May/2008

MITSUBISHI SEMICONDUTOR <GaAs FET>

MGF4935AM

SUPER LOW NOISE InGaAs HEMT (4pin flat lead package)

DESCRIPTION

The MGF4935AM super-low noise HEMT (High Electron Mobility Transistor) is designed for use in S to Ku band amplifiers.

The 4pin flat lead package is small-thin size, and offers high cost performance.

FEATURES

Low noise figure @ f=12GHz NFmin. = 0.45dB (Typ.)

High associated gain @ f=12GHz Gs = 12.0dB (Typ.)

APPLICATION

S to Ku band low noise amplifiers

QUALITY GRADE

GG

RECOMMENDED BIAS CONDITIONS

 V_{DS} =2V , I_{D} =10mA

ORDERING INFORMATION

Tape & reel 3000pcs/reel

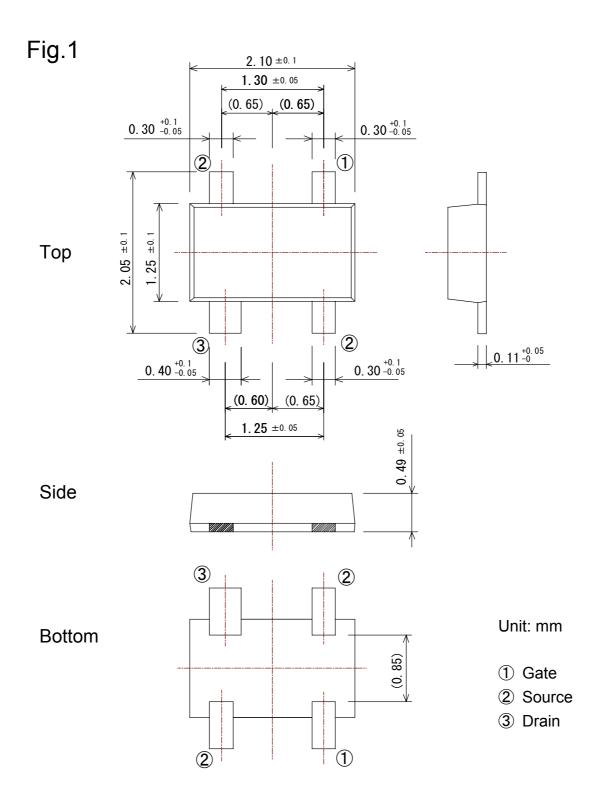
Outline Drawing

Fig.1

MITSUBISHI Proprietary

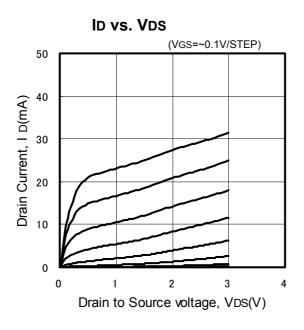
Not to be reproduced or disclosed without permission by Mitsubishi Electric

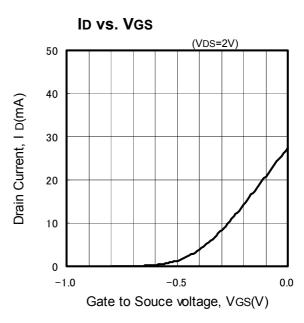
Keep Safety first in your circuit designs!

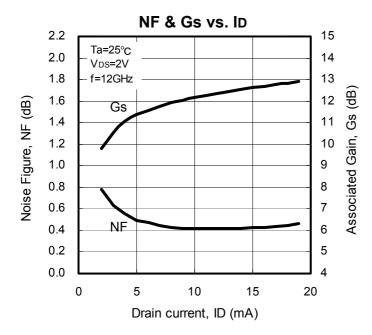

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measure such as (I) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter	Ratings	Unit
V_{GDO}	Gate to drain voltage	-3	V
V_{GSO}	Gate to source voltage	-3	V
I_{D}	Drain current	IDSS	mA
PT	Total power dissipation	50	mW
T _{ch}	Channel temperature	125	°C
T _{stg}	Storage temperature	-55 to +125	°C


ELECTRICAL CHARACTERISTICS (Ta=25°C)


