	I _{cc}			300	mA
Power Dissipation	Р		0.65	0.8	W
Data Rate			125/155		Mbps

Optical and Electrical Characteristics (FTM-9301C-SL20G)

Table 4– Optical and Electrical Characteristics (T_C=0 to 70°C, V_{CC}=3.13 to 3.47V)

Parameter		Symbol	Min.	Typical	Max.	Unit	Notes
		Tra	nsmitter				
Centre Wavelength	λ _C	1260		1360	nm		
Average Output Power		P _{0ut}	-14		-8	dBm	1
Spectral Width (RMS)		Δλ		2.5	7	nm	
Extinction Ration		EX	10			dB	
Output Optical Eye			ITU-T G	.957 Compa	tible		2
Data Input Swing Differen	tial	√ V _{IN} \	370//		2000	mV	3
Input Differential Impedan	ce	Z _{IN}	90	100	110	Ω	
TV Diaghla	Disable		2.0		Vcc+0.3	V	
TX Disable	Enable		0		0.8	V	
TV E II	Fault		2.0		Vcc+0.3	V	
TX Fault	Normal		0		0.8	V	
		Re	ceiver				
Centre Wavelength		λ _C	1480		1580	nm	
Receiver Sensitivity					-32	dBm	4
Receiver Overload			-8			dBm	4
Return Loss			14			dB	
LOS De-Assert		LOS _D			-34	dBm	
LOS Assert		LOS _A	-45			dBm	
LOS Hysteresis			0.5		4	dB	
Data Output Swing Differe	ntial	V _{OUT}	370		2000	mV	5
LOS	High		2.0		Vcc+0.3	V	
LUS	Low		0		0.8	V	

Note:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2²³-1 test pattern @155Mbps.
- 3. Internally AC coupled and terminated.
- 4. Measured with PRBS 2^{23} –1 test pattern@155Mbps, BER \leq 1×10⁻¹⁰.
- 5. Internally AC coupled.

Optical and Electrical Characteristics (FTM-9501C-SL20G)

Table 5 – Optical and Electrical Characteristics (T_C=0 to 70°C, V_{CC}=3.13 to 3.47V)

Parameter		Symbol	Min.	Typical	Max.	Unit	Notes
		Trar	smitter				
Centre Wavelength		λ _C	1480		1580	nm	
Average Output Power		P _{0ut}	-14		-8	dBm	1
Spectral Width (RMS)		Δλ		2.5	4.6	nm	
Extinction Ration		EX	10			dB	
Output Optical Eye			ITU-T G	.957 Compa	tible		2
Data Input Swing Differen	ıtial	V _{IN}	370		2000	mV	3
Input Differential Impedar	nce	Z _{IN}	90	100	110	Ω	
TV Disable	Disable		2.0		Vcc+0.3	/ /v	
TX Disable	Enable		0		0.8	V	
TV 5 11	Fault		2.0		Vcc+0.3	V	
TX Fault	Normal		0		0.8	V	
	· ·	Re	ceiver			<u>'</u>	
Centre Wavelength		λ _C	1260		1360	nm	
Receiver Sensitivity					-32	dBm	4
Receiver Overload			-8			dBm	4
Return Loss			14			dB	
LOS De-Assert		LOS _D			-34	dBm	
LOS Assert		LOSA	-45			dBm	
LOS Hysteresis			0.5		4	dB	
Data Output Swing Differe	ential	V _{OUT}	370		2000	mV	5
LOS	High		2.0		Vcc+0.3	V	
103	Low		0		0.8	V	

Note:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2²³-1 test pattern @155Mbps.
- 3. Internally AC coupled and terminated.
- 4. Measured with PRBS 2^{23} –1 test pattern@155Mbps, BER \leq 1 \times 10⁻¹⁰.
- 5. Internally AC coupled.

EEPROM Information

The SFP MSA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X (A0h). The memory contents refer to Table 6.

