May 2007 rev 0.4

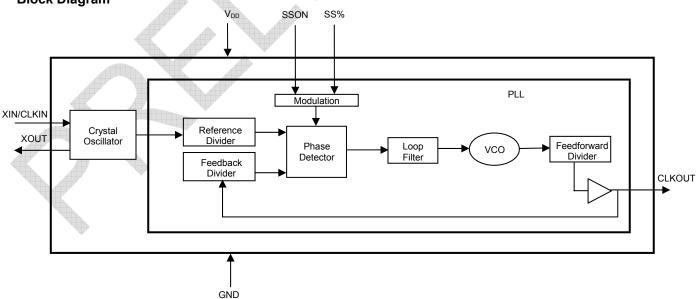
ASM3P622S01B/J

Low Frequency Timing-Safe™ Peak EMI reduction IC

General Features

- Low Frequency Clock distribution with Timing-• Safe[™] Peak EMI Reduction
- Input frequency range: 4MHz 20MHz.
- Zero input output propagation delay
- Low-skew outputs
 - Output-output skew less than 250pS •
 - Device-device skew less than 700pS
- Less than 200pS cycle-to-cycle jitter
- Available in 8pin, 150 mil SOIC, 4.4mm TSSOP . Package
- 3.3V Operation
- Industrial temperature range •
- Advanced CMOS technology
- The First True Drop-in Solution

Functional Description


ASM3P622S01B/J is a versatile, 3.3V Zero-delay buffer designed to distribute low frequency Timing-Safe™ clocks with Peak EMI Reduction. The ASM3P622S01B/J is the eight-pin version and accepts one reference input and drives out one low-skew clock.

All parts have on-chip PLLs that lock to an input clock on the REF pin. The PLL feedback is on-chip and is obtained from the CLKOUT pad, internal to the device.

Multiple ASM3P622S01B/J devices can accept the same input clock and distribute it. In this case, the skew between the outputs of the two devices is guaranteed to be less than 700pS.

The output has less than 200pS of cycle-to-cycle jitter. The input and output propagation delay is guaranteed to be less than 250pS, and the output-to-output skew is guaranteed to be less than 250pS.

Refer "Spread Spectrum Control and Input-Output Skew for deviations and Input-Output Skew for Table" ASM3P622S01B/J devices.

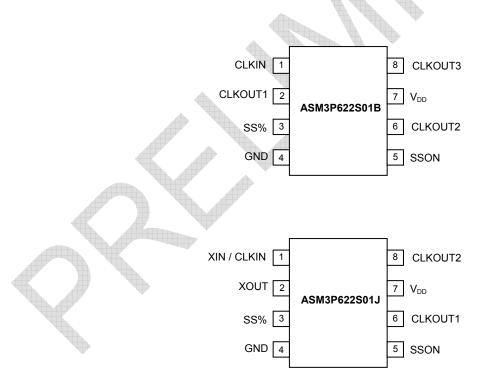
PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 • Tel: 408-879-9077 • Fax: 408-879-9018 www.pulsecoresemi.com

Notice: The information in this document is subject to change without notice.

Block Diagram

May 2007

rev 0.4


Spread Spectrum Frequency Generation

The clocks in digital systems are typically square waves with a 50% duty cycle and as frequencies increase the edge rates also get faster. Analysis shows that a square wave is composed of fundamental frequency and harmonics. The fundamental frequency and harmonics generate the energy peaks that become the source of EMI. Regulatory agencies test electronic equipment by measuring the amount of peak energy radiated from the equipment. In fact, the peak level allowed decreases as the frequency increases. The standard methods of reducing EMI are to use shielding, filtering, multi-layer PCBs etc. These methods are expensive. Spread spectrum clocking reduces the peak energy by reducing the Q factor of the clock. This is done by slowly modulating the clock frequency. The ASM3P622S01B/J uses the center modulation spread spectrum technique in which the modulated output frequency varies above and below the reference frequency with a specified modulation rate. With center modulation, the average frequency is the same as the unmodulated frequency and there is no performance degradation.

