SEMICONDUCTOR

Structure \quad Silicon Monolithic Integrated Circuit

Product name 4ch HD Video Drivers for DVD

Type

BH76071FJ

Outer dimensions
Fig. 1 SOP-J14(Plastic Mold)

Block diagram
Fig. 2

Function
Built in 4-outputs video drivers for CVBS, PY, PB and PR

- Enables two load drivers

Composite ${ }^{* 1}$: Built in 6.75 MHz LPF
Component ${ }^{* 1}: 13.5 \mathrm{MHz} / 30 \mathrm{MHz}$ LPF selectable

- Built in MUTE function
※1 Composite is a name for CVBS, Component is a names for PY, PB and PR.

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Ratings	Unit
Supply voltage	V	7.0	V
Power dissipation	Pd	$※ 2820$	mW
Input voltage	VIN	$-0.3 \sim(\mathrm{VCC}+0.3)$	V
Storage temperature	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

※2 Reduced by $8.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ or higher.
When mounting on $\mathrm{a}(\mathrm{I}) 70 \mathrm{~mm} \times(\mathrm{w}) 70 \mathrm{~mm} \times(\mathrm{t}) 1.6 \mathrm{~mm}$ PCB board.(Glass epoxy substrate, 1layer)

Operation Range

Parameter	Symbol	Range	Unit
Supply voltage	VCC	$4.5 \sim 5.5$	V
Operating temperature	Topr	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$

※ This product is not designed for protection against radioactive rays.

SEMICONDUCTOR

- Electrical characteristics
(Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{RL}=150 \Omega$)

Item	Symbol	Limits			Unit	Conditions
		MIN.	TYP.	MAX.		
<Whole circuit>						
VCC current	I_{cc}	32	45	58	mA	No signal, 30MHz LPF
<VIDEO part>						
Voltage gain(CVBS)	$\mathrm{G}_{\mathrm{V} 1}$	5.5	6.0	6.5	dB	Vin=1.0Vp-p, f=100kHz
Voltage gain(PY, PB,PR)	$\mathrm{G}_{\mathrm{V} 2}$	5.5	6.0	6.5	dB	Vin=0.7Vp-p, f=100kHz
Maximum output level	$\mathrm{V}_{\text {OMV }}$	2.6	2.9	-	Vp-p	THD=1.0\% f=10kHz
6.75MHz LPF Frequency characteristics 1	$\mathrm{G}_{\text {f1675 }}$	-1.5	-0.5	0.5	dB	Vin=1.0Vp-p, f=6.75MHz/100kHz
13.5 MHz LPF Frequency characteristics 1	$\mathrm{G}_{\text {f1135 }}$	-1.5	-0.5	0.5	dB	Vin=0.7Vp-p, f=13.5MHz/100kHz
30MHz LPF Frequency characteristics 1	$\mathrm{G}_{\text {11300 }}$	-3.0	-1.0	1.0	dB	$\begin{gathered} \text { Vin }=0.7 \mathrm{Vp}-\mathrm{p}, \\ \mathrm{f}=30 \mathrm{MHz} / 100 \mathrm{kHz} \end{gathered}$
6.75MHz LPF Frequency characteristics 2	$\mathrm{G}_{\mathrm{t} 2675}$	-	-48	-30	dB	$\begin{gathered} \text { Vin=1.0Vp-p, } \\ \mathrm{f}=27 \mathrm{MHz} / 100 \mathrm{kHz} \end{gathered}$
13.5MHz LPF Frequency characteristics 2	$\mathrm{G}_{\mathrm{f} 2135}$	-	-48	-30	dB	$\begin{gathered} \text { Vin }=0.7 \mathrm{Vp}-\mathrm{p}, \\ \mathrm{f}=54 \mathrm{MHz} / 100 \mathrm{kHz} \end{gathered}$
30MHz LPF Frequency characteristics 2	$\mathrm{G}_{\text {t2300 }}$	-	-35	-20	dB	Vin=0.7Vp-p, f=74.25MHz/100kHz
MUTE attenuation	$\mathrm{M}_{\text {T }}$	-	-65	-55	dB	Vin=1.0Vp-p, f=4.43MHz
Cross talk	$\mathrm{C}_{\text {T }}$	-	-65	-55	dB	Vin=1.0Vp-p, f=4.43MHz
PB/PR_IN Input impedance	Z_{14}	100	150	200	$k \Omega$	
<Control pin (6,7,8PIN)>						
Input voltage H	$\mathrm{V}_{\text {th }}$	2.0	-	VCC	V	High level input voltage
Input voltage L	$\mathrm{V}_{\text {thL }}$	0.0	-	0.8	V	Low level input voltage
Input impedance	$\mathrm{R}_{\text {in }}$	100	150	200	$k \Omega$	Between Control pin and GND

Control Specifications

Pin	Function
6pin (MUTE1)	Composite output(CVBS_OUT) MUTE control ※3 L: MUTE
	Component outputs(PY/PB/PR_OUT) MUTE control ※3 L: MUTE H: ACTIVE
	LPF selector for Component L: 13.5MHz LPF H: 30MHz LPF

※3 At MUTE mode, each output terminals usually outputs the bias voltage at no signal.

- Outer Dimentions

(UNIT: mm)

Fig.1. SOP-J14

- Block Diagram

■ Pin Number / Pin Name

※ : Please use the impedance of the circuit connected to the input terminals(1 and 3pin) at $1 \mathrm{k} \Omega$ or less.

Fig.2. Block diagram

SEMICONDUCTOR

Cautions for use
(1) Although we are confident recommending the sample application circuit, carefully check their characteristics further when using them.
When modifying externally attached component constants before use, determine them so that
They have sufficient margins by taking into account variations in externally attached components and the Rohm IC, not only for static characteristics but also including transient characteristics.
(2) Absolute maximum ratings

If the absolute maximum ratings for applied voltage and/or operation temperature are exceeded, LSI damage may result. Therefore, do not apply voltage or use in a temperature that exceeds these absolute maximum ratings. If it is possible that absolute maximum ratings will be exceeded, use a physical safety device such as a fuse and make sure that no conditions that might exceed the absolute maximum ratings will be applied to the LSI IC.
(3) GND potential

Regardless of the operation mode, the voltage of the GND pin should be at least the minimum voltage. Actually check whether or not the voltage at each pin, including transient phenomena, is less than the GND pin voltage.
(4) Thermal design

The thermal design should be done using an ample margin that takes into consideration the allowable dissipation under actual use conditions. Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use.
(5) Shorts between pins and mounting errors

When mounting LSI ICs onto the circuit board, make sure each LSI's orientation and position is correct. The ICs may become damaged if they are not mounted correctly when the power is turned on.
Similarly, damage may also result if a short occurs, such as when a foreign object is positioned between pins in an IC, or between a pin and power supply or GND connection.
(6) Operation in strong electromagnetic field

When used within a strong electromagnetic field, evaluate carefully to avoid the risk of operation faults.
(7) Place the decoupling capacitor close to 13pin.

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