Table 6 - EEPROM Serial ID Memory Contents (A0h)

Addr.	Field Size (Bytes)	Name of Field	Нех	Description
0	1	Identifier	03	SFP
1	1	Ext. Identifier	04	MOD4
2	1	Connector	07	LC
				Transmitter Code
3—10	8	Transceiver	00 xx 02 00 00 00 00 00	xx:10 for FTM-9301C-SL20G and 08 for
				FTM-9501C-SL20G
11	1	Encoding	03	NRZ
12	1	BR, nominal	02	155Mbps
13	1	Reserved	00	
14	1	Length (9um)-km	14	20km
15	1	Length (9um)	C8	20km
16	1	Length (50um)	00	
17	1	Length (62.5um)	00	
18	1	Length (copper)	00	
19	1	Reserved	00	
20—35	16	Vander name	46 49 42 45 52 58 4F 4E	"FIDEDVON INC. "(ASC II.)
20—35	16	Vendor name	20 49 4E 43 2E 20 20 20	∜FIBERXON INC. "(ASC II)
36	1	Reserved	00	
37—39	3	Vendor OUI	00 00 00	
40 EE	16	Vendor PN	46 54 4D 2D 39 xx 30 31	"FTM 0v04C SI 20C" (ASC II)
40—55	16	vendoi Piv	43 2D 53 4C 32 30 47 20	"FTM-9x01C-SL20G" (ASC II)
56—59	4	Vendor rev	xx xx xx xx	ASC II ("31 30 20 20" means 1.0 revision)
60-61	2	Wavelength	05 1E/06 0E	1310nm/1550nm
62	1 \	Reserved	00	
63	1 \	CC BASE	xx	Check sum of bytes 0 - 62
64—65	2	Options	00 1A	LOS, TX_FAULT and TX_DISABLE
66	1	BR, max	00	
67	1	BR, min	00	
60 02	16	Vandar SN	xx xx xx xx xx xx xx xx	ASC II .
68—83	16	Vendor SN	xx xx xx xx xx xx xx xx	ASC II.
84—91	8	Vendor date code	xx xx xx xx xx xx 20 20	Year (2 bytes), Month (2 bytes), Day (2 bytes)
92	1	Diagnostic type	58	Diagnostics(Ext.Cal)
93	1	Enhanced option	В0	Diagnostics (Optional Alarm/warning flags, Soft TX_FAULT and Soft TX_LOS monitoring)
94	1	SFF-8472	02	Diagnostics(SFF-8472 Rev 9.4)
95	1		xx	Check sum of bytes 64 - 94
96—255	160	Vendor specific	,	Shock sam of bytoo or or
JU -2JU	1.00	v chach specific		

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of SFF-8472 Rev 9.5.

Monitoring Specification

The digital diagnostic monitoring interface also defines another 256-byte memory map in EEPROM, which makes use of the 8 bit address 1010001X (A2h). Please see Figure 1. For detail EEPROM information, please refer to the related document of SFF-8472 Rev 9.5. The monitoring specification of this product is described in Table 7.

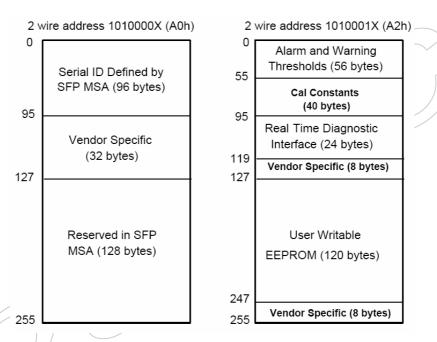


Figure 1, EEPROM Memory Map Specific Data Field Description

Table 7 - FTM-9301C-SL20G / FTM-9501C-SL20G Monitoring Specification

Parameter	Range	Accuracy	Calibration*
Temperature	-5 to +90°C	±3°C	External
Voltage	2.97 to 3.63V	±3%	External
Bias Current	3mA to 80mA	±10%	External
TX Power	-8 to -14dBm	±3dB	External
RX Power	-8 to -32dBm	±3dB	External

Recommended Host Board Power Supply Circuit

Figure 2 shows the recommended host board power supply circuit.

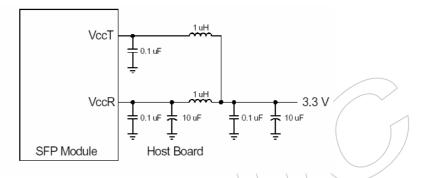


Figure 2, Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

Figure 3 shows the recommended interface circuit.

Figure 3, Recommended Interface Circuit

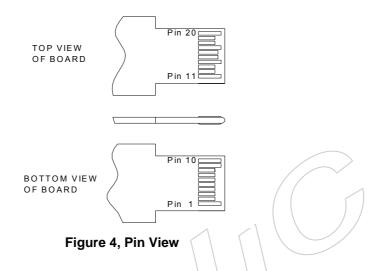

Pin Definitions

Figure 4 below shows the pin numbering of SFP electrical interface. The pin functions are described in Table

Fiberxon Proprietary and Confidential, Do Not Copy or Distribute

Page 7 of 11

and the accompanying notes.