Timing-Safe™ technology

Timing-Safe[™] technology is the ability to modulate a clock source with Spread Spectrum technology and maintain synchronization with any associated data path.

Pin Configuration

May 2007

rev 0.4

Pin Description for ASM3P622S01B

Pin #	Pin Name	Description
1	CLKIN	Input reference frequency, 5V-tolerant input
2	CLKOUT1 ¹	Buffered clock output
3	SS% ²	Spread Spectrum Selection
4	GND	Ground
5	SSON ²	Spread Spectrum enable and disable option When SSON is HIGH, the spread spectrum is enabled and when LOW, it turns off the spread spectrum.
6	CLKOUT2 ¹	Buffered clock output
7	V _{DD}	3.3V supply
8	CLKOUT3 ¹	Buffered clock output

Notes: 1. Weak pull-down on all outputs.

Weak pull-up on these Inputs.
Buffered clock outputs are Timing-Safe™

Pin Description for ASM3P622S01J

Pin #	Pin Name	Description
1	XIN/CLKIN	Crystal connection or external reference frequency input. This pin has dual functions. It can be connected either to an external crystal or an external reference clock.
2	XOUT	Crystal connection. If using an external reference, this pin must be left unconnected.
3	SS% ²	Spread Spectrum Selection
4	GND	Ground
5	SSON ²	Spread Spectrum enable and disable option When SSON is HIGH, the spread spectrum is enabled and when LOW, it turns off the spread spectrum.
6	CLKOUT ¹	Buffered clock output
7	V _{DD}	3.3V supply
8	CLKOUT ¹	Buffered clock output
tes: 1 Wesk null_d	own on all outputo	7 7

Notes: 1. Weak pull-down on all outputs 2. Weak pull-up on these Inputs 3. Buffered clock outputs are Timing-Safe™

Spread Spectrum Control and Input-Output Skew Table

Device	Input Frequency	SS %	Deviation	Input-Output Skew(±T _{skew})
	>	0	±0.25 %	0.063
ASM3P622S01B/J	12MHz	1	±0.50 %	0.125

Note: T_{SKEW} is measured in units of the Clock Period

May 2007

rev 0.4

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit			
VDD	Voltage on any pin with respect to Ground	-0.5 to +4.6	V			
T _{STG}	Storage temperature	-65 to +125	°C			
Ts	Max. Soldering Temperature (10 sec)	260	°C			
TJ	Junction Temperature	150	°C			
T _{DV}	Static Discharge Voltage (As per JEDEC STD22- A114-B)	2	KV			
	Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.					

Operating Conditions for ASM3P622S01B/J Device

Parameter	Description	Min	Max	Unit
V _{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	-40	+85	°C
CL	Load Capacitance		30	pF
CIN	Input Capacitance		7	pF

Electrical Characteristics for ASM3P622S01B/J

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{IL}	Input LOW Voltage ¹				0.8	V
VIH	Input HIGH Voltage ¹		2.0			V
I _{IL}	Input LOW Current	V _{IN} = 0V			50	μA
I _{IH}	Input HIGH Current	$V_{IN} = V_{DD}$			100	μA
V _{OL}	Output LOW Voltage ²	I _{OL} = 8mA			0.4	V
V _{OH}	Output HIGH Voltage ²	I _{он} = -8mA	2.4			V
I _{DD}	Supply Current	Unloaded outputs		15		mA
Zo	Output Impedance			23		Ω

Note: 1. CLKIN input has a threshold voltage of VDD/2

2. Parameter is guaranteed by design and characterization. Not 100% tested in production

Notice: The information in this document is subject to change without notice.

