

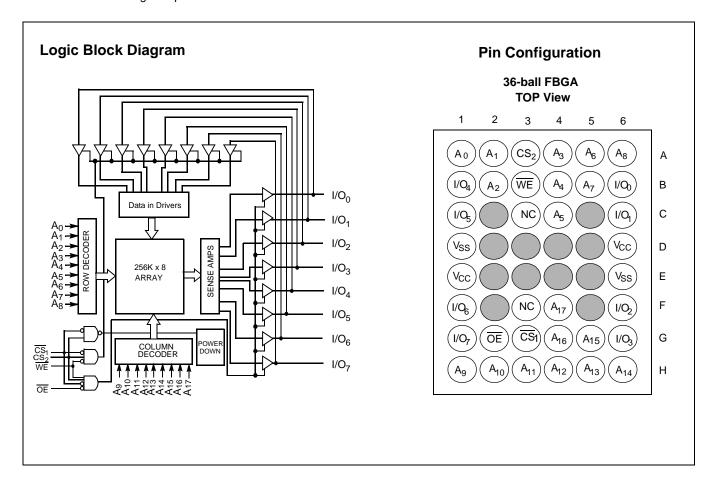
2-Mbit (256K x 8) Static RAM

Features

- · High Speed:
 - 70 ns
- · Low voltage range:
 - 2.7V 3.6V
- · Ultra-low active power
- · Low standby power
- Easy memory expansion with CS₁/CS₂ and OE features
- · TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power
- Available in non Pb-free 36-ball FBGA package

Functional Description

The CY62138V is a high-performance CMOS static RAM organized as 256K words by 8 bits. This device features advanced circuit design to provide ultra-low active current.


This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that reduces power consumption by 99% when addresses are not toggling. The device can be put into standby mode when deselected ($\overline{\text{CS}}_1$ HIGH or $\overline{\text{CS}}_2$ LOW).

Writing to the device is accomplished by taking Chip Enable One (CS₁) and Write Enable (WE) inputs LOW and Chip Enable Two (CS₂) HIGH. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₇).

Reading from the device is accomplished by taking Chip Enable One $(\overline{CS_1})$ and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) and Chip Enable Two (CS_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CS}_1 HIGH or \overline{CS}_2 LOW), the outputs are disabled (\overline{OE}_1 HIGH), or during a write operation (\overline{CS}_1 LOW, \overline{CS}_2 HIGH, and \overline{WE} LOW).

The CY62138V is available in a 36-ball FBGA package.

Product Portfolio

						Power Dis	sipation (In	dustrial)
	v	_{CC} Range (\	/)	Speed	Operating	g, I _{CC} (mA)	Star	ndby, I _{SB2} (μA)
Product	V _{CC(min)}	V _{CC(typ)} ^[1]	V _{CC(max)}	(ns)	Typ. ^[1]	Maximum	Typ. ^[1]	Maximum
CY62138V	2.7	3.0	3.6	70	7	15	1	15

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied.....-55°C to +125°C Supply Voltage to Ground Potential.....-0.5V to +4.6V

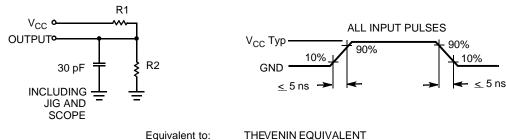
DC Input Voltage ^[2]	-0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

[Device	Range	Ambient Temperature	v _{cc}
CY	62138V	Industrial	-40°C to +85°C	2.7V to 3.6V

Electrical Characteristics Over the Operating Range

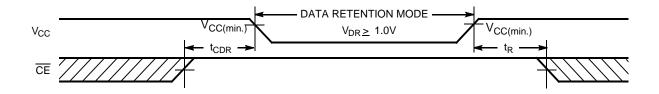
					CY62138\	1	
Parameter	Description	Test Condi	Min.	Typ. ^[1]	Max.	Unit	
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.7V	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.7V			0.4	V
V _{IH}	Input HIGH Voltage		V _{CC} = 3.6V	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage		V _{CC} = 2.7V	-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$		-1	<u>+</u> 1	+1	μА
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_CC, Outp$ Disabled	-1	+1	+1	μА	
Icc	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{Max} = 1/t_{RC},$ CMOS Levels	V _{CC} = 3.6V		7	15	mA
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels			1	2	mA
I _{SB1}	Automatic CE Power-down Current— CMOS Inputs	$\begin{tabular}{ll} \hline \hline \hline CE &\geq V_{CC} - 0.3V, \\ V_{IN} &\geq V_{CC} - 0.3V \mbox{ or } \\ V_{IN} &\leq 0.3V, f = f_{Max} \\ \hline \end{tabular}$				100	μА
I _{SB2}	Automatic CE Power-down Current— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, f = 0			1	15	μА


Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$	6	pF
C _{OUT}	Output Capacitance		8	pF

- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.
- 2. V_{IL}(min) = –2.0V for pulse durations less than 20 ns.
 3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms


Equivalent to: OUTPUT •

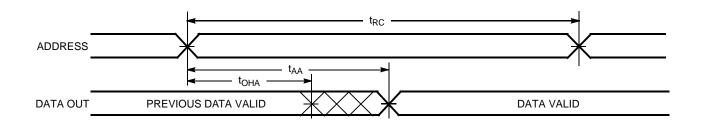
Parameters	3.0V	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[4]	Min.	Typ. ^[1]	Max.	Unit
V _{DR}	V _{CC} for Data Retention		1.0		3.6	V
I _{CCDR}	Data Retention Current	$\begin{split} &V_{CC} = 1.0 \text{V, CE} \geq V_{CC} - 0.3 \text{V,} \\ &V_{\text{IN}} \geq V_{CC} - 0.3 \text{V or } V_{\text{IN}} \leq 0.3 \text{V,} \\ &\text{No input may exceed } V_{CC} + 0.3 \text{V} \end{split}$		0.1	5	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R	Operation Recovery Time		100			μS

Data Retention Waveform^[5]

- 4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified l_{OL}/l_{OH} and 30 pF load capacitance.
 5. CE is the combination of both CS₁ and CS₂.



Switching Characteristics Over the Operating Range^[4]

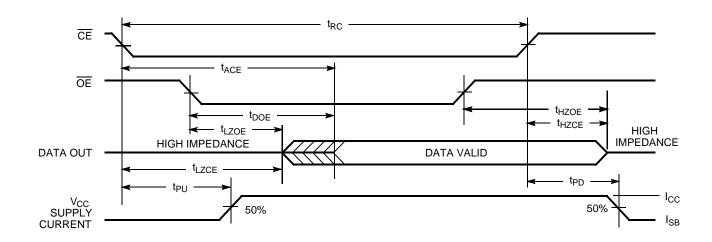
		70			
Parameter	Description	Min.	Max.	Unit	
Read Cycle	•	<u> </u>	•		
t _{RC}	Read Cycle Time	70		ns	
t _{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		35	ns	
t _{LZOE}	OE LOW to Low-Z ^[6]	5		ns	
t _{HZOE}	OE HIGH to High-Z ^[6, 7]		25	ns	
t _{LZCE}	CE LOW to Low-Z ^[6]	10		ns	
t _{HZCE}	CE HIGH to High-Z ^[6, 7]		25	ns	
t _{PU}	CE LOW to Power-up	0		ns	
t _{PD}	CE HIGH to Power-down		70	ns	
Write Cycle ^[8, 9]	•	<u> </u>	•		
t _{WC}	Write Cycle Time	70		ns	
t _{SCE}	CE LOW to Write End	60		ns	
t _{AW}	Address Set-up to Write End	60		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	50		ns	
t _{SD}	Data Set-up to Write End	30		ns	
t_{HD}	Data Hold from Write End	0		ns	
t _{HZWE}	WE LOW to High-Z ^[6, 7]		25	ns	
t _{LZWE}	WE HIGH to Low-Z ^[6]	10		ns	

Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled)^[10, 11]

- 6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

 7. t_{HZOE}, t_{HZOE}, t_{HZOE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.


 8. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

 9. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.
- 10. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 11. \overline{WE} is HIGH for read cycle.

