
LED - Lamp

ELD-880-595 rev. 05

15.11.2007

Radiation	Туре	Technology	Case	
Infrared	DDH	AlGaAs/AlGaAs	5 mm flat plastic case	

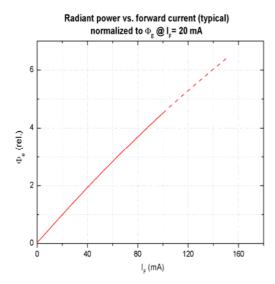
Maximum Ratings

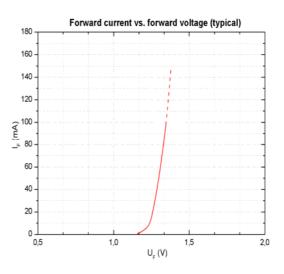
 T_{amb} = 25°C, unless otherwise specified

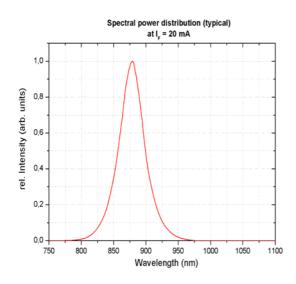
Parameter	Test conditions	Symbol	Value	Unit
Forward current (DC)		I _F	100	mA
Peak forward current	(t _P \leq 50 µs, t _P /T = 1/2)	I _{FM}	1000	mA
Power dissipation		PD	180	mW
Operating temperature range		T _{amb}	-20 to +80	°C
Storage temperature range		T _{stg}	-40 to +100	°C
Junction temperature		TJ	100	°C

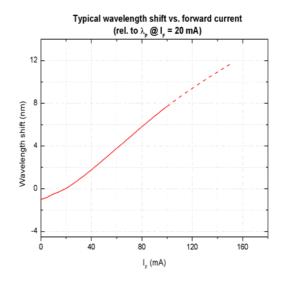
Optical and Electrical Characteristics

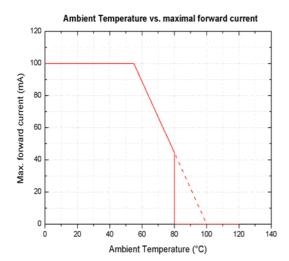
 $T_{amb} = 25^{\circ}C$, unless otherwise specified

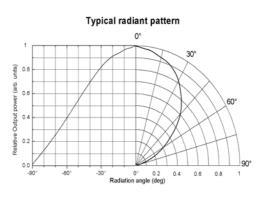

Parameter	Test conditions	Symbol	Min	Тур	Max	Unit
Forward voltage	I _F = 20 mA	V_{F}		1.2	1.4	V
Forward voltage	I _F = 100 mA	V_{F}		1.4		V
Reverse voltage	I _R = 10 μA	V _R	5			V
Radiant power	I _F = 20 mA	Φ_{e}	5	7		mW
Radiant power	I _F = 100 mA	Φ_{e}		30		mW
Radiant intensity	I _F = 20 mA	Ie	0.5	0.8		mW/sr
Radiant intensity	I _F = 100 mA	Ie		3.8		mW/sr
Peak wavelength	I _F =100 mA	λ _p	870	880	890	nm
Spectral bandwidth at 50%	I _F =100 mA	$\Delta\lambda_{0.5}$		65		nm
Viewing angle	I _F =100 mA	φ		110		deg.
Switching time	I _F =100 mA	t _{r,} t _f		10		ns


Note: All measurements carried out on EPIGAP equipment


Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer.


EPIGAP Optoelektronik GmbH, D-12555 Berlin, Köpenicker Str.325 b, Haus 201





 We reserve the right to make changes to improve technical design and may do so without further notice.

 Parameters can vary in different applications.All operating parameters must be validated for each customer application by the customer.

 EPIGAP
 Optoelektronik GmbH, D-12555 Berlin, Köpenicker Str.325 b, Haus 201

 Tel.: +49-30-6576 2543, Fax : +49-30-6576 2545
 2


15.11.2007

rev. 05

Remarks concerning optical radiation safety*

Up to maximum forward current, at continuous operation, this LED may be classified as LED product *Class 1*, according to standard IEC 60825-1:A2. *Class 1* products are safe to eyes and skin under reasonably predictable conditions. This implicates a direct observation of the light beam by means of optical instruments.

*Note: Safety classification of an optical component mainly depends on the intended application and the way the component is being used. Furthermore, all statements made to classification are based on calculations and are only valid for this LED "as it is", and at continuous operation. Using pulsed current or altering the light beam with additional optics may lead to different safety classifications. Therefore these remarks should be taken as recommendation and guideline only.