Symbol	Parameter	Test conditions	Limits		Unit	
			MIN.	TYP.	MAX	
$V_{(BR)GDO}$	Gate to drain breakdown voltage	I _G =-10μA	-3.5	1	1	V
I _{GSS}	Gate to source leakage current	V _{GS} =-2V,V _{DS} =0V			50	μΑ
I _{DSS}	Saturated drain current	V _{GS} =0V,V _{DS} =2V	12	1	60	mA
$V_{GS(off)}$	Gate to source cut-off voltage	V _{DS} =2V,I _D =500μA	-0.1	1	-1.5	V
Gs	Associated gain	V _{DS} =2V,	11.0	12.0	1	dB
NFmin.	Minimum noise figure	I _D =10mA,f=12GHz		0.45	0.65	dB



(GD-30)

TYPICAL CHARACTERISTICS (Ta=25°C)

MGF4935AM

SUPER LOW NOISE InGaAs HEMT (4pin flat lead package)

S PARAMETERS

(VDS=2V,ID=10mA,Ta=room temperature)

Freq.	S11		S21		S12		S22	
(GHz)	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)
1	0.990	-13.4	4.592	164.5	0.013	80.2	0.669	-10.6
2	0.964	-26.9	4.545	149.2	0.027	71.6	0.658	-21.3
3	0.923	-40.6	4.476	134.3	0.039	62.7	0.636	-31.2
4	0.866	-54.5	4.463	119.5	0.051	54.6	0.603	-41.8
5	0.804	-68.1	4.370	105.1	0.061	46.8	0.569	-51.7
6	0.734	-82.3	4.241	91.0	0.069	39.3	0.529	-61.1
7	0.659	-96.5	4.113	77.4	0.076	33.2	0.488	-69.7
8	0.582	-111.0	3.965	64.0	0.082	28.2	0.446	-77.6
9	0.507	-126.1	3.804	51.4	0.086	24.0	0.404	-84.9
10	0.438	-142.0	3.660	38.9	0.091	20.9	0.368	-91.9
11	0.381	-158.6	3.548	26.9	0.097	19.0	0.338	-99.5
12	0.340	-178.7	3.440	14.7	0.106	16.9	0.320	-109.4
13	0.319	158.0	3.355	2.2	0.118	13.2	0.303	-120.9
14	0.327	133.9	3.276	-10.8	0.131	8.5	0.300	-137.1
15	0.370	112.0	3.191	-24.0	0.146	2.8	0.307	-157.2
16	0.440	93.2	3.080	-37.9	0.159	-4.2	0.327	179.4
17	0.520	78.4	2.914	-51.9	0.173	-11.5	0.369	157.8
18	0.601	64.0	2.690	-66.0	0.183	-19.4	0.419	137.5
19	0.672	50.4	2.405	-78.6	0.190	-27.1	0.472	122.4
20	0.737	38.9	2.146	-88.9	0.195	-34.2	0.510	110.5
21	0.800	30.7	1.931	-99.1	0.197	-42.0	0.548	98.5
22	0.847	27.2	1.738	-108.8	0.196	-49.0	0.582	83.9
23	0.886	25.8	1.574	-118.1	0.195	-55.9	0.619	68.2
24	0.920	23.1	1.459	-127.4	0.193	-61.4	0.652	52.9
25	0.948	16.5	1.382	-137.6	0.202	-67.4	0.693	40.5
26	0.954	3.1	1.332	-150.9	0.213	-77.2	0.730	31.4

Noise Parameter (VDS=2V,ID=10mA, Ta=room temperature)

		(100 21)	14-100111				
Freq.	NFmin	Го	Rn				
(GHz)	(dB)	(mag)	(ang)	(Ω)			
1	0.20	0.99	3.1	18.0			
2	0.20	0.98	8.3	16.5			
3	0.21	0.98	14.9	15.0			
4	0.22	0.97	20.4	13.5			
5	0.24	0.95	30.4	12.0			
6	0.26	0.90	41.5	10.5			
7	0.29	0.83	52.7	9.0			
8	0.31	0.71	68.0	7.0			
9	0.34	0.60	83.3	5.5			
10	0.37	0.50	99.7	4.0			
11	0.40	0.41	117.8	3.0			
12	0.44	0.33	137.8	2.5			
13	0.47	0.27	162.0	2.5			
14	0.51	0.24	-178.1	2.5			
Note ; Rn is normalized by 50 ohm.							

MGF4935AM

SUPER LOW NOISE InGaAs HEMT (4pin flat lead package)

S PARAMETERS

(VDS=0V,VGS=0V,Ta=room temperature)

Freq.	S	11	S	21	S	12	S22	
(GHz)	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)
1	0.999	-11.6	0.008	97.0	0.008	96.6	0.648	168.2
2	0.996	-24.0	0.018	98.4	0.018	100.0	0.648	156.5
3	0.990	-36.5	0.032	97.9	0.032	98.7	0.652	144.6
4	0.988	-50.0	0.050	94.7	0.050	94.7	0.664	133.1
5	0.981	-64.3	0.073	87.6	0.074	87.8	0.674	121.4
6	0.972	-79.2	0.099	79.4	0.100	79.7	0.682	109.6
7	0.958	-95.5	0.130	69.2	0.130	69.1	0.693	97.9
8	0.944	-113.8	0.165	58.0	0.165	58.2	0.706	87.1
9	0.918	-133.8	0.200	45.6	0.200	45.8	0.717	76.9
10	0.896	-155.7	0.235	32.2	0.237	32.2	0.725	67.5
11	0.881	-179.8	0.269	17.4	0.269	17.5	0.732	59.1
12	0.865	154.3	0.292	2.2	0.294	2.2	0.739	51.4
13	0.863	127.9	0.306	-13.3	0.307	-13.6	0.747	44.3
14	0.873	103.1	0.306	-28.4	0.307	-28.4	0.751	36.9
15	0.885	82.6	0.294	-41.6	0.295	-41.5	0.755	29.4
16	0.901	66.1	0.280	-52.6	0.280	-52.5	0.764	22.4
17	0.912	52.7	0.264	-61.5	0.265	-61.5	0.768	16.4
18	0.922	40.6	0.252	-69.0	0.252	-69.0	0.778	12.5
19	0.926	28.9	0.242	-76.7	0.242	-76.8	0.784	11.1
20	0.933	19.0	0.224	-84.1	0.225	-83.9	0.777	10.0
21	0.941	12.3	0.210	-89.8	0.210	-89.2	0.761	6.6
22	0.942	10.5	0.193	-94.8	0.193	-94.7	0.749	-0.3
23	0.943	10.3	0.176	-100.3	0.175	-100.9	0.743	-9.5
24	0.958	9.3	0.163	-103.8	0.163	-103.9	0.755	-19.4
25	0.970	3.2	0.158	-109.2	0.157	-109.0	0.781	-28.9
26	0.951	-10.3	0.151	-117.4	0.149	-118.2	0.789	-36.1

(VDS=0V,VGS=-2V,Ta=room temperature)

Freq.	S11		S21		S12		S22	
(GHz)	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)	(mag)	(ang)
1	0.997	-9.0	0.022	81.0	0.023	79.7	0.997	-9.9
2	0.997	-18.1	0.045	70.6	0.045	70.6	0.995	-19.8
3	0.997	-27.7	0.068	60.4	0.068	61.1	0.993	-29.2
4	0.993	-37.3	0.092	50.9	0.092	50.6	0.987	-39.0
5	0.988	-47.1	0.116	40.8	0.116	40.9	0.980	-49.4
6	0.985	-57.4	0.139	30.9	0.139	30.6	0.979	-59.2
7	0.972	-68.0	0.162	19.9	0.162	19.8	0.974	-69.1
8	0.973	-79.2	0.184	8.1	0.185	8.1	0.966	-79.5
9	0.956	-91.8	0.201	-4.1	0.202	-4.2	0.957	-89.9
10	0.942	-104.7	0.216	-17.7	0.216	-17.8	0.950	-101.6
11	0.938	-119.1	0.221	-32.2	0.220	-32.3	0.942	-114.0
12	0.934	-136.1	0.217	-47.7	0.218	-47.8	0.942	-127.8
13	0.928	-156.1	0.201	-65.7	0.201	-65.7	0.934	-143.2
14	0.935	-178.9	0.170	-85.7	0.169	-85.7	0.941	-161.1
15	0.939	155.9	0.119	-107.4	0.119	-107.2	0.945	179.1
16	0.943	130.2	0.057	-127.3	0.057	-127.6	0.954	158.6
17	0.949	105.8	0.005	-25.0	0.005	-27.7	0.963	139.9
18	0.952	83.3	0.051	6.5	0.050	7.1	0.970	123.7
19	0.957	63.4	0.086	-4.4	0.086	-4.4	0.978	112.1
20	0.963	46.8	0.115	-16.6	0.115	-16.8	0.976	101.9
21	0.972	35.0	0.133	-29.5	0.132	-28.8	0.961	90.3
22	0.970	29.8	0.143	-40.0	0.143	-39.8	0.951	76.5
23	0.967	27.0	0.145	-49.6	0.147	-49.5	0.941	61.2
24	0.974	24.0	0.149	-56.9	0.149	-57.0	0.953	46.5
25	0.983	17.1	0.159	-64.6	0.159	-64.7	0.974	33.8
26	0.960	2.8	0.168	-75.8	0.168	-75.4	0.990	24.2