May 2007

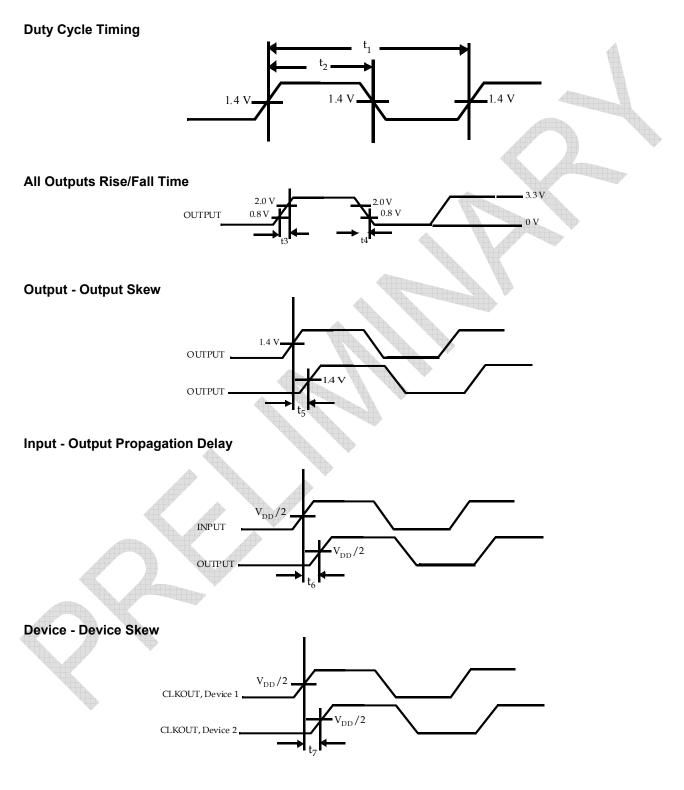
ASM3P622S01B/J

rev 0.4

Switching Characteristics for ASM3P622S01B/J

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
1/t1	Output Frequency	30pF load	4		20	MHz
	Duty Cycle 2 = (t ₂ / t ₁) * 100	Measured at V _{DD} /2	40	50	60	%
t ₃	Output Rise Time ^{1, 2}	Measured between 0.8V and 2.0V			2.5	nS
t4	Output Fall Time ^{1, 2}	Measured between 2.0V and 0.8V			2.5	nS
t ₅	Output-to-output skew ²	All outputs equally loaded		7	250	pS
t ₆	Delay, CLKIN Rising Edge to CLKOUT Rising Edge ²	Measured at V_{DD} /2			±250	pS
t7	Device-to-Device Skew ²	Measured at $V_{DD}/2$ on the CLKOUT pins of the device			700	pS
tJ	Cycle-to-cycle jitter ²	Loaded outputs	4	Í	200	pS
t _{LOCK}	PLL Lock Time ²	Stable power supply, valid clock presented on CLKIN pin			1.0	mS

Note: 1. The parameters specified with loaded outputs.