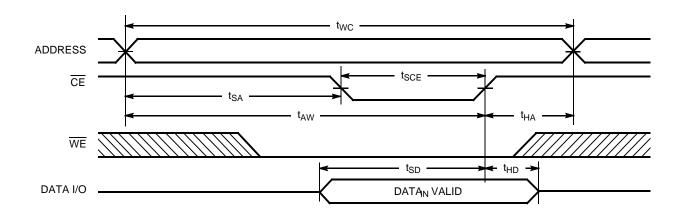


Switching Waveforms (continued)

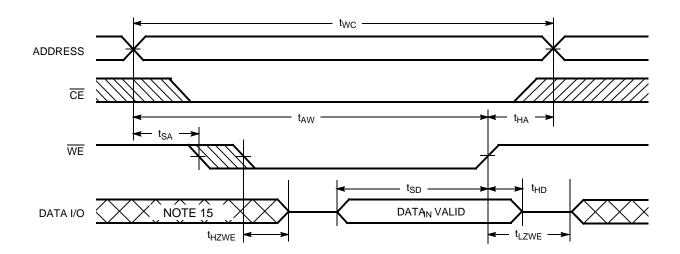
Read Cycle No. 2 (OE Controlled)[5, 11, 12]

Write Cycle No. 1 (WE Controlled)^[5, 8, 13, 14]

- 12. Address valid prior to or coincident with $\overline{\mathbb{C}}$ transition LOW.

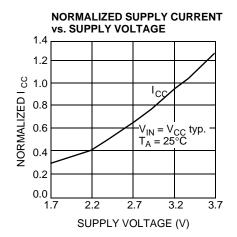

 13. Data I/O is high impedance if $\overline{\mathbb{O}} = V_{IH}$.

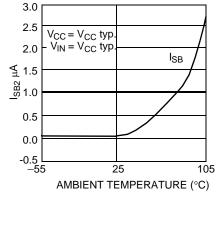
 14. If $\overline{\mathbb{C}}$ goes HIGH simultaneously with $\overline{\mathbb{W}}$ E HIGH, the output remains in a high-impedance state.
- 15. During this period, the I/Os are in output state and input signals should not be applied.

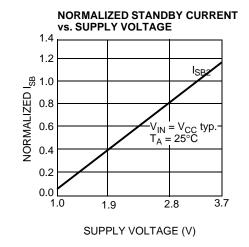


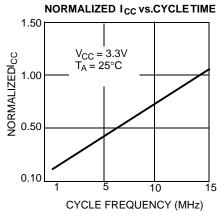
Switching Waveforms (continued)

Write Cycle No. 2 (CE Controlled)^[5, 8, 13, 14]




Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[5, 9, 14]


Typical DC and AC Characteristics



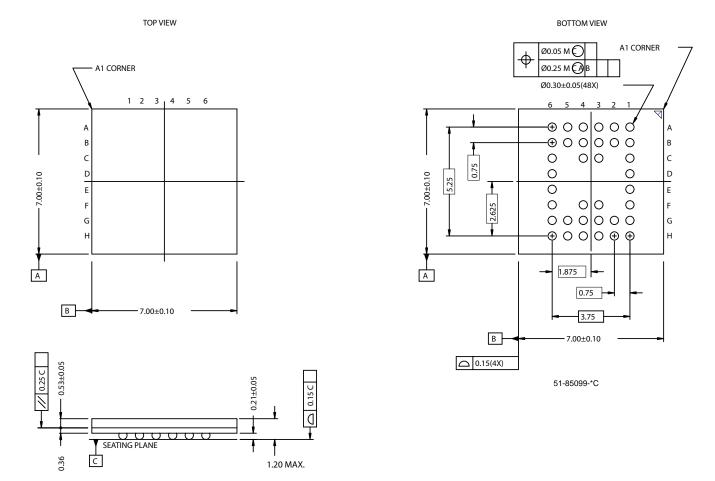
STANDBY CURRENT

vs. AMBIENT TEMPERATURE

Truth Table

CS ₁	CS ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	Data Out	Read	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High-Z	Deselect, Output Disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
70	CY62138VLL-70BAI	51-85099	36-ball Fine Pitch Ball Grid Array (7 x 7 x 1.2 mm)	Industrial

Please contact your local Cypress sales representative for availability of these parts

Package Diagram

36-ball FBGA (7 x 7 x 1.2 mm) (51-85099)

More Battery Life is a trademark, and MoBL is a registered trademark, of Cypress Semiconductor. All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

	Document Title: CY62138V MoBL™ 2-Mbit (256K x 8) Static RAM Document Number: 38-05088							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change				
**	107348	06/12/01	SZV	Change from Spec #: 38-00729 to 38-05088				
*A	114936	05/28/02	CBD	Replaced wrong package diagram with correct diagram (36-ball FBGA [see p. 8])				
*B	486789	SEE ECN	VKN	Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court". Updated Ordering Information table				