May/2008

MITSUBISHI SEMICONDUTOR <GaAs FET>

MGF4935AM

SUPER LOW NOISE InGaAs HEMT (4pin flat lead package)

Requests Regarding Safety Designs

Mitsubishi Electric constantly strives to raise the level of its quality and reliability. Despite these concerted efforts, however, there will be occasions when our semiconductor products suffer breakdowns, malfunctions or other problems. In view of this reality, it is requested that every feasible precaution be taken in the pursuit of redundancy design, malfunction prevention design and other safety-related designs, to prevent breakdowns or malfunctions in our products from resulting in accidents involving people, fires, social losses or other problems, thereby upholding the highest levels of safety in the products when in use by customers.

Matters of Importance when Using these Materials

- 1. These materials are designed as reference materials to ensure that all customers purchase Mitsubishi Electric semiconductors best suited to their specific use applications. Please be aware, however, that the technical information contained in these materials does not comprise consent for the execution or use of intellectual property rights or other rights owned by Mitsubishi Electric Corporation.
- 2. Mitsubishi Electric does not assume responsibility for damages resulting from the use of product data, graphs, charts, programs, algorithms or other applied circuit examples described in these materials, or for the infringement of the rights of third-party owners resulting from such use.
- 3. The data, graphs, charts, programs, algorithms and all other information described in these materials were current at the issue of these materials, with Mitsubishi Electric reserving the right to make any necessary updates or changes in the products or specifications in these materials without prior notice. Before purchasing Mitsubishi Electric semiconductor products, therefore, please obtain the latest available information from Mitsubishi Electric directly or an authorized dealer.
- 4. Every possible effort has been made to ensure that the information described in these materials is fully accurate. However, Mitsubishi Electric assumes no responsibility for damages resulting from inaccuracies occurring within these materials.
- 5. When using the product data, technical contents indicated on the graphs, charts, programs or algorithms described in these materials, assessments should not be limited to only the technical contents, programs and algorithm units. Rather, it is requested that ample evaluations be made of each individual system as a whole, with the customer assuming full responsibility for decisions on the propriety of application. Mitsubishi Electric does not accept responsibility for the propriety of application.
- 6. The products described in these materials, with the exception of special mention concerning use and reliability, have been designed and manufactured with the purpose of use in general electronic machinery. Accordingly these products have not been designed and manufactured with the purpose of application in machinery or systems that will be used under conditions that can affect human life, or in machinery or systems used in social infrastructure that demand a particularly high degree of reliability. When considering the use of the products described in these materials in transportation machinery (automobiles, trains, vessels), for objectives related to medical treatment, aerospace, nuclear power control, submarine repeaters or systems or other specialized applications, please consult with Mitsubishi Electric directly or an authorized dealer.
- 7. When considering use of products for purposes other than the specific applications described in these materials, please inquire at Mitsubishi Electric or an authorized dealer.
- 8. The prior consent of Mitsubishi Electric in writing is required for any reprinting or reproduction of these materials.
- 9. Please direct any inquiries regarding further details of these materials, or any other comments or matters of attention, to Mitsubishi Electric or an authorized dealer.