Table 8- Pin Function Definitions

Pin No.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2
4	MOD-DEF2	Module Definition 2	3	Note 3
5	MOD-DEF1	Module Definition 1	3	Note 3
6	MOD-DEF0	Module Definition 0	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	VeeR	Receiver Ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VeeR	Receiver Ground	1	
15	VccR	Receiver Power	2	
16	VccT	Transmitter Power	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VeeT	Transmitter Ground	1	

Notes:

- 1. TX Fault is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the

module with a 4.7k~10k Ω resistor. Its states are:

Low $(0\sim0.8V)$: Transmitter on (>0.8V, <2.0V): Undefined

High (2.0~3.465V): Transmitter Disabled Open: Transmitter Disabled

3. MOD-DEF 0,1,2 are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

MOD-DEF 0 is grounded by the module to indicate that the module is present

MOD-DEF 1 is the clock line of two wire serial interface for serial ID

MOD-DEF 2 is the data line of two wire serial interface for serial ID

- 4. LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.
- 5. These are the differential receiver outputs. They are AC-coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module.

Mechanical Design Diagram

The mechanical design diagram is shown in Figure 5.

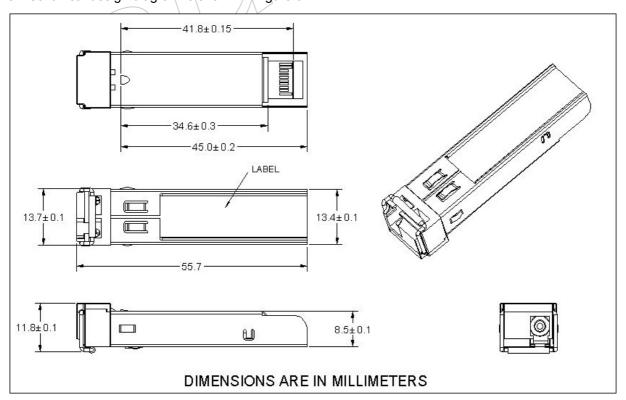
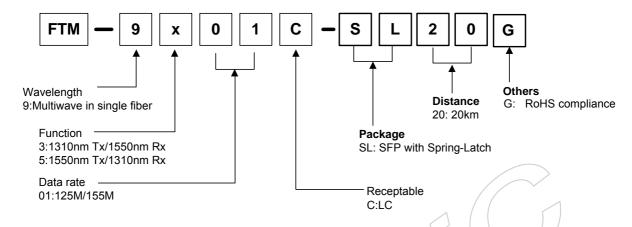



Figure 5, Mechanical Design Diagram of the SFP with Spring Latch

Ordering information

Part No.	Product Description						
FTM-9301C-SL20G	1310nm(TX)/1550nm(RX), 125~155Mbps, bi-directional SFP for ONU, Compliant						
F 11VI-930 1C-3L20G	with RoHS; 0 to 70 ^o C						
ETM 0504C SL 20C	1550nm(TX)/1310nm(RX), 125~155Mbps, bi-directional SFP for OLT, Compliant with						
FTM-9501C-SL20G	RoHS; 0 to 70°C						

Related Documents

For further information, please refer to the following documents:

- Flexon[™] SFP Installation Guide
- ◆ FlexonTM SFP Application Notes
- SFP Multi-Source Agreement (MSA)

Obtaining Document

You can visit our website:

http://www.fiberxon.com

Or contact with Fiberxon, Inc. America Sales Office listed at the end of documentation to get the latest documents.

Revision History

Revision	Initiate	Review	Approve	Subject	Release Date
Rev. 1a	Solaris Zhu	Monica Wei	Walker.Wei	Initial datasheet	Sep. 21, 2006
Rev. 1b	Solaris Zhu	Monica Wei	Walker.Wei	Updated the content of A0h address to compliant with SFF 8472 Rev 9.5; and updated datasheet version from preliminary to formal	Dec 27, 2006
Rev. 1c	Solaris Zhu	Monica Wei	Walker.Wei	Updated the contact info.	Feb. 12, 2007

Rev. 1d	Solaris Zhu	Monica Wei	Walker.Wei	Updated Electrostatic Discharge	Jun. 18, 2007
				(ESD) to the Electrical Pins to Class	
				2(>2000 V)	

© Copyright Fiberxon Inc. 2007

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Fiberxon's product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Fiberxon or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Fiberxon be liable for damages arising directly from any use of the information contained in this document.

Contact

U.S.A. Headquarter:

5201 Great America Parkway, Suite 340

Santa Clara, CA 95054

U. S. A.

Tel: 408-562-6288 Fax: 408-562-6289

Or visit our website: http://www.fiberxon.com