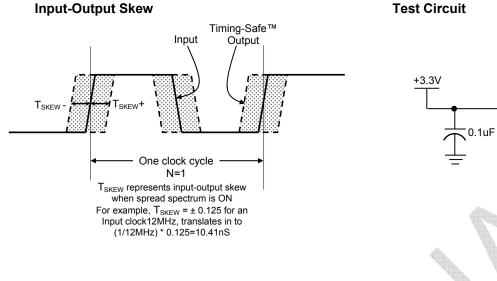

2. Parameter is guaranteed by design and characterization. Not 100% tested in production

Low Frequency Timing-Safe™ Peak EMI Reduction IC

May 2007 rev 0.4

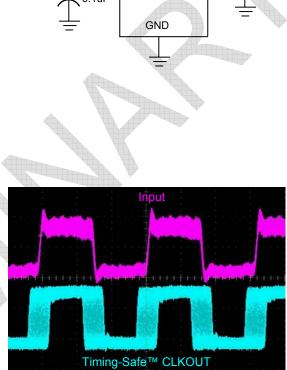
Switching Waveforms

OUTPUTS


 V_{DD}

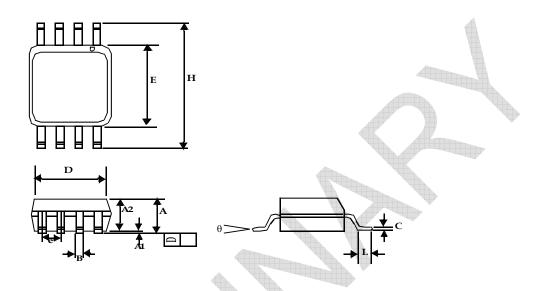
CLKOUT

 C_{LOAD}


rev 0.4

May 2007

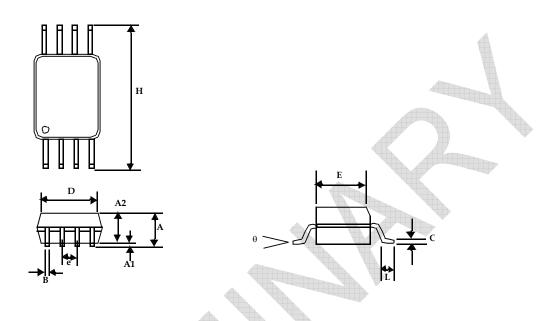
A Typical example of Timing-Safe™ waveform



May 2007

rev 0.4 Package Information

8-lead (150-mil) SOIC Package


	Dimensions				
Symbol	Inches		Millimeters		
	Min	Max	Min	Max	
A1	0.004	0.010	0.10	0.25	
А	0.053	0.069	1.35	1.75	
A2	0.049	0.059	1.25	1.50	
В	0.012	0.020	0.31	0.51	
С	0.007	0.010	0.18	0.25	
D	0.193	BSC	4.90 BSC		
E	0.154 BSC		3.91	BSC	
е	0.050 BSC		1.27 BSC		
Н	0.236 BSC		6.00	BSC	
	0.016	0.050	0.41	1.27	
θ	0°	8°	0°	8°	

rev 0.4

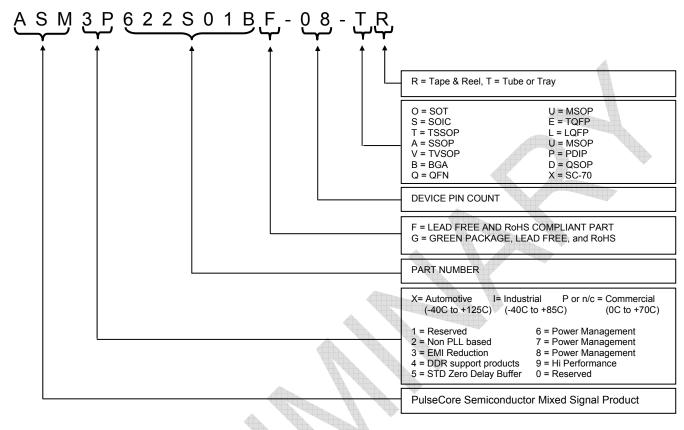
May 2007

8-lead TSSOP (4.40-MM Body)

	Dimensions			
Symbol	Inches		Millim	ieters
	Min	Мах	Min	Max
А		0.043		1.10
A1	0.002	0.006	0.05	0.15
A2	0.033	0.037	0.85	0.95
В	0.008	0.012	0.19	0.30
c	0.004	0.008	0.09	0.20
D	0.114	0.122	2.90	3.10
E	0.169	0.177	4.30	4.50
е	0.026	BSC	0.65 BSC	
Н	0.252 BSC		6.40	BSC
L	0.020	0.028	0.50	0.70
θ	0°	8°	0°	8°

