

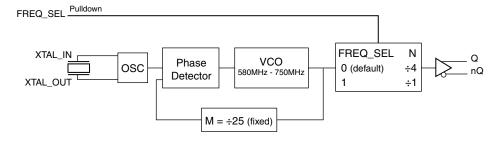
FEMTOCLOCK™ CRYSTAL-TO-LVDS CLOCK GENERATOR

ICS844251-14

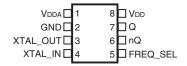
General Description

The ICS844251-14 is an Ethernet Clock Generator and a member of the HiPerClocks[™] family of high performance devices from IDT. The ICS844251-14 uses an 18pF parallel resonant crystal over the range of 23.2MHz – 30MHz. For Ethernet

applications, a 25MHz crystal is used. The device has excellent <1ps phase jitter performance, over the 1.875MHz – 20MHz integration range. The ICS844251-14 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.


Features

- One differential LVDS output pair
- Crystal oscillator interface designed for 18pF, parallel resonant crystal (23.2MHz – 30MHz)
- Output frequency ranges: 145MHz 187.5MHz and 580MHz – 750MHz
- VCO range: 580MHz 750MHz
- RMS phase jitter at 156.25MHz, using a 25MHz crystal (1.875MHz – 20MHz): 0.53ps (typical)
- Full 3.3V or 2.5V output supply modes
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) package


Common Configuration Table

	Inputs							
Crystal Frequency (MHz)	FREQ_SEL	М	N	Multiplication Value M/N	Output Frequency Range (MHz)			
25	1	25	1	25	625			
26.67	1	25	1	25	666.67			
25 (default)	0	25	4	6.25	156.25			

Block Diagram

Pin Assignment

ICS844251-14

8 Lead TSSOP
4.40mm x 3.0mm x 0.925mm
package body
G Package
Top View

Table 1. Pin Descriptions

Number	Name	Туре		Description	
1	V_{DDA}	Output		Analog supply pin.	
2	GND	Power		Power supply ground.	
3, 4	XTAL_OUT XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.	
5	FREQ_SEL	Input	Pulldown	Frequency select pin. LVCMOS/LVTTL interface levels.	
6, 7	nQ, Q	Output		Differential output pair. LVDS interface levels.	
8	V_{DD}	Power		Core supply pin.	

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLdown}	Input Pulldown Resistor			51		kΩ

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, I _O Continuos Current Surge Current	10mA 15mA
Package Thermal Impedance, θ_{JA}	129.5°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDA}	Analog Supply Voltage		V _{DD} – 0.10	3.3	V_{DD}	V
I_{DD}	Power Supply Current				100	mA
I _{DDA}	Analog Supply Current				10	mA

Table 3B. Power Supply DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = 0$ °C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V_{DDA}	Analog Supply Voltage		V _{DD} – 0.10	2.5	V_{DD}	V
I _{DD}	Power Supply Current				95	mA
I _{DDA}	Analog Supply Current				10	mA

Table 3C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = 0$ °C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V Input High Voltag	Input High Voltage	V _{DD} = 3.465V	2		V _{DD} + 0.3	V
V _{IH}	Input riigh voltage	V _{DD} = 2.625V	1.7		V _{DD} + 0.3	V
V	/	V _{DD} = 3.465V	-0.3		0.8	V
V _{IL}	Input Low Voltage	V _{DD} = 2.625V	-0.3		0.7	V
I _{IH}	Input High Current	V _{DD} = V _{IN} = 3.465V or 2.625V			150	μΑ
I _{IL}	Input Low Current	V _{DD} = 3.465V or 2.625V, V _{IN} = 0V	-5			μΑ

Table 3D. LVDS DC Characteristics, V_{DD} = $3.3V \pm 5\%$, T_A = $0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OD}	Differential Output Voltage		247		454	mV
ΔV_{OD}	V _{OD} Magnitude Change				50	mV
V _{OS}	Offset Voltage		1.275		1.525	V
ΔV _{OS}	V _{OS} Magnitude Change				50	mV

Table 3E. LVDS DC Characteristics, $V_{DD} = V_{DDA} = 2.5 V \pm 5\%, T_A = 0 ^{\circ} C$ to $70 ^{\circ} C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage		247		454	mV
ΔV_{OD}	V _{OD} Magnitude Change				50	mV
V _{OS}	Offset Voltage		1.0		1.4	V
ΔV _{OS}	V _{OS} Magnitude Change				50	mV

Table 4. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		23.2		30	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

AC Electrical Characteristics

Table 5A. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C

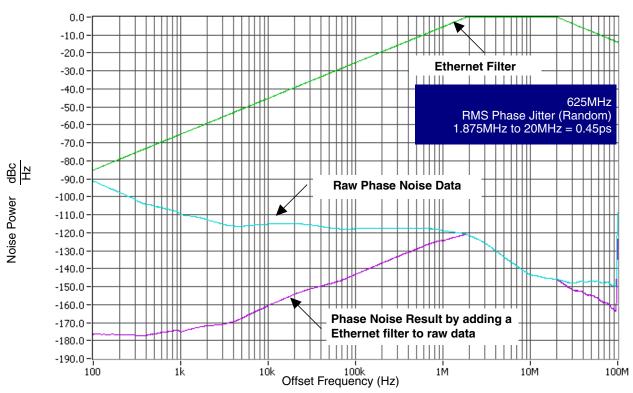
Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f.	Output Frequency	FREQ_SEL = 0	145		187.5	MHz
fоит	Output Frequency	FREQ_SEL = 1	580		750	MHz
fjit(Ø)	RMS Phase Jitter, Random;	156.25MHz, Integration Range: 1.875MHz – 20MHz		0.53		ps
git(©)	NOTE 1	625MHz, Integration Range: 1.875MHz – 20MHz		0.45		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	70		550	ps
odc	Output Duty Cycle	FREQ_SEL = 0	48		52	%
ouc		FREQ_SEL = 1	46		54	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

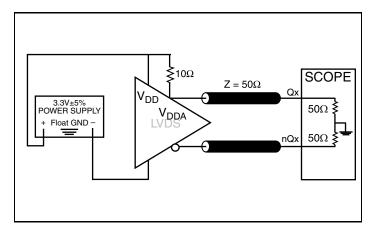
NOTE 1: Please refer to Phase Noise Plots.


Table 5B. AC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = 0$ °C to 70°C

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
	Output Fraguency	FREQ_SEL = 0	145		187.5	MHz
f _{OUT}	Output Frequency	FREQ_SEL = 1	580		750	MHz
$\pi_{1}(\mathcal{C})$	RMS Phase Jitter, Random; NOTE 1	156.25MHz, Integration Range: 1.875MHz – 20MHz		0.54		ps
		625MHz, Integration Range: 1.875MHz – 20MHz		0.45		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	70		550	ps
odc	Output Duty Cycle	FREQ_SEL = 0	48		52	%
	Output Duty Cycle	FREQ_SEL = 1	46		54	%

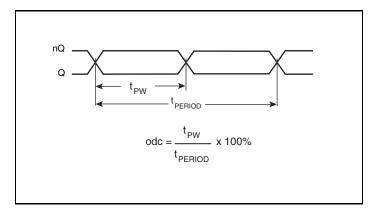

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Please refer to Phase Noise Plots.

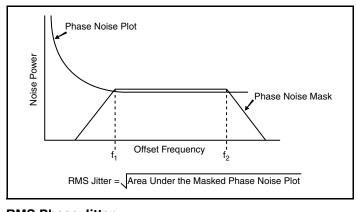

Typical Phase Noise at 156.25MHz (3.3V)

Typical Phase Noise at 625MHz (3.3V)

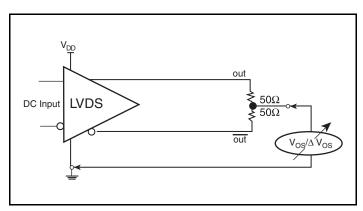
Parameter Measurement Information



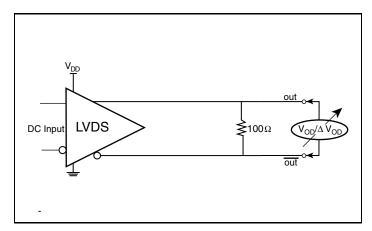
 $Z = 50\Omega$ V_{DD} V_{DDA} V_{DD


3.3V LVDS Output Load AC Test Circuit

0 20% t_R 80% t_F 20%


2.5V LVDS Output Load AC Test Circuit

Output Rise/Fall Time


Output Duty Cycle/Pulse Width/Period

RMS Phase Jitter

OFFSET VOLTAGE SETUP

Parameter Measurement Information, continued

DIFFERENTIAL OUTPUT VOLTAGE SETUP

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The ICS844251-14 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and V_{DDA} should be individually connected to the power supply plane through vias, and $0.01\mu F$ bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10Ω resistor along with a $10\mu F$ bypass capacitor be connected to the V_{DDA} pin.

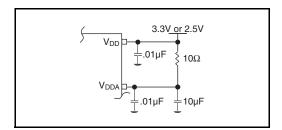


Figure 1. Power Supply Filtering

Crystal Input Interface

The ICS844251-14 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel

resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

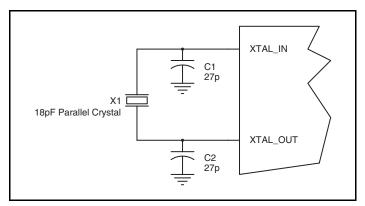


Figure 2. Crystal Input Interface

LVCMOS to XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output

impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω .

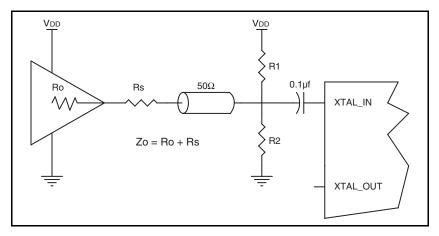


Figure 3. General Diagram for LVCMOS Driver to XTAL Input Interface

3.3V, 2.5V LVDS Driver Termination

A general LVDS interface is shown in Figure 4. In a 100Ω differential transmission line environment, LVDS drivers require a

matched load termination of 100Ω across near the receiver input.

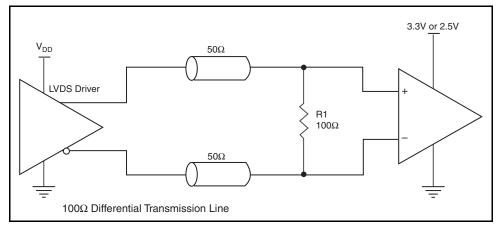


Figure 4. Typical LVDS Driver Termination

Schematic Example

Figure 5 shows an example of ICS844251-14 application schematic. In this example, the device is operated at $V_{DD}=3.3V$. The decoupling capacitor should be located as close as possible to the power pin. The 18pF parallel resonant 25MHz crystal is used. The C1 = 27pF and C2 = 27pF are recommended for

frequency accuracy. For different board layouts, the C1 and C2 may be slightly adjusted for optimizing frequency accuracy. For the LVDS output drivers, place a 100Ω resistor as close to the receiver as possible.

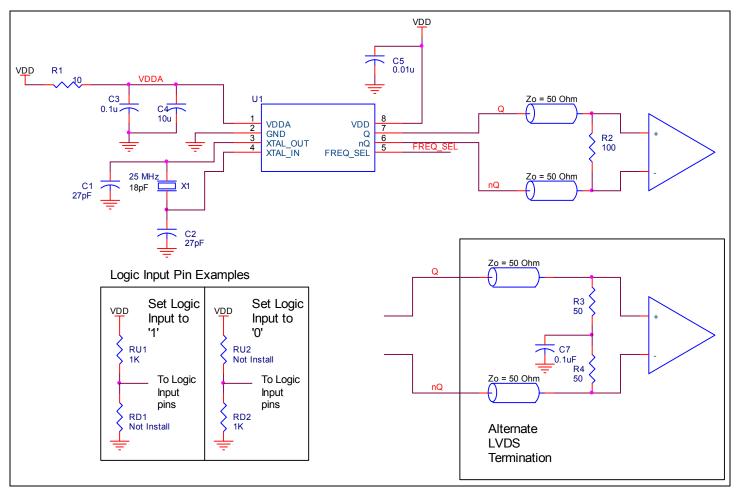


Figure 5. ICS844251-14 Schematic Example

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS844251-14. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS844251-14 is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

Power (core)_{MAX} = V_{DD_MAX} * (I_{DD_MAX} + I_{DDA_MAX}) = 3.465V * (100mA + 10mA) = 381.15mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 129.5.°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}\text{C} + 0.381\text{W} *129.5^{\circ}\text{C/W} = 119.3^{\circ}\text{C}$. This is below the limit of 125°C .

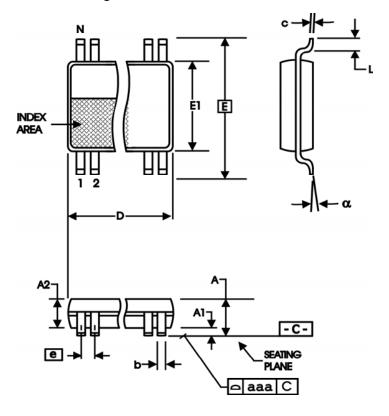
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 6. Thermal Resistance θ_{JA} for 8 Lead TSSOP, Forced Convection

θ_{JA} by Velocity				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W	

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 8 Lead TSSOP


$\theta_{\sf JA}$ vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	129.5°C/W	125.5°C/W	123.5°C/W

Transistor Count

The transistor count for ICS844251-14 is: 2401

Package Outline and Package Dimensions

Table 8. Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP

All Dimensions in Millimeters			
Symbol	Minimum	Maximum	
N	8		
Α		1.20	
A 1	0.5	0.15	
A2	0.80	1.05	
b	0.19	0.30	
С	0.09	0.20	
D	2.90	3.10	
E	6.40 Basic		
E1	4.30	4.50	
е	0.65 Basic		
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
844251BG-14	51B14	8 Lead TSSOP	Tube	0°C to 70°C
844251BG-14T	51B14	8 Lead TSSOP	2500 Tape & Reel	0°C to 70°C
844251BG-14LF	1B14L	"Lead-Free" 8 Lead TSSOP	Tube	0°C to 70°C
844251BG-14LFT	1B14L	"Lead-Free" 8 Lead TSSOP	2500 Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History Sheet

Rev	Table	Page	Description of Change	
Α		11	Added schematic layout.	5/1/09

Contact Information:

www.IDT.com

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contact IDT

Technical Support

netcom@idt.com +480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800-345-7015 (inside USA) +408-284-8200 (outside USA)