May 2007

rev 0.4 Ordering Codes


Ordering Code	Marking	Package Type	Temperature
ASM3P622S01BF-08-ST	3P622S01BF	8-pin 150-mil SOIC-TUBE, Pb Free	Commercial
ASM3I622S01BF-08-ST	3I622S01BF	8-pin 150-mil SOIC-TUBE, Pb Free	Industrial
ASM3P622S01BF-08-SR	3P622S01BF	8-pin 150-mil SOIC-TAPE & REEL, Pb Free	Commercial
ASM3I622S01BF-08-SR	3I622S01BF	8-pin 150-mil SOIC-TAPE & REEL, Pb Free	Industrial
ASM3P622S01BF-08-TT	3P622S01BF	8-pin 4.4-mm TSSOP - TUBE, Pb Free	Commercial
ASM3I622S01BF-08-TT	3I622S01BF	8-pin 4.4-mm TSSOP - TUBE, Pb Free	Industrial
ASM3P622S01BF-08-TR	3P622S01BF	8-pin 4.4-mm TSSOP - TAPE & REEL, Pb Free	Commercial
ASM3I622S01BF-08-TR	3I622S01BF	8-pin 4.4-mm TSSOP - TAPE & REEL, Pb Free	Industrial
ASM3P622S01BG-08-ST	3P622S01BG	8-pin 150-mil SOIC-TUBE, Green	Commercial
ASM3I622S01BG-08-ST	3I622S01BG	8-pin 150-mil SOIC-TUBE, Green	Industrial
ASM3P622S01BG-08-SR	3P622S01BG	8-pin 150-mil SOIC-TAPE & REEL, Green	Commercial
ASM3I622S01BG-08-SR	3I622S01BG	8-pin 150-mil SOIC-TAPE & REEL, Green	Industrial
ASM3P622S01BG-08-TT	3P622S01BG	8-pin 4.4-mm TSSOP - TUBE, Green	Commercial
ASM3I622S01BG-08-TT	3I622S01BG	8-pin 4.4-mm TSSOP - TUBE, Green	Industrial
ASM3P622S01BG-08-TR	3P622S01BG	8-pin 4.4-mm TSSOP - TAPE & REEL, Green	Commercial
ASM3I622S01BG-08-TR	3I622S01BG	8-pin 4.4-mm TSSOP - TAPE & REEL, Green	Industrial
ASM3P622S01JF-08-ST	3P622S01JF	8-pin 150-mil SOIC-TUBE, Pb Free	Commercial
ASM3I622S01JF-08-ST	3I622S01JF	8-pin 150-mil SOIC-TUBE, Pb Free	Industrial
ASM3P622S01JF-08-SR	3P622S01JF	8-pin 150-mil SOIC-TAPE & REEL, Pb Free	Commercial
ASM3I622S01JF-08-SR	3I622S01JF	8-pin 150-mil SOIC-TAPE & REEL, Pb Free	Industrial
ASM3P622S01JF-08-TT	3P622S01JF	8-pin 4.4-mm TSSOP - TUBE, Pb Free	Commercial
ASM3I622S01JF-08-TT	31622S01JF	8-pin 4.4-mm TSSOP - TUBE, Pb Free	Industrial
ASM3P622S01JF-08-TR	3P622S01JF	8-pin 4.4-mm TSSOP - TAPE & REEL, Pb Free	Commercial
ASM3I622S01JF-08-TR	31622S01JF	8-pin 4.4-mm TSSOP - TAPE & REEL, Pb Free	Industrial
ASM3P622S01JG-08-ST	3P622S01JG	8-pin 150-mil SOIC-TUBE, Green	Commercial
ASM3I622S01JG-08-ST	31622S01JG	8-pin 150-mil SOIC-TUBE, Green	Industrial
ASM3P622S01JG-08-SR	3P622S01JG	8-pin 150-mil SOIC-TAPE & REEL, Green	Commercial
ASM31622S01JG-08-SR	3I622S01JG	8-pin 150-mil SOIC-TAPE & REEL, Green	Industrial
ASM3P622S01JG-08-TT	3P622S01JG	8-pin 4.4-mm TSSOP - TUBE, Green	Commercial
ASM3I622S01JG-08-TT	3I622S01JG	8-pin 4.4-mm TSSOP - TUBE, Green	Industrial
ASM3P622S01JG-08-TR	3P622S01JG	8-pin 4.4-mm TSSOP - TAPE & REEL, Green	Commercial
ASM3I622S01JG-08-TR	3I622S01JG	8-pin 4.4-mm TSSOP - TAPE & REEL, Green	Industrial

May 2007

rev 0.4

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

May 2007

rev 0.4

ASM3P622S01B/J

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 Tel: 408-879-9077 Fax: 408-879-9018 www.pulsecoresemi.com

Copyright © PulseCore Semiconductor All Rights Reserved Part Number: ASM3P622S01B/J Document Version: 0.4

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003 Timing-Safe™ US Patent Pending.

© Copyright 2006